1
|
Sun W, Jiang B, Zhao D, Pu Z, Bao Y. Integration of metabolic pathway manipulation and promoter engineering for the fine-tuned biosynthesis of malic acid in Bacillus coagulans. Biotechnol Bioeng 2021; 118:2597-2608. [PMID: 33829485 DOI: 10.1002/bit.27780] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 03/31/2021] [Accepted: 04/01/2021] [Indexed: 11/08/2022]
Abstract
Bacillus coagulans, a thermophilic facultative anaerobe, is a favorable chassis strain for the biosynthesis of desired products. In this study, B. coagulans was converted into an efficient malic acid producer by metabolic engineering and promoter engineering. Promoter mapping revealed that the endogenous promoter Pldh was a tandem promoter. Accordingly, a promoter library was developed, covering a wide range of relative transcription efficiencies with small increments. A reductive tricarboxylic acid pathway was established in B. coagulans by introducing the genes encoding pyruvate carboxylase (pyc), malate dehydrogenase (mdh), and phosphoenolpyruvate carboxykinase (pckA). Five promoters of various strengths within the library were screened to fine-tune the expression of pyc to improve the biosynthesis of malic acid. In addition, genes involved in the competitive metabolic pathways were deleted to focus the substrate and energy flux toward malic acid. Dual-phase fed-batch fermentation was performed to increase the biomass of the strain, further improving the titer of malic acid to 25.5 g/L, with a conversion rate of 0.3 g/g glucose. Our study is a pioneer research using promoter engineering and genetically modified B. coagulans for the biosynthesis of malic acid, providing an effective approach for the industrialized production of desired products using B. coagulans.
Collapse
Affiliation(s)
- Wenhui Sun
- School of Bioengineering, Dalian University of Technology, Dalian, Liaoning, China
| | - Bo Jiang
- School of Bioengineering, Dalian University of Technology, Dalian, Liaoning, China
| | - Dongying Zhao
- School of Bioengineering, Dalian University of Technology, Dalian, Liaoning, China
| | - Zhongji Pu
- School of Bioengineering, Dalian University of Technology, Dalian, Liaoning, China
| | - Yongming Bao
- School of Bioengineering, Dalian University of Technology, Dalian, Liaoning, China.,School of Ocean Science and Technology, Dalian University of Technology, Panjin, Liaoning, China
| |
Collapse
|
2
|
Verma R, Mitchell-Koch K. In Silico Studies of Small Molecule Interactions with Enzymes Reveal Aspects of Catalytic Function. Catalysts 2017; 7:212. [PMID: 30464857 PMCID: PMC6241538 DOI: 10.3390/catal7070212] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Small molecules, such as solvent, substrate, and cofactor molecules, are key players in enzyme catalysis. Computational methods are powerful tools for exploring the dynamics and thermodynamics of these small molecules as they participate in or contribute to enzymatic processes. In-depth knowledge of how small molecule interactions and dynamics influence protein conformational dynamics and function is critical for progress in the field of enzyme catalysis. Although numerous computational studies have focused on enzyme-substrate complexes to gain insight into catalytic mechanisms, transition states and reaction rates, the dynamics of solvents, substrates, and cofactors are generally less well studied. Also, solvent dynamics within the biomolecular solvation layer play an important part in enzyme catalysis, but a full understanding of its role is hampered by its complexity. Moreover, passive substrate transport has been identified in certain enzymes, and the underlying principles of molecular recognition are an area of active investigation. Enzymes are highly dynamic entities that undergo different conformational changes, which range from side chain rearrangement of a residue to larger-scale conformational dynamics involving domains. These events may happen nearby or far away from the catalytic site, and may occur on different time scales, yet many are related to biological and catalytic function. Computational studies, primarily molecular dynamics (MD) simulations, provide atomistic-level insight and site-specific information on small molecule interactions, and their role in conformational pre-reorganization and dynamics in enzyme catalysis. The review is focused on MD simulation studies of small molecule interactions and dynamics to characterize and comprehend protein dynamics and function in catalyzed reactions. Experimental and theoretical methods available to complement and expand insight from MD simulations are discussed briefly.
Collapse
Affiliation(s)
- Rajni Verma
- Department of Chemistry, McKinley Hall, Wichita State University, 1845 Fairmount, Wichita, KS 67260-0051, USA
| | - Katie Mitchell-Koch
- Department of Chemistry, McKinley Hall, Wichita State University, 1845 Fairmount, Wichita, KS 67260-0051, USA
| |
Collapse
|
3
|
F420H2 Is Required for Phthiocerol Dimycocerosate Synthesis in Mycobacteria. J Bacteriol 2016; 198:2020-8. [PMID: 27185825 DOI: 10.1128/jb.01035-15] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 05/06/2016] [Indexed: 12/17/2022] Open
Abstract
UNLABELLED Phthiocerol dimycocerosates (PDIM) are a group of cell surface-associated apolar lipids of Mycobacterium tuberculosis and closely related mycobacteria, such as Mycobacterium bovis and Mycobacterium leprae A characteristic methoxy group of these lipids is generated from the methylation of a hydroxyl group of the direct precursors, the phthiotriols. The precursors arise from the reduction of phthiodiolones, the keto intermediates, by a ketoreductase. The putative phthiodiolone ketoreductase (PKR) is encoded by Rv2951c in M. tuberculosis and BCG_2972c in M. bovis BCG, and these open reading frames (ORFs) encode identical amino acid sequences. We investigated the cofactor requirement of the BCG_2972c protein. A comparative analysis based on the crystallographic structures of similar enzymes identified structural elements for binding of coenzyme F420 and hydrophobic phthiodiolones in PKR. Coenzyme F420 is a deazaflavin coenzyme that serves several key functions in pathogenic and nonpathogenic mycobacteria. We found that an M. bovis BCG mutant lacking F420-dependent glucose-6-phosphate dehydrogenase (Fgd), which generates F420H2 (glucose-6-phosphate + F420 → 6-phosphogluconate + F420H2), was devoid of phthiocerols and accumulated phthiodiolones. When the mutant was provided with F420H2, a broken-cell slurry of the mutant converted accumulated phthiodiolones to phthiocerols; F420H2 was generated in situ from F420 and glucose-6-phosphate by the action of Fgd. Thus, the reaction mixture was competent in reducing phthiodiolones to phthiotriols (phthiodiolones + F420H2 → phthiotriols + F420), which were then methylated to phthiocerols. These results established the mycobacterial phthiodiolone ketoreductase as an F420H2-dependent enzyme (fPKR). A phylogenetic analysis of close homologs of fPKR revealed potential F420-dependent lipid-modifying enzymes in a broad range of mycobacteria. IMPORTANCE Mycobacterium tuberculosis is the causative agent of tuberculosis, and phthiocerol dimycocerosates (PDIM) protect this pathogen from the early innate immune response of an infected host. Thus, the PDIM synthesis system is a potential target for the development of effective treatments for tuberculosis. The current study shows that a PDIM synthesis enzyme is dependent on the coenzyme F420 F420 is universally present in mycobacteria and absent in humans. This finding expands the number of experimentally validated F420-dependent enzymes in M. tuberculosis to six, each of which helps the pathogen to evade killing by the host immune system, and one of which activates an antituberculosis drug, PA-824. This work also has relevance to leprosy, since similar waxy lipids are found in Mycobacterium leprae.
Collapse
|
4
|
Drummond ML, Wilson AK, Cundari TR. Nature of protein-CO2 interactions as elucidated via molecular dynamics. J Phys Chem B 2012; 116:11578-93. [PMID: 22882078 DOI: 10.1021/jp304770h] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Rising global temperatures require innovative measures to reduce atmospheric concentrations of CO(2). The most successful carbon capture technology on Earth is the enzymatic capture of CO(2) and its sequestration in the form of glucose. Efforts to improve upon or mimic this naturally occurring process will require a rich understanding of protein-CO(2) interactions. Toward that end, extensive all-atom molecular dynamics (MD) simulations were performed on the CO(2)-utilizing enzyme phosphoenolpyruvate carboxykinase (PEPCK). Preliminary simulations were performed using implicit and explicit solvent models, which yielded similar results: arginine, lysine, tyrosine, and asparagine enhance the ability of a protein to bind carbon dioxide. Extensive explicit solvent simulations were performed for both wild-type PEPCK and five single-point PEPCK mutants, revealing three prevalent channels by which CO(2) enters (or exits) the active site cleft, as well as a fourth channel (observed only once), the existence of which can be rationalized in terms of the position of a key Arg residue. The strongest CO(2) binding sites in these simulations consist of appropriately positioned hydrogen bond donors and acceptors. Interactions between CO(2) and both Mn(2+) and Mg(2+) present in PEPCK are minimal due to the stable protein- and solvent-based coordination environments of these cations. His 232, suggested by X-ray crystallography as being a potential important CO(2) binding site, is indeed found to be particularly "CO(2)-philic" in these simulations. Finally, a recent mechanism, proposed on the basis of X-ray crystallography, for PEPCK active site lid closure is discussed in light of the MD trajectories. Overall, the results of this work will prove useful not only to scientists investigating PEPCK, but also to groups seeking to develop an environmentally benign, protein-based carbon capture, sequestration, and utilization system.
Collapse
Affiliation(s)
- Michael L Drummond
- Department of Chemistry, Center for Advanced Scientific Computing and Modeling (CASCaM), University of North Texas, Denton, Texas 76201, USA.
| | | | | |
Collapse
|
5
|
Pérez E, Cardemil E. Saccharomyces cerevisiae phosphoenolpyruvate carboxykinase: the relevance of Glu299 and Leu460 for nucleotide binding. Protein J 2010; 29:299-305. [PMID: 20524049 DOI: 10.1007/s10930-010-9252-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A homology model of Saccharomyces cerevisiae phosphoenolpyruvate (PEP) carboxykinase (ATP + oxaloacetate right arrow over left arrow ADP + PEP + CO(2)) in complex with its substrates shows that the isobutyl group of Leu460 is in close proximity to the adenine ring of the nucleotide, while the carboxyl group of Glu299 is within hydrogen-bonding distance of the ribose 2'OH. The Leu460Ala mutation caused three-fold and seven-fold increases in the K (m) for ADPMn(-) and ATPMn(2-), respectively, while the Glu299Ala mutation had no effect. Binding studies showed losses of approximately 2 kcal mol(-1) in the nucleotide binding affinity due to the Leu460Ala mutation and no effect for the Glu299Ala mutation. PEP carboxykinase utilized 2'deoxyADP and 2'deoxyATP as substrates with kinetic and equilibrium dissociation constants very similar to those of ADP and ATP, respectively. These results show that the hydrophobic interaction between Leu460 and the adenine ring of the nucleotide significantly contributed to the nucleotide affinity of the enzyme. The 2'deoxy nucleotide studies and the lack of an effect of the Glu299Ala mutation in nucleotide binding suggest that the possible hydrogen bond contributed by Glu299 and the ribose 2'OH group may not be relevant for nucleotide binding.
Collapse
Affiliation(s)
- Estela Pérez
- Facultad de Química y Biología, Universidad de Santiago de Chile, Av. B. O'Higgins 3363, Santiago, Chile
| | | |
Collapse
|
6
|
Dharmarajan L, Case CL, Dunten P, Mukhopadhyay B. Tyr235 of human cytosolic phosphoenolpyruvate carboxykinase influences catalysis through an anion-quadrupole interaction with phosphoenolpyruvate carboxylate. FEBS J 2009; 275:5810-9. [PMID: 19021757 DOI: 10.1111/j.1742-4658.2008.06702.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Tyr235 of GTP-dependent phosphoenolpyruvate (PEP) carboxykinase is a fully invariant residue. The aromatic ring of this residue establishes an energetically favorable weak anion-quadrupole interaction with PEP carboxylate. The role of Tyr235 in catalysis was investigated via kinetic analysis of site-directed mutagenesis-derived variants. The Y235F change lowered the apparent K(m) for PEP by about six-fold, raised the apparent K(m) for Mn(2+) by about 70-fold, and decreased oxaloacetate (OAA)-forming activity by about 10-fold. These effects were due to an enhanced anion-quadrupole interaction between the aromatic side chain at position 235, which now lacked a hydroxyl group, and PEP carboxylate, which probably increased the distance between PEP and Mn(2+) and consequently affected the phosphoryl transfer step and overall catalysis. For the Y235A and Y235S changes, an elimination of the favorable edge-on interaction increased the apparent K(m) for PEP by four- and six-fold, respectively, and the apparent K(m) for Mn(2+) by eight- and six-fold, respectively. The pyruvate kinase-like activity, representing the PEP dephosphorylation step of the OAA-forming reaction, was affected by the substitutions in a similar way to the complete reaction. These observations indicate that the aromatic ring of Tyr235 helps to position PEP in the active site and the hydroxyl group allows an optimal PEP-Mn(2+) distance for efficient phosphoryl transfer and overall catalysis. The Y235A and Y235S changes drastically reduced the PEP-forming and OAA decarboxylase activities, probably due to the elimination of the stabilizing interaction between Tyr235 and the respective products, PEP and pyruvate.
Collapse
Affiliation(s)
- Lakshmi Dharmarajan
- Virginia Bioinformatics Institute, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | | | | | | |
Collapse
|
7
|
Castillo D, Sepúlveda C, Cardemil E, Jabalquinto AM. Functional evaluation of serine 252 of Saccharomyces cerevisiae phosphoenolpyruvate carboxykinase. Biochimie 2008; 91:295-9. [PMID: 18996167 DOI: 10.1016/j.biochi.2008.10.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2008] [Accepted: 10/10/2008] [Indexed: 11/29/2022]
Abstract
Saccharomyces cerevisiae phosphoenolpyruvate (PEP) carboxykinase mutant Ser252Ala, affecting the conserved Walker A serine residue, was characterized to elucidate the role of this serine residue. The substitution did not result in changes in the protein structure, as indicated by circular dichroism, intrinsic fluorescence spectroscopy, and gel-exclusion chromatography. Kinetic analysis of the mutated enzyme in both directions of the main reaction and in the two secondary reactions showed an approximately 50-fold increase in apparent K(m) for oxaloacetate with minor alterations in the other kinetic parameters. These results show that the hydroxyl group of serine 252 is required for proper oxaloacetate interaction.
Collapse
|
8
|
Case CL, Mukhopadhyay B. Kinetic characterization of recombinant human cytosolic phosphoenolpyruvate carboxykinase with and without a His10-tag. Biochim Biophys Acta Gen Subj 2007; 1770:1576-84. [PMID: 17888579 DOI: 10.1016/j.bbagen.2007.07.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2007] [Revised: 07/14/2007] [Accepted: 07/19/2007] [Indexed: 11/21/2022]
Abstract
We report the first kinetic characterization of human liver cytosolic GTP-dependent phosphoenolpyruvate carboxykinase (GTP-PEPCK), which plays a major role in the development of type 2 diabetes in human. In this work two recombinant forms of the enzyme were studied. One form had a His10-tag and the other was His-tag-free, and with one exception, both exhibited similar kinetic properties. When Mn2+ was used as the sole divalent cation, the His10-tagged enzyme, but not the His-tag-free enzyme, was increasingly inhibited at Mn2+ concentrations greater than 0.7 mM. This inhibition did not pose any problem in kinetic analysis, for within the relevant Mn2+ concentration range the His-tagged human PEPCK behaved almost identically to the tag-free enzyme. This property will bring simplicity and speed to purifying and studying multiple structural variants of this important enzyme. Apparent Km values of tag-free enzyme for phosphoenolpyruvate, GDP and bicarbonate were 450, 79 and 20,600 microM, respectively, while those for oxaloacetate and GTP were 4 and 23 microM, respectively, emphasizing the enzyme's gluconeogenic character. Bicarbonate (>100 mM) inhibited OAA-forming activity, which was a new observation with a GTP-PEPCK. The apparent Km for Mn2+ in the PEP-forming direction was 30-fold lower than that for the OAA-forming direction. Mn2+ and bicarbonate or CO2 might regulate the enzyme in vivo.
Collapse
Affiliation(s)
- Christopher L Case
- Virginia Bioinformatics Institute, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | | |
Collapse
|