1
|
Cohen EJ, Drobnič T, Ribardo DA, Yoshioka A, Umrekar T, Guo X, Fernandez JJ, Brock EE, Wilson L, Nakane D, Hendrixson DR, Beeby M. Evolution of a large periplasmic disk in Campylobacterota flagella enables both efficient motility and autoagglutination. Dev Cell 2024; 59:3306-3321.e5. [PMID: 39362219 PMCID: PMC11652260 DOI: 10.1016/j.devcel.2024.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 06/10/2024] [Accepted: 09/09/2024] [Indexed: 10/05/2024]
Abstract
The flagellar motors of Campylobacter jejuni (C. jejuni) and related Campylobacterota (previously epsilonproteobacteria) feature 100-nm-wide periplasmic "basal disks" that have been implicated in scaffolding a wider ring of additional motor proteins to increase torque, but the size of these disks is excessive for a role solely in scaffolding motor proteins. Here, we show that the basal disk is a flange that braces the flagellar motor during disentanglement of its flagellar filament from interactions with the cell body and other filaments. We show that motor output is unaffected when we shrink or displace the basal disk, and suppressor mutations of debilitated motors occur in flagellar-filament or cell-surface glycosylation pathways, thus sidestepping the need for a flange to overcome the interactions between two flagellar filaments and between flagellar filaments and the cell body. Our results identify unanticipated co-dependencies in the evolution of flagellar motor structure and cell-surface properties in the Campylobacterota.
Collapse
Affiliation(s)
- Eli J Cohen
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK.
| | - Tina Drobnič
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| | - Deborah A Ribardo
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Aoba Yoshioka
- Department of Engineering Science, Graduate School of Informatics and Engineering, The University of Electro-Communications, Tokyo, Japan
| | - Trishant Umrekar
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| | - Xuefei Guo
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| | - Jose-Jesus Fernandez
- Spanish National Research Council (CINN-CSIC), Health Research Institute of Asturias (ISPA), Av Hospital Universitario s/n, Oviedo 33011, Spain
| | - Emma E Brock
- Department of Physics, School of Physics, Engineering and Technology, University of York, York YO10 5DD, UK
| | - Laurence Wilson
- Department of Physics, School of Physics, Engineering and Technology, University of York, York YO10 5DD, UK
| | - Daisuke Nakane
- Department of Engineering Science, Graduate School of Informatics and Engineering, The University of Electro-Communications, Tokyo, Japan
| | - David R Hendrixson
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Morgan Beeby
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| |
Collapse
|
2
|
Walklett AJ, Flack EKP, Chidwick HS, Hatton NE, Keenan T, Budhadev D, Walton J, Thomas GH, Fascione MA. The Retaining Pse5Ac7Ac Pseudaminyltransferase KpsS1 Defines a Previously Unreported glycosyltransferase family (GT118). Angew Chem Int Ed Engl 2024; 63:e202318523. [PMID: 38224120 DOI: 10.1002/anie.202318523] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 01/10/2024] [Accepted: 01/12/2024] [Indexed: 01/16/2024]
Abstract
Cell surface sugar 5,7-diacetyl pseudaminic acid (Pse5Ac7Ac) is a bacterial analogue of the ubiquitous sialic acid, Neu5Ac, and contributes to the virulence of a number of multidrug resistant bacteria, including ESKAPE pathogens Pseudomonas aeruginosa, and Acinetobacter baumannii. Despite its discovery in the surface glycans of bacteria over thirty years ago, to date no glycosyltransferase enzymes (GTs) dedicated to the synthesis of a pseudaminic acid glycosidic linkage have been unequivocally characterised in vitro. Herein we demonstrate that A. baumannii KpsS1 is a dedicated pseudaminyltransferase enzyme (PseT) which constructs a Pse5Ac7Ac-α(2,6)-Glcp linkage, and proceeds with retention of anomeric configuration. We utilise this PseT activity in tandem with the biosynthetic enzymes required for CMP-Pse5Ac7Ac assembly, in a two-pot, seven enzyme synthesis of an α-linked Pse5Ac7Ac glycoside. Due to its unique activity and protein sequence, we also assign KpsS1 as the prototypical member of a previously unreported GT family (GT118).
Collapse
Affiliation(s)
| | - Emily K P Flack
- Department of Chemistry, University of York, York, YO10 5DD, UK
- Department of Biology, University of York, York, YO10 5DD, UK
| | | | | | - Tessa Keenan
- Department of Chemistry, University of York, York, YO10 5DD, UK
| | | | - Julia Walton
- Department of Chemistry, University of York, York, YO10 5DD, UK
| | - Gavin H Thomas
- Department of Biology, University of York, York, YO10 5DD, UK
| | | |
Collapse
|
3
|
Affiliation(s)
- Kabita Pradhan
- Department of Chemistry Indian Institute of Technology Bombay 400076 Powai Mumbai India
| | - Suvarn S. Kulkarni
- Department of Chemistry Indian Institute of Technology Bombay 400076 Powai Mumbai India
| |
Collapse
|
4
|
Flack EKP, Chidwick HS, Best M, Thomas GH, Fascione MA. Synthetic Approaches for Accessing Pseudaminic Acid (Pse) Bacterial Glycans. Chembiochem 2020; 21:1397-1407. [PMID: 31944494 DOI: 10.1002/cbic.202000019] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Indexed: 12/18/2022]
Abstract
Pseudaminic acids (Pses) are a group of non-mammalian nonulosonic acids (nulOs) that have been shown to be an important virulence factor for a number of pathogenic bacteria, including emerging multidrug-resistant ESKAPE pathogens. Despite their discovery over 30 years ago, relatively little is known about the biological significance of Pse glycans compared with their sialic acid analogues, primarily due to a lack of access to the synthetically challenging Pse architecture. Recently, however, the Pse backbone has been subjected to increasing synthetic exploration by carbohydrate (bio)chemists, and the total synthesis of complex Pse glycans achieved with inspiration from the biosynthesis and subsequent detailed study of chemical glycosylation by using Pse donors. Herein, context is provided for these efforts by summarising recent synthetic approaches pioneered for accessing Pse glycans, which are set to open up this underexplored area of glycoscience to the wider scientific community.
Collapse
Affiliation(s)
- Emily K P Flack
- Department of Chemistry, University of York, Heslington Road, Heslington, York, YO10 5DD, UK
| | - Harriet S Chidwick
- Department of Chemistry, University of York, Heslington Road, Heslington, York, YO10 5DD, UK
| | - Matthew Best
- Department of Chemistry, University of York, Heslington Road, Heslington, York, YO10 5DD, UK
| | - Gavin H Thomas
- Department of Biology, University of York, Heslington Road, Heslington, York, YO10 5DD, UK
| | - Martin A Fascione
- Department of Chemistry, University of York, Heslington Road, Heslington, York, YO10 5DD, UK
| |
Collapse
|
5
|
Chidwick HS, Fascione MA. Mechanistic and structural studies into the biosynthesis of the bacterial sugar pseudaminic acid (Pse5Ac7Ac). Org Biomol Chem 2020; 18:799-809. [PMID: 31913385 DOI: 10.1039/c9ob02433f] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The non-mammalian nonulosonic acid sugar pseudaminic acid (Pse) is present on the surface of a number of human pathogens including Campylobacter jejuni and Helicobacter pylori and other bacteria such as multidrug resistant Acinetobacter baumannii. It is likely important for evasion of the host immune sysyem, and also plays a role in bacterial motility through flagellin glycosylation. Herein we review the mechanistic and structural characterisation of the enzymes responsible for the biosynthesis of the Pse parent structure, Pse5Ac7Ac in bacteria.
Collapse
|
6
|
Salah Ud-Din AIM, Roujeinikova A. Flagellin glycosylation with pseudaminic acid in Campylobacter and Helicobacter: prospects for development of novel therapeutics. Cell Mol Life Sci 2018; 75:1163-1178. [PMID: 29080090 PMCID: PMC11105201 DOI: 10.1007/s00018-017-2696-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 10/10/2017] [Accepted: 10/24/2017] [Indexed: 02/08/2023]
Abstract
Many pathogenic bacteria require flagella-mediated motility to colonise and persist in their hosts. Helicobacter pylori and Campylobacter jejuni are flagellated epsilonproteobacteria associated with several human pathologies, including gastritis, acute diarrhea, gastric carcinoma and neurological disorders. In both species, glycosylation of flagellin with an unusual sugar pseudaminic acid (Pse) plays a crucial role in the biosynthesis of functional flagella, and thereby in bacterial motility and pathogenesis. Pse is found only in pathogenic bacteria. Its biosynthesis via six consecutive enzymatic steps has been extensively studied in H. pylori and C. jejuni. This review highlights the importance of flagella glycosylation and details structural insights into the enzymes in the Pse pathway obtained via a combination of biochemical, crystallographic, and mutagenesis studies of the enzyme-substrate and -inhibitor complexes. It is anticipated that understanding the underlying structural and molecular basis of the catalytic mechanisms of the Pse-synthesising enzymes will pave the way for the development of novel antimicrobials.
Collapse
Affiliation(s)
- Abu Iftiaf Md Salah Ud-Din
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, VIC, Australia
| | - Anna Roujeinikova
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, VIC, Australia.
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia.
| |
Collapse
|
7
|
Wahid SUH. Structural and functional characterization of the Helicobacter pylori cytidine 5'-monophosphate-pseudaminic acid synthase PseF: molecular insight into substrate recognition and catalysis mechanism. Adv Appl Bioinform Chem 2017; 10:79-88. [PMID: 29062238 PMCID: PMC5638570 DOI: 10.2147/aabc.s139773] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The bacterium Helicobacter pylori is a human gastric pathogen that can cause a wide range of diseases, including chronic gastritis, peptic ulcer and gastric carcinoma. It is classified as a definitive (class I) human carcinogen by the International Agency for Research on Cancer. Flagella-mediated motility is essential for H. pylori to initiate colonization and for the development of infection in human beings. Glycosylation of the H. pylori flagellum with pseudaminic acid (Pse; 5,7-diacetamido-3,5,7,9-tetradeoxy-l-glycero-l-manno-nonulosonic acid) is essential for flagella assembly and function. The sixth step in the Pse biosynthesis pathway, activation of Pse by addition of a cytidine 5'-monophosphate (CMP) to generate CMP-Pse, is catalyzed by a metal-dependent enzyme pseudaminic acid biosynthesis protein F (PseF) using cytidine 5'-triphosphate (CTP) as a cofactor. No crystal-structural information for PseF is available. This study describes the first three-dimensional model of H. pylori PseF obtained using biocomputational tools. PseF harbors an α/β-type hydrolase fold with a β-hairpin (HP) dimerization domain. Comparison of PseF with other structural homologs allowed identification of crucial residues for substrate recognition and the catalytic mechanism. This structural information would pave the way to design novel therapeutics to combat bacterial infection.
Collapse
|
8
|
Zamora CY, Schocker NS, Chang MM, Imperiali B. Chemoenzymatic Synthesis and Applications of Prokaryote-Specific UDP-Sugars. Methods Enzymol 2017; 597:145-186. [PMID: 28935101 DOI: 10.1016/bs.mie.2017.06.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
This method describes the chemoenzymatic synthesis of several nucleotide sugars, which are essential substrates in the biosynthesis of prokaryotic N- and O-linked glycoproteins. Protein glycosylation is now known to be widespread in prokaryotes and proceeds via sequential action of several enzymes, utilizing both common and modified prokaryote-specific sugar nucleotides. The latter, which include UDP-hexoses such as UDP-diNAc-bacillosamine (UDP-diNAcBac), UDP-diNAcAlt, and UDP-2,3-diNAcManA, are also important components of other bacterial and archaeal glycoconjugates. The ready availability of these "high-value" intermediates will enable courses of study into inhibitor screening, glycoconjugate biosynthesis pathway discovery, and unnatural carbohydrate incorporation toward metabolic engineering.
Collapse
Affiliation(s)
| | | | - Michelle M Chang
- Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Barbara Imperiali
- Massachusetts Institute of Technology, Cambridge, MA, United States.
| |
Collapse
|
9
|
Rovetto F, Carlier A, Van den Abeele AM, Illeghems K, Van Nieuwerburgh F, Cocolin L, Houf K. Characterization of the emerging zoonotic pathogen Arcobacter thereius by whole genome sequencing and comparative genomics. PLoS One 2017; 12:e0180493. [PMID: 28671965 PMCID: PMC5495459 DOI: 10.1371/journal.pone.0180493] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 06/17/2017] [Indexed: 11/24/2022] Open
Abstract
Four Arcobacter species have been associated with human disease, and based on current knowledge, these Gram negative bacteria are considered as potential food and waterborne zoonotic pathogens. At present, only the genome of the species Arcobacter butzleri has been analysed, and still little is known about their physiology and genetics. The species Arcobacter thereius has first been isolated from tissue of aborted piglets, duck and pig faeces, and recently from stool of human patients with enteritis. In the present study, the complete genome and analysis of the A. thereius type strain LMG24486T, as well as the comparative genome analysis with 8 other A. thereius strains are presented. Genome analysis revealed metabolic pathways for the utilization of amino acids, which represent the main source of energy, together with the presence of genes encoding for respiration-associated and chemotaxis proteins. Comparative genome analysis with the A. butzleri type strain RM4018 revealed a large correlation, though also unique features. Furthermore, in silico DDH and ANI based analysis of the nine A. thereius strains disclosed clustering into two closely related genotypes. No discriminatory differences in genome content nor phenotypic behaviour were detected, though recently the species Arcobacter porcinus was proposed to encompass part of the formerly identified Arcobacter thereius strains. The report of the presence of virulence associated genes in A. thereius, the presence of antibiotic resistance genes, verified by in vitro susceptibility testing, as well as other pathogenic related relevant features, support the classification of A. thereius as an emerging pathogen.
Collapse
Affiliation(s)
- Francesca Rovetto
- Department of Veterinary Public Health and Food Safety, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, Merelbeke, Belgium
- Department of Forestry, Agriculture and Food Sciences, University of Torino, Largo Braccini 2, Grugliasco, Italy
| | - Aurélien Carlier
- Laboratory of Microbiology, Faculty of Sciences, Ghent University, K. L. Ledeganckstraat 35, Ghent, Belgium
| | | | - Koen Illeghems
- Department of Veterinary Public Health and Food Safety, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, Merelbeke, Belgium
| | - Filip Van Nieuwerburgh
- Laboratory of Pharmaceutical Biotechnology, Faculty of Pharmaceutical Sciences, Ghent University, Harelbekestraat 72, Ghent, Belgium
| | - Luca Cocolin
- Department of Forestry, Agriculture and Food Sciences, University of Torino, Largo Braccini 2, Grugliasco, Italy
| | - Kurt Houf
- Department of Veterinary Public Health and Food Safety, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, Merelbeke, Belgium
| |
Collapse
|
10
|
Small-molecule inhibitors of the pseudaminic acid biosynthetic pathway: targeting motility as a key bacterial virulence factor. Antimicrob Agents Chemother 2014; 58:7430-40. [PMID: 25267679 DOI: 10.1128/aac.03858-14] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Helicobacter pylori is motile by means of polar flagella, and this motility has been shown to play a critical role in pathogenicity. The major structural flagellin proteins have been shown to be glycosylated with the nonulosonate sugar, pseudaminic acid (Pse). This glycan is unique to microorganisms, and the process of flagellin glycosylation is required for H. pylori flagellar assembly and consequent motility. As such, the Pse biosynthetic pathway offers considerable potential as an antivirulence drug target, especially since motility is required for H. pylori colonization and persistence in the host. This report describes screening the five Pse biosynthetic enzymes for small-molecule inhibitors using both high-throughput screening (HTS) and in silico (virtual screening [VS]) approaches. Using a 100,000-compound library, 1,773 hits that exhibited a 40% threshold inhibition at a 10 μM concentration were identified by HTS. In addition, VS efforts using a 1.6-million compound library directed at two pathway enzymes identified 80 hits, 4 of which exhibited reasonable inhibition at a 10 μM concentration in vitro. Further secondary screening which identified 320 unique molecular structures or validated hits was performed. Following kinetic studies and structure-activity relationship (SAR) analysis of selected inhibitors from our refined list of 320 compounds, we demonstrated that three inhibitors with 50% inhibitory concentrations (IC50s) of approximately 14 μM, which belonged to a distinct chemical cluster, were able to penetrate the Gram-negative cell membrane and prevent formation of flagella.
Collapse
|
11
|
Joseph DDA, Jiao W, Kessans SA, Parker EJ. Substrate-mediated control of the conformation of an ancillary domain delivers a competent catalytic site for N-acetylneuraminic acid synthase. Proteins 2014; 82:2054-66. [PMID: 24633984 DOI: 10.1002/prot.24558] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Revised: 02/14/2014] [Accepted: 03/04/2014] [Indexed: 12/19/2022]
Abstract
N-Acetylneuraminic acid (NANA) is the most common naturally occurring sialic acid and plays a key role in the pathogenesis of a select number of neuroinvasive bacteria such as Neisseria meningitidis. NANA is synthesized in prokaryotes via a condensation reaction between phosphoenolpyruvate and N-acetylmannosamine. This reaction is catalyzed by a domain swapped, homodimeric enzyme, N-acetylneuraminic acid synthase (NANAS). NANAS comprises two distinct domains; an N-terminal catalytic (β/α)8 barrel linked to a C-terminal antifreeze protein-like (AFPL) domain. We have investigated the role of the AFPL domain by characterizing a truncated variant of NmeNANAS, which was discovered to be soluble yet inactive. Analytical ultracentrifugation and analytical size exclusion were used to probe the quaternary state of the NmeNANAS truncation, and revealed that loss of the AFPL domain destabilizes the dimeric form of the enzyme. The results from this study thereby demonstrate that the AFPL domain plays a critical role for both the catalytic function and quaternary structure stability of NANAS. Small angle X-ray scattering, molecular dynamics simulations, and amino acid substitutions expose a complex hydrogen-bonding relay, which links the roles of the catalytic and AFPL domains across subunit boundaries.
Collapse
Affiliation(s)
- Dmitri D A Joseph
- Biomolecular Interaction Centre and Department of Chemistry, University of Canterbury, Christchurch, New Zealand
| | | | | | | |
Collapse
|
12
|
Morrison MJ, Imperiali B. The renaissance of bacillosamine and its derivatives: pathway characterization and implications in pathogenicity. Biochemistry 2014; 53:624-38. [PMID: 24383882 PMCID: PMC3951908 DOI: 10.1021/bi401546r] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
![]()
Prokaryote-specific
sugars, including N,N′-diacetylbacillosamine
(diNAcBac) and pseudaminic
acid, have experienced a renaissance in the past decade because of
their discovery in glycans related to microbial pathogenicity. DiNAcBac
is found at the reducing end of oligosaccharides of N- and O-linked
bacterial protein glycosylation pathways of Gram-negative pathogens,
including Campylobacter jejuni and Neisseria
gonorrhoeae. Further derivatization of diNAcBac results in
the nonulosonic acid known as legionaminic acid, which was first characterized
in the O-antigen of the lipopolysaccharide (LPS) in Legionella
pneumophila. Pseudaminic acid, an isomer of legionaminic
acid, is also important in pathogenic bacteria such as Helicobacter
pylori because of its occurrence in O-linked glycosylation
of flagellin proteins, which plays an important role in flagellar
assembly and motility. Here, we present recent advances in the characterization
of the biosynthetic pathways leading to these highly modified sugars
and investigation of the roles that each plays in bacterial fitness
and pathogenicity.
Collapse
Affiliation(s)
- Michael J Morrison
- Departments of Chemistry and Biology, Massachusetts Institute of Technology , 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | | |
Collapse
|
13
|
Zunk M, Kiefel MJ. The occurrence and biological significance of the α-keto-sugars pseudaminic acid and legionaminic acid within pathogenic bacteria. RSC Adv 2014. [DOI: 10.1039/c3ra44924f] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
14
|
Joseph DDA, Jiao W, Parker EJ. Arg314 is essential for catalysis by N-acetyl neuraminic acid synthase from Neisseria meningitidis. Biochemistry 2013; 52:2609-19. [PMID: 23534460 DOI: 10.1021/bi400062c] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The sialic acid N-acetylneuraminic acid (NANA) has a key role in the pathogenesis of a select number of neuroinvasive bacteria such as Neisseria meningitidis. These pathogens coat themselves with polysialic acids, mimicking the exterior surface of mammalian cells and consequentially concealing the bacteria from the host's immune system. NANA is synthesized in bacteria by the homodimeric enzyme NANA synthase (NANAS), which catalyzes a condensation reaction between phosphoenolpyruvate (PEP) and N-acetylmannosamine (ManNAc). NANAS is closely related to the α-keto acid synthases 3-deoxy-d-arabino-heptulosonate 7-phosphate synthase and 3-deoxy-d-manno-octulosonate 8-phosphate synthase. NANAS differs from these enzymes in that it contains an antifreeze protein like (AFPL) domain, which extends from the C-terminal of the (β/α)8 barrel containing the active site and contributes a highly conserved arginine (Arg314) into the active site of the opposing monomer chain. We have investigated the role of Arg314 in NmeNANAS through mutagenesis and a combination of kinetic and structural analyses. Using isothermal titration calorimetry and molecular modeling, we have shown that Arg314 is required for the catalytic function of NANAS and that the delocalized positively charged guanidinium functionality of this residue provides steering of the sugar substrate ManNAc for suitable placement in the active site and thus reaction with PEP.
Collapse
Affiliation(s)
- Dmitri D A Joseph
- Biomolecular Interaction Centre and Department of Chemistry, University of Canterbury , Christchurch, New Zealand
| | | | | |
Collapse
|
15
|
Anderson I, Tindall BJ, Rohde M, Lucas S, Han J, Lapidus A, Cheng JF, Goodwin L, Pitluck S, Peters L, Pati A, Mikhailova N, Pagani I, Teshima H, Han C, Tapia R, Land M, Woyke T, Klenk HP, Kyrpides N, Ivanova N. Complete genome sequence of Halopiger xanaduensis type strain (SH-6(T)). Stand Genomic Sci 2012; 6:31-42. [PMID: 22675596 PMCID: PMC3368405 DOI: 10.4056/sigs.2505605] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Halopiger xanaduensis is the type species of the genus Halopiger and belongs to the euryarchaeal family Halobacteriaceae. H. xanaduensis strain SH-6, which is designated as the type strain, was isolated from the sediment of a salt lake in Inner Mongolia, Lake Shangmatala. Like other members of the family Halobacteriaceae, it is an extreme halophile requiring at least 2.5 M salt for growth. We report here the sequencing and annotation of the 4,355,268 bp genome, which includes one chromosome and three plasmids. This genome is part of a Joint Genome Institute (JGI) Community Sequencing Program (CSP) project to sequence diverse haloarchaeal genomes.
Collapse
Affiliation(s)
- Iain Anderson
- DOE Joint Genome Institute, Walnut Creek, California, USA
| | - Brian J. Tindall
- Leibnitz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Manfred Rohde
- HZI – Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Susan Lucas
- DOE Joint Genome Institute, Walnut Creek, California, USA
| | - James Han
- DOE Joint Genome Institute, Walnut Creek, California, USA
| | - Alla Lapidus
- DOE Joint Genome Institute, Walnut Creek, California, USA
| | - Jan-Fang Cheng
- DOE Joint Genome Institute, Walnut Creek, California, USA
| | - Lynne Goodwin
- DOE Joint Genome Institute, Walnut Creek, California, USA
| | - Sam Pitluck
- DOE Joint Genome Institute, Walnut Creek, California, USA
| | - Lin Peters
- DOE Joint Genome Institute, Walnut Creek, California, USA
| | - Amrita Pati
- DOE Joint Genome Institute, Walnut Creek, California, USA
| | | | - Ioanna Pagani
- DOE Joint Genome Institute, Walnut Creek, California, USA
| | - Hazuki Teshima
- DOE Joint Genome Institute, Walnut Creek, California, USA
- Los Alamos National Laboratory, Los Alamos, New Mexico, USA
| | - Cliff Han
- DOE Joint Genome Institute, Walnut Creek, California, USA
- Los Alamos National Laboratory, Los Alamos, New Mexico, USA
| | - Roxanne Tapia
- DOE Joint Genome Institute, Walnut Creek, California, USA
- Los Alamos National Laboratory, Los Alamos, New Mexico, USA
| | - Miriam Land
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Tanja Woyke
- DOE Joint Genome Institute, Walnut Creek, California, USA
| | - Hans-Peter Klenk
- Leibnitz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Nikos Kyrpides
- DOE Joint Genome Institute, Walnut Creek, California, USA
| | | |
Collapse
|
16
|
Kawai F, Grass S, Kim Y, Choi KJ, St Geme JW, Yeo HJ. Structural insights into the glycosyltransferase activity of the Actinobacillus pleuropneumoniae HMW1C-like protein. J Biol Chem 2011; 286:38546-38557. [PMID: 21908603 DOI: 10.1074/jbc.m111.237602] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Glycosylation of proteins is a fundamental process that influences protein function. The Haemophilus influenzae HMW1 adhesin is an N-linked glycoprotein that mediates adherence to respiratory epithelium, an essential early step in the pathogenesis of H. influenzae disease. HMW1 is glycosylated by HMW1C, a novel glycosyltransferase in the GT41 family that creates N-glycosidic linkages with glucose and galactose at asparagine residues and di-glucose linkages at sites of glucose modification. Here we report the crystal structure of Actinobacillus pleuropneumoniae HMW1C (ApHMW1C), a functional homolog of HMW1C. The structure of ApHMW1C contains an N-terminal all α-domain (AAD) fold and a C-terminal GT-B fold with two Rossmann-like domains and lacks the tetratricopeptide repeat fold characteristic of the GT41 family. The GT-B fold harbors the binding site for UDP-hexose, and the interface of the AAD fold and the GT-B fold forms a unique groove with potential to accommodate the acceptor protein. Structure-based functional analyses demonstrated that the HMW1C protein shares the same structure as ApHMW1C and provided insights into the unique bi-functional activity of HMW1C and ApHMW1C, suggesting an explanation for the similarities and differences of the HMW1C-like proteins compared with other GT41 family members.
Collapse
Affiliation(s)
- Fumihiro Kawai
- Department of Biology and Biochemistry, University of Houston, Houston, Texas 77204
| | - Susan Grass
- Departments of Pediatrics and Molecular Genetics & Microbiology, Duke University Medical Center, Durham, North Carolina 27710
| | - Youngchang Kim
- Structural Biology Center, Argonne National Laboratory, Argonne, Illinois 60439
| | - Kyoung-Jae Choi
- Department of Biology and Biochemistry, University of Houston, Houston, Texas 77204
| | - Joseph W St Geme
- Departments of Pediatrics and Molecular Genetics & Microbiology, Duke University Medical Center, Durham, North Carolina 27710
| | - Hye-Jeong Yeo
- Department of Biology and Biochemistry, University of Houston, Houston, Texas 77204.
| |
Collapse
|
17
|
Dube DH, Champasa K, Wang B. Chemical tools to discover and target bacterial glycoproteins. Chem Commun (Camb) 2011; 47:87-101. [DOI: 10.1039/c0cc01557a] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
18
|
Lee YJ, Kubota A, Ishiwata A, Ito Y. Synthesis of pseudaminic acid, a unique nonulopyranoside derived from pathogenic bacteria through 6-deoxy-AltdiNAc. Tetrahedron Lett 2011. [DOI: 10.1016/j.tetlet.2010.11.078] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
19
|
Hitchen P, Brzostek J, Panico M, Butler JA, Morris HR, Dell A, Linton D. Modification of the Campylobacter jejuni flagellin glycan by the product of the Cj1295 homopolymeric-tract-containing gene. MICROBIOLOGY-SGM 2010; 156:1953-1962. [PMID: 20338909 PMCID: PMC3068675 DOI: 10.1099/mic.0.038091-0] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The Campylobacter jejuni flagellin protein is O-glycosylated with structural analogues of the nine-carbon sugar pseudaminic acid. The most common modifications in the C. jejuni 81-176 strain are the 5,7-di-N-acetylated derivative (Pse5Ac7Ac) and an acetamidino-substituted version (Pse5Am7Ac). Other structures detected include O-acetylated and N-acetylglutamine-substituted derivatives (Pse5Am7Ac8OAc and Pse5Am7Ac8GlnNAc, respectively). Recently, a derivative of pseudaminic acid modified with a di-O-methylglyceroyl group was detected in C. jejuni NCTC 11168 strain. The gene products required for Pse5Ac7Ac biosynthesis have been characterized, but those genes involved in generating other structures have not. We have demonstrated that the mobility of the NCTC 11168 flagellin protein in SDS-PAGE gels can vary spontaneously and we investigated the role of single nucleotide repeats or homopolymeric-tract-containing genes from the flagellin glycosylation locus in this process. One such gene, Cj1295, was shown to be responsible for structural changes in the flagellin glycoprotein. Mass spectrometry demonstrated that the Cj1295 gene is required for glycosylation with the di-O-methylglyceroyl-modified version of pseudaminic acid.
Collapse
Affiliation(s)
- Paul Hitchen
- Centre for Integrative Systems Biology at Imperial College, Faculty of Natural Science, Imperial College, London SW7 2AY, UK.,Division of Molecular Biosciences, Faculty of Natural Science, Imperial College, London SW7 2AY, UK
| | - Joanna Brzostek
- Division of Molecular Biosciences, Faculty of Natural Science, Imperial College, London SW7 2AY, UK
| | - Maria Panico
- Division of Molecular Biosciences, Faculty of Natural Science, Imperial College, London SW7 2AY, UK
| | - Jonathan A Butler
- Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, UK
| | - Howard R Morris
- M-SCAN Ltd, Wokingham, Berkshire RG41 2TZ, UK.,Division of Molecular Biosciences, Faculty of Natural Science, Imperial College, London SW7 2AY, UK
| | - Anne Dell
- Division of Molecular Biosciences, Faculty of Natural Science, Imperial College, London SW7 2AY, UK
| | - Dennis Linton
- Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, UK
| |
Collapse
|
20
|
Rangarajan ES, Proteau A, Cui Q, Logan SM, Potetinova Z, Whitfield D, Purisima EO, Cygler M, Matte A, Sulea T, Schoenhofen IC. Structural and functional analysis of Campylobacter jejuni PseG: a udp-sugar hydrolase from the pseudaminic acid biosynthetic pathway. J Biol Chem 2009; 284:20989-1000. [PMID: 19483088 DOI: 10.1074/jbc.m109.012351] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Flagella of the bacteria Helicobacter pylori and Campylobacter jejuni are important virulence determinants, whose proper assembly and function are dependent upon glycosylation at multiple positions by sialic acid-like sugars, such as 5,7-diacetamido-3,5,7,9-tetradeoxy-l-glycero-l-manno-nonulosonic acid (pseudaminic acid (Pse)). The fourth enzymatic step in the pseudaminic acid pathway, the hydrolysis of UDP-2,4-diacetamido-2,4,6-trideoxy-beta-l-altropyranose to generate 2,4-diacetamido-2,4,6-trideoxy-l-altropyranose, is performed by the nucleotide sugar hydrolase PseG. To better understand the molecular basis of the PseG catalytic reaction, we have determined the crystal structures of C. jejuni PseG in apo-form and as a complex with its UDP product at 1.8 and 1.85 A resolution, respectively. In addition, molecular modeling was utilized to provide insight into the structure of the PseG-substrate complex. This modeling identifies a His(17)-coordinated water molecule as the putative nucleophile and suggests the UDP-sugar substrate adopts a twist-boat conformation upon binding to PseG, enhancing the exposure of the anomeric bond cleaved and favoring inversion at C-1. Furthermore, based on these structures a series of amino acid substitution derivatives were constructed, altering residues within the active site, and each was kinetically characterized to examine its contribution to PseG catalysis. In conjunction with structural comparisons, the almost complete inactivation of the PseG H17F and H17L derivatives suggests that His(17) functions as an active site base, thereby activating the nucleophilic water molecule for attack of the anomeric C-O bond of the UDP-sugar. As the PseG structure reveals similarity to those of glycosyltransferase family-28 members, in particular that of Escherichia coli MurG, these findings may also be of relevance for the mechanistic understanding of this important enzyme family.
Collapse
Affiliation(s)
- Erumbi S Rangarajan
- Department of Biochemistry, McGill University, Montreal, Quebec H3G 1V6, Canada
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Liu F, Aubry AJ, Schoenhofen IC, Logan SM, Tanner ME. The Engineering of Bacteria Bearing Azido-Pseudaminic Acid-Modified Flagella. Chembiochem 2009; 10:1317-20. [DOI: 10.1002/cbic.200900018] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
22
|
Wang L, Lu Z, Allen KN, Mariano PS, Dunaway-Mariano D. Human symbiont Bacteroides thetaiotaomicron synthesizes 2-keto-3-deoxy-D-glycero-D- galacto-nononic acid (KDN). ACTA ACUST UNITED AC 2008; 15:893-7. [PMID: 18804026 DOI: 10.1016/j.chembiol.2008.08.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2008] [Revised: 08/04/2008] [Accepted: 08/08/2008] [Indexed: 11/28/2022]
Abstract
The proper functioning of the human intestine is dependent on its bacterial symbionts, the most predominant of which belong to the Phylum Bacteroidetes. These bacteria are known to use variable displays of multiple capsular polysaccharides (CPs) to aid in their survival and foraging within the intestine. Bacteroides thetaiotaomicron is a prominent human gut symbiont and a remarkably versatile glycophile. The structure determination of the CPs, encoded by the eight CP loci, is the key to understanding the mechanism of this organism's adaptation on a molecular level. Herein, we report the bioinformatics-based discovery and chemical demonstration of a biosynthetic pathway that forms and cytidylates 2-keto-3-deoxy-D-glycero-D-galacto-nononic acid (KDN), most likely for inclusion in the CP encoded by B. thetaiotaomicron CP locus 7.
Collapse
Affiliation(s)
- Liangbing Wang
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, NM 87131-0001, USA
| | | | | | | | | |
Collapse
|
23
|
Abu-Qarn M, Eichler J, Sharon N. Not just for Eukarya anymore: protein glycosylation in Bacteria and Archaea. Curr Opin Struct Biol 2008; 18:544-50. [PMID: 18694827 DOI: 10.1016/j.sbi.2008.06.010] [Citation(s) in RCA: 149] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2008] [Accepted: 06/27/2008] [Indexed: 11/30/2022]
Abstract
Of the many post-translational modifications proteins can undergo, glycosylation is the most prevalent and the most diverse. Today, it is clear that both N-glycosylation and O-glycosylation, once believed to be restricted to eukaryotes, also transpire in Bacteria and Archaea. Indeed, prokaryotic glycoproteins rely on a wider variety of monosaccharide constituents than do those of eukaryotes. In recent years, substantial progress in describing the enzymes involved in bacterial and archaeal glycosylation pathways has been made. It is becoming clear that enhanced knowledge of bacterial glycosylation enzymes may be of therapeutic value, while the demonstrated ability to introduce bacterial glycosylation genes into Escherichia coli represents a major step forward in glyco-engineering. A better understanding of archaeal protein glycosylation provides insight into this post-translational modification across evolution as well as protein processing under extreme conditions. Here, we discuss new structural and biosynthetic findings related to prokaryotic protein glycosylation, until recently a neglected topic.
Collapse
Affiliation(s)
- Mehtap Abu-Qarn
- Department of Life Sciences, Ben Gurion University, Beersheva 84105, Israel
| | | | | |
Collapse
|
24
|
Abstract
Directed evolution is a powerful tool to modify substrate specificity for a wide array of enzyme catalysts. In this issue of Chemistry & Biology, Thorson and coworkers use directed evolution to increase the catalytic proficiency of a model glycosyltransferase, OleD, 300-fold for a nonphysiological substrate (Williams et al., 2008).
Collapse
Affiliation(s)
- David L Jakeman
- College of Pharmacy and Department of Chemistry, Dalhousie University, Halifax, Nova Scotia B3H 3J5, Canada.
| |
Collapse
|
25
|
Glaze PA, Watson DC, Young NM, Tanner ME. Biosynthesis of CMP-N,N'-diacetyllegionaminic acid from UDP-N,N'-diacetylbacillosamine in Legionella pneumophila. Biochemistry 2008; 47:3272-82. [PMID: 18275154 DOI: 10.1021/bi702364s] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Legionaminic acid is a nine-carbon alpha-keto acid that is similar in structure to other members of the sialic acid family that includes neuraminic acid and pseudaminic acid. It is found as a component of the lipopolysaccharide in several bacterial species and is perhaps best known for its presence in the O-antigen of the causative agent of Legionnaires' disease, Legionella pneumophila. In this work, the enzymes responsible for the biosynthesis and activation of N, N'-diacetyllegionaminic acid are identified for the first time. A cluster of three L. pneumophila genes bearing homology to known sialic acid biosynthetic genes ( neuA,B,C) were cloned and overexpressed in Escherichia coli. The NeuC homologue was found to be a hydrolyzing UDP- N, N'-diacetylbacillosamine 2-epimerase that converts UDP- N, N'-diacetylbacillosamine into 2,4-diacetamido-2,4,6-trideoxymannose and UDP. Stereochemical and isotopic labeling studies showed that the enzyme utilizes a mechanism involving an initial anti elimination of UDP to form a glycal intermediate and a subsequent syn addition of water to generate product. This is similar to the hydrolyzing UDP- N-acetylglucosamine 2-epimerase (NeuC) of sialic acid biosynthesis, but the L. pneumophila enzyme would not accept UDP-GlcNAc as an alternate substrate. The NeuB homologue was found to be a N, N'-diacetyllegionaminic acid synthase that condenses 2,4-diacetamido-2,4,6-trideoxymannose with phosphoenolpyruvate (PEP), although the in vitro activity of the recombinant enzyme (isolated as a MalE fusion protein) was very low. The synthase activity was dependent on the presence of a divalent metal ion, and the reaction proceeded via a C-O bond cleavage process, similar to the reactions catalyzed by the sialic acid and pseudaminic acid synthases. Finally, the NeuA homologue was shown to possess the CMP- N, N'-diacetyllegionaminic acid synthetase activity that generates the activated form of legionaminic acid used in lipopolysaccharide biosynthesis. Together, the three enzymes constitute a pathway that converts a UDP-linked bacillosamine derivative into a CMP-linked legionaminic acid derivative.
Collapse
Affiliation(s)
- Pavel A Glaze
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z1
| | | | | | | |
Collapse
|
26
|
Guerry P. Campylobacter flagella: not just for motility. Trends Microbiol 2007; 15:456-61. [PMID: 17920274 DOI: 10.1016/j.tim.2007.09.006] [Citation(s) in RCA: 223] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2007] [Revised: 08/07/2007] [Accepted: 09/24/2007] [Indexed: 10/22/2022]
Abstract
Campylobacter jejuni and Campylobacter coli are among the major causes of diarrheal disease worldwide. The motility imparted by the polar flagella of these pathogens is required for colonization of the mucus lining of the gastrointestinal tract. However, recent studies have revealed a more complex role for flagella in Campylobacter pathogenesis that includes the ability to secrete non-flagellar proteins that modulate virulence and the co-regulation of secreted and non-secreted virulence factors with the flagella regulon. Campylobacter flagellins are heavily glycosylated and changes in glycan composition affect autoagglutination and microcolony formation on intestinal epithelial cells; these traits are associated with disease in an animal model. Here, these recent advances in our understanding of the multifaceted role of flagella in Campylobacter virulence are summarized.
Collapse
Affiliation(s)
- Patricia Guerry
- Enteric Diseases Department, Naval Medical Research Center, 503 Robert Grant Ave, Silver Spring, MD 20910, USA.
| |
Collapse
|
27
|
Gundogdu O, Bentley SD, Holden MT, Parkhill J, Dorrell N, Wren BW. Re-annotation and re-analysis of the Campylobacter jejuni NCTC11168 genome sequence. BMC Genomics 2007; 8:162. [PMID: 17565669 PMCID: PMC1899501 DOI: 10.1186/1471-2164-8-162] [Citation(s) in RCA: 161] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2007] [Accepted: 06/12/2007] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Campylobacter jejuni is the leading bacterial cause of human gastroenteritis in the developed world. To improve our understanding of this important human pathogen, the C. jejuni NCTC11168 genome was sequenced and published in 2000. The original annotation was a milestone in Campylobacter research, but is outdated. We now describe the complete re-annotation and re-analysis of the C. jejuni NCTC11168 genome using current database information, novel tools and annotation techniques not used during the original annotation. RESULTS Re-annotation was carried out using sequence database searches such as FASTA, along with programs such as TMHMM for additional support. The re-annotation also utilises sequence data from additional Campylobacter strains and species not available during the original annotation. Re-annotation was accompanied by a full literature search that was incorporated into the updated EMBL file [EMBL: AL111168]. The C. jejuni NCTC11168 re-annotation reduced the total number of coding sequences from 1654 to 1643, of which 90.0% have additional information regarding the identification of new motifs and/or relevant literature. Re-annotation has led to 18.2% of coding sequence product functions being revised. CONCLUSIONS Major updates were made to genes involved in the biosynthesis of important surface structures such as lipooligosaccharide, capsule and both O- and N-linked glycosylation. This re-annotation will be a key resource for Campylobacter research and will also provide a prototype for the re-annotation and re-interpretation of other bacterial genomes.
Collapse
Affiliation(s)
- Ozan Gundogdu
- Pathogen Molecular Department, London School of Hygiene & Tropical Medicine, Keppel Street, UK
| | | | | | | | - Nick Dorrell
- Pathogen Molecular Department, London School of Hygiene & Tropical Medicine, Keppel Street, UK
| | - Brendan W Wren
- Pathogen Molecular Department, London School of Hygiene & Tropical Medicine, Keppel Street, UK
| |
Collapse
|