1
|
Li J, Jethva PN, Rohrs HW, Chemuru S, Miller K, Gross ML, Beckingham KM. Hydrogen/Deuterium Exchange Mass Spectrometry Provides Insights into the Role of Drosophila Testis-Specific Myosin VI Light Chain AndroCaM. Biochemistry 2024; 63:610-624. [PMID: 38357882 PMCID: PMC10932932 DOI: 10.1021/acs.biochem.3c00618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
In Drosophila testis, myosin VI plays a special role, distinct from its motor function, by anchoring components to the unusual actin-based structures (cones) that are required for spermatid individualization. For this, the two calmodulin (CaM) light-chain molecules of myosin VI are replaced by androcam (ACaM), a related protein with 67% identity to CaM. Although ACaM has a similar bi-lobed structure to CaM, with two EF hand-type Ca2+ binding sites per lobe, only one functional Ca2+ binding site operates in the amino-terminus. To understand this light chain substitution, we used hydrogen-deuterium exchange mass spectrometry (HDX-MS) to examine dynamic changes in ACaM and CaM upon Ca2+ binding and interaction with the two CaM binding motifs of myosin VI (insert2 and IQ motif). HDX-MS reveals that binding of Ca2+ to ACaM destabilizes its N-lobe but stabilizes the entire C-lobe, whereas for CaM, Ca2+ binding induces a pattern of alternating stabilization/destabilization throughout. The conformation of this stable holo-C-lobe of ACaM seems to be a "prefigured" version of the conformation adopted by the holo-C-lobe of CaM for binding to insert2 and the IQ motif of myosin VI. Strikingly, the interaction of holo-ACaM with either peptide converts the holo-N-lobe to its Ca2+-free, more stable, form. Thus, ACaM in vivo should bind the myosin VI light chain sites in an apo-N-lobe/holo-C-lobe state that cannot fulfill the Ca2+-related functions of holo-CaM required for myosin VI motor assembly and activity. These findings indicate that inhibition of myosin VI motor activity is a precondition for transition to an anchoring function.
Collapse
Affiliation(s)
- Jing Li
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130
| | - Prashant N. Jethva
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130
| | - Henry W. Rohrs
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130
| | - Saketh Chemuru
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130
| | - Kathryn Miller
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130
| | - Michael L. Gross
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130
| | | |
Collapse
|
2
|
Huang YC, Chen KH, Chen YY, Tsao LH, Yeh TH, Chen YC, Wu PY, Wang TW, Yu JY. βPS-Integrin acts downstream of Innexin 2 in modulating stretched cell morphogenesis in the Drosophila ovary. G3-GENES GENOMES GENETICS 2021; 11:6310741. [PMID: 34544125 PMCID: PMC8496311 DOI: 10.1093/g3journal/jkab215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 06/14/2021] [Indexed: 11/25/2022]
Abstract
During oogenesis, a group of specialized follicle cells, known as stretched cells (StCs), flatten drastically from cuboidal to squamous shape. While morphogenesis of epithelia is critical for organogenesis, genes and signaling pathways involved in this process remain to be revealed. In addition to formation of gap junctions for intercellular exchange of small molecules, gap junction proteins form channels or act as adaptor proteins to regulate various cellular behaviors. In invertebrates, gap junction proteins are Innexins. Knockdown of Innexin 2 but not other Innexins expressed in follicle cells attenuates StC morphogenesis. Interestingly, blocking of gap junctions with an inhibitor carbenoxolone does not affect StC morphogenesis, suggesting that Innexin 2 might control StCs flattening in a gap-junction-independent manner. An excessive level of βPS-Integrin encoded by myospheroid is detected in Innexin 2 mutant cells specifically during StC morphogenesis. Simultaneous knockdown of Innexin 2 and myospheroid partially rescues the morphogenetic defect resulted from Innexin 2 knockdown. Furthermore, reduction of βPS-Integrin is sufficient to induce early StCs flattening. Taken together, our data suggest that βPS-Integrin acts downstream of Innexin 2 in modulating StCs morphogenesis.
Collapse
Affiliation(s)
- Yi-Chia Huang
- Department of Life Sciences and Institute of Genome Sciences, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Kuan-Han Chen
- Department of Life Sciences and Institute of Genome Sciences, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Yu-Yang Chen
- Department of Life Sciences and Institute of Genome Sciences, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Liang-Hsuan Tsao
- Department of Life Sciences and Institute of Genome Sciences, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Tsung-Han Yeh
- Department of Life Sciences and Institute of Genome Sciences, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Yu-Chia Chen
- Department of Life Sciences and Institute of Genome Sciences, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Ping-Yen Wu
- Department of Life Sciences and Institute of Genome Sciences, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Tsu-Wei Wang
- Department of Life Science, National Taiwan Normal University, Taipei 116, Taiwan
| | - Jenn-Yah Yu
- Department of Life Sciences and Institute of Genome Sciences, National Yang Ming Chiao Tung University, Taipei 112, Taiwan.,Brain Research Center, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| |
Collapse
|
3
|
Schroeder CM, Tomlin SA, Mejia Natividad I, Valenzuela JR, Young JM, Malik HS. An actin-related protein that is most highly expressed in Drosophila testes is critical for embryonic development. eLife 2021; 10:71279. [PMID: 34282725 PMCID: PMC8291977 DOI: 10.7554/elife.71279] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 06/20/2021] [Indexed: 12/25/2022] Open
Abstract
Most actin-related proteins (Arps) are highly conserved and carry out well-defined cellular functions in eukaryotes. However, many lineages like Drosophila and mammals encode divergent non-canonical Arps whose roles remain unknown. To elucidate the function of non-canonical Arps, we focus on Arp53D, which is highly expressed in testes and retained throughout Drosophila evolution. We show that Arp53D localizes to fusomes and actin cones, two germline-specific actin structures critical for sperm maturation, via a unique N-terminal tail. Surprisingly, we find that male fertility is not impaired upon Arp53D loss, yet population cage experiments reveal that Arp53D is required for optimal fitness in Drosophila melanogaster. To reconcile these findings, we focus on Arp53D function in ovaries and embryos where it is only weakly expressed. We find that under heat stress Arp53D-knockout (KO) females lay embryos with reduced nuclear integrity and lower viability; these defects are further exacerbated in Arp53D-KO embryos. Thus, despite its relatively recent evolution and primarily testis-specific expression, non-canonical Arp53D is required for optimal embryonic development in Drosophila.
Collapse
Affiliation(s)
- Courtney M Schroeder
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, United States
| | - Sarah A Tomlin
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, United States.,Howard Hughes Medical Institute, Fred Hutchinson Cancer Research Center, Seattle, United States
| | - Isabel Mejia Natividad
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, United States.,Howard Hughes Medical Institute, Fred Hutchinson Cancer Research Center, Seattle, United States
| | - John R Valenzuela
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, United States
| | - Janet M Young
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, United States
| | - Harmit S Malik
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, United States.,Howard Hughes Medical Institute, Fred Hutchinson Cancer Research Center, Seattle, United States
| |
Collapse
|
4
|
Subcellular Specialization and Organelle Behavior in Germ Cells. Genetics 2018; 208:19-51. [PMID: 29301947 DOI: 10.1534/genetics.117.300184] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2016] [Accepted: 08/17/2017] [Indexed: 11/18/2022] Open
Abstract
Gametes, eggs and sperm, are the highly specialized cell types on which the development of new life solely depends. Although all cells share essential organelles, such as the ER (endoplasmic reticulum), Golgi, mitochondria, and centrosomes, germ cells display unique regulation and behavior of organelles during gametogenesis. These germ cell-specific functions of organelles serve critical roles in successful gamete production. In this chapter, I will review the behaviors and roles of organelles during germ cell differentiation.
Collapse
|
5
|
Abstract
The myosin holoenzyme is a multimeric protein complex consisting of heavy chains and light chains. Myosin light chains are calmodulin family members which are crucially involved in the mechanoenzymatic function of the myosin holoenzyme. This review examines the diversity of light chains within the myosin superfamily, discusses interactions between the light chain and the myosin heavy chain as well as regulatory and structural functions of the light chain as a subunit of the myosin holoenzyme. It covers aspects of the myosin light chain in the localization of the myosin holoenzyme, protein-protein interactions and light chain binding to non-myosin binding partners. Finally, this review challenges the dogma that myosin regulatory and essential light chain exclusively associate with conventional myosin heavy chains while unconventional myosin heavy chains usually associate with calmodulin.
Collapse
Affiliation(s)
- Sarah M Heissler
- a Laboratory of Molecular Physiology; National Heart, Lung, and Blood Institute; National Institutes of Health ; Bethesda , MD USA
| | - James R Sellers
- a Laboratory of Molecular Physiology; National Heart, Lung, and Blood Institute; National Institutes of Health ; Bethesda , MD USA
| |
Collapse
|
6
|
Joshi MK, Moran S, MacKenzie KR. ¹H, ¹⁵N and ¹³C chemical shifts of the D. melanogaster myosin VI light chain androcam in high calcium. BIOMOLECULAR NMR ASSIGNMENTS 2013; 7:171-174. [PMID: 22706934 DOI: 10.1007/s12104-012-9403-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2012] [Accepted: 06/01/2012] [Indexed: 06/01/2023]
Abstract
Androcam is a calmodulin-like protein that acts as a testis-specific light chain to myosin VI during spermatogenesis in D. melanogaster. Modest, localized chemical shift changes that accompany Ca(2+) binding to the androcam N-terminal lobe indicate that unlike calmodulin, androcam does not undergo a dramatic conformational change upon binding calcium. Here we report the (1)H, (15)N and (13)C resonances of androcam in the high calcium (10 mM) state and show the extent of chemical shift changes for backbone resonances relative to the low calcium state.
Collapse
Affiliation(s)
- Mehul K Joshi
- Department of Biochemistry and Cell Biology, Rice University, Houston, TX 77254, USA
| | | | | |
Collapse
|
7
|
Joshi MK, Moran S, MacKenzie KR. NMR chemical shift assignments for androcam, a testis-specific myosin VI light chain in D. melanogaster. BIOMOLECULAR NMR ASSIGNMENTS 2013; 7:167-169. [PMID: 22706933 DOI: 10.1007/s12104-012-9402-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2012] [Accepted: 06/01/2012] [Indexed: 06/01/2023]
Abstract
Androcam is a D. melanogaster calmodulin-like protein expressed exclusively in the testis that interacts with myosin VI and is critical to spermatogenesis. At micromolar free Ca(2+), androcam binds two calcium ions using its C-terminal lobe but its N-terminal lobe is Ca(2+)-free. We are pursuing structural studies on androcam at physiological (10 μM) and high (10 mM) calcium. Here we report the (1)H, (15)N, and (13)C chemical shifts of androcam at 10 μM free Ca(2+) determined using multi-dimensional NMR experiments.
Collapse
Affiliation(s)
- Mehul K Joshi
- Department of Biochemistry and Cell Biology, Rice University, Houston, TX 77254, USA
| | | | | |
Collapse
|
8
|
Structure of androcam supports specialized interactions with myosin VI. Proc Natl Acad Sci U S A 2012; 109:13290-5. [PMID: 22851764 DOI: 10.1073/pnas.1209730109] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Androcam replaces calmodulin as a tissue-specific myosin VI light chain on the actin cones that mediate D. melanogaster spermatid individualization. We show that the androcam structure and its binding to the myosin VI structural (Insert 2) and regulatory (IQ) light chain sites are distinct from those of calmodulin and provide a basis for specialized myosin VI function. The androcam N lobe noncanonically binds a single Ca(2+) and is locked in a "closed" conformation, causing androcam to contact the Insert 2 site with its C lobe only. Androcam replacing calmodulin at Insert 2 will increase myosin VI lever arm flexibility, which may favor the compact monomeric form of myosin VI that functions on the actin cones by facilitating the collapse of the C-terminal region onto the motor domain. The tethered androcam N lobe could stabilize the monomer through contacts with C-terminal portions of the motor or recruit other components to the actin cones. Androcam binds the IQ site at all calcium levels, constitutively mimicking a conformation adopted by calmodulin only at intermediate calcium levels. Thus, androcam replacing calmodulin at IQ will abolish a Ca(2+)-regulated, calmodulin-mediated myosin VI structural change. We propose that the N lobe prevents androcam from interfering with other calmodulin-mediated Ca(2+) signaling events. We discuss how gene duplication and mutations that selectively stabilize one of the many conformations available to calmodulin support the molecular evolution of structurally and functionally distinct calmodulin-like proteins.
Collapse
|
9
|
Characterization and localization of dynein and myosins V and VI in the ovaries of queen bees. Cell Biol Int 2011; 34:1041-7. [PMID: 20486900 DOI: 10.1042/cbi20090370] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The presence of myosin and dynein in the ovaries of both Apis mellifera and Scaptotrigona postica was investigated in extracts and in histological sections. In the ovary extracts, motor proteins, myosins V, VI and dynein were detected by Western blot. In histological sections, they were detected by immunocytochemistry, using a mouse monoclonal antibody against the intermediary chain of dynein and a rabbit polyclonal antibody against the myosin V head domain. The myosin VI tail domain was recognized by a pig polyclonal antibody. The results show that these molecular motors are expressed in the ovaries of both bee species with few differences in location and intensity, in regions where movement of substances is expected during oogenesis. The fact that antibodies against vertebrate proteins recognize proteins of bee species indicates that the specific epitopes are evolutionarily well preserved.
Collapse
|
10
|
Duplicated proteasome subunit genes in Drosophila and their roles in spermatogenesis. Heredity (Edinb) 2009; 103:23-31. [PMID: 19277057 DOI: 10.1038/hdy.2009.23] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The proteasome is a large, multisubunit complex that acts as the cell's 'protein-degrading machine' in the ubiquitin-mediated proteolytic pathway for regulated protein turnover. Although proteasomes are usually thought of as being homogeneous structures, recent studies have revealed their more dynamic and heterogeneous nature. For example, in a number of plant and animal species, multiple isoforms of several proteasome subunits, encoded by paralogous genes, have been discovered, and in some cases, these alternative isoforms have been shown to be functionally distinct from their conventional counterparts. A particularly striking example of this phenomenon is seen in Drosophila melanogaster, where 12 of the 33 subunits that make up the 26S proteasome holoenzyme are represented in the genome by multiple paralogous genes. Remarkably, in every case, the 'extra' genes are expressed in a testis-specific manner. Here, we describe the extent and nature of these testis-specific gene duplications and discuss their functional significance, and speculate on why this situation might have evolved.
Collapse
|
11
|
Ceprani F, Raffa GD, Petrucci R, Piergentili R. Autosomal mutations affecting Y chromosome loops in Drosophila melanogaster. BMC Genet 2008; 9:32. [PMID: 18405358 PMCID: PMC2386818 DOI: 10.1186/1471-2156-9-32] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2007] [Accepted: 04/11/2008] [Indexed: 11/17/2022] Open
Abstract
Background The Y chromosome of Drosophila melanogaster harbors several genes required for male fertility. The genes for these fertility factors are very large in size and contain conspicuous amounts of repetitive DNA and transposons. Three of these loci (ks-1, kl-3 and kl-5) have the ability to develop giant lampbrush-like loops in primary spermatocytes, a cytological manifestation of their active state in these cells. Y-loops bind a number of non-Y encoded proteins, but the mechanisms regulating their development and their specific functions are still to be elucidated. Results Here we report the results of a screen of 726 male sterile lines to identify novel autosomal genes controlling Y-loop function. We analyzed mutant testis preparations both in vivo and by immunofluorescence using antibodies directed against Y-loop-associated proteins. This screen enabled us to isolate 17 mutations at 15 loci whose wild-type function is required for proper Y-loop morphogenesis. Six of these loci are likely to specifically control loop development, while the others display pleiotropic effects on both loops and meiotic processes such as spermiogenesis, sperm development and maturation. We also determined the map position of the mutations affecting exclusively Y-loop morphology. Conclusion Our cytological screening permitted us to identify novel genetic functions required for male spermatogenesis, some of which show pleiotropic effects. Analysis of these mutations also shows that loop development can be uncoupled from meiosis progression. These data represent a useful framework for the characterization of Y-loop development at a molecular level and for the study of the genetic control of heterochromatin.
Collapse
Affiliation(s)
- Francesca Ceprani
- Dipartimento di Genetica e Biologia Molecolare, Sapienza - Università di Roma, Piazzale Aldo Moro 5, 00185 Rome, Italy.
| | | | | | | |
Collapse
|
12
|
Piergentili R. Evolutionary conservation of lampbrush-like loops in drosophilids. BMC Cell Biol 2007; 8:35. [PMID: 17697358 PMCID: PMC1978495 DOI: 10.1186/1471-2121-8-35] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2007] [Accepted: 08/14/2007] [Indexed: 12/02/2022] Open
Abstract
Background Loopin-1 is an abundant, male germ line specific protein of Drosophila melanogaster. The polyclonal antibody T53-F1 specifically recognizes Loopin-1 and enables its visualization on the Y-chromosome lampbrush-like loop named kl-3 during primary spermatocyte development, as well as on sperm tails. In order to test lampbrush-like loop evolutionary conservation, extensive phase-contrast microscopy and immunostaining with T53-F1 antibody was performed in other drosophilids scattered along their genealogical tree. Results In the male germ line of all species tested there are cells showing giant nuclei and intranuclear structures similar to those of Drosophila melanogaster primary spermatocytes. Moreover, the antibody T53-F1 recognizes intranuclear structures in primary spermatocytes of all drosophilids analyzed. Interestingly, the extent and conformation of the staining pattern is species-specific. In addition, the intense staining of sperm tails in all species suggests that the terminal localization of Loopin-1 and its orthologues is conserved. A comparison of these cytological data and the data coming from the literature about sperm length, amount of sperm tail entering the egg during fertilization, shape and extent of both loops and primary spermatocyte nuclei, seems to exclude direct relationships among these parameters. Conclusion Taken together, the data reported strongly suggest that lampbrush-like loops are a conserved feature of primary spermatocyte nuclei in many, if not all, drosophilids. Moreover, the conserved pattern of the T53-F1 immunostaining indicates that a Loopin-1-like protein is present in all the species analyzed, whose localization on lampbrush-like loops and sperm tails during spermatogenesis is evolutionary conserved.
Collapse
Affiliation(s)
- Roberto Piergentili
- Dipartimento di Genetica e Biologia Molecolare, Sapienza Università di Roma, Piazzale Aldo Moro 5, 00185 Rome, Italy.
| |
Collapse
|
13
|
Dunn AR, Spudich JA. Dynamics of the unbound head during myosin V processive translocation. Nat Struct Mol Biol 2007; 14:246-8. [PMID: 17293871 DOI: 10.1038/nsmb1206] [Citation(s) in RCA: 129] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2006] [Accepted: 01/22/2007] [Indexed: 11/08/2022]
Abstract
Myosin V moves cargoes along actin filaments by walking hand over hand. Although numerous studies support the basic hand-over-hand model, little is known about the fleeting intermediate that occurs when the rear head detaches from the filament. Here we use submillisecond dark-field imaging of gold nanoparticle-labeled myosin V to directly observe the free head as it releases from the actin filament, diffuses forward and rebinds. We find that the unbound head rotates freely about the lever-arm junction, a trait that likely facilitates travel through crowded actin meshworks.
Collapse
Affiliation(s)
- Alexander R Dunn
- Stanford University School of Medicine, Beckman Center, 279 Campus Drive, Stanford, California 94305-5307, USA
| | | |
Collapse
|