1
|
Sugiyama Y, Okada S, Daigaku Y, Kusumoto E, Ito T. Strategic targeting of Cas9 nickase induces large segmental duplications. CELL GENOMICS 2024; 4:100610. [PMID: 39053455 PMCID: PMC11406185 DOI: 10.1016/j.xgen.2024.100610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 04/15/2024] [Accepted: 07/02/2024] [Indexed: 07/27/2024]
Abstract
Gene/segmental duplications play crucial roles in genome evolution and variation. Here, we introduce paired nicking-induced amplification (PNAmp) for their experimental induction. PNAmp strategically places two Cas9 nickases upstream and downstream of a replication origin on opposite strands. This configuration directs the sister replication forks initiated from the origin to break at the nicks, generating a pair of one-ended double-strand breaks. If homologous sequences flank the two break sites, then end resection converts them to single-stranded DNAs that readily anneal to drive duplication of the region bounded by the homologous sequences. PNAmp induces duplication of segments as large as ∼1 Mb with efficiencies exceeding 10% in the budding yeast Saccharomyces cerevisiae. Furthermore, appropriate splint DNAs allow PNAmp to duplicate/multiplicate even segments not bounded by homologous sequences. We also provide evidence for PNAmp in mammalian cells. Therefore, PNAmp provides a prototype method to induce structural variations by manipulating replication fork progression.
Collapse
Affiliation(s)
- Yuki Sugiyama
- Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, Fukuoka 812-8582, Japan
| | - Satoshi Okada
- Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, Fukuoka 812-8582, Japan
| | - Yasukazu Daigaku
- Cancer Genome Dynamics Project, Cancer Institute, Japanese Foundation for Cancer Research, Tokyo 135-8550, Japan
| | - Emiko Kusumoto
- Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, Fukuoka 812-8582, Japan
| | - Takashi Ito
- Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, Fukuoka 812-8582, Japan.
| |
Collapse
|
2
|
Xu M, Yang N, Pan J, Hua Q, Li CX, Xu JH. Remodeling the Homologous Recombination Mechanism of Yarrowia lipolytica for High-Level Biosynthesis of Squalene. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:9984-9993. [PMID: 38635942 DOI: 10.1021/acs.jafc.4c01779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
Squalene is a high-value antioxidant with many commercial applications. The use of microbial cell factories to produce squalene as an alternative to plant and animal extracts could meet increasing market demand. Yarrowia lipolytica is an excellent host for squalene production due to its high levels of acetyl-CoA and a hydrophobic environment. However, the need for precise and complicated gene editing has hindered the industrialization of this strain. Herein, the rapid construction of a strain with high squalene production was achieved by enhancing the homologous recombination efficiency in Y. lipolytica. First, remodeling of the homologous recombination efficiency resulted in a 10-fold increase in the homologous recombination rate. Next, the whole mevalonate pathway was integrated into the chromosome to enhance squalene production. Then, a higher level of squalene accumulation was achieved by increasing the level of acetyl coenzyme A and regulating the downstream steroid synthesis pathway. Finally, the squalene production reached 35 g/L after optimizing the fermentation conditions and performing a fed-batch culture in a 5 L jar fermenter. This is the highest squalene production ever reported to date by de novo biosynthesis without adding any inhibitors, paving a new path toward the industrial production of squalene and its downstream products.
Collapse
Affiliation(s)
- Man Xu
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Centre for Biomanufacturing, School of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Nan Yang
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Centre for Biomanufacturing, School of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Jiang Pan
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Centre for Biomanufacturing, School of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Qiang Hua
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Centre for Biomanufacturing, School of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Chun-Xiu Li
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Centre for Biomanufacturing, School of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Jian-He Xu
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Centre for Biomanufacturing, School of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| |
Collapse
|
3
|
Al-Fatlawi A, Schroeder M, Stewart AF. The Rad52 SSAP superfamily and new insight into homologous recombination. Commun Biol 2023; 6:87. [PMID: 36690694 PMCID: PMC9870868 DOI: 10.1038/s42003-023-04476-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 01/12/2023] [Indexed: 01/25/2023] Open
Abstract
Recent structures of DNA-bound bacterial and phage recombinases provide insights into homologous recombination and suggest relation to the eukaryotic Rad52 and identification of a Rad52 single strand annealing protein (SSAP) superfamily.
Collapse
Affiliation(s)
- Ali Al-Fatlawi
- Biotechnology Center, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Tatzberg 47, 01307, Dresden, Germany
| | - Michael Schroeder
- Biotechnology Center, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Tatzberg 47, 01307, Dresden, Germany.
| | - A Francis Stewart
- Biotechnology Center, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Tatzberg 47, 01307, Dresden, Germany.
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia.
| |
Collapse
|
4
|
DNA Double-Strand Break Repairs and Their Application in Plant DNA Integration. Genes (Basel) 2022; 13:genes13020322. [PMID: 35205367 PMCID: PMC8871565 DOI: 10.3390/genes13020322] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/07/2022] [Accepted: 02/07/2022] [Indexed: 01/25/2023] Open
Abstract
Double-strand breaks (DSBs) are considered to be one of the most harmful and mutagenic forms of DNA damage. They are highly toxic if unrepaired, and can cause genome rearrangements and even cell death. Cells employ two major pathways to repair DSBs: homologous recombination (HR) and non-homologous end-joining (NHEJ). In plants, most applications of genome modification techniques depend on the development of DSB repair pathways, such as Agrobacterium-mediated transformation (AMT) and gene targeting (GT). In this paper, we review the achieved knowledge and recent advances on the DNA DSB response and its main repair pathways; discuss how these pathways affect Agrobacterium-mediated T-DNA integration and gene targeting in plants; and describe promising strategies for producing DSBs artificially, at definite sites in the genome.
Collapse
|
5
|
Rad52 Oligomeric N-Terminal Domain Stabilizes Rad51 Nucleoprotein Filaments and Contributes to Their Protection against Srs2. Cells 2021; 10:cells10061467. [PMID: 34207997 PMCID: PMC8230603 DOI: 10.3390/cells10061467] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/07/2021] [Accepted: 06/08/2021] [Indexed: 02/04/2023] Open
Abstract
Homologous recombination (HR) depends on the formation of a nucleoprotein filament of the recombinase Rad51 to scan the genome and invade the homologous sequence used as a template for DNA repair synthesis. Therefore, HR is highly accurate and crucial for genome stability. Rad51 filament formation is controlled by positive and negative factors. In Saccharomyces cerevisiae, the mediator protein Rad52 catalyzes Rad51 filament formation and stabilizes them, mostly by counteracting the disruptive activity of the translocase Srs2. Srs2 activity is essential to avoid the formation of toxic Rad51 filaments, as revealed by Srs2-deficient cells. We previously reported that Rad52 SUMOylation or mutations disrupting the Rad52–Rad51 interaction suppress Rad51 filament toxicity because they disengage Rad52 from Rad51 filaments and reduce their stability. Here, we found that mutations in Rad52 N-terminal domain also suppress the DNA damage sensitivity of Srs2-deficient cells. Structural studies showed that these mutations affect the Rad52 oligomeric ring structure. Overall, in vivo and in vitro analyzes of these mutants indicate that Rad52 ring structure is important for protecting Rad51 filaments from Srs2, but can increase Rad51 filament stability and toxicity in Srs2-deficient cells. This stabilization function is distinct from Rad52 mediator and annealing activities.
Collapse
|
6
|
Pham N, Yan Z, Yu Y, Faria Afreen M, Malkova A, Haber JE, Ira G. Mechanisms restraining break-induced replication at two-ended DNA double-strand breaks. EMBO J 2021; 40:e104847. [PMID: 33844333 DOI: 10.15252/embj.2020104847] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 03/04/2021] [Accepted: 03/09/2021] [Indexed: 11/09/2022] Open
Abstract
DNA synthesis during homologous recombination is highly mutagenic and prone to template switches. Two-ended DNA double-strand breaks (DSBs) are usually repaired by gene conversion with a short patch of DNA synthesis, thus limiting the mutation load to the vicinity of the DSB. Single-ended DSBs are repaired by break-induced replication (BIR), which involves extensive and mutagenic DNA synthesis spanning up to hundreds of kilobases. It remains unknown how mutagenic BIR is suppressed at two-ended DSBs. Here, we demonstrate that BIR is suppressed at two-ended DSBs by proteins coordinating the usage of two ends of a DSB: (i) ssDNA annealing proteins Rad52 and Rad59 that promote second end capture, (ii) D-loop unwinding helicase Mph1, and (iii) Mre11-Rad50-Xrs2 complex that promotes synchronous resection of two ends of a DSB. Finally, BIR is also suppressed when Sir2 silences a normally heterochromatic repair template. All of these proteins are particularly important for limiting BIR when recombination occurs between short repetitive sequences, emphasizing the significance of these mechanisms for species carrying many repetitive elements such as humans.
Collapse
Affiliation(s)
- Nhung Pham
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Zhenxin Yan
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Yang Yu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Mosammat Faria Afreen
- Department of Biology, Rosenstiel Basic Medical Sciences Research Center, Waltham, MA, USA
| | - Anna Malkova
- Department of Biology, University of Iowa, Iowa City, IA, USA
| | - James E Haber
- Department of Biology, Rosenstiel Basic Medical Sciences Research Center, Waltham, MA, USA
| | - Grzegorz Ira
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
7
|
Kockler ZW, Osia B, Lee R, Musmaker K, Malkova A. Repair of DNA Breaks by Break-Induced Replication. Annu Rev Biochem 2021; 90:165-191. [PMID: 33792375 DOI: 10.1146/annurev-biochem-081420-095551] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Double-strand DNA breaks (DSBs) are the most lethal type of DNA damage, making DSB repair critical for cell survival. However, some DSB repair pathways are mutagenic and promote genome rearrangements, leading to genome destabilization. One such pathway is break-induced replication (BIR), which repairs primarily one-ended DSBs, similar to those formed by collapsed replication forks or telomere erosion. BIR is initiated by the invasion of a broken DNA end into a homologous template, synthesizes new DNA within the context of a migrating bubble, and is associated with conservative inheritance of new genetic material. This mode of synthesis is responsible for a high level of genetic instability associated with BIR. Eukaryotic BIR was initially investigated in yeast, but now it is also actively studied in mammalian systems. Additionally, a significant breakthrough has been made regarding the role of microhomology-mediated BIR in the formation of complex genomic rearrangements that underly various human pathologies.
Collapse
Affiliation(s)
- Z W Kockler
- Department of Biology, University of Iowa, Iowa City, Iowa 52242, USA;
| | - B Osia
- Department of Biology, University of Iowa, Iowa City, Iowa 52242, USA;
| | - R Lee
- Department of Biology, University of Iowa, Iowa City, Iowa 52242, USA;
| | - K Musmaker
- Department of Biology, University of Iowa, Iowa City, Iowa 52242, USA;
| | - A Malkova
- Department of Biology, University of Iowa, Iowa City, Iowa 52242, USA;
| |
Collapse
|
8
|
Doi G, Okada S, Yasukawa T, Sugiyama Y, Bala S, Miyazaki S, Kang D, Ito T. Catalytically inactive Cas9 impairs DNA replication fork progression to induce focal genomic instability. Nucleic Acids Res 2021; 49:954-968. [PMID: 33398345 PMCID: PMC7826275 DOI: 10.1093/nar/gkaa1241] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 12/05/2020] [Accepted: 12/09/2020] [Indexed: 12/11/2022] Open
Abstract
Catalytically inactive Cas9 (dCas9) has become an increasingly popular tool for targeted gene activation/inactivation, live-cell imaging, and base editing. While dCas9 was reported to induce base substitutions and indels, it has not been associated with structural variations. Here, we show that dCas9 impedes replication fork progression to destabilize tandem repeats in budding yeast. When targeted to the CUP1 array comprising ∼16 repeat units, dCas9 induced its contraction in most cells, especially in the presence of nicotinamide. Replication intermediate analysis demonstrated replication fork stalling in the vicinity of dCas9-bound sites. Genetic analysis indicated that while destabilization is counteracted by the replisome progression complex components Ctf4 and Mrc1 and the accessory helicase Rrm3, it involves single-strand annealing by the recombination proteins Rad52 and Rad59. Although dCas9-mediated replication fork stalling is a potential risk in conventional applications, it may serve as a novel tool for both mechanistic studies and manipulation of genomic instability.
Collapse
Affiliation(s)
- Goro Doi
- Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Satoshi Okada
- Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Takehiro Yasukawa
- Department of Clinical Chemistry and Laboratory Medicine, Kyushu University Graduate School of Medical Sciences, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Yuki Sugiyama
- Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Siqin Bala
- Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Shintaro Miyazaki
- Kyushu University School of Medicine, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Dongchon Kang
- Department of Clinical Chemistry and Laboratory Medicine, Kyushu University Graduate School of Medical Sciences, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Takashi Ito
- Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| |
Collapse
|
9
|
Partner Choice in Spontaneous Mitotic Recombination in Wild Type and Homologous Recombination Mutants of Candida albicans. G3-GENES GENOMES GENETICS 2019; 9:3631-3644. [PMID: 31690596 PMCID: PMC6829120 DOI: 10.1534/g3.119.400516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Candida albicans, the most common fungal pathogen, is a diploid with a genome that is rich in repeats and has high levels of heterozygosity. To study the role of different recombination pathways on direct-repeat recombination, we replaced either allele of the RAD52 gene (Chr6) with the URA-blaster cassette (hisG-URA3-hisG), measured rates of URA3 loss as resistance to 5-fluoroorotic acid (5FOAR) and used CHEF Southern hybridization and SNP-RFLP analysis to identify recombination mechanisms and their frequency in wildtype and recombination mutants. FOAR rates varied little across different strain backgrounds. In contrast, the type and frequency of mechanisms underlying direct repeat recombination varied greatly. For example, wildtype, rad59 and lig4 strains all displayed a bias for URA3 loss via pop-out/deletion vs. inter-homolog recombination and this bias was reduced in rad51 mutants. In addition, in rad51-derived 5FOAR strains direct repeat recombination was associated with ectopic translocation (5%), chromosome loss/truncation (14%) and inter-homolog recombination (6%). In the absence of RAD52, URA3 loss was mostly due to chromosome loss and truncation (80–90%), and the bias of retained allele frequency points to the presence of a recessive lethal allele on Chr6B. However, a few single-strand annealing (SSA)-like events were identified and these were independent of either Rad59 or Lig4. Finally, the specific sizes of Chr6 truncations suggest that the inserted URA-blaster could represent a fragile site.
Collapse
|
10
|
Nogueira A, Fernandes M, Catarino R, Medeiros R. RAD52 Functions in Homologous Recombination and Its Importance on Genomic Integrity Maintenance and Cancer Therapy. Cancers (Basel) 2019; 11:E1622. [PMID: 31652722 PMCID: PMC6893724 DOI: 10.3390/cancers11111622] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 10/18/2019] [Accepted: 10/21/2019] [Indexed: 01/27/2023] Open
Abstract
Genomes are continually subjected to DNA damage whether they are induced from intrinsic physiological processes or extrinsic agents. Double-stranded breaks (DSBs) are the most injurious type of DNA damage, being induced by ionizing radiation (IR) and cytotoxic agents used in cancer treatment. The failure to repair DSBs can result in aberrant chromosomal abnormalities which lead to cancer development. An intricate network of DNA damage signaling pathways is usually activated to eliminate these damages and to restore genomic stability. These signaling pathways include the activation of cell cycle checkpoints, DNA repair mechanisms, and apoptosis induction, also known as DNA damage response (DDR)-mechanisms. Remarkably, the homologous recombination (HR) is the major DSBs repairing pathway, in which RAD52 gene has a crucial repairing role by promoting the annealing of complementary single-stranded DNA and by stimulating RAD51 recombinase activity. Evidence suggests that variations in RAD52 expression can influence HR activity and, subsequently, influence the predisposition and treatment efficacy of cancer. In this review, we present several reports in which the down or upregulation of RAD52 seems to be associated with different carcinogenic processes. In addition, we discuss RAD52 inhibition in DDR-defective cancers as a possible target to improve cancer therapy efficacy.
Collapse
Affiliation(s)
- Augusto Nogueira
- Molecular Oncology and Viral Pathology Group, IPO-Porto Research Center (CI-IPOP), Portuguese Institute of Oncology of Porto, 4200-072 Porto, Portugal.
- Faculty of Medicine of University of Porto (FMUP), 4200-319 Porto, Portugal.
| | - Mara Fernandes
- Molecular Oncology and Viral Pathology Group, IPO-Porto Research Center (CI-IPOP), Portuguese Institute of Oncology of Porto, 4200-072 Porto, Portugal.
- Faculty of Medicine of University of Porto (FMUP), 4200-319 Porto, Portugal.
| | - Raquel Catarino
- Molecular Oncology and Viral Pathology Group, IPO-Porto Research Center (CI-IPOP), Portuguese Institute of Oncology of Porto, 4200-072 Porto, Portugal.
| | - Rui Medeiros
- Molecular Oncology and Viral Pathology Group, IPO-Porto Research Center (CI-IPOP), Portuguese Institute of Oncology of Porto, 4200-072 Porto, Portugal.
- Faculty of Medicine of University of Porto (FMUP), 4200-319 Porto, Portugal.
- Biomedical Research Center (CEBIMED), Faculty of Health Sciences of Fernando Pessoa University, 4249-004 Porto, Portugal.
- Research Department, Portuguese League against Cancer (NRNorte), 4200-172 Porto, Portugal.
| |
Collapse
|
11
|
Prado F. Homologous Recombination: To Fork and Beyond. Genes (Basel) 2018; 9:genes9120603. [PMID: 30518053 PMCID: PMC6316604 DOI: 10.3390/genes9120603] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 11/29/2018] [Accepted: 11/29/2018] [Indexed: 12/15/2022] Open
Abstract
Accurate completion of genome duplication is threatened by multiple factors that hamper the advance and stability of the replication forks. Cells need to tolerate many of these blocking lesions to timely complete DNA replication, postponing their repair for later. This process of lesion bypass during DNA damage tolerance can lead to the accumulation of single-strand DNA (ssDNA) fragments behind the fork, which have to be filled in before chromosome segregation. Homologous recombination plays essential roles both at and behind the fork, through fork protection/lesion bypass and post-replicative ssDNA filling processes, respectively. I review here our current knowledge about the recombination mechanisms that operate at and behind the fork in eukaryotes, and how these mechanisms are controlled to prevent unscheduled and toxic recombination intermediates. A unifying model to integrate these mechanisms in a dynamic, replication fork-associated process is proposed from yeast results.
Collapse
Affiliation(s)
- Félix Prado
- Department of Genome Biology, Andalusian Molecular Biology and Regenerative Medicine Center (CABIMER), CSIC-University of Seville-University Pablo de Olavide, 41092 Seville, Spain.
| |
Collapse
|
12
|
Bellido A, Hermosa B, Ciudad T, Larriba G. Role of homologous recombination genesRAD51,RAD52, andRAD59in the repair of lesions caused by γ-radiation to cycling and G2/M-arrested cells ofCandida albicans. Cell Microbiol 2018; 20:e12950. [DOI: 10.1111/cmi.12950] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 08/01/2018] [Accepted: 08/26/2018] [Indexed: 01/01/2023]
Affiliation(s)
- Alberto Bellido
- Departamento de Microbiología, Facultad de Ciencias; Universidad de Extremadura; Badajoz Spain
| | - Belén Hermosa
- Departamento de Microbiología, Facultad de Ciencias; Universidad de Extremadura; Badajoz Spain
| | - Toni Ciudad
- Departamento de Microbiología, Facultad de Ciencias; Universidad de Extremadura; Badajoz Spain
| | - Germán Larriba
- Departamento de Microbiología, Facultad de Ciencias; Universidad de Extremadura; Badajoz Spain
| |
Collapse
|
13
|
Tight Regulation of Srs2 Helicase Activity Is Crucial for Proper Functioning of DNA Repair Mechanisms. G3-GENES GENOMES GENETICS 2018. [PMID: 29531123 PMCID: PMC5940153 DOI: 10.1534/g3.118.200181] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Proper DNA damage repair is one of the most vital and fundamental functions of every cell. Several different repair mechanisms exist to deal with various types of DNA damage, in various stages of the cell cycle and under different conditions. Homologous recombination is one of the most important repair mechanisms in all organisms. Srs2, a regulator of homologous recombination, is a DNA helicase involved in DNA repair, cell cycle progression and genome integrity. Srs2 can remove Rad51 from ssDNA, and is thought to inhibit unscheduled recombination. However, Srs2 has to be precisely regulated, as failure to do so is toxic and can lead to cell death. We noticed that a very slight elevation of the levels of Srs2 (by addition of a single extra copy of the SRS2 gene) leads to hyper-sensitivity of yeast cells to methyl methanesulfonate (MMS, a DNA damaging agent). This effect is seen in haploid, but not in diploid, cells. We analyzed the mechanism that controls haploid/diploid sensitivity and arrived to the conclusion that the sensitivity requires the activity of RAD59 and RDH54, whose expression in diploid cells is repressed. We carried out a mutational analysis of Srs2 to determine the regions of the protein required for the sensitization to genotoxins. Interestingly, Srs2 needs the HR machinery and its helicase activity for its toxicity, but does not need to dismantle Rad51. Our work underscores the tight regulation that is required on the levels of Srs2 activity, and the fact that Srs2 helicase activity plays a more central role in DNA repair than the ability of Srs2 to dismantle Rad51 filaments.
Collapse
|
14
|
McDevitt S, Rusanov T, Kent T, Chandramouly G, Pomerantz RT. How RNA transcripts coordinate DNA recombination and repair. Nat Commun 2018; 9:1091. [PMID: 29545568 PMCID: PMC5854605 DOI: 10.1038/s41467-018-03483-7] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 02/15/2018] [Indexed: 12/22/2022] Open
Abstract
Genetic studies in yeast indicate that RNA transcripts facilitate homology-directed DNA repair in a manner that is dependent on RAD52. The molecular basis for so-called RNA−DNA repair, however, remains unknown. Using reconstitution assays, we demonstrate that RAD52 directly cooperates with RNA as a sequence-directed ribonucleoprotein complex to promote two related modes of RNA−DNA repair. In a RNA-bridging mechanism, RAD52 assembles recombinant RNA−DNA hybrids that coordinate synapsis and ligation of homologous DNA breaks. In an RNA-templated mechanism, RAD52-mediated RNA−DNA hybrids enable reverse transcription-dependent RNA-to-DNA sequence transfer at DNA breaks that licenses subsequent DNA recombination. Notably, we show that both mechanisms of RNA−DNA repair are promoted by transcription of a homologous DNA template in trans. In summary, these data elucidate how RNA transcripts cooperate with RAD52 to coordinate homology-directed DNA recombination and repair in the absence of a DNA donor, and demonstrate a direct role for transcription in RNA−DNA repair. Homologous recombination (HR) typically uses DNA as a donor template to accurately repair DNA breaks. Here, the authors elucidate two mechanisms by which RAD52 uses RNA as a template for HR: one involving RNA-mediated synapsis of a homologous DNA break, and the other involving reverse transcriptase dependent RNA-to-DNA sequence transfer at DNA breaks.
Collapse
Affiliation(s)
- Shane McDevitt
- Department of Medical Genetics and Molecular Biochemistry, Fels Institute for Cancer Research, Temple University Lewis Katz School of Medicine, Philadelphia, PA, 19140, USA
| | - Timur Rusanov
- Department of Medical Genetics and Molecular Biochemistry, Fels Institute for Cancer Research, Temple University Lewis Katz School of Medicine, Philadelphia, PA, 19140, USA
| | - Tatiana Kent
- Department of Medical Genetics and Molecular Biochemistry, Fels Institute for Cancer Research, Temple University Lewis Katz School of Medicine, Philadelphia, PA, 19140, USA
| | - Gurushankar Chandramouly
- Department of Medical Genetics and Molecular Biochemistry, Fels Institute for Cancer Research, Temple University Lewis Katz School of Medicine, Philadelphia, PA, 19140, USA
| | - Richard T Pomerantz
- Department of Medical Genetics and Molecular Biochemistry, Fels Institute for Cancer Research, Temple University Lewis Katz School of Medicine, Philadelphia, PA, 19140, USA.
| |
Collapse
|
15
|
Sallmyr A, Tomkinson AE. Repair of DNA double-strand breaks by mammalian alternative end-joining pathways. J Biol Chem 2018. [PMID: 29530982 DOI: 10.1074/jbc.tm117.000375] [Citation(s) in RCA: 168] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Alternative end-joining (a-EJ) pathways, which repair DNA double-strand breaks (DSBs), are initiated by end resection that generates 3' single strands. This reaction is shared, at least in part, with homologous recombination but distinguishes a-EJ from the major nonhomologous end-joining pathway. Although the a-EJ pathways make only a minor and poorly understood contribution to DSB repair in nonmalignant cells, there is growing interest in these pathways, as they generate genomic rearrangements that are hallmarks of cancer cells. Here, we review and discuss the current understanding of the mechanisms and regulation of a-EJ pathways, the role of a-EJ in human disease, and the potential utility of a-EJ as a therapeutic target in cancer.
Collapse
Affiliation(s)
- Annahita Sallmyr
- From the Departments of Internal Medicine and Molecular Genetics and Microbiology, University of New Mexico Comprehensive Cancer Center, University of New Mexico, Albuquerque, New Mexico 87131
| | - Alan E Tomkinson
- From the Departments of Internal Medicine and Molecular Genetics and Microbiology, University of New Mexico Comprehensive Cancer Center, University of New Mexico, Albuquerque, New Mexico 87131
| |
Collapse
|
16
|
Claussin C, Porubský D, Spierings DCJ, Halsema N, Rentas S, Guryev V, Lansdorp PM, Chang M. Genome-wide mapping of sister chromatid exchange events in single yeast cells using Strand-seq. eLife 2017; 6:e30560. [PMID: 29231811 PMCID: PMC5734873 DOI: 10.7554/elife.30560] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 12/08/2017] [Indexed: 01/09/2023] Open
Abstract
Homologous recombination involving sister chromatids is the most accurate, and thus most frequently used, form of recombination-mediated DNA repair. Despite its importance, sister chromatid recombination is not easily studied because it does not result in a change in DNA sequence, making recombination between sister chromatids difficult to detect. We have previously developed a novel DNA template strand sequencing technique, called Strand-seq, that can be used to map sister chromatid exchange (SCE) events genome-wide in single cells. An increase in the rate of SCE is an indicator of elevated recombination activity and of genome instability, which is a hallmark of cancer. In this study, we have adapted Strand-seq to detect SCE in the yeast Saccharomyces cerevisiae. We provide the first quantifiable evidence that most spontaneous SCE events in wild-type cells are not due to the repair of DNA double-strand breaks.
Collapse
Affiliation(s)
- Clémence Claussin
- European Research Institute for the Biology of Ageing, University Medical Center GroningenUniversity of GroningenGroningenNetherlands
| | - David Porubský
- European Research Institute for the Biology of Ageing, University Medical Center GroningenUniversity of GroningenGroningenNetherlands
| | - Diana CJ Spierings
- European Research Institute for the Biology of Ageing, University Medical Center GroningenUniversity of GroningenGroningenNetherlands
| | - Nancy Halsema
- European Research Institute for the Biology of Ageing, University Medical Center GroningenUniversity of GroningenGroningenNetherlands
| | | | - Victor Guryev
- European Research Institute for the Biology of Ageing, University Medical Center GroningenUniversity of GroningenGroningenNetherlands
| | - Peter M Lansdorp
- European Research Institute for the Biology of Ageing, University Medical Center GroningenUniversity of GroningenGroningenNetherlands
- Terry Fox LaboratoryBC Cancer AgencyVancouverCanada
- Department of Medical GeneticsUniversity of British ColumbiaVancouverCanada
| | - Michael Chang
- European Research Institute for the Biology of Ageing, University Medical Center GroningenUniversity of GroningenGroningenNetherlands
| |
Collapse
|
17
|
Mazina OM, Keskin H, Hanamshet K, Storici F, Mazin AV. Rad52 Inverse Strand Exchange Drives RNA-Templated DNA Double-Strand Break Repair. Mol Cell 2017; 67:19-29.e3. [PMID: 28602639 DOI: 10.1016/j.molcel.2017.05.019] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 05/09/2017] [Accepted: 05/19/2017] [Indexed: 12/20/2022]
Abstract
RNA can serve as a template for DNA double-strand break repair in yeast cells, and Rad52, a member of the homologous recombination pathway, emerged as an important player in this process. However, the exact mechanism of how Rad52 contributes to RNA-dependent DSB repair remained unknown. Here, we report an unanticipated activity of yeast and human Rad52: inverse strand exchange, in which Rad52 forms a complex with dsDNA and promotes strand exchange with homologous ssRNA or ssDNA. We show that in eukaryotes, inverse strand exchange between homologous dsDNA and RNA is a distinctive activity of Rad52; neither Rad51 recombinase nor the yeast Rad52 paralog Rad59 has this activity. In accord with our in vitro results, our experiments in budding yeast provide evidence that Rad52 inverse strand exchange plays an important role in RNA-templated DSB repair in vivo.
Collapse
Affiliation(s)
- Olga M Mazina
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA 19102, USA
| | - Havva Keskin
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Kritika Hanamshet
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA 19102, USA
| | - Francesca Storici
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA.
| | - Alexander V Mazin
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA 19102, USA.
| |
Collapse
|
18
|
GSK-3β Homolog Rim11 and the Histone Deacetylase Complex Ume6-Sin3-Rpd3 Are Involved in Replication Stress Response Caused by Defects in Dna2. Genetics 2017; 206:829-842. [PMID: 28468907 DOI: 10.1534/genetics.116.198671] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2016] [Accepted: 04/18/2017] [Indexed: 01/22/2023] Open
Abstract
Lagging strand synthesis is mechanistically far more complicated than leading strand synthesis because it involves multistep processes and requires considerably more enzymes and protein factors. Due to this complexity, multiple fail-safe factors are required to ensure successful replication of the lagging strand DNA. We attempted to identify novel factors that are required in the absence of the helicase activity of Dna2, an essential enzyme in Okazaki-fragment maturation. In this article, we identified Rim11, a GSK-3β-kinase homolog, as a multicopy suppressor of dna2 helicase-dead mutant (dna2-K1080E). Subsequent epistasis analysis revealed that Ume6 (a DNA binding protein, a downstream substrate of Rim11) also acted as a multicopy suppressor of the dna2 allele. We found that the interaction of Ume6 with the conserved histone deacetylase complex Sin3-Rpd3 and the catalytic activity of Rpd3 were indispensable for the observed suppression of the dna2 mutant. Moreover, multicopy suppression by Rim11/Ume6 requires the presence of sister-chromatid recombination mediated by Rad52/Rad59 proteins, but not vice versa. Interestingly, the overexpression of Rim11 or Ume6 also suppressed the MMS sensitivity of rad59Δ. We also showed that the lethality of dna2 helicase-dead mutant was attributed to checkpoint activation and that decreased levels of deoxynucleotide triphosphates (dNTPs) by overexpressing Sml1 (an inhibitor of ribonucleotide reductase) rescued the dna2 mutant. We also present evidence that indicates Rim11/Ume6 works independently but in parallel with that of checkpoint inhibition, dNTP regulation, and sister-chromatid recombination. In conclusion, our results establish Rim11, Ume6, the histone deacetylase complex Sin3-Rpd3 and Sml1 as new factors important in the events of faulty lagging strand synthesis.
Collapse
|
19
|
Martínez-Miguel RM, Sandoval-Cabrera A, Bazán-Tejeda ML, Torres-Huerta AL, Martínez-Reyes DA, Bermúdez-Cruz RM. Giardia duodenalis Rad52 protein: biochemical characterization and response upon DNA damage. J Biochem 2017; 162:123-135. [DOI: 10.1093/jb/mvx009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 01/10/2017] [Indexed: 11/13/2022] Open
|
20
|
Reappearance from Obscurity: Mammalian Rad52 in Homologous Recombination. Genes (Basel) 2016; 7:genes7090063. [PMID: 27649245 PMCID: PMC5042393 DOI: 10.3390/genes7090063] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 09/06/2016] [Accepted: 09/09/2016] [Indexed: 01/28/2023] Open
Abstract
Homologous recombination (HR) plays an important role in maintaining genomic integrity. It is responsible for repair of the most harmful DNA lesions, DNA double-strand breaks and inter-strand DNA cross-links. HR function is also essential for proper segregation of homologous chromosomes in meiosis, maintenance of telomeres, and resolving stalled replication forks. Defects in HR often lead to genetic diseases and cancer. Rad52 is one of the key HR proteins, which is evolutionarily conserved from yeast to humans. In yeast, Rad52 is important for most HR events; Rad52 mutations disrupt repair of DNA double-strand breaks and targeted DNA integration. Surprisingly, in mammals, Rad52 knockouts showed no significant DNA repair or recombination phenotype. However, recent work demonstrated that mutations in human RAD52 are synthetically lethal with mutations in several other HR proteins including BRCA1 and BRCA2. These new findings indicate an important backup role for Rad52, which complements the main HR mechanism in mammals. In this review, we focus on the Rad52 activities and functions in HR and the possibility of using human RAD52 as therapeutic target in BRCA1 and BRCA2-deficient familial breast cancer and ovarian cancer.
Collapse
|
21
|
PCNA SUMOylation protects against PCNA polyubiquitination-mediated, Rad59-dependent, spontaneous, intrachromosomal gene conversion. Mutat Res 2016; 791-792:10-18. [PMID: 27505077 DOI: 10.1016/j.mrfmmm.2016.08.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 06/29/2016] [Accepted: 08/01/2016] [Indexed: 11/23/2022]
Abstract
Homologous recombination is crucial in both the maintenance of genome stability and the generation of genetic diversity. Recently, multiple aspects of the recombination machinery functioning at arrested DNA replication forks have been established, yet the roles of diverse modifications of PCNA, the key platform organizing the replication complex, in intrachromosomal recombination have not been comprehensively elucidated. Here, we report how PCNA SUMOylation and/or polyubiquitination affects recombination between direct repeats in S. cerevisiae. Our results show that these PCNA modifications primarily affect gene conversion, whereas their effect on the recombination-mediated deletion of intervening sequence is much less obvious. Siz1-dependent PCNA SUMOylation strongly limits Rad52/Rad51/Rad59-dependent gene conversion. A 5- to 10-fold increase in the frequency of such recombination events is observed in Siz1-defective strains, but this increase is fully suppressed when PCNA polyubiquitination is also compromised. PCNA polyubiquitination can stimulate gene conversion in both PCNA SUMOylation-proficient and SUMOylation-deficient strains. On the other hand, in PCNA polyubiquitination-deficient strains, the lack of PCNA SUMOylation does not affect GC levels. Therefore, we postulate that the antirecombinogenic activity of Siz1 mainly concerns recombination induced by PCNA polyubiquitination. In the absence of PCNA SUMOylation, the frequency of PCNA polyubiquitination-mediated gene conversion is not only increased, but it is also channeled into the Rad59-dependent pathway. Additionally, we show a weak inhibitory effect of Rad5 on Rad52/Rad59-directed single-strand annealing.
Collapse
|
22
|
Multiple Rad52-Mediated Homology-Directed Repair Mechanisms Are Required to Prevent Telomere Attrition-Induced Senescence in Saccharomyces cerevisiae. PLoS Genet 2016; 12:e1006176. [PMID: 27428329 PMCID: PMC4948829 DOI: 10.1371/journal.pgen.1006176] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 06/15/2016] [Indexed: 12/15/2022] Open
Abstract
Most human somatic cells express insufficient levels of telomerase, which can result in telomere shortening and eventually senescence, both of which are hallmarks of ageing. Homology-directed repair (HDR) is important for maintaining proper telomere function in yeast and mammals. In Saccharomyces cerevisiae, Rad52 is required for almost all HDR mechanisms, and telomerase-null cells senesce faster in the absence of Rad52. However, its role in preventing accelerated senescence has been unclear. In this study, we make use of rad52 separation-of-function mutants to find that multiple Rad52-mediated HDR mechanisms are required to delay senescence, including break-induced replication and sister chromatid recombination. In addition, we show that misregulation of histone 3 lysine 56 acetylation, which is known to be defective in sister chromatid recombination, also causes accelerated senescence. We propose a model where Rad52 is needed to repair telomere attrition-induced replication stress. Telomeres are essential structures located at the ends of chromosomes. The canonical DNA replication machinery is unable to fully replicate DNA at chromosome ends, causing telomeres to shorten with every round of cell division. This shortening can be counteracted by an enzyme called telomerase, but in most human somatic cells, there is insufficient expression of telomerase to prevent telomere shortening. Cells with critically short telomeres can enter an arrested state known as senescence. Telomere attrition has been identified as a hallmark of human ageing. Homologous recombination proteins are important for proper telomere function in yeast and mammals. Yeast lacking both telomerase and Rad52, required for almost all recombination, exhibits accelerated senescence, yet no apparent increase in the rate of telomere shortening. In this study, we explore the role of Rad52 during senescence by taking advantage of rad52 separation-of-function mutants. We find that Rad52 acts in multiple ways to overcome DNA replication problems at telomeres. Impediments to telomere replication can be dealt with by post-replication repair mechanisms, which use a newly synthesized sister chromatid as a template to replicate past the impediment, while telomere truncations, likely caused by the collapse of replication forks, can be extended by break-induced replication.
Collapse
|
23
|
Huang SH, Kobryn K. The Borrelia burgdorferi telomere resolvase, ResT, anneals ssDNA complexed with its cognate ssDNA-binding protein. Nucleic Acids Res 2016; 44:5288-98. [PMID: 27131360 PMCID: PMC4914115 DOI: 10.1093/nar/gkw344] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 04/18/2016] [Indexed: 11/12/2022] Open
Abstract
Spirochetes of the genus Borrelia possess unusual genomes that consist in a linear chromosome and multiple linear and circular plasmids. The linear replicons are terminated by covalently closed hairpin ends, referred to as hairpin telomeres. The hairpin telomeres represent a simple solution to the end-replication problem. Deoxyribonucleic acid replication initiates internally and proceeds bidirectionally toward the hairpin telomeres. The telomere resolvase, ResT, forms the hairpin telomeres from replicated telomere intermediates in a reaction with similarities to those promoted by type IB topoisomerases and tyrosine recombinases. ResT has also been shown to possess DNA single-strand annealing activity. We report here that ResT promotes single-strand annealing of both free DNA strands and ssDNA complexed with single-stranded DNA binding protein (SSB). The annealing of complementary strands bound by SSB requires a ResT-SSB interaction that is mediated by the conserved amphipathic C-terminal tail of SSB. These properties of ResT are similar to those demonstrated for the recombination mediator protein, RecO, of the RecF pathway. Borrelia burgdorferi is unusual in lacking identifiable homologs of the RecFOR proteins. We propose that ResT may provide missing RecFOR functions.
Collapse
Affiliation(s)
- Shu Hui Huang
- Department of Microbiology and Immunology, College of Medicine, University of Saskatchewan Academic Health Sciences Building, 107 Wiggins Rd, Saskatoon, SK S7N 5E5, Canada
| | - Kerri Kobryn
- Department of Microbiology and Immunology, College of Medicine, University of Saskatchewan Academic Health Sciences Building, 107 Wiggins Rd, Saskatoon, SK S7N 5E5, Canada
| |
Collapse
|
24
|
Silva S, Altmannova V, Eckert-Boulet N, Kolesar P, Gallina I, Hang L, Chung I, Arneric M, Zhao X, Buron LD, Mortensen UH, Krejci L, Lisby M. SUMOylation of Rad52-Rad59 synergistically change the outcome of mitotic recombination. DNA Repair (Amst) 2016; 42:11-25. [PMID: 27130983 DOI: 10.1016/j.dnarep.2016.04.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 04/02/2016] [Accepted: 04/05/2016] [Indexed: 11/18/2022]
Abstract
Homologous recombination (HR) is essential for maintenance of genome stability through double-strand break (DSB) repair, but at the same time HR can lead to loss of heterozygosity and uncontrolled recombination can be genotoxic. The post-translational modification by SUMO (small ubiquitin-like modifier) has been shown to modulate recombination, but the exact mechanism of this regulation remains unclear. Here we show that SUMOylation stabilizes the interaction between the recombination mediator Rad52 and its paralogue Rad59 in Saccharomyces cerevisiae. Although Rad59 SUMOylation is not required for survival after genotoxic stress, it affects the outcome of recombination to promote conservative DNA repair. In some genetic assays, Rad52 and Rad59 SUMOylation act synergistically. Collectively, our data indicate that the described SUMO modifications affect the balance between conservative and non-conservative mechanisms of HR.
Collapse
Affiliation(s)
- Sonia Silva
- Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen N, Denmark
| | - Veronika Altmannova
- Department of Biology, Masaryk University, Kamenice 5/A7, 62500 Brno, Czech Republic
| | - Nadine Eckert-Boulet
- Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen N, Denmark
| | - Peter Kolesar
- Department of Biology, Masaryk University, Kamenice 5/A7, 62500 Brno, Czech Republic
| | - Irene Gallina
- Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen N, Denmark
| | - Lisa Hang
- Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | - Inn Chung
- Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | - Milica Arneric
- Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | - Xiaolan Zhao
- Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | - Line Due Buron
- Department of Systems Biology, Technical University of Denmark, Building 223, 2800 Kgs. Lyngby, Denmark
| | - Uffe H Mortensen
- Department of Systems Biology, Technical University of Denmark, Building 223, 2800 Kgs. Lyngby, Denmark
| | - Lumir Krejci
- Department of Biology, Masaryk University, Kamenice 5/A7, 62500 Brno, Czech Republic; National Centre for Biomolecular Research, Masaryk University, Kamenice 5/A4, Brno 625 00, Czech Republic; International Clinical Research Center, Center for Biomolecular and Cellular Engineering, St. Anne's University Hospital Brno, Brno, Czech Republic
| | - Michael Lisby
- Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen N, Denmark.
| |
Collapse
|
25
|
Chandramouly G, McDevitt S, Sullivan K, Kent T, Luz A, Glickman JF, Andrake M, Skorski T, Pomerantz RT. Small-Molecule Disruption of RAD52 Rings as a Mechanism for Precision Medicine in BRCA-Deficient Cancers. ACTA ACUST UNITED AC 2015; 22:1491-1504. [PMID: 26548611 DOI: 10.1016/j.chembiol.2015.10.003] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 09/08/2015] [Accepted: 10/04/2015] [Indexed: 11/27/2022]
Abstract
Suppression of RAD52 causes synthetic lethality in BRCA-deficient cells. Yet pharmacological inhibition of RAD52, which binds single-strand DNA (ssDNA) and lacks enzymatic activity, has not been demonstrated. Here, we identify the small molecule 6-hydroxy-DL-dopa (6-OH-dopa) as a major allosteric inhibitor of the RAD52 ssDNA binding domain. For example, we find that multiple small molecules bind to and completely transform RAD52 undecamer rings into dimers, which abolishes the ssDNA binding channel observed in crystal structures. 6-OH-Dopa also disrupts RAD52 heptamer and undecamer ring superstructures, and suppresses RAD52 recruitment and recombination activity in cells with negligible effects on other double-strand break repair pathways. Importantly, we show that 6-OH-dopa selectively inhibits the proliferation of BRCA-deficient cancer cells, including those obtained from leukemia patients. Taken together, these data demonstrate small-molecule disruption of RAD52 rings as a promising mechanism for precision medicine in BRCA-deficient cancers.
Collapse
Affiliation(s)
- Gurushankar Chandramouly
- Department of Medical Genetics and Molecular Biochemistry, Fels Institute for Cancer Research, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | - Shane McDevitt
- Department of Medical Genetics and Molecular Biochemistry, Fels Institute for Cancer Research, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | - Katherine Sullivan
- Department of Microbiology and Immunology, Fels Institute for Cancer Research, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | - Tatiana Kent
- Department of Medical Genetics and Molecular Biochemistry, Fels Institute for Cancer Research, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | - Antonio Luz
- High-Throughput and Spectroscopy Resource Center, The Rockefeller University, New York, NY 10065, USA
| | - J Fraser Glickman
- High-Throughput and Spectroscopy Resource Center, The Rockefeller University, New York, NY 10065, USA
| | - Mark Andrake
- Institute for Cancer Research, Fox Chase Cancer Center, Temple Health, Philadelphia, PA 19111, USA
| | - Tomasz Skorski
- Department of Microbiology and Immunology, Fels Institute for Cancer Research, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | - Richard T Pomerantz
- Department of Medical Genetics and Molecular Biochemistry, Fels Institute for Cancer Research, Temple University School of Medicine, Philadelphia, PA 19140, USA.
| |
Collapse
|
26
|
Kowalczykowski SC. An Overview of the Molecular Mechanisms of Recombinational DNA Repair. Cold Spring Harb Perspect Biol 2015; 7:a016410. [PMID: 26525148 PMCID: PMC4632670 DOI: 10.1101/cshperspect.a016410] [Citation(s) in RCA: 338] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Recombinational DNA repair is a universal aspect of DNA metabolism and is essential for genomic integrity. It is a template-directed process that uses a second chromosomal copy (sister, daughter, or homolog) to ensure proper repair of broken chromosomes. The key steps of recombination are conserved from phage through human, and an overview of those steps is provided in this review. The first step is resection by helicases and nucleases to produce single-stranded DNA (ssDNA) that defines the homologous locus. The ssDNA is a scaffold for assembly of the RecA/RAD51 filament, which promotes the homology search. On finding homology, the nucleoprotein filament catalyzes exchange of DNA strands to form a joint molecule. Recombination is controlled by regulating the fate of both RecA/RAD51 filaments and DNA pairing intermediates. Finally, intermediates that mature into Holliday structures are disjoined by either nucleolytic resolution or topological dissolution.
Collapse
Affiliation(s)
- Stephen C Kowalczykowski
- Department of Microbiology & Molecular Genetics and Department of Molecular and Cellular Biology, University of California, Davis, Davis, California 95616
| |
Collapse
|
27
|
Bell JC, Liu B, Kowalczykowski SC. Imaging and energetics of single SSB-ssDNA molecules reveal intramolecular condensation and insight into RecOR function. eLife 2015; 4:e08646. [PMID: 26381353 PMCID: PMC4652220 DOI: 10.7554/elife.08646] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 09/18/2015] [Indexed: 11/13/2022] Open
Abstract
Escherichia coli single-stranded DNA (ssDNA) binding protein (SSB) is the defining bacterial member of ssDNA binding proteins essential for DNA maintenance. SSB binds ssDNA with a variable footprint of ∼30-70 nucleotides, reflecting partial or full wrapping of ssDNA around a tetramer of SSB. We directly imaged single molecules of SSB-coated ssDNA using total internal reflection fluorescence (TIRF) microscopy and observed intramolecular condensation of nucleoprotein complexes exceeding expectations based on simple wrapping transitions. We further examined this unexpected property by single-molecule force spectroscopy using magnetic tweezers. In conditions favoring complete wrapping, SSB engages in long-range reversible intramolecular interactions resulting in condensation of the SSB-ssDNA complex. RecO and RecOR, which interact with SSB, further condensed the complex. Our data support the idea that RecOR--and possibly other SSB-interacting proteins-function(s) in part to alter long-range, macroscopic interactions between or throughout nucleoprotein complexes by microscopically altering wrapping and bridging distant sites.
Collapse
Affiliation(s)
- Jason C Bell
- Graduate Group in Biochemistry and Molecular Biology, University of California, Davis, Davis, United States
- Department of Microbiology and Molecular Genetics, University of California, Davis, Davis, United States
| | - Bian Liu
- Department of Microbiology and Molecular Genetics, University of California, Davis, Davis, United States
- Graduate Group in Biophysics, University of California, Davis, Davis, United States
| | - Stephen C Kowalczykowski
- Department of Microbiology and Molecular Genetics, University of California, Davis, Davis, United States
| |
Collapse
|
28
|
RecF and RecR Play Critical Roles in the Homologous Recombination and Single-Strand Annealing Pathways of Mycobacteria. J Bacteriol 2015. [PMID: 26195593 DOI: 10.1128/jb.00290-15] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Mycobacteria encode three DNA double-strand break repair pathways: (i) RecA-dependent homologous recombination (HR), (ii) Ku-dependent nonhomologous end joining (NHEJ), and (iii) RecBCD-dependent single-strand annealing (SSA). Mycobacterial HR has two presynaptic pathway options that rely on the helicase-nuclease AdnAB and the strand annealing protein RecO, respectively. Ablation of adnAB or recO individually causes partial impairment of HR, but loss of adnAB and recO in combination abolishes HR. RecO, which can accelerate annealing of single-stranded DNA in vitro, also participates in the SSA pathway. The functions of RecF and RecR, which, in other model bacteria, function in concert with RecO as mediators of RecA loading, have not been examined in mycobacteria. Here, we present a genetic analysis of recF and recR in mycobacterial recombination. We find that RecF, like RecO, participates in the AdnAB-independent arm of the HR pathway and in SSA. In contrast, RecR is required for all HR in mycobacteria and for SSA. The essentiality of RecR as an agent of HR is yet another distinctive feature of mycobacterial DNA repair.IMPORTANCE This study clarifies the molecular requirements for homologous recombination in mycobacteria. Specifically, we demonstrate that RecF and RecR play important roles in both the RecA-dependent homologous recombination and RecA-independent single-strand annealing pathways. Coupled with our previous findings (R. Gupta, M. Ryzhikov, O. Koroleva, M. Unciuleac, S. Shuman, S. Korolev, and M. S. Glickman, Nucleic Acids Res 41:2284-2295, 2013, http://dx.doi.org/10.1093/nar/gks1298), these results revise our view of mycobacterial recombination and place the RecFOR system in a central position in homology-dependent DNA repair.
Collapse
|
29
|
Abstract
Homology-dependent exchange of genetic information between DNA molecules has a profound impact on the maintenance of genome integrity by facilitating error-free DNA repair, replication, and chromosome segregation during cell division as well as programmed cell developmental events. This chapter will focus on homologous mitotic recombination in budding yeast Saccharomyces cerevisiae. However, there is an important link between mitotic and meiotic recombination (covered in the forthcoming chapter by Hunter et al. 2015) and many of the functions are evolutionarily conserved. Here we will discuss several models that have been proposed to explain the mechanism of mitotic recombination, the genes and proteins involved in various pathways, the genetic and physical assays used to discover and study these genes, and the roles of many of these proteins inside the cell.
Collapse
|
30
|
Morrical SW. DNA-pairing and annealing processes in homologous recombination and homology-directed repair. Cold Spring Harb Perspect Biol 2015; 7:a016444. [PMID: 25646379 DOI: 10.1101/cshperspect.a016444] [Citation(s) in RCA: 100] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The formation of heteroduplex DNA is a central step in the exchange of DNA sequences via homologous recombination, and in the accurate repair of broken chromosomes via homology-directed repair pathways. In cells, heteroduplex DNA largely arises through the activities of recombination proteins that promote DNA-pairing and annealing reactions. Classes of proteins involved in pairing and annealing include RecA-family DNA-pairing proteins, single-stranded DNA (ssDNA)-binding proteins, recombination mediator proteins, annealing proteins, and nucleases. This review explores the properties of these pairing and annealing proteins, and highlights their roles in complex recombination processes including the double Holliday junction (DhJ) formation, synthesis-dependent strand annealing, and single-strand annealing pathways--DNA transactions that are critical both for genome stability in individual organisms and for the evolution of species.
Collapse
Affiliation(s)
- Scott W Morrical
- Department of Biochemistry, University of Vermont College of Medicine, Burlington, Vermont 05405
| |
Collapse
|
31
|
Chen CF, Brill SJ. Multimerization domains are associated with apparent strand exchange activity in BLM and WRN DNA helicases. DNA Repair (Amst) 2014; 22:137-46. [PMID: 25198671 DOI: 10.1016/j.dnarep.2014.07.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Revised: 07/10/2014] [Accepted: 07/22/2014] [Indexed: 12/11/2022]
Abstract
BLM and WRN are members of the RecQ family of DNA helicases that act to suppress genome instability and cancer predisposition. In addition to a RecQ helicase domain, each of these proteins contains an N-terminal domain of approximately 500 amino acids (aa) that is incompletely characterized. Previously, we showed that the N-terminus of Sgs1, the yeast ortholog of BLM, contains a physiologically important 200 aa domain (Sgs1103-322) that displays single-stranded DNA (ssDNA) binding, strand annealing (SA), and apparent strand-exchange (SE) activities in vitro. Here we used a genetic assay to search for heterologous proteins that could functionally replace this domain of Sgs1 in vivo. In contrast to Rad59, the oligomeric Rad52 protein provided in vivo complementation, suggesting that multimerization is functionally important. An N-terminal domain of WRN was also identified that could replace Sgs1103-322 in yeast. This domain, WRN235-526, contains a known coiled coil and displays the same SA and SE activities as Sgs1103-322. The coiled coil domain of WRN235-526 is required for both its in vivo activity and its in vitro SE activity. Based on this result, a potential coiled coil was identified within Sgs1103-322. This 25 amino acid region was similarly essential for wt Sgs1 activity in vivo and was replaceable by a heterologous coiled coil. Taken together, the results indicate that a coiled coil and a closely linked apparent SE activity are conserved features of the BLM and WRN DNA helicases.
Collapse
Affiliation(s)
- Chi-Fu Chen
- Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, NJ, United States
| | - Steven J Brill
- Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, NJ, United States.
| |
Collapse
|
32
|
Mechanism of homologous recombination and implications for aging-related deletions in mitochondrial DNA. Microbiol Mol Biol Rev 2014; 77:476-96. [PMID: 24006472 DOI: 10.1128/mmbr.00007-13] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Homologous recombination is a universal process, conserved from bacteriophage to human, which is important for the repair of double-strand DNA breaks. Recombination in mitochondrial DNA (mtDNA) was documented more than 4 decades ago, but the underlying molecular mechanism has remained elusive. Recent studies have revealed the presence of a Rad52-type recombination system of bacteriophage origin in mitochondria, which operates by a single-strand annealing mechanism independent of the canonical RecA/Rad51-type recombinases. Increasing evidence supports the notion that, like in bacteriophages, mtDNA inheritance is a coordinated interplay between recombination, repair, and replication. These findings could have profound implications for understanding the mechanism of mtDNA inheritance and the generation of mtDNA deletions in aging cells.
Collapse
|
33
|
Mathiasen DP, Lisby M. Cell cycle regulation of homologous recombination inSaccharomyces cerevisiae. FEMS Microbiol Rev 2014; 38:172-84. [DOI: 10.1111/1574-6976.12066] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Revised: 01/20/2014] [Accepted: 01/22/2014] [Indexed: 11/29/2022] Open
|
34
|
Nguyen HD, Becker J, Thu YM, Costanzo M, Koch EN, Smith S, Myung K, Myers CL, Boone C, Bielinsky AK. Unligated Okazaki Fragments Induce PCNA Ubiquitination and a Requirement for Rad59-Dependent Replication Fork Progression. PLoS One 2013; 8:e66379. [PMID: 23824283 PMCID: PMC3688925 DOI: 10.1371/journal.pone.0066379] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2012] [Accepted: 05/07/2013] [Indexed: 11/28/2022] Open
Abstract
Deficiency in DNA ligase I, encoded by CDC9 in budding yeast, leads to the accumulation of unligated Okazaki fragments and triggers PCNA ubiquitination at a non-canonical lysine residue. This signal is crucial to activate the S phase checkpoint, which promotes cell cycle delay. We report here that a pol30-K107 mutation alleviated cell cycle delay in cdc9 mutants, consistent with the idea that the modification of PCNA at K107 affects the rate of DNA synthesis at replication forks. To determine whether PCNA ubiquitination occurred in response to nicks or was triggered by the lack of PCNA-DNA ligase interaction, we complemented cdc9 cells with either wild-type DNA ligase I or a mutant form, which fails to interact with PCNA. Both enzymes reversed PCNA ubiquitination, arguing that the modification is likely an integral part of a novel nick-sensory mechanism and not due to non-specific secondary mutations that could have occurred spontaneously in cdc9 mutants. To further understand how cells cope with the accumulation of nicks during DNA replication, we utilized cdc9-1 in a genome-wide synthetic lethality screen, which identified RAD59 as a strong negative interactor. In comparison to cdc9 single mutants, cdc9 rad59Δ double mutants did not alter PCNA ubiquitination but enhanced phosphorylation of the mediator of the replication checkpoint, Mrc1. Since Mrc1 resides at the replication fork and is phosphorylated in response to fork stalling, these results indicate that Rad59 alleviates nick-induced replication fork slowdown. Thus, we propose that Rad59 promotes fork progression when Okazaki fragment processing is compromised and counteracts PCNA-K107 mediated cell cycle arrest.
Collapse
Affiliation(s)
- Hai Dang Nguyen
- University of Minnesota, Department of Biochemistry, Molecular Biology and Biophysics, Minneapolis, Minnesota, United States of America
| | - Jordan Becker
- University of Minnesota, Department of Biochemistry, Molecular Biology and Biophysics, Minneapolis, Minnesota, United States of America
| | - Yee Mon Thu
- University of Minnesota, Department of Biochemistry, Molecular Biology and Biophysics, Minneapolis, Minnesota, United States of America
| | - Michael Costanzo
- Banting and Best Department of Medical Research, The Donnelly Centre, University of Toronto, Toronto, Ontario, Canada
| | - Elizabeth N. Koch
- University of Minnesota, Department of Computer Science and Engineering, Minneapolis, Minnesota, United States of America
| | - Stephanie Smith
- Genome Instability Section, Genetics and Molecular Biology Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Kyungjae Myung
- Genome Instability Section, Genetics and Molecular Biology Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Chad L. Myers
- University of Minnesota, Department of Computer Science and Engineering, Minneapolis, Minnesota, United States of America
| | - Charles Boone
- Banting and Best Department of Medical Research, The Donnelly Centre, University of Toronto, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Anja-Katrin Bielinsky
- University of Minnesota, Department of Biochemistry, Molecular Biology and Biophysics, Minneapolis, Minnesota, United States of America
- * E-mail:
| |
Collapse
|
35
|
Mbantenkhu M, Wierzbicki S, Wang X, Guo S, Wilkens S, Chen XJ. A short carboxyl-terminal tail is required for single-stranded DNA binding, higher-order structural organization, and stability of the mitochondrial single-stranded annealing protein Mgm101. Mol Biol Cell 2013; 24:1507-18. [PMID: 23536705 PMCID: PMC3655812 DOI: 10.1091/mbc.e13-01-0006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Mgm101 is a Rad52-type single-stranded annealing protein (SSAP) required for mitochondrial DNA (mtDNA) repair and maintenance. Structurally, Mgm101 forms large oligomeric rings. Here we determine the function(s) of a 32-amino acid carboxyl-terminal tail (Mgm101(238-269)) conserved in the Mgm101 family of proteins. Mutagenic analysis shows that Lys-253, Trp-257, Arg-259, and Tyr-268 are essential for mtDNA maintenance. Mutations in Lys-251, Arg-252, Lys-260, and Tyr-266 affect mtDNA stability at 37°C and under oxidative stress. The Y268A mutation severely affects single-stranded DNA (ssDNA) binding without altering the ring structure. Mutations in the Lys-251-Arg-252-Lys-253 positive triad also affect ssDNA binding. Moreover, the C-tail alone is sufficient to mediate ssDNA binding. Finally, we find that the W257A and R259A mutations dramatically affect the conformation and oligomeric state of Mgm101. These structural alterations correlate with protein degradation in vivo. The data thus indicate that the C-tail of Mgm101, likely displayed on the ring surface, is required for ssDNA binding, higher-order structural organization, and protein stability. We speculate that an initial electrostatic and base-stacking interaction with ssDNA could remodel ring organization. This may facilitate the formation of nucleoprotein filaments competent for mtDNA repair. These findings could have broad implications for understanding how SSAPs promote DNA repair and genome maintenance.
Collapse
Affiliation(s)
- MacMillan Mbantenkhu
- Department of Biochemistry and Molecular Biology, State University of New York Upstate Medical University, Syracuse, NY 13210, USA
| | | | | | | | | | | |
Collapse
|
36
|
Early steps of double-strand break repair in Bacillus subtilis. DNA Repair (Amst) 2013; 12:162-76. [PMID: 23380520 DOI: 10.1016/j.dnarep.2012.12.005] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Revised: 12/04/2012] [Accepted: 12/14/2012] [Indexed: 11/22/2022]
Abstract
All organisms rely on integrated networks to repair DNA double-strand breaks (DSBs) in order to preserve the integrity of the genetic information, to re-establish replication, and to ensure proper chromosomal segregation. Genetic, cytological, biochemical and structural approaches have been used to analyze how Bacillus subtilis senses DNA damage and responds to DSBs. RecN, which is among the first responders to DNA DSBs, promotes the ordered recruitment of repair proteins to the site of a lesion. Cells have evolved different mechanisms for efficient end processing to create a 3'-tailed duplex DNA, the substrate for RecA binding, in the repair of one- and two-ended DSBs. Strand continuity is re-established via homologous recombination (HR), utilizing an intact homologous DNA molecule as a template. In the absence of transient diploidy or of HR, however, two-ended DSBs can be directly re-ligated via error-prone non-homologous end-joining. Here we review recent findings that shed light on the early stages of DSB repair in Firmicutes.
Collapse
|
37
|
Li F, Dong J, Eichmiller R, Holland C, Minca E, Prakash R, Sung P, Yong Shim E, Surtees JA, Eun Lee S. Role of Saw1 in Rad1/Rad10 complex assembly at recombination intermediates in budding yeast. EMBO J 2013; 32:461-72. [PMID: 23299942 DOI: 10.1038/emboj.2012.345] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Accepted: 12/12/2012] [Indexed: 11/09/2022] Open
Abstract
The Saccharomyces cerevisiae Rad1/Rad10 complex is a multifunctional, structure-specific endonuclease that processes UV-induced DNA lesions, recombination intermediates, and inter-strand DNA crosslinks. However, we do not know how Rad1/Rad10 recognizes these structurally distinct target molecules or how it is incorporated into the protein complexes capable of incising divergent substrates. Here, we have determined the order and hierarchy of assembly of the Rad1/Rad10 complex, Saw1, Slx4, and Msh2/Msh3 complex at a 3' tailed recombination intermediate. We found that Saw1 is a structure-specific DNA binding protein with high affinity for splayed arm and 3'-flap DNAs. By physical interaction, Saw1 facilitates targeting of Rad1 at 3' tailed substrates in vivo and in vitro, and enhances 3' tail cleavage by Rad1/Rad10 in a purified system in vitro. Our results allow us to formulate a model of Rad1/Rad10/Saw1 nuclease complex assembly and 3' tail removal in recombination.
Collapse
Affiliation(s)
- Fuyang Li
- Department of Molecular Medicine, Institute of Biotechnology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229-3900, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Pannunzio NR, Manthey GM, Liddell LC, Fu BXH, Roberts CM, Bailis AM. Rad59 regulates association of Rad52 with DNA double-strand breaks. Microbiologyopen 2012; 1:285-97. [PMID: 23170228 PMCID: PMC3496973 DOI: 10.1002/mbo3.31] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Revised: 06/06/2012] [Accepted: 07/02/2012] [Indexed: 11/25/2022] Open
Abstract
Homologous recombination among repetitive sequences is an important mode of DNA repair in eukaryotes following acute radiation exposure. We have developed an assay in Saccharomyces cerevisiae that models how multiple DNA double-strand breaks form chromosomal translocations by a nonconservative homologous recombination mechanism, single-strand annealing, and identified the Rad52 paralog, Rad59, as an important factor. We show through genetic and molecular analyses that Rad59 possesses distinct Rad52-dependent and -independent functions, and that Rad59 plays a critical role in the localization of Rad52 to double-strand breaks. Our analysis further suggests that Rad52 and Rad59 act in multiple, sequential processes that determine genome structure following acute exposure to DNA damaging agents.
Collapse
Affiliation(s)
- Nicholas R Pannunzio
- Department of Molecular and Cellular Biology, Beckman Research Institute of the City of Hope Duarte, California, 91010, USA ; The Irell and Manella Graduate School of Biological Sciences, Beckman Research Institute of the City of Hope Duarte, California, 91010, USA
| | | | | | | | | | | |
Collapse
|
39
|
Unwinding and rewinding: double faces of helicase? J Nucleic Acids 2012; 2012:140601. [PMID: 22888405 PMCID: PMC3409536 DOI: 10.1155/2012/140601] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2012] [Accepted: 05/28/2012] [Indexed: 12/29/2022] Open
Abstract
Helicases are enzymes that use ATP-driven motor force to unwind double-stranded DNA or RNA. Recently, increasing evidence demonstrates that some helicases also possess rewinding activity—in other words, they can anneal two complementary single-stranded nucleic acids. All five members of the human RecQ helicase family, helicase PIF1, mitochondrial helicase TWINKLE, and helicase/nuclease Dna2 have been shown to possess strand-annealing activity. Moreover, two recently identified helicases—HARP and AH2 have only ATP-dependent rewinding activity. These findings not only enhance our understanding of helicase enzymes but also establish the presence of a new type of protein: annealing helicases. This paper discusses what is known about these helicases, focusing on their biochemical activity to zip and unzip double-stranded DNA and/or RNA, their possible regulation mechanisms, and biological functions.
Collapse
|
40
|
Mbantenkhu M, Wang X, Nardozzi JD, Wilkens S, Hoffman E, Patel A, Cosgrove MS, Chen XJ. Mgm101 is a Rad52-related protein required for mitochondrial DNA recombination. J Biol Chem 2011; 286:42360-42370. [PMID: 22027892 DOI: 10.1074/jbc.m111.307512] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Homologous recombination is a conserved molecular process that has primarily evolved for the repair of double-stranded DNA breaks and stalled replication forks. However, the recombination machinery in mitochondria is poorly understood. Here, we show that the yeast mitochondrial nucleoid protein, Mgm101, is related to the Rad52-type recombination proteins that are widespread in organisms from bacteriophage to humans. Mgm101 is required for repeat-mediated recombination and suppression of mtDNA fragmentation in vivo. It preferentially binds to single-stranded DNA and catalyzes the annealing of ssDNA precomplexed with the mitochondrial ssDNA-binding protein, Rim1. Transmission electron microscopy showed that Mgm101 forms large oligomeric rings of ∼14-fold symmetry and highly compressed helical filaments. Specific mutations affecting ring formation reduce protein stability in vitro. The data suggest that the ring structure may provide a scaffold for stabilization of Mgm101 by preventing the aggregation of the otherwise unstable monomeric conformation. Upon binding to ssDNA, Mgm101 is remobilized from the rings to form distinct nucleoprotein filaments. These studies reveal a recombination protein of likely bacteriophage origin in mitochondria and support the notion that recombination is indispensable for mtDNA integrity.
Collapse
Affiliation(s)
- MacMillan Mbantenkhu
- Department of Biochemistry and Molecular Biology, State University of New York Upstate Medical University, Syracuse, New York 13210
| | - Xiaowen Wang
- Department of Biochemistry and Molecular Biology, State University of New York Upstate Medical University, Syracuse, New York 13210
| | - Jonathan D Nardozzi
- Department of Biochemistry and Molecular Biology, State University of New York Upstate Medical University, Syracuse, New York 13210
| | - Stephan Wilkens
- Department of Biochemistry and Molecular Biology, State University of New York Upstate Medical University, Syracuse, New York 13210
| | - Elizabeth Hoffman
- Department of Biochemistry and Molecular Biology, State University of New York Upstate Medical University, Syracuse, New York 13210
| | - Anamika Patel
- Department of Biology, Syracuse University, Syracuse, New York 13244
| | | | - Xin Jie Chen
- Department of Biochemistry and Molecular Biology, State University of New York Upstate Medical University, Syracuse, New York 13210.
| |
Collapse
|
41
|
Oum JH, Seong C, Kwon Y, Ji JH, Sid A, Ramakrishnan S, Ira G, Malkova A, Sung P, Lee SE, Shim EY. RSC facilitates Rad59-dependent homologous recombination between sister chromatids by promoting cohesin loading at DNA double-strand breaks. Mol Cell Biol 2011; 31:3924-37. [PMID: 21807899 PMCID: PMC3187356 DOI: 10.1128/mcb.01269-10] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2010] [Accepted: 07/18/2011] [Indexed: 11/20/2022] Open
Abstract
Homologous recombination repairs DNA double-strand breaks by searching for, invading, and copying information from a homologous template, typically the homologous chromosome or sister chromatid. Tight wrapping of DNA around histone octamers, however, impedes access of repair proteins to DNA damage. To facilitate DNA repair, modifications of histones and energy-dependent remodeling of chromatin are required, but the precise mechanisms by which chromatin modification and remodeling enzymes contribute to homologous DNA repair are unknown. Here we have systematically assessed the role of budding yeast RSC (remodel structure of chromatin), an abundant, ATP-dependent chromatin-remodeling complex, in the cellular response to spontaneous and induced DNA damage. RSC physically interacts with the recombination protein Rad59 and functions in homologous recombination. Multiple recombination assays revealed that RSC is uniquely required for recombination between sister chromatids by virtue of its ability to recruit cohesin at DNA breaks and thereby promoting sister chromatid cohesion. This study provides molecular insights into how chromatin remodeling contributes to DNA repair and maintenance of chromatin fidelity in the face of DNA damage.
Collapse
Affiliation(s)
- Ji-Hyun Oum
- Department of Molecular Medicine and Institute of Biotechnology, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78245
| | - Changhyun Seong
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, Connecticut 06520
| | - Youngho Kwon
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, Connecticut 06520
| | - Jae-Hoon Ji
- Department of Molecular Medicine and Institute of Biotechnology, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78245
| | - Amy Sid
- Department of Molecular Medicine and Institute of Biotechnology, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78245
| | - Sreejith Ramakrishnan
- Department of Biology, School of Science, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana 46202-5132
| | - Grzegorz Ira
- Department of Molecular & Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030
| | - Anna Malkova
- Department of Biology, School of Science, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana 46202-5132
| | - Patrick Sung
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, Connecticut 06520
| | - Sang Eun Lee
- Department of Molecular Medicine and Institute of Biotechnology, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78245
| | - Eun Yong Shim
- Department of Molecular Medicine and Institute of Biotechnology, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78245
| |
Collapse
|
42
|
Maher RL, Branagan AM, Morrical SW. Coordination of DNA replication and recombination activities in the maintenance of genome stability. J Cell Biochem 2011; 112:2672-82. [PMID: 21647941 PMCID: PMC3178728 DOI: 10.1002/jcb.23211] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Across the evolutionary spectrum, living organisms depend on high-fidelity DNA replication and recombination mechanisms to maintain genome stability and thus to avoid mutation and disease. The repair of severe lesions in the DNA such as double-strand breaks or stalled replication forks requires the coordinated activities of both the homologous recombination (HR) and DNA replication machineries. Growing evidence indicates that so-called "accessory proteins" in both systems are essential for the effective coupling of recombination to replication which is necessary to restore genome integrity following severe DNA damage. In this article we review the major processes of homology-directed DNA repair (HDR), including the double Holliday Junction (dHJ), synthesis-dependent strand annealing (SDSA), break-induced replication (BIR), and error-free lesion bypass pathways. Each of these pathways involves the coupling of a HR event to DNA synthesis. We highlight two major classes of accessory proteins in recombination and replication that facilitate HDR: Recombination mediator proteins exemplified by T4 UvsY, Saccharomyces cerevisiae Rad52, and human BRCA2; and DNA helicases/translocases exemplified by T4 Gp41/Gp59, E. coli DnaB and PriA, and eukaryotic Mcm2-7, Rad54, and Mph1. We illustrate how these factors help to direct the flow of DNA and protein-DNA intermediates on the pathway from a double-strand break or stalled replication fork to a high-fidelity recombination-dependent replication apparatus that can accurately repair the damage.
Collapse
Affiliation(s)
- Robyn L. Maher
- Department of Biochemistry, University of Vermont College of Medicine, Burlington, VT 05405
| | - Amy M. Branagan
- Department of Biochemistry, University of Vermont College of Medicine, Burlington, VT 05405
| | - Scott W. Morrical
- Department of Biochemistry, University of Vermont College of Medicine, Burlington, VT 05405
- Department of Microbiology & Molecular Genetics, University of Vermont College of Medicine, Burlington, VT 05405
| |
Collapse
|
43
|
Mott C, Symington LS. RAD51-independent inverted-repeat recombination by a strand-annealing mechanism. DNA Repair (Amst) 2011; 10:408-15. [PMID: 21317047 PMCID: PMC3062727 DOI: 10.1016/j.dnarep.2011.01.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2010] [Revised: 01/05/2011] [Accepted: 01/12/2011] [Indexed: 10/18/2022]
Abstract
Recombination between inverted repeats is RAD52 dependent, but reduced only modestly in the rad51Δ mutant. RAD59 is required for RAD51-independent inverted-repeat recombination, but no clear mechanism for how recombination occurs in the absence of RAD51 has emerged. Because Rad59 is thought to function as an accessory factor for the single-strand annealing activity of Rad52 one possible mechanism for spontaneous recombination could be by strand annealing between repeats at a stalled replication fork. Here we demonstrate the importance of the Rad52 single-strand annealing activity for generating recombinants by showing suppression of the rad52Δ, rad51Δ rad52Δ and rad52Δ rad59Δ inverted-repeat recombination defects by the rfa1-D228Y mutation. In addition, formation of recombinants in the rad51Δ mutant was sensitive to the distance between the inverted repeats, consistent with a replication-based mechanism. Deletion of RAD5 or RAD18, which are required for error-free post-replication repair, reduced the recombination rate in the rad59Δ mutant, but not in wild type. These data are consistent with RAD51-independent recombinants arising by a faulty template switch mechanism that is distinct from nascent strand template switching.
Collapse
Affiliation(s)
- Christina Mott
- Department of Microbiology & Immunology, Columbia University Medical Center, New York, NY 10032
| | - Lorraine S. Symington
- Department of Microbiology & Immunology, Columbia University Medical Center, New York, NY 10032
| |
Collapse
|
44
|
Grimme JM, Spies M. FRET-based assays to monitor DNA binding and annealing by Rad52 recombination mediator protein. Methods Mol Biol 2011; 745:463-483. [PMID: 21660711 DOI: 10.1007/978-1-61779-129-1_27] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
During homologous recombination and homology-directed repair of broken chromosomes, proteins that mediate and oppose recombination form dynamic complexes on damaged DNA. Quantitative analysis of these nucleoprotein assemblies requires a robust signal, which reports on the association of a recombination mediator with its substrate and on the state of substrate DNA within the complex. Eukaryotic Rad52 protein mediates recombination, repair, and restart of collapsed replication forks by facilitating replacement of ssDNA binding protein replication protein A (RPA) with Rad51 recombinase and by mediating annealing of two complementary DNA strands protected by RPA. The characteristic binding mode whereby ssDNA is wrapped around the Rad52 ring allowed us to develop robust and sensitive FRET-based assays for monitoring Rad52 interactions with protein-free DNA and ssDNA-RPA complexes. By reporting on the configuration of ssDNA dually labeled with Cy3 and Cy5 fluorescent dyes, solution-based FRET is used to analyze Rad52-RPA-DNA interactions under equilibrium binding conditions. Finally, FRET between Cy3 and Cy5 dyes incorporated into two homologous ssDNA molecules can be used to analyze interplay between Rad52-mediated DNA strand annealing and duplex DNA destabilization by RPA.
Collapse
Affiliation(s)
- Jill M Grimme
- US Army Engineer Research Development Center, Construction Engineering Research Laboratory, Champaign, IL 61822, USA.
| | | |
Collapse
|
45
|
Rassool FV, Tomkinson AE. Targeting abnormal DNA double strand break repair in cancer. Cell Mol Life Sci 2010; 67:3699-710. [PMID: 20697770 PMCID: PMC3014093 DOI: 10.1007/s00018-010-0493-5] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2010] [Accepted: 07/28/2010] [Indexed: 12/19/2022]
Abstract
A major challenge in cancer treatment is the development of therapies that target cancer cells with little or no toxicity to normal tissues and cells. Alterations in DNA double strand break (DSB) repair in cancer cells include both elevated and reduced levels of key repair proteins and changes in the relative contributions of the various DSB repair pathways. These differences can result in increased sensitivity to DSB-inducing agents and increased genomic instability. The development of agents that selectively inhibit the DSB repair pathways that cancer cells are more dependent upon will facilitate the design of therapeutic strategies that exploit the differences in DSB repair between normal and cancer cells. Here, we discuss the pathways of DSB repair, alterations in DSB repair in cancer, inhibitors of DSB repair and future directions for cancer therapies that target DSB repair.
Collapse
Affiliation(s)
- Feyruz V. Rassool
- Department of Radiation Oncology, Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, 655 West Baltimore Street, BRB, Rm 7-025, Baltimore, MD 21201 USA
| | - Alan E. Tomkinson
- Department of Radiation Oncology, Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, 655 West Baltimore Street, BRB, Rm 7-025, Baltimore, MD 21201 USA
| |
Collapse
|
46
|
Manthey GM, Bailis AM. Rad51 inhibits translocation formation by non-conservative homologous recombination in Saccharomyces cerevisiae. PLoS One 2010; 5:e11889. [PMID: 20686691 PMCID: PMC2912366 DOI: 10.1371/journal.pone.0011889] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2010] [Accepted: 07/07/2010] [Indexed: 11/24/2022] Open
Abstract
Chromosomal translocations are a primary biological response to ionizing radiation (IR) exposure, and are likely to result from the inappropriate repair of the DNA double-strand breaks (DSBs) that are created. An abundance of repetitive sequences in eukaryotic genomes provides ample opportunity for such breaks to be repaired by homologous recombination (HR) between non-allelic repeats. Interestingly, in the budding yeast, Saccharomyces cerevisiae the central strand exchange protein, Rad51 that is required for DSB repair by gene conversion between unlinked repeats that conserves genomic structure also suppresses translocation formation by several HR mechanisms. In particular, Rad51 suppresses translocation formation by single-strand annealing (SSA), perhaps the most efficient mechanism for translocation formation by HR in both yeast and mammalian cells. Further, the enhanced translocation formation that emerges in the absence of Rad51 displays a distinct pattern of genetic control, suggesting that this occurs by a separate mechanism. Since hypomorphic mutations in RAD51 in mammalian cells also reduce DSB repair by conservative gene conversion and stimulate non-conservative repair by SSA, this mechanism may also operate in humans and, perhaps contribute to the genome instability that propels the development of cancer.
Collapse
Affiliation(s)
- Glenn M. Manthey
- Department of Molecular and Cellular Biology, Beckman Research Institute, City of Hope National Medical Center, Duarte, California, United States of America
| | - Adam M. Bailis
- Department of Molecular and Cellular Biology, Beckman Research Institute, City of Hope National Medical Center, Duarte, California, United States of America
- * E-mail:
| |
Collapse
|
47
|
Pannunzio NR, Manthey GM, Bailis AM. RAD59 and RAD1 cooperate in translocation formation by single-strand annealing in Saccharomyces cerevisiae. Curr Genet 2009; 56:87-100. [PMID: 20012294 PMCID: PMC2808509 DOI: 10.1007/s00294-009-0282-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2009] [Revised: 11/24/2009] [Accepted: 11/25/2009] [Indexed: 11/30/2022]
Abstract
Studies in the budding yeast, Saccharomyces cerevisiae, have demonstrated that a substantial fraction of double-strand break repair following acute radiation exposure involves homologous recombination between repetitive genomic elements. We have previously described an assay in S. cerevisiae that allows us to model how repair of multiple breaks leads to the formation of chromosomal translocations by single-strand annealing (SSA) and found that Rad59, a paralog of the single-stranded DNA annealing protein Rad52, is critically important in this process. We have constructed several rad59 missense alleles to study its function more closely. Characterization of these mutants revealed proportional defects in both translocation formation and spontaneous direct-repeat recombination, which is also thought to occur by SSA. Combining the rad59 missense alleles with a null allele of RAD1, which encodes a subunit of a nuclease required for the removal of non-homologous tails from annealed intermediates, substantially suppressed the low frequency of translocations observed in rad1-null single mutants. These data suggest that at least one role of Rad59 in translocation formation by SSA is supporting the machinery required for cleavage of non-homologous tails.
Collapse
Affiliation(s)
- Nicholas R Pannunzio
- Department of Molecular and Cellular Biology, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA.
| | | | | |
Collapse
|
48
|
Nimonkar AV, Sica RA, Kowalczykowski SC. Rad52 promotes second-end DNA capture in double-stranded break repair to form complement-stabilized joint molecules. Proc Natl Acad Sci U S A 2009; 106:3077-82. [PMID: 19204284 PMCID: PMC2651264 DOI: 10.1073/pnas.0813247106] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2008] [Indexed: 11/18/2022] Open
Abstract
Saccharomyces cerevisiae Rad52 performs multiple functions during the recombinational repair of double-stranded DNA (dsDNA) breaks (DSBs). It mediates assembly of Rad51 onto single-stranded DNA (ssDNA) that is complexed with replication protein A (RPA); the resulting nucleoprotein filament pairs with homologous dsDNA to form joint molecules. Rad52 also catalyzes the annealing of complementary strands of ssDNA, even when they are complexed with RPA. Both Rad51 and Rad52 can be envisioned to promote "second-end capture," a step that pairs the ssDNA generated by processing of the second end of a DSB to the joint molecule formed by invasion of the target dsDNA by the first processed end. Here, we show that Rad52 promotes annealing of complementary ssDNA that is complexed with RPA to the displaced strand of a joint molecule, to form a complement-stabilized joint molecule. RecO, a prokaryotic homolog of Rad52, cannot form complement-stabilized joint molecules with RPA-ssDNA complexes, nor can Rad52 promote second-end capture when the ssDNA is bound with either human RPA or the prokaryotic ssDNA-binding protein, SSB, indicating a species-specific process. We conclude that Rad52 participates in second-end capture by annealing a resected DNA break, complexed with RPA, to the joint molecule product of single-end invasion event. These studies support a role for Rad52-promoted annealing in the formation of Holliday junctions in DSB repair.
Collapse
Affiliation(s)
- Amitabh V. Nimonkar
- Departments of Microbiology and of Molecular and Cellular Biology, University of California, Davis, CA 95616-8665
| | - R. Alejandro Sica
- Departments of Microbiology and of Molecular and Cellular Biology, University of California, Davis, CA 95616-8665
| | - Stephen C. Kowalczykowski
- Departments of Microbiology and of Molecular and Cellular Biology, University of California, Davis, CA 95616-8665
| |
Collapse
|
49
|
Pannunzio NR, Manthey GM, Bailis AM. RAD59 is required for efficient repair of simultaneous double-strand breaks resulting in translocations in Saccharomyces cerevisiae. DNA Repair (Amst) 2008; 7:788-800. [PMID: 18373960 PMCID: PMC2422859 DOI: 10.1016/j.dnarep.2008.02.003] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2007] [Revised: 01/25/2008] [Accepted: 02/08/2008] [Indexed: 01/08/2023]
Abstract
Exposure to ionizing radiation results in a variety of genome rearrangements that have been linked to tumor formation. Many of these rearrangements are thought to arise from the repair of double-strand breaks (DSBs) by several mechanisms, including homologous recombination (HR) between repetitive sequences dispersed throughout the genome. Doses of radiation sufficient to create DSBs in or near multiple repetitive elements simultaneously could initiate single-strand annealing (SSA), a highly efficient, though mutagenic, mode of DSB repair. We have investigated the genetic control of the formation of translocations that occur spontaneously and those that form after the generation of DSBs adjacent to homologous sequences on two, non-homologous chromosomes in Saccharomyces cerevisiae. We found that mutations in a variety of DNA repair genes have distinct effects on break-stimulated translocation. Furthermore, the genetic requirements for repair using 300bp and 60bp recombination substrates were different, suggesting that the SSA apparatus may be altered in response to changing substrate lengths. Notably, RAD59 was found to play a particularly significant role in recombination between the short substrates that was partially independent of that of RAD52. The high frequency of these events suggests that SSA may be an important mechanism of genome rearrangement following acute radiation exposure.
Collapse
Affiliation(s)
- Nicholas R. Pannunzio
- Division of Molecular Biology, Beckman Research Institute of the City of Hope, 1500 E. Duarte Road, Duarte, CA 91010-0269
- City of Hope Graduate School of Biological Sciences
| | - Glenn M. Manthey
- Division of Molecular Biology, Beckman Research Institute of the City of Hope, 1500 E. Duarte Road, Duarte, CA 91010-0269
| | - Adam M. Bailis
- Division of Molecular Biology, Beckman Research Institute of the City of Hope, 1500 E. Duarte Road, Duarte, CA 91010-0269
| |
Collapse
|
50
|
Ehmsen KT, Heyer WD. Biochemistry of Meiotic Recombination: Formation, Processing, and Resolution of Recombination Intermediates. GENOME DYNAMICS AND STABILITY 2008; 3:91. [PMID: 20098639 PMCID: PMC2809983 DOI: 10.1007/7050_2008_039] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Meiotic recombination ensures accurate chromosome segregation during the first meiotic division and provides a mechanism to increase genetic heterogeneity among the meiotic products. Unlike homologous recombination in somatic (vegetative) cells, where sister chromatid interactions prevail and crossover formation is avoided, meiotic recombination is targeted to involve homologs, resulting in crossovers to connect the homologs before anaphase of the first meiotic division. The mechanisms responsible for homolog choice and crossover control are poorly understood, but likely involve meiosis-specific recombination proteins, as well as meiosis-specific chromosome organization and architecture. Much progress has been made to identify and biochemically characterize many of the proteins acting during meiotic recombination. This review will focus on the proteins that generate and process heteroduplex DNA, as well as those that process DNA junctions during meiotic recombination, with particular attention to how recombination activities promote crossover resolution between homologs.
Collapse
Affiliation(s)
- Kirk T. Ehmsen
- Section of Microbiology, University of California, Davis, One Shields Ave, Davis, CA 95616-8665, USA
| | - Wolf-Dietrich Heyer
- Section of Microbiology, University of California, Davis, One Shields Ave, Davis, CA 95616-8665, USA
- Section of Molecular and Cellular Biology, University of California, Davis, One Shields Ave, Davis, CA 95616-8665, USA
| |
Collapse
|