1
|
Szántó JK, Dietschreit JCB, Shein M, Schütz AK, Ochsenfeld C. Systematic QM/MM Study for Predicting 31P NMR Chemical Shifts of Adenosine Nucleotides in Solution and Stages of ATP Hydrolysis in a Protein Environment. J Chem Theory Comput 2024; 20:2433-2444. [PMID: 38497488 DOI: 10.1021/acs.jctc.3c01280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
NMR (nuclear magnetic resonance) spectroscopy allows for important atomistic insights into the structure and dynamics of biological macromolecules; however, reliable assignments of experimental spectra are often difficult. Herein, quantum mechanical/molecular mechanical (QM/MM) calculations can provide crucial support. A major problem for the simulations is that experimental NMR signals are time-averaged over much longer time scales, and since computed chemical shifts are highly sensitive to local changes in the electronic and structural environment, sufficiently large averages over representative structural ensembles are essential. This entails high computational demands for reliable simulations. For NMR measurements in biological systems, a nucleus of major interest is 31P since it is both highly present (e.g., in nucleic acids) and easily observable. The focus of our present study is to develop a robust and computationally cost-efficient framework for simulating 31P NMR chemical shifts of nucleotides. We apply this scheme to study the different stages of the ATP hydrolysis reaction catalyzed by p97. Our methodology is based on MM molecular dynamics (MM-MD) sampling, followed by QM/MM structure optimizations and NMR calculations. Overall, our study is one of the most comprehensive QM-based 31P studies in a protein environment and the first to provide computed NMR chemical shifts for multiple nucleotide states in a protein environment. This study sheds light on a process that is challenging to probe experimentally and aims to bridge the gap between measured and calculated NMR spectroscopic properties.
Collapse
Affiliation(s)
- Judit Katalin Szántó
- Chair of Theoretical Chemistry, Department of Chemistry, University of Munich (LMU), Butenandtstr. 7, D-81377 München, Germany
| | - Johannes C B Dietschreit
- Chair of Theoretical Chemistry, Department of Chemistry, University of Munich (LMU), Butenandtstr. 7, D-81377 München, Germany
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Mikhail Shein
- Department of Chemistry, University of Munich (LMU), Butenandtstr. 5-13, D-81377 München, Germany
| | - Anne K Schütz
- Department of Chemistry, University of Munich (LMU), Butenandtstr. 5-13, D-81377 München, Germany
| | - Christian Ochsenfeld
- Chair of Theoretical Chemistry, Department of Chemistry, University of Munich (LMU), Butenandtstr. 7, D-81377 München, Germany
- Max Planck Institute for Solid State Research, Heisenbergstr. 1, D-70569 Stuttgart, Germany
| |
Collapse
|
2
|
Murakami M, Sajid A, Lusvarghi S, Durell SR, Abel B, Vahedi S, Golin J, Ambudkar SV. Second-site suppressor mutations reveal connection between the drug-binding pocket and nucleotide-binding domain 1 of human P-glycoprotein (ABCB1). Drug Resist Updat 2023; 71:101009. [PMID: 37797431 PMCID: PMC10842643 DOI: 10.1016/j.drup.2023.101009] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/19/2023] [Accepted: 09/21/2023] [Indexed: 10/07/2023]
Abstract
Human P-glycoprotein (P-gp) or ABCB1 is overexpressed in many cancers and has been implicated in altering the bioavailability of chemotherapeutic drugs due to their efflux, resulting in the development of chemoresistance. To elucidate the mechanistic aspects and structure-function relationships of P-gp, we previously utilized a tyrosine (Y)-enriched P-gp mutant (15Y) and demonstrated that at least 15 conserved residues in the drug-binding pocket of P-gp are responsible for optimal substrate interaction and transport. To further understand the role of these 15 residues, two new mutants were generated, namely 6Y with the substitution of six residues (F72, F303, I306, F314, F336 and L339) with Y in transmembrane domain (TMD) 1 and 9Y with nine substitutions (F732, F759, F770, F938, F942, M949, L975, F983 and F994) in TMD2. Although both the mutants were expressed at normal levels at the cell surface, the 6Y mutant failed to transport all the tested substrates except Bodipy-verapamil, whereas the 9Y mutant effluxed all tested substrates in a manner very similar to that of the wild-type protein. Further mutational analysis revealed that two second-site mutations, one in intracellular helix (ICH) 4 (F916Y) and one in the Q loop of nucleotide-binding domain (NBD) 1 (F480Y) restored the transport function of 6Y. Additional biochemical data and comparative molecular dynamics simulations of the 6Y and 6Y+F916Y mutant indicate that the Q-loop of NBD1 of P-gp communicates with the substrate-binding sites in the transmembrane region through ICH4. This is the first evidence for the existence of second-site suppressors in human P-gp that allow recovery of the loss of transport function caused by primary mutations. Further study of such mutations could facilitate mapping of the communication pathway between the substrate-binding pocket and the NBDs of P-gp and possibly other ABC drug transporters.
Collapse
Affiliation(s)
- Megumi Murakami
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Andaleeb Sajid
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Sabrina Lusvarghi
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Stewart R Durell
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Biebele Abel
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Shahrooz Vahedi
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - John Golin
- Department of Biology, Catholic University of America, Washington, DC 20064, USA
| | - Suresh V Ambudkar
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA.
| |
Collapse
|
3
|
Interaction of a Homologous Series of Amphiphiles with P-glycoprotein in a Membrane Environment-Contributions of Polar and Non-Polar Interactions. Pharmaceutics 2023; 15:pharmaceutics15010174. [PMID: 36678803 PMCID: PMC9862096 DOI: 10.3390/pharmaceutics15010174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/06/2022] [Accepted: 12/26/2022] [Indexed: 01/05/2023] Open
Abstract
The transport of drugs by efflux transporters in biomembranes limits their bioavailability and is a major determinant of drug resistance development by cancer cells and pathogens. A large number of chemically dissimilar drugs are transported, and despite extensive studies, the molecular determinants of substrate specificity are still not well understood. In this work, we explore the role of polar and non-polar interactions on the interaction of a homologous series of fluorescent amphiphiles with the efflux transporter P-glycoprotein. The interaction of the amphiphiles with P-glycoprotein is evaluated through effects on ATPase activity, efficiency in inhibition of [125I]-IAAP binding, and partition to the whole native membranes containing the transporter. The results were complemented with partition to model membranes with a representative lipid composition, and details on the interactions established were obtained from MD simulations. We show that when the total concentration of amphiphile is considered, the binding parameters obtained are apparent and do not reflect the affinity for P-gp. A new formalism is proposed that includes sequestration of the amphiphiles in the lipid bilayer and the possible binding of several molecules in P-gp's substrate-binding pocket. The intrinsic binding affinity thus obtained is essentially independent of amphiphile hydrophobicity, highlighting the importance of polar interactions. An increase in the lipophilicity and amphiphilicity led to a more efficient association with the lipid bilayer, which maintains the non-polar groups of the amphiphiles in the bilayer, while the polar groups interact with P-gp's binding pocket. The presence of several amphiphiles in this orientation is proposed as a mechanism for inhibition of P-pg function.
Collapse
|
4
|
Lusvarghi S, Durell SR, Ambudkar SV. Does the ATP-bound EQ mutant reflect the pre- or post-ATP hydrolysis state in the catalytic cycle of human P-glycoprotein (ABCB1)? FEBS Lett 2021; 595:750-762. [PMID: 33547668 DOI: 10.1002/1873-3468.14054] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 01/14/2021] [Accepted: 01/28/2021] [Indexed: 12/15/2022]
Abstract
P-glycoprotein (P-gp, ABCB1) is an ABC transporter associated with the development of multidrug resistance to chemotherapy. During its catalytic cycle, P-gp undergoes significant conformational changes. Recently, atomic structures of some of these conformations have been resolved using cryo-electron microscopy. The ATP hydrolysis-defective mutant of the catalytic glutamate residue of the Walker B motif (E556Q/E1201Q) has been used to determine the structure of the ATP-bound inward-closed conformation of P-gp. Here, we show that this mutant does not appear to undergo the same steps as wild-type P-gp. We discuss conformational differences in the EQ mutant that may lead to a better understanding of the catalytic cycle of P-gp and propose that additional structural studies with wild-type P-gp are required.
Collapse
Affiliation(s)
- Sabrina Lusvarghi
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Stewart R Durell
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Suresh V Ambudkar
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
5
|
Reversing the direction of drug transport mediated by the human multidrug transporter P-glycoprotein. Proc Natl Acad Sci U S A 2020; 117:29609-29617. [PMID: 33168729 PMCID: PMC7703596 DOI: 10.1073/pnas.2016270117] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The multidrug transporter P-glycoprotein protects tissues from xenobiotics and other toxic compounds by pumping them out of cells. This transporter has been implicated in altering the bioavailability of chemotherapeutic drugs and in the development of multidrug resistance in tumor cells. Despite decades of research, the modulation of P-glycoprotein to overcome drug resistance in the clinic has not been successful. Here, by substituting a group of 14 conserved residues in homologous transmembrane helices 6 and 12 with alanine, we generated a mutant that exhibits a change in the direction of transport from export to import for certain drug substrates including the taxol derivative flutax-1. The ability to convert P-glycoprotein into a drug importer provides a strategy to combat cancer drug resistance. P-glycoprotein (P-gp), also known as ABCB1, is a cell membrane transporter that mediates the efflux of chemically dissimilar amphipathic drugs and confers resistance to chemotherapy in most cancers. Homologous transmembrane helices (TMHs) 6 and 12 of human P-gp connect the transmembrane domains with its nucleotide-binding domains, and several residues in these TMHs contribute to the drug-binding pocket. To investigate the role of these helices in the transport function of P-gp, we substituted a group of 14 conserved residues (seven in both TMHs 6 and 12) with alanine and generated a mutant termed 14A. Although the 14A mutant lost the ability to pump most of the substrates tested out of cancer cells, surprisingly, it acquired a new function. It was able to import four substrates, including rhodamine 123 (Rh123) and the taxol derivative flutax-1. Similar to the efflux function of wild-type P-gp, we found that uptake by the 14A mutant is ATP hydrolysis-, substrate concentration-, and time-dependent. Consistent with the uptake function, the mutant P-gp also hypersensitizes HeLa cells to Rh123 by 2- to 2.5-fold. Further mutagenesis identified residues from both TMHs 6 and 12 that synergistically form a switch in the central region of the two helices that governs whether a given substrate is pumped out of or into the cell. Transforming P-gp or an ABC drug exporter from an efflux transporter into a drug uptake pump would constitute a paradigm shift in efforts to overcome cancer drug resistance.
Collapse
|
6
|
Abel B, Tosh DK, Durell SR, Murakami M, Vahedi S, Jacobson KA, Ambudkar SV. Evidence for the Interaction of A 3 Adenosine Receptor Agonists at the Drug-Binding Site(s) of Human P-glycoprotein (ABCB1). Mol Pharmacol 2019; 96:180-192. [PMID: 31127007 PMCID: PMC6608608 DOI: 10.1124/mol.118.115295] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 05/16/2019] [Indexed: 12/29/2022] Open
Abstract
P-glycoprotein (P-gp) is a multidrug transporter that is expressed on the luminal surface of epithelial cells in the kidney, intestine, bile-canalicular membrane in the liver, blood-brain barrier, and adrenal gland. This transporter uses energy of ATP hydrolysis to efflux from cells a variety of structurally dissimilar hydrophobic and amphipathic compounds, including anticancer drugs. In this regard, understanding the interaction with P-gp of drug entities in development is important and highly recommended in current US Food and Drug Administration guidelines. Here we tested the P-gp interaction of some A3 adenosine receptor agonists that are being developed for the treatment of chronic diseases, including rheumatoid arthritis, psoriasis, chronic pain, and hepatocellular carcinoma. Biochemical assays of the ATPase activity of P-gp and by photolabeling P-gp with its transport substrate [125I]-iodoarylazidoprazosin led to the identification of rigidified (N)-methanocarba nucleosides (i.e., compound 3 as a stimulator and compound 8 as a partial inhibitor of P-gp ATPase activity). Compound 8 significantly inhibited boron-dipyrromethene (BODIPY)-verapamil transport mediated by human P-gp (IC50 2.4 ± 0.6 µM); however, the BODIPY-conjugated derivative of 8 (compound 24) was not transported by P-gp. In silico docking of compounds 3 and 8 was performed using the recently solved atomic structure of paclitaxel (Taxol)-bound human P-gp. Molecular modeling studies revealed that both compounds 3 and 8 bind in the same region of the drug-binding pocket as Taxol. Thus, this study indicates that nucleoside derivatives can exhibit varied modulatory effects on P-gp activity, depending on structural functionalization. SIGNIFICANCE STATEMENT: Certain A3 adenosine receptor agonists are being developed for the treatment of chronic diseases. The goal of this study was to test the interaction of these agonists with the human multidrug resistance-linked transporter P-glycoprotein (P-gp). ATPase and photolabeling assays demonstrated that compounds with rigidified (N)-methanocarba nucleosides inhibit the activity of P-gp; however, a fluorescent derivative of one of the compounds was not transported by P-gp. Furthermore, molecular docking studies revealed that the binding site for these compounds overlaps with the site for paclitaxel in the drug-binding pocket. These results suggest that nucleoside derivatives, depending on structural functionalization, can modulate the function of P-gp.
Collapse
Affiliation(s)
- Biebele Abel
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute (B.A., S.R.D., M.M., S.V., S.V.A.), and Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases (D.K.T., K.A.J.), National Institutes of Health, Bethesda, Maryland
| | - Dilip K Tosh
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute (B.A., S.R.D., M.M., S.V., S.V.A.), and Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases (D.K.T., K.A.J.), National Institutes of Health, Bethesda, Maryland
| | - Stewart R Durell
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute (B.A., S.R.D., M.M., S.V., S.V.A.), and Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases (D.K.T., K.A.J.), National Institutes of Health, Bethesda, Maryland
| | - Megumi Murakami
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute (B.A., S.R.D., M.M., S.V., S.V.A.), and Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases (D.K.T., K.A.J.), National Institutes of Health, Bethesda, Maryland
| | - Shahrooz Vahedi
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute (B.A., S.R.D., M.M., S.V., S.V.A.), and Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases (D.K.T., K.A.J.), National Institutes of Health, Bethesda, Maryland
| | - Kenneth A Jacobson
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute (B.A., S.R.D., M.M., S.V., S.V.A.), and Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases (D.K.T., K.A.J.), National Institutes of Health, Bethesda, Maryland
| | - Suresh V Ambudkar
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute (B.A., S.R.D., M.M., S.V., S.V.A.), and Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases (D.K.T., K.A.J.), National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
7
|
Yakusheva EN, Titov DS. Structure and Function of Multidrug Resistance Protein 1. BIOCHEMISTRY (MOSCOW) 2018; 83:907-929. [DOI: 10.1134/s0006297918080047] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
8
|
Li MJ, Guttman M, Atkins WM. Conformational dynamics of P-glycoprotein in lipid nanodiscs and detergent micelles reveal complex motions on a wide time scale. J Biol Chem 2018; 293:6297-6307. [PMID: 29511086 DOI: 10.1074/jbc.ra118.002190] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 02/26/2018] [Indexed: 11/06/2022] Open
Abstract
P-glycoprotein (P-gp) is a highly substrate-promiscuous efflux transporter that plays a critical role in drug disposition. P-gp utilizes ATP hydrolysis by nucleotide-binding domains (NBDs) to drive transitions between inward-facing (IF) conformations that bind drugs and outward-facing (OF) conformations that release them to the extracellular solution. However, the details of the protein dynamics within either macroscopic IF or OF conformation remain uncharacterized, and the functional role of local dynamics has not been determined. In this work we measured the local dynamics of the IF state of P-gp in lipid nanodiscs and in detergent solution by hydrogen-deuterium (H/D) exchange MS. We observed "EX1 exchange kinetics," or bimodal kinetics, for several peptides distributed in both NBDs, particularly for P-gp in the lipid nanodiscs. Remarkably, the EX1 kinetics occurred on several time scales, ranging from seconds to hours, suggesting highly complex, and correlated, motions. The results indicate at least three distinct conformational states in the ligand-free P-gp and suggest a rough conformational landscape. Addition of excess ATP and vanadate, to favor the OF conformations, caused a generalized, but modest, decrease in H/D exchange throughout the NBDs and slowed the EX1 kinetic transitions of several peptides. The functional implications of the results are consistent with the possibility that conformational selection provides a source of substrate promiscuity.
Collapse
Affiliation(s)
- Mavis Jiarong Li
- From the Department of Medicinal Chemistry, University of Washington, Seattle, Washington 98195-7610
| | - Miklos Guttman
- From the Department of Medicinal Chemistry, University of Washington, Seattle, Washington 98195-7610
| | - William M Atkins
- From the Department of Medicinal Chemistry, University of Washington, Seattle, Washington 98195-7610
| |
Collapse
|
9
|
Casals-Sainz JL, Jiménez-Grávalos F, Costales A, Francisco E, Pendás ÁM. Beryllium Bonding in the Light of Modern Quantum Chemical Topology Tools. J Phys Chem A 2018; 122:849-858. [DOI: 10.1021/acs.jpca.7b10714] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | | | - Aurora Costales
- Departamento de Química Física
y Analítica, Universidad de Oviedo, Oviedo 33006, Spain
| | - Evelio Francisco
- Departamento de Química Física
y Analítica, Universidad de Oviedo, Oviedo 33006, Spain
| | - Ángel Martín Pendás
- Departamento de Química Física
y Analítica, Universidad de Oviedo, Oviedo 33006, Spain
| |
Collapse
|
10
|
Shukla S, Abel B, Chufan EE, Ambudkar SV. Effects of a detergent micelle environment on P-glycoprotein (ABCB1)-ligand interactions. J Biol Chem 2017; 292:7066-7076. [PMID: 28283574 DOI: 10.1074/jbc.m116.771634] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 03/06/2017] [Indexed: 11/06/2022] Open
Abstract
P-glycoprotein (P-gp) is a multidrug transporter that uses energy from ATP hydrolysis to export many structurally dissimilar hydrophobic and amphipathic compounds, including anticancer drugs from cells. Several structural studies on purified P-gp have been reported, but only limited and sometimes conflicting information is available on ligand interactions with the isolated transporter in a dodecyl-maltoside detergent environment. In this report we compared the biochemical properties of P-gp in native membranes, detergent micelles, and when reconstituted in artificial membranes. We found that the modulators zosuquidar, tariquidar, and elacridar stimulated the ATPase activity of purified human or mouse P-gp in a detergent micelle environment. In contrast, these drugs inhibited ATPase activity in native membranes or in proteoliposomes, with IC50 values in the 10-40 nm range. Similarly, a 30-150-fold decrease in the apparent affinity for verapamil and cyclic peptide inhibitor QZ59-SSS was observed in detergent micelles compared with native or artificial membranes. Together, these findings demonstrate that the high-affinity site is inaccessible because of either a conformational change or binding of detergent at the binding site in a detergent micelle environment. The ligands bind to a low-affinity site, resulting in altered modulation of P-gp ATPase activity. We, therefore, recommend studying structural and functional aspects of ligand interactions with purified P-gp and other ATP-binding cassette transporters that transport amphipathic or hydrophobic substrates in a detergent-free native or artificial membrane environment.
Collapse
Affiliation(s)
- Suneet Shukla
- From the Laboratory of Cell Biology, Center for Cancer Research, NCI, National Institutes of Health, Bethesda, Maryland 20892
| | - Biebele Abel
- From the Laboratory of Cell Biology, Center for Cancer Research, NCI, National Institutes of Health, Bethesda, Maryland 20892
| | - Eduardo E Chufan
- From the Laboratory of Cell Biology, Center for Cancer Research, NCI, National Institutes of Health, Bethesda, Maryland 20892
| | - Suresh V Ambudkar
- From the Laboratory of Cell Biology, Center for Cancer Research, NCI, National Institutes of Health, Bethesda, Maryland 20892
| |
Collapse
|
11
|
Timachi MH, Hutter CA, Hohl M, Assafa T, Böhm S, Mittal A, Seeger MA, Bordignon E. Exploring conformational equilibria of a heterodimeric ABC transporter. eLife 2017; 6. [PMID: 28051765 PMCID: PMC5216877 DOI: 10.7554/elife.20236] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 12/01/2016] [Indexed: 01/04/2023] Open
Abstract
ABC exporters pump substrates across the membrane by coupling ATP-driven movements of nucleotide binding domains (NBDs) to the transmembrane domains (TMDs), which switch between inward- and outward-facing (IF, OF) orientations. DEER measurements on the heterodimeric ABC exporter TM287/288 from Thermotoga maritima, which contains a non-canonical ATP binding site, revealed that in the presence of nucleotides the transporter exists in an IF/OF equilibrium. While ATP binding was sufficient to partially populate the OF state, nucleotide trapping in the pre- or post-hydrolytic state was required for a pronounced conformational shift. At physiologically high temperatures and in the absence of nucleotides, the NBDs disengage asymmetrically while the conformation of the TMDs remains unchanged. Nucleotide binding at the degenerate ATP site prevents complete NBD separation, a molecular feature differentiating heterodimeric from homodimeric ABC exporters. Our data suggest hydrolysis-independent closure of the NBD dimer, which is further stabilized as the consensus site nucleotide is committed to hydrolysis. DOI:http://dx.doi.org/10.7554/eLife.20236.001
Collapse
Affiliation(s)
- M Hadi Timachi
- Faculty of Chemistry and Biochemistry, Ruhr-Universität Bochum, Bochum, Germany.,Department of Physics, Freie Universität Berlin, Berlin, Germany
| | - Cedric Aj Hutter
- Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland
| | - Michael Hohl
- Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland
| | - Tufa Assafa
- Faculty of Chemistry and Biochemistry, Ruhr-Universität Bochum, Bochum, Germany.,Department of Physics, Freie Universität Berlin, Berlin, Germany
| | - Simon Böhm
- Laboratory of Physical Chemistry, ETH Zurich, Zurich, Switzerland
| | - Anshumali Mittal
- Department of Biochemistry, University of Zurich, Zurich, Switzerland
| | - Markus A Seeger
- Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland
| | - Enrica Bordignon
- Faculty of Chemistry and Biochemistry, Ruhr-Universität Bochum, Bochum, Germany.,Department of Physics, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
12
|
Frank GA, Shukla S, Rao P, Borgnia MJ, Bartesaghi A, Merk A, Mobin A, Esser L, Earl LA, Gottesman MM, Xia D, Ambudkar SV, Subramaniam S. Cryo-EM Analysis of the Conformational Landscape of Human P-glycoprotein (ABCB1) During its Catalytic Cycle. Mol Pharmacol 2016; 90:35-41. [PMID: 27190212 PMCID: PMC4931865 DOI: 10.1124/mol.116.104190] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 05/05/2016] [Indexed: 11/22/2022] Open
Abstract
The multidrug transporter P-glycoprotein (P-gp, ABCB1) is an ATP-dependent pump that mediates the efflux of structurally diverse drugs and xenobiotics across cell membranes, affecting drug pharmacokinetics and contributing to the development of multidrug resistance. Structural information about the conformational changes in human P-gp during the ATP hydrolysis cycle has not been directly demonstrated, although mechanistic information has been inferred from biochemical and biophysical studies conducted with P-gp and its orthologs, or from structures of other ATP-binding cassette transporters. Using single-particle cryo-electron microscopy, we report the surprising discovery that, in the absence of the transport substrate and nucleotides, human P-gp can exist in both open [nucleotide binding domains (NBDs) apart; inward-facing] and closed (NBDs close; outward-facing) conformations. We also probe conformational states of human P-gp during the catalytic cycle, and demonstrate that, following ATP hydrolysis, P-gp transitions through a complete closed conformation to a complete open conformation in the presence of ADP.
Collapse
Affiliation(s)
- Gabriel A Frank
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Suneet Shukla
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Prashant Rao
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Mario J Borgnia
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Alberto Bartesaghi
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Alan Merk
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Aerfa Mobin
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Lothar Esser
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Lesley A Earl
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Michael M Gottesman
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Di Xia
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Suresh V Ambudkar
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Sriram Subramaniam
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
13
|
Zhong A, Chen D, Li R. Revisiting the beryllium bonding interactions from energetic and wavefunction perspectives. Chem Phys Lett 2015. [DOI: 10.1016/j.cplett.2015.06.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
14
|
Fekete Z, Rajnai Z, Nagy T, Jakab KT, Kurunczi A, Gémes K, Herédi-Szabó K, Fülöp F, Tóth GK, Czerwinski M, Loewen G, Krajcsi P. Membrane Assays to Characterize Interaction of Drugs with ABCB1. J Membr Biol 2015; 248:967-77. [DOI: 10.1007/s00232-015-9804-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Accepted: 04/20/2015] [Indexed: 11/29/2022]
|
15
|
Loo TW, Clarke DM. Tariquidar inhibits P-glycoprotein drug efflux but activates ATPase activity by blocking transition to an open conformation. Biochem Pharmacol 2014; 92:558-66. [PMID: 25456855 DOI: 10.1016/j.bcp.2014.10.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 10/06/2014] [Accepted: 10/07/2014] [Indexed: 12/21/2022]
Abstract
P-glycoprotein (P-gp, ABCB1) is a drug pump that confers multidrug resistance. Inhibition of P-gp would improve chemotherapy. Tariquidar is a potent P-gp inhibitor but its mechanism is unknown. Here, we tested our prediction that tariquidar inhibits P-gp cycling between the open and closed states during the catalytic cycle. Transition of P-gp to an open state can be monitored in intact cells using reporter cysteines introduced into extracellular loops 1 (A80C) and 4 (R741C). Residues A80C/R741C come close enough (<7Å) to spontaneously cross-link in the open conformation (<7Å) but are widely separated (>30Å) in the closed conformation. Cross-linking of A80C/R741C can be readily detected because it causes the mutant protein to migrate slower on SDS-PAGE gels. We tested whether drug substrates or inhibitors could inhibit cross-linking of the mutant. It was found that only tariquidar blocked A80C/R741C cross-linking. Tariquidar was also a more potent pharmacological chaperone than other P-gp substrates/modulators such as cyclosporine A. Only tariquidar promoted maturation of misprocessed mutant F804D to yield mature P-gp. Tariquidar interacted with the transmembrane domains because it could rescue a misprocessed truncation mutant lacking the nucleotide-binding domains. These results show that tariquidar is a potent pharmacological chaperone and inhibits P-gp drug efflux by blocking transition to the open state during the catalytic cycle.
Collapse
Affiliation(s)
- Tip W Loo
- Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada; Department of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - David M Clarke
- Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada; Department of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada.
| |
Collapse
|
16
|
Prasad B, Evers R, Gupta A, Hop CECA, Salphati L, Shukla S, Ambudkar SV, Unadkat JD. Interindividual variability in hepatic organic anion-transporting polypeptides and P-glycoprotein (ABCB1) protein expression: quantification by liquid chromatography tandem mass spectroscopy and influence of genotype, age, and sex. Drug Metab Dispos 2014; 42:78-88. [PMID: 24122874 PMCID: PMC3876790 DOI: 10.1124/dmd.113.053819] [Citation(s) in RCA: 153] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Accepted: 10/11/2013] [Indexed: 11/22/2022] Open
Abstract
Interindividual variability in protein expression of organic anion-transporting polypeptides (OATPs) OATP1B1, OATP1B3, OATP2B1, and multidrug resistance-linked P-glycoprotein (P-gp) or ABCB1 was quantified in frozen human livers (n = 64) and cryopreserved human hepatocytes (n = 12) by a validated liquid chromatography tandem mass spectroscopy (LC-MS/MS) method. Membrane isolation, sample workup, and LC-MS/MS analyses were as described before by our laboratory. Briefly, total native membrane proteins, isolated from the liver tissue and cryopreserved hepatocytes, were trypsin digested and quantified by LC-MS/MS using signature peptide(s) unique to each transporter. The mean ± S.D. (maximum/minimum range in parentheses) protein expression (fmol/µg of membrane protein) in human liver tissue was OATP1B1- 2.0 ± 0.9 (7), OATP1B3- 1.1 ± 0.5 (8), OATP2B1- 1 1.7 ± 0.6 (5), and P-gp- 0.4 ± 0.2 (8). Transporter expression in the liver tissue was comparable to that in the cryopreserved hepatocytes. Most important is that livers with SLCO1B1 (encoding OATP1B1) haplotypes *14/*14 and *14/*1a [i.e., representing single nucleotide polymorphisms (SNPs), c.388A > G, and c.463C > A] had significantly higher (P < 0.0001) protein expression than the reference haplotype (*1a/*1a). Based on these genotype-dependent protein expression data, we predicted (using Simcyp) an up to ∼40% decrease in the mean area under the curve of rosuvastatin or repaglinide in subjects harboring these variant alleles compared with those harboring the reference alleles. SLCO1B3 (encoding OATP1B3) SNPs did not significantly affect protein expression. Age and sex were not associated with transporter protein expression. These data will facilitate the prediction of population-based human transporter-mediated drug disposition, drug-drug interactions, and interindividual variability through physiologically based pharmacokinetic modeling.
Collapse
Affiliation(s)
- Bhagwat Prasad
- Department of Pharmaceutics, University of Washington, Seattle, Washington (B.P., J.D.U.); Pharmacokinetics, Pharmacodynamics and Drug Metabolism, Merck & Co., Rahway, New Jersey (R.E.); Drug Metabolism and Pharmacokinetics, Infection DMPK, AstraZeneca Pharmaceuticals LLP, Waltham, Massachusetts (A.G.); Drug Metabolism and Pharmacokinetics, Genentech, South San Francisco, California (C.E.H., L.S.); Laboratory of Cell Biology, Center for Cancer Research, National Institutes of Health National Cancer Institute, Bethesda, Maryland (S.S., S.V.A.)
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Geng J, Sivaramakrishnan S, Raghavan M. Analyses of conformational states of the transporter associated with antigen processing (TAP) protein in a native cellular membrane environment. J Biol Chem 2013; 288:37039-47. [PMID: 24196954 DOI: 10.1074/jbc.m113.504696] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The transporter associated with antigen processing (TAP) plays a critical role in the MHC class I antigen presentation pathway. TAP translocates cellular peptides across the endoplasmic reticulum membrane in an ATP hydrolysis-dependent manner. We used FRET spectroscopy in permeabilized cells to delineate different conformational states of TAP in a native subcellular membrane environment. For these studies, we tagged the TAP1 and TAP2 subunits with enhanced cyan fluorescent protein and enhanced yellow fluorescent protein, respectively, C-terminally to their nucleotide binding domains (NBDs), and measured FRET efficiencies under different conditions. Our data indicate that both ATP and ADP enhance the FRET efficiencies but that neither induces a maximally closed NBD conformation. Additionally, peptide binding induces a large and significant increase in NBD proximity with a concentration dependence that is reflective of individual peptide affinities for TAP, revealing the underlying mechanism of peptide-stimulated ATPase activity of TAP. Maximal NBD closure is induced by the combination of peptide and non-hydrolysable ATP analogs. Thus, TAP1-TAP2 NBD dimers are not fully stabilized by nucleotides alone, and substrate binding plays a key role in inducing the transition state conformations of the NBD. Taken together, these findings show that at least three steps are involved in the transport of peptides across the endoplasmic reticulum membrane for antigen presentation, corresponding to three dynamically and structurally distinct conformational states of TAP. Our studies elucidate structural changes in the TAP NBD in response to nucleotides and substrate, providing new insights into the mechanism of ATP-binding cassette transporter function.
Collapse
Affiliation(s)
- Jie Geng
- From the Department of Microbiology and Immunology and
| | | | | |
Collapse
|
18
|
Kannan P, Telu S, Shukla S, Ambudkar SV, Pike VW, Halldin C, Gottesman MM, Innis RB, Hall MD. The "specific" P-glycoprotein inhibitor Tariquidar is also a substrate and an inhibitor for breast cancer resistance protein (BCRP/ABCG2). ACS Chem Neurosci 2011; 2:82-9. [PMID: 22778859 DOI: 10.1021/cn100078a] [Citation(s) in RCA: 140] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2010] [Accepted: 10/14/2010] [Indexed: 12/16/2022] Open
Abstract
Tariquidar was developed as a specific inhibitor of the efflux transporter ABCB1. Recent positron emission tomographic brain imaging studies using [(11)C]tariquidar to measure ABCB1 (P-gp, P-glycoprotein) density in mice indicate that the inhibitor may not be as specific as previously thought. We examined its selectivity as an inhibitor and a substrate for the human transporters P-gp, breast cancer resistance protein (BCRP, ABCG2), and multidrug resistance protein 1 (MRP1, ABCC1). Our results show that at low concentrations, tariquidar acts selectively as an inhibitor of P-gp and also as a substrate of BCRP. At much higher concentrations (≥100 nM), tariquidar acts as an inhibitor of both P-gp and BCRP. Thus, the in vivo specificity of tariquidar depends on concentration and the relative density and capacity of P-gp vs BCRP.
Collapse
Affiliation(s)
- Pavitra Kannan
- Molecular Imaging Branch, National Institute of Mental Health, Bethesda, Maryland, United States
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Sanjay Telu
- Molecular Imaging Branch, National Institute of Mental Health, Bethesda, Maryland, United States
| | - Suneet Shukla
- Laboratory of Cell Biology, National Cancer Institute, Bethesda, Maryland, United States
| | - Suresh V. Ambudkar
- Laboratory of Cell Biology, National Cancer Institute, Bethesda, Maryland, United States
| | - Victor W. Pike
- Molecular Imaging Branch, National Institute of Mental Health, Bethesda, Maryland, United States
| | - Christer Halldin
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Michael M. Gottesman
- Laboratory of Cell Biology, National Cancer Institute, Bethesda, Maryland, United States
| | - Robert B. Innis
- Molecular Imaging Branch, National Institute of Mental Health, Bethesda, Maryland, United States
| | - Matthew D. Hall
- Laboratory of Cell Biology, National Cancer Institute, Bethesda, Maryland, United States
| |
Collapse
|
19
|
Kannan P, Brimacombe KR, Kreisl WC, Liow JS, Zoghbi SS, Telu S, Zhang Y, Pike VW, Halldin C, Gottesman MM, Innis RB, Hall MD. Lysosomal trapping of a radiolabeled substrate of P-glycoprotein as a mechanism for signal amplification in PET. Proc Natl Acad Sci U S A 2011; 108:2593-8. [PMID: 21262843 PMCID: PMC3038699 DOI: 10.1073/pnas.1014641108] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The radiotracer [(11)C]N-desmethyl-loperamide (dLop) images the in vivo function of P-glycoprotein (P-gp), a transporter that blocks the entry of drugs that are substrates into brain. When P-gp is inhibited, [(11)C]dLop, a potent opiate agonist, enters and becomes trapped in the brain. This trapping is beneficial from an imaging perspective, because it amplifies the PET signal, essentially by accumulating radioactivity over time. As we previously demonstrated that this trapping was not caused by binding to opiate receptors, we examined whether [(11)C]dLop, a weak base, is ionically trapped in acidic lysosomes. To test this hypothesis, we measured [(3)H]dLop accumulation in human cells by using lysosomotropics. Because the in vivo trapping of dLop was seen after P-gp inhibition, we also measured [(3)H]dLop uptake in P-gp-expressing cells treated with the P-gp inhibitor tariquidar. All lysosomotropics decreased [(3)H]dLop accumulation by at least 50%. In P-gp-expressing cells, tariquidar (and another P-gp inhibitor) surprisingly decreased [(3)H]dLop uptake. Consequently, we measured [(11)C]dLop uptake before and after tariquidar preadministration in lysosome-rich organs of P-gp KO mice and humans. After tariquidar pretreatment in both species, radioactivity uptake in these organs decreased by 35% to 40%. Our results indicate that dLop is trapped in lysosomes and that tariquidar competes with dLop for lysosomal accumulation in vitro and in vivo. Although tariquidar and dLop compete for lysosomal trapping in the periphery, such competition does not occur in brain because tariquidar has negligible entry into brain. In summary, tariquidar and [(11)C]dLop can be used in combination to selectively measure the function of P-gp at the blood-brain barrier.
Collapse
Affiliation(s)
- Pavitra Kannan
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892
- Karolinska Institutet, Department of Clinical Neuroscience, Psychiatry Section, SE-171 76 Stockholm, Sweden; and
| | - Kyle R. Brimacombe
- Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - William C. Kreisl
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892
| | - Jeih-San Liow
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892
| | - Sami S. Zoghbi
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892
| | - Sanjay Telu
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892
| | - Yi Zhang
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892
| | - Victor W. Pike
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892
| | - Christer Halldin
- Karolinska Institutet, Department of Clinical Neuroscience, Psychiatry Section, SE-171 76 Stockholm, Sweden; and
| | - Michael M. Gottesman
- Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Robert B. Innis
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892
| | - Matthew D. Hall
- Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
20
|
Zutz A, Hoffmann J, Hellmich UA, Glaubitz C, Ludwig B, Brutschy B, Tampé R. Asymmetric ATP hydrolysis cycle of the heterodimeric multidrug ABC transport complex TmrAB from Thermus thermophilus. J Biol Chem 2010; 286:7104-15. [PMID: 21190941 DOI: 10.1074/jbc.m110.201178] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
ATP-binding cassette (ABC) systems translocate a wide range of solutes across cellular membranes. The thermophilic gram-negative eubacterium Thermus thermophilus, a model organism for structural genomics and systems biology, discloses ∼46 ABC proteins, which are largely uncharacterized. Here, we functionally analyzed the first two and only ABC half-transporters of the hyperthermophilic bacterium, TmrA and TmrB. The ABC system mediates uptake of the drug Hoechst 33342 in inside-out oriented vesicles that is inhibited by verapamil. TmrA and TmrB form a stable heterodimeric complex hydrolyzing ATP with a K(m) of 0.9 mm and k(cat) of 9 s(-1) at 68 °C. Two nucleotides can be trapped in the heterodimeric ABC complex either by vanadate or by mutation inhibiting ATP hydrolysis. Nucleotide trapping requires permissive temperatures, at which a conformational ATP switch is possible. We further demonstrate that the canonic glutamate 523 of TmrA is essential for rapid conversion of the ATP/ATP-bound complex into its ADP/ATP state, whereas the corresponding aspartate in TmrB (Asp-500) has only a regulatory role. Notably, exchange of this single noncanonic residue into a catalytic glutamate cannot rescue the function of the E523Q/D500E complex, implicating a built-in asymmetry of the complex. However, slow ATP hydrolysis in the newly generated canonic site (D500E) strictly depends on the formation of a posthydrolysis state in the consensus site, indicating an allosteric coupling of both active sites.
Collapse
Affiliation(s)
- Ariane Zutz
- Institute of Biochemistry, Biocenter, Goethe-University Frankfurt, D-60438 Frankfurt, Germany
| | | | | | | | | | | | | |
Collapse
|
21
|
Ananthaswamy N, Rutledge R, Sauna ZE, Ambudkar SV, Dine E, Nelson E, Xia D, Golin J. The signaling interface of the yeast multidrug transporter Pdr5 adopts a cis conformation, and there are functional overlap and equivalence of the deviant and canonical Q-loop residues. Biochemistry 2010; 49:4440-9. [PMID: 20426485 PMCID: PMC2954458 DOI: 10.1021/bi100394j] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
ABC transporters are polytopic proteins. ATP hydrolysis and substrate transport take place in separate domains, and these activities must be coordinated through a signal interface. We previously characterized a mutation (S558Y) in the yeast multidrug transporter Pdr5 that uncouples ATP hydrolysis and drug transport. To characterize the transmission interface, we used a genetic screen to isolate second-site mutations of S558Y that restore drug transport. We recovered suppressors that restore drug resistance; their locations provide functional evidence for an interface in the cis rather than the trans configuration indicated by structural and cross-linking studies of bacterial and eukaryotic efflux transporters. One mutation, E244G, defines the Q-loop of the deviant portion of NBD1, which is the hallmark of this group of fungal transporters. When moved to an otherwise wild-type background, this mutation and its counterpart in the canonical ATP-binding site Q951G show a similar reduction in drug resistance and in the very high basal-level ATP hydrolysis characteristic of Pdr5. A double E244G, Q951G mutant is considerably more drug sensitive than either of the single mutations. Surprisingly, then, the deviant and canonical Q-loop residues are functionally overlapping and equivalent in a strikingly asymmetric ABC transporter.
Collapse
Affiliation(s)
- Neeti Ananthaswamy
- Department of Biology, The Catholic University of America, Washington, DC 20064
| | - Robert Rutledge
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-4256
| | - Zuben E. Sauna
- Food and Drug Administration, 880 Rockville Pike, Bethesda, MD 20892
| | - Suresh V. Ambudkar
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-4256
| | - Elliot Dine
- Department of Biology, The Catholic University of America, Washington, DC 20064
| | - Emily Nelson
- Department of Biology, The Catholic University of America, Washington, DC 20064
| | - Di Xia
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-4256
| | - John Golin
- Department of Biology, The Catholic University of America, Washington, DC 20064
| |
Collapse
|
22
|
Klepsch F, Ecker GF. Impact of the Recent Mouse P-Glycoprotein Structure for Structure-Based Ligand Design. Mol Inform 2010; 29:276-86. [PMID: 27463054 PMCID: PMC6422301 DOI: 10.1002/minf.201000017] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2010] [Accepted: 04/08/2010] [Indexed: 01/20/2023]
Abstract
P-Glycoprotein (P-gp), a transmembrane, ATP-dependent drug efflux transporter, has attracted considerable interest both with respect to its role in tumour cell multidrug resistance and in absorption-distribution and elimination of drugs. Although known since more than 30 years, the understanding of the molecular basis of drug/transporter interaction is still limited, which is mainly due to the lack of structural information available. However, within the past decade X-ray structures of several bacterial homologues as well as very recently also of mouse P-gp have become available. Within this review we give an overview on the current status of structural information available and on its impact for structure-based drug design.
Collapse
Affiliation(s)
- Freya Klepsch
- University of Vienna, Department of Medicinal Chemistry, Althanstraße 14, 1090 Wien, Austria phone: +43-1-4277-55110; fax: +43-1-4277-9551
| | - Gerhard F Ecker
- University of Vienna, Department of Medicinal Chemistry, Althanstraße 14, 1090 Wien, Austria phone: +43-1-4277-55110; fax: +43-1-4277-9551.
| |
Collapse
|
23
|
Siarheyeva A, Liu R, Sharom FJ. Characterization of an asymmetric occluded state of P-glycoprotein with two bound nucleotides: implications for catalysis. J Biol Chem 2010; 285:7575-86. [PMID: 20061384 DOI: 10.1074/jbc.m109.047290] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
P-glycoprotein (ABCB1), a member of the ABC superfamily, functions as an ATP-driven multidrug efflux pump. The catalytic cycle of ABC proteins is believed to involve formation of a sandwich dimer in which two ATP molecules are bound at the interface of the nucleotide binding domains (NBDs). However, such dimers have only been observed in isolated NBD subunits and catalytically arrested mutants, and it is still not understood how ATP hydrolysis is coordinated between the two NBDs. We report for the first time the characterization of an asymmetric state of catalytically active native P-glycoprotein with two bound molecules of adenosine 5'-(gamma-thio)triphosphate (ATPgammaS), one of low affinity (K(d) 0.74 mm), and one "occluded" nucleotide of 120-fold higher affinity (K(d) 6 microm). ATPgammaS also interacts with P-glycoprotein with high affinity as assessed by inhibition of ATP hydrolysis and protection from covalent labeling of a Walker A Cys residue, whereas other non-hydrolyzable ATP analogues do not. Binding of ATPgammaS (but not ATP) causes Trp residue heterogeneity, as indicated by collisional quenching, suggesting that it may induce conformational asymmetry. Asymmetric ATPgammaS-bound P-glycoprotein does not display reduced binding affinity for drugs, implying that transport is not driven by ATP binding and likely takes place at a later stage of the catalytic cycle. We propose that this asymmetric state with two bound nucleotides represents the next intermediate on the path toward ATP hydrolysis after nucleotide binding, and an alternating sites mode of action is achieved by simultaneous switching of the two active sites between high and low affinity states.
Collapse
Affiliation(s)
- Alena Siarheyeva
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | | | | |
Collapse
|
24
|
Abstract
The role of the ATP-binding cassette ABCB1 in mediating the resistance to chemotherapy in many forms of cancer has been well established. The protein is also endogenously expressed in numerous barrier and excretory tissues, thereby regulating or impacting on drug pharmacokinetic profiles. Given these prominent roles in health and disease, a great deal of biochemical, structural and pharmacological research has been directed towards modulating its activity. Despite the effort, only a small handful of compounds have reached the later stages of clinical trials. What is responsible for this poor return on the heavy research investment? Perhaps the most significant factor is the lack of information on the location, physical features and chemical properties of the drug-binding site(s) in ABCB1. This minireview outlines the various strategies and outcomes of research efforts to pin-point the sites of interaction. The data may be assimilated into two working hypotheses to describe drug binding to ABCB1; (a) the central cavity and the (b) domain interface models.
Collapse
Affiliation(s)
- Emily Crowley
- Nuffield Department of Clinical Laboratory Sciences, University of Oxford, Oxford, UK
| | | |
Collapse
|
25
|
Yáñez M, Sanz P, Mó O, Alkorta I, Elguero J. Beryllium Bonds, Do They Exist? J Chem Theory Comput 2009; 5:2763-71. [PMID: 26631789 DOI: 10.1021/ct900364y] [Citation(s) in RCA: 148] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The complexes between BeX2 (X = H, F, Cl, OH) with different Lewis bases have been investigated through the use of B3LYP, MP2, and CCSD(T) approaches. This theoretical survey showed that these complexes are stabilized through the interaction between the Be atom and the basic center of the base, which are characterized by electron densities at the corresponding bond critical points larger than those found in conventional hydrogen bonds (HBs). Actually, all bonding indices indicate that, although these interactions that we named "beryllium bonds" are in general significantly stronger than HBs, they share many common features. Both interactions have a dominant electrostatic character but also some covalent contributions associated with a non-negligible electron transfer between the interacting subunits. This electron transfer, which in HBs takes place from the HB acceptor lone-pairs toward the σYH* antibonding orbital of the HB donor, in beryllium bonds goes from the lone pairs of the Lewis base toward the empty p orbital of Be and the σBeX* antibonding orbital. Accordingly, a significant distortion of the BeX2 subunit, which in the complex becomes nonlinear, takes place. Concomitantly, a significant red-shifting of the X-Be-X antisymmetric stretching frequencies and a significant lengthening of the X-Be bonds occur. The presence of the beryllium bond results in a significant blue-shifting of the X-Be-X symmetric stretch.
Collapse
Affiliation(s)
- Manuel Yáñez
- Departamento de Química, C-9, Universidad Autónoma de Madrid, Cantoblanco, E-28049-Madrid, Spain and Instituto de Química Médica, CSIC, Juan de la Cierva, 6, E-28006 Madrid, Spain
| | - Pablo Sanz
- Departamento de Química, C-9, Universidad Autónoma de Madrid, Cantoblanco, E-28049-Madrid, Spain and Instituto de Química Médica, CSIC, Juan de la Cierva, 6, E-28006 Madrid, Spain
| | - Otilia Mó
- Departamento de Química, C-9, Universidad Autónoma de Madrid, Cantoblanco, E-28049-Madrid, Spain and Instituto de Química Médica, CSIC, Juan de la Cierva, 6, E-28006 Madrid, Spain
| | - Ibon Alkorta
- Departamento de Química, C-9, Universidad Autónoma de Madrid, Cantoblanco, E-28049-Madrid, Spain and Instituto de Química Médica, CSIC, Juan de la Cierva, 6, E-28006 Madrid, Spain
| | - José Elguero
- Departamento de Química, C-9, Universidad Autónoma de Madrid, Cantoblanco, E-28049-Madrid, Spain and Instituto de Química Médica, CSIC, Juan de la Cierva, 6, E-28006 Madrid, Spain
| |
Collapse
|
26
|
Loo TW, Bartlett MC, Clarke DM. Identification of residues in the drug translocation pathway of the human multidrug resistance P-glycoprotein by arginine mutagenesis. J Biol Chem 2009; 284:24074-87. [PMID: 19581304 DOI: 10.1074/jbc.m109.023267] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
P-glycoprotein (P-gp, ATP-binding cassette B1) is a drug pump that extracts toxic drug substrates from the plasma membrane and catalyzes their ATP-dependent efflux. To map the residues in the drug translocation pathway, we performed arginine-scanning mutagenesis on all transmembrane (TM) segments (total = 237 residues) of a P-gp processing mutant (G251V) defective in folding (15% maturation efficiency) (glycosylation state used to monitor folding). The rationale was that arginines introduced into the drug-binding sites would mimic drug rescue and enhance maturation of wild-type or processing mutants of P-gp. It was found that 38 of the 89 mutants that matured had enhanced maturation. Enhancer mutations were found in 11 of the 12 TM segments with the largest number found in TMs 6 and 12 (seven in each), TMs that are critical for P-gp-drug substrate interactions. Modeling of the TM segments showed that the enhancer arginines were found on the hydrophilic face, whereas inhibitory arginines were located on a hydrophobic face that may be in contact with the lipid bilayer. It was found that many of the enhancer arginines caused large alterations in P-gp-drug interactions in ATPase assays. For example, mutants A302R (TM5), L339R (TM6), G872R (TM10), F942R (TM11), Q946R (TM11), V982R (TM12), and S993R (TM12) reduced the apparent affinity for verapamil by approximately 10-fold, whereas the F336R (TM6) and M986R (TM12) mutations caused at least a 10-fold increase in apparent affinity for rhodamine B. The results suggest that P-gp contains a large aqueous-filled drug translocation pathway with multiple drug-binding sites that can accommodate the bulky arginine side chains to promote folding of the protein.
Collapse
Affiliation(s)
- Tip W Loo
- Department of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | | | | |
Collapse
|
27
|
Seeger MA, van Veen HW. Molecular basis of multidrug transport by ABC transporters. BIOCHIMICA ET BIOPHYSICA ACTA 2009; 1794:725-37. [PMID: 19135557 DOI: 10.1016/j.bbapap.2008.12.004] [Citation(s) in RCA: 124] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2008] [Revised: 12/01/2008] [Accepted: 12/05/2008] [Indexed: 01/15/2023]
Abstract
Multidrug ABC transporters such as the human multidrug resistance P-glycoprotein (ABCB1) play an important role in the extrusion of drugs from the cell and their overexpression can be a cause of failure of anticancer and antimicrobial chemotherapy. These transport systems contain two nucleotide-binding domains (NBDs) where ATP is bound and hydrolyzed and two membrane domains (MDs) which mediate vectorial transport of substrates across the cell membrane. Recent crystal structures of the bacterial ABCB1 homologues Sav1866 from Staphylococcus aureus and MsbA from Salmonella typhimurium and other organisms shed light on the possible conformational states adopted by multidrug ABC transporters during transport. These structures help to interpret cellular and biochemical data gathered on these transport proteins over the past three decades. However, there are contradictory views on how the catalytic cycle of ATP binding and hydrolysis by the NBDs is linked to the change in drug binding affinity at the MDs, which underlies the capture (high affinity) of the transported drug on one side of the membrane and its release (low affinity) on the other. This review provides an overview of the current evidence for the different transport models and establishes the most recent structure-function relationships in multidrug ABC transporters.
Collapse
Affiliation(s)
- Markus A Seeger
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, United Kingdom
| | | |
Collapse
|
28
|
Ward A, Mulligan S, Carragher B, Chang G, Milligan RA. Nucleotide dependent packing differences in helical crystals of the ABC transporter MsbA. J Struct Biol 2009; 165:169-75. [PMID: 19114108 PMCID: PMC2703300 DOI: 10.1016/j.jsb.2008.11.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2008] [Revised: 11/07/2008] [Accepted: 11/20/2008] [Indexed: 11/21/2022]
Abstract
Bacterial ATP binding cassette (ABC) exporters fulfill a wide variety of transmembrane transport roles and are homologous to the human multidrug resistance P-glycoprotein. Recent X-ray structures of the exporters MsbA and Sav1866 have begun to describe the conformational changes that accompany the ABC transport cycle. Here we present cryo-electron microscopy structures of MsbA reconstituted into a lipid bilayer. Using ATPase inhibitors, we captured three nucleotide transition states of the transporter that were subsequently reconstituted into helical arrays. The enzyme-substrate complex (trapped by ADP-aluminum fluoride or AMPPNP) crystallized in a different helical lattice than the enzyme-product complex (trapped by ADP-vanadate). Approximately 20A resolution maps were calculated for each state and revealed MsbA to be a dimer with a large channel between the membrane spanning domains, similar to the outward facing crystal structures of MsbA and Sav1866. This suggests that while there are likely structural differences between the nucleotide transition states, membrane embedded MsbA remains in an outward facing conformation while nucleotide is bound.
Collapse
Affiliation(s)
- Andrew Ward
- Department of Cell Biology, The Scripps Research Institute, 10550 N. Torrey Pines Rd, CB227, La Jolla, CA 92037, USA.
| | | | | | | | | |
Collapse
|
29
|
Mg2+ -dependent ATP occlusion at the first nucleotide-binding domain (NBD1) of CFTR does not require the second (NBD2). Biochem J 2008; 416:129-36. [PMID: 18605986 DOI: 10.1042/bj20081068] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
ATP binding to the first and second NBDs (nucleotide-binding domains) of CFTR (cystic fibrosis transmembrane conductance regulator) are bivalent-cation-independent and -dependent steps respectively [Aleksandrov, Aleksandrov, Chang and Riordan (2002) J. Biol. Chem. 277, 15419-15425]. Subsequent to the initial binding, Mg(2+) drives rapid hydrolysis at the second site, while promoting non-exchangeable trapping of the nucleotide at the first site. This occlusion at the first site of functional wild-type CFTR is somewhat similar to that which occurs when the catalytic glutamate residues in both of the hydrolytic sites of P-glycoprotein are mutated, which has been proposed to be the result of dimerization of the two NBDs and represents a transient intermediate formed during ATP hydrolysis [Tombline and Senior (2005) J. Bioenerg. Biomembr. 37, 497-500]. To test the possible relevance of this interpretation to CFTR, we have now characterized the process by which NBD1 occludes [(32)P]N(3)ATP (8-azido-ATP) and [(32)P]N(3)ADP (8-azido-ADP). Only N(3)ATP, but not N(3)ADP, can be bound initially at NBD1 in the absence of Mg(2+). Despite the lack of a requirement for Mg(2+) for ATP binding, retention of the NTP at 37 degrees C was dependent on the cation. However, at reduced temperature (4 degrees C), N(3)ATP remains locked in the binding pocket with virtually no reduction over a 1 h period, even in the absence of Mg(2+). Occlusion occurred identically in a DeltaNBD2 construct, but not in purified recombinant NBD1, indicating that the process is dependent on the influence of regions of CFTR in addition to NBD1, but not NBD2.
Collapse
|
30
|
von Richter O, Glavinas H, Krajcsi P, Liehner S, Siewert B, Zech K. A novel screening strategy to identify ABCB1 substrates and inhibitors. Naunyn Schmiedebergs Arch Pharmacol 2008; 379:11-26. [PMID: 18758752 DOI: 10.1007/s00210-008-0345-0] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2008] [Accepted: 08/04/2008] [Indexed: 12/19/2022]
Abstract
We tested the hypothesis whether data on ABCB1 ATPase activity and passive permeability can be used in combination to identify ABCB1 substrates and inhibitors. We determined passive permeability using an artificial membrane permeability assay (HDM-PAMPA) and ABCB1 function, i.e., vanadate-sensitive ATPase activity for a training set (40 INN drugs) and a validation set (26 development compounds). In parallel experiments, we determined ABCB1 function, i.e., vectorial transport in a Caco-2 cell monolayer, and ABCB1 inhibition, i.e., calcein AM extrusion out of K562-MDR cells, to cross-validate the results with cellular assays. We found that compounds that did not modulate ABCB1-ATPase did also not affect calcein AM extrusion and were not actively transported by ABCB1 in Caco-2 cell monolayers. The results corroborated the effect of passive permeability as an important covariate of active transport: active transport in Caco-2 monolayer was only apparent for compounds showing low passive permeability (<5.0 cmx10(-6)/s) in the HDM-PAMPA assay whereas compounds with high passive permeability (>50 cmx10(-6)/s) were shown to inhibit calcein AM efflux with IC50 values close to their respective Km value obtained for ABCB1-ATPase. The use of HDM-PAMPA in combination with ABCB1-ATPase offers a simple, inexpensive experimental approach capable of identifying ABCB1 inhibitors as well as transported substrates.
Collapse
Affiliation(s)
- Oliver von Richter
- Division of Drug Metabolism and Pharmacokinetics, Altana Pharma AG, Konstanz, Germany.
| | | | | | | | | | | |
Collapse
|
31
|
Loo TW, Clarke DM. Mutational analysis of ABC proteins. Arch Biochem Biophys 2008; 476:51-64. [DOI: 10.1016/j.abb.2008.02.025] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2008] [Revised: 02/14/2008] [Accepted: 02/17/2008] [Indexed: 01/06/2023]
|
32
|
Sauna ZE, Kim IW, Ambudkar SV. Genomics and the mechanism of P-glycoprotein (ABCB1). J Bioenerg Biomembr 2008; 39:481-7. [PMID: 18058211 DOI: 10.1007/s10863-007-9115-9] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
The development of effective clinical interventions against multidrug resistance (MDR) in cancer remains a significant challenge. Single nucleotide polymorphisms (SNPs) contribute to wide variations in how individuals respond to medications and there are several SNPs in human P-glycoprotein (P-gp) that may influence the interactions of drug-substrates with the transporter. Interestingly, even some of the synonymous SNPs have functional consequences for P-gp. It is also becoming increasingly evident that an understanding of the transport pathway of P-gp may be necessary to design effective modulators. In this review we discuss: (1) The potential importance of SNPs (both synonymous and non-synonymous) in MDR and (2) How new concepts that have emerged from structural studies with isolated nucleotide binding domains of bacterial ABC transporters have prompted biochemical studies on P-gp, leading to a better understanding of the mechanism of P-gp mediated transport. Our results suggest that the power-stroke is provided only after formation of the pre-hydrolysis transition-like (E.S) state during ATP hydrolysis.
Collapse
Affiliation(s)
- Zuben E Sauna
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, DHHS, Building 37, 37 Convent Drive, Bethesda, MD 20892-4256, USA
| | | | | |
Collapse
|
33
|
Sauna ZE, Kim IW, Nandigama K, Kopp S, Chiba P, Ambudkar SV. Catalytic cycle of ATP hydrolysis by P-glycoprotein: evidence for formation of the E.S reaction intermediate with ATP-gamma-S, a nonhydrolyzable analogue of ATP. Biochemistry 2007; 46:13787-99. [PMID: 17988154 DOI: 10.1021/bi701385t] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Structural and biochemical studies of ATP-binding cassette (ABC) transporters suggest that an ATP-driven dimerization of the nucleotide-binding domains (NBDs) is an important reaction intermediate of the transport cycle. Moreover, an asymmetric occlusion of ATP at one of the two ATP sites of P-glycoprotein (Pgp) may follow the formation of the symmetric dimer. It has also been postulated that ADP drives the dissociation of the dimer. In this study, we show that the E.S conformation of Pgp (previously demonstrated in the E556Q/E1201Q mutant Pgp) can be obtained with the wild-type protein by use of the nonhydrolyzable ATP analogue ATP-gamma-S. ATP-gamma-S is occluded into the Pgp NBDs at 34 degrees C but not at 4 degrees C, whereas ATP is not occluded at either temperature. Using purified Pgp incorporated into proteoliposomes and ATP-gamma-35S, we demonstrate that the occlusion of ATP-gamma-35S has an Eact of 60 kJ/mol and the stoichiometry of ATP-gamma-35S:Pgp is 1:1 (mol/mol). Additionally, in the conserved Walker B mutant (E556Q/E1201Q) of Pgp, we find occlusion of the nucleoside triphosphate but not the nucleoside diphosphate. Furthermore, Pgp in the occluded nucleotide conformation has reduced affinity for transport substrates. These data provide evidence for the ATP-driven dimerization and ADP-driven dissociation of the NBDs, and although two ATP molecules may initiate dimerization, only one is driven to an occluded pre-hydrolysis intermediate state. Thus, in a full-length ABC transporter like Pgp, it is unlikely that there is complete association and disassociation of NBDs and the occluded nucleotide conformation at one of the NBDs provides the power-stroke at the transport-substrate site.
Collapse
Affiliation(s)
- Zuben E Sauna
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892-4256, USA
| | | | | | | | | | | |
Collapse
|
34
|
Lawson J, O'Mara ML, Kerr ID. Structure-based interpretation of the mutagenesis database for the nucleotide binding domains of P-glycoprotein. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2007; 1778:376-91. [PMID: 18035039 DOI: 10.1016/j.bbamem.2007.10.021] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2007] [Revised: 10/12/2007] [Accepted: 10/25/2007] [Indexed: 12/15/2022]
Abstract
P-glycoprotein (P-gp) is the most intensively studied eukaryotic ATP binding cassette (ABC) transporter, due to its involvement in the multidrug resistance phenotype of a number of cancers. In common with most ABC transporters, P-gp is comprised of two transmembrane domains (TMDs) and two nucleotide binding domains (NBD), the latter coupling ATP hydrolysis with substrate transport (efflux in the case of P-gp). Biochemical investigations over the past twenty years have attempted to unlock mechanistic aspects of P-glycoprotein through scanning and site-directed mutagenesis of both the TMDs and the NBDs. Contemporaneously, crystallographers have elucidated the atomic structure of numerous ABC transporter NBDs, as well as the intact structure (i.e. NBDs and TMDs) of a distantly related ABC-exporter Sav1866. Significantly, the structure of P-gp remains unknown, and only low resolution electron microscopy data exists. Within the current manuscript we employ crystallographic data for homologous proteins, and a molecular model for P-gp, to perform a structural interpretation of the existing "mutagenesis database" for P-gp NBDs. Consequently, this will enable testable predictions to be made that will result in further in-roads into our understanding of this clinically important drug pump.
Collapse
Affiliation(s)
- J Lawson
- School of Biomedical Sciences, University of Nottingham, Queen's Medical Centre, Nottingham, NG7 2UH, UK
| | | | | |
Collapse
|
35
|
Loo TW, Bartlett MC, Clarke DM. Nucleotide binding, ATP hydrolysis, and mutation of the catalytic carboxylates of human P-glycoprotein cause distinct conformational changes in the transmembrane segments. Biochemistry 2007; 46:9328-36. [PMID: 17636884 DOI: 10.1021/bi700837y] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
P-Glycoprotein (P-gp, ABCB1) transports a variety of structurally unrelated cytotoxic compounds out of the cell. Each homologous half of P-gp has a transmembrane (TM) domain containing six TM segments and a nucleotide-binding domain (NBD) and is joined by a linker region. It has been postulated that binding of two ATP molecules at the NBD interface to form a "nucleotide sandwich" induces drug efflux by altering packing of the TM segments that make up the drug-binding pocket. To test if ATP binding alone could alter packing of the TM segments, we introduced catalytic carboxylate mutations (E556Q in NBD1 and E1201Q in NBD2) into double-cysteine mutants that exhibited ATP-dependent cross-linking so that the mutants could bind but not hydrolyze ATP. It was found that ATP binding alone could alter disulfide cross-linking between the TM segments. For example, ATP inhibited cross-linking of mutant L339C(TM6)/V982C(TM12)/E556Q(NBD1)/E1201Q(NBD2) but promoted cross-linking of mutant F343C(TM6)/V982C(TM12)/E556Q(NBD1)/E1201Q(NBD2). Cross-linking of some mutants, however, appeared to require ATP hydrolysis as introduction of the catalytic carboxylate mutations into mutant L332C(TM6)/L975C(TM12) inhibited ATP-dependent cross-linking. Cross-linking between cysteines in the TM segments also could be altered via introduction of a single catalytic carboxylate mutation into mutant L332C(TM6)/L975C(TM12) or by using the nonhydrolyzable ATP analogue, AMP.PNP. The results show that the TM segments are quite sensitive to changes within the ATP-binding sites because different conformations could be detected in the presence of ATP, AMP.PNP, during ATP hydrolysis or through mutation of the catalytic carboxylates.
Collapse
Affiliation(s)
- Tip W Loo
- Department of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | | | | |
Collapse
|
36
|
Bucher K, Belli S, Wunderli-Allenspach H, Krämer SD. P-glycoprotein in proteoliposomes with low residual detergent: the effects of cholesterol. Pharm Res 2007; 24:1993-2004. [PMID: 17497080 DOI: 10.1007/s11095-007-9326-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2007] [Accepted: 04/25/2007] [Indexed: 11/29/2022]
Abstract
PURPOSE There is evidence that cholesterol affects the ATPase and transport functions of P-glycoprotein (P-gp). To study the influence of cholesterol on P-gp in a well defined lipid environment, we reconstituted P-gp in egg phosphatidylcholine (PhC) and PhC/cholesterol proteoliposomes with negligible residual amounts of detergents. MATERIALS AND METHODS P-gp proteoliposomes were prepared by continuous dialysis from micelles consisting of P-gp, lipids, sodium dodecyl sulfate and cholate. Basal and modulator-induced ATPase activities were studied in an established enzyme assay. Modulator affinities to P-gp and to the lipid bilayers were determined by equilibrium dialysis. RESULTS In the absence of cholesterol the basal ATPase activity was six fold lower than in the presence of 20 or 40% cholesterol, and no P-gp binding and ATPase induction was detected for the tested modulators verapamil and progesterone. In proteoliposomes containing 20 and 40% cholesterol, respectively, the modulators showed significant P-gp binding and ATPase activation. The concentration of the modulators for half maximal activation of the ATPase was higher with 40% than with 20% cholesterol. CONCLUSIONS Cholesterol influences P-gp in three ways: (a) it enhances its basal ATPase activity, (b) it renders P-gp sensitive towards the modulators verapamil and progesterone and (c) it affects the modulator concentration at half maximal ATPase activation.
Collapse
Affiliation(s)
- Karsten Bucher
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, ETH Zurich, Wolfgang-Pauli-Strasse 10, 8093, Zurich, Switzerland
| | | | | | | |
Collapse
|
37
|
Sauna ZE, Ambudkar SV. About a switch: how P-glycoprotein (ABCB1) harnesses the energy of ATP binding and hydrolysis to do mechanical work. Mol Cancer Ther 2007; 6:13-23. [PMID: 17237262 DOI: 10.1158/1535-7163.mct-06-0155] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The efflux of drugs by the multidrug transporter P-glycoprotein (Pgp; ABCB1) is one of the principal means by which cancer cells evade chemotherapy and exhibit multidrug resistance. Mechanistic studies of Pgp-mediated transport, however, transcend the importance of this protein per se as they help us understand the transport pathway of the ATP-binding cassette proteins in general. The ATP-binding cassette proteins comprise one of the largest protein families, are central to cellular physiology, and constitute important drug targets. The functional unit of Pgp consists of two nucleotide-binding domains (NBD) and two transmembrane domains that are involved in the transport of drug substrates. Early studies postulated that conformational changes as a result of ATP hydrolysis were transmitted to the transmembrane domains bringing about drug transport. More recent structural and biochemical studies on the other hand suggested that ATP binds at the interface of the two NBDs and induces the formation of a closed dimer, and it has been hypothesized that this dimerization and subsequent ATP hydrolysis powers transport. Based on the mutational and biochemical work on Pgp and structural studies with isolated NBDs, we review proposed schemes for the catalytic cycle of ATP hydrolysis and the transport pathway.
Collapse
Affiliation(s)
- Zuben E Sauna
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, NIH, Building 37, Room 2120, 37 Convent Drive, Bethesda, MD 20892-4256, USA
| | | |
Collapse
|
38
|
Isin EM, Guengerich FP. Multiple Sequential Steps Involved in the Binding of Inhibitors to Cytochrome P450 3A4. J Biol Chem 2007; 282:6863-74. [PMID: 17200113 DOI: 10.1074/jbc.m610346200] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cytochrome P450 (P450) 3A4 is an extensively studied human enzyme involved in the metabolism of >50% of drugs. The mechanism of the observed homotropic and heterotropic cooperativity in P450 3A4-catalyzed oxidations is not well understood, and together with the cooperative behavior, a detailed understanding of interaction of drug inhibitors with P450 3A4 is important in predicting clinical drug-drug interactions. The interactions of P450 3A4 with several structurally diverse inhibitors were investigated using both kinetic and thermodynamic approaches to resolve the steps involved in binding of these ligands. The results of pre-steady-state absorbance and fluorescence experiments demonstrate that inhibitor binding is clearly a multistep process, even more complex than the binding of substrates. Based on spectrophotometric equilibrium binding titrations as well as isothermal titration calorimetry experiments, the stoichiometry of binding appears to be 1:1 in the concentration ranges studied. Using a sequential-mixing stopped-flow approach, we were also able to show that the observed multiphasic binding kinetics is the result of sequential events as opposed to the existence of multiple enzyme populations in dynamic equilibrium that interact with ligands at different rates. We propose a three-step minimal model for inhibitor binding, developed with kinetic simulations, consistent with our previously reported model for the binding of substrates, although it is possible that even more steps are involved.
Collapse
Affiliation(s)
- Emre M Isin
- Department of Biochemistry and Center in Molecular Toxicology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146, USA
| | | |
Collapse
|