1
|
Kerschbaumer B, Totaro MG, Friess M, Breinbauer R, Bijelic A, Macheroux P. Loop 6 and the β-hairpin flap are structural hotspots that determine cofactor specificity in the FMN-dependent family of ene-reductases. FEBS J 2024; 291:1560-1574. [PMID: 38263933 DOI: 10.1111/febs.17055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/04/2023] [Accepted: 01/08/2024] [Indexed: 01/25/2024]
Abstract
Flavin mononucleotide (FMN)-dependent ene-reductases constitute a large family of oxidoreductases that catalyze the enantiospecific reduction of carbon-carbon double bonds. The reducing equivalents required for substrate reduction are obtained from reduced nicotinamide by hydride transfer. Most ene-reductases significantly prefer, or exclusively accept, either NADPH or NADH. Despite their usefulness in biocatalytic applications, the structural determinants for cofactor preference remain elusive. We employed the NADPH-preferring 12-oxophytodienoic acid reductase 3 from Solanum lycopersicum (SlOPR3) as a model enzyme of the ene-reductase family and applied computational and structural methods to investigate the binding specificity of the reducing coenzymes. Initial docking results indicated that the arginine triad R283, R343, and R366 residing on and close to a critical loop at the active site (loop 6) are the main contributors to NADPH binding. In contrast, NADH binds unfavorably in the opposite direction toward the β-hairpin flap within a largely hydrophobic region. Notably, the crystal structures of SlOPR3 in complex with either NADPH4 or NADH4 corroborated these different binding modes. Molecular dynamics simulations confirmed NADH binding near the β-hairpin flap and provided structural explanations for the low binding affinity of NADH to SlOPR3. We postulate that cofactor specificity is determined by the arginine triad/loop 6 and the residue(s) controlling access to a hydrophobic cleft formed by the β-hairpin flap. Thus, NADPH preference depends on a properly positioned arginine triad, whereas granting access to the hydrophobic cleft at the β-hairpin flap favors NADH binding.
Collapse
Affiliation(s)
| | - Massimo G Totaro
- Institute of Biochemistry, Graz University of Technology, Austria
| | - Michael Friess
- Institute of Organic Chemistry, Graz University of Technology, Austria
| | - Rolf Breinbauer
- Institute of Organic Chemistry, Graz University of Technology, Austria
| | | | - Peter Macheroux
- Institute of Biochemistry, Graz University of Technology, Austria
| |
Collapse
|
2
|
Dufault-Thompson K, Levy S, Hall B, Jiang X. Bilirubin reductase shows host-specific associations in animal large intestines. THE ISME JOURNAL 2024; 18:wrae242. [PMID: 39658189 DOI: 10.1093/ismejo/wrae242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 12/02/2024] [Accepted: 12/08/2024] [Indexed: 12/12/2024]
Abstract
Animal gastrointestinal tracts contain diverse metabolites, including various host-derived compounds that gut-associated microbes interact with. Here, we explore the diversity and evolution of bilirubin reductase, a bacterial enzyme that metabolizes the host-derived tetrapyrrole bilirubin, performing a key role in the animal heme degradation pathway. Through an analysis of the bilirubin reductase phylogeny and predicted structures, we found that the enzyme family can be divided into three distinct clades with different structural features. Using these clade definitions, we analyzed metagenomic sequencing data from multiple animal species, finding that bilirubin reductase is significantly enriched in the large intestines of animals and that the clades exhibit differences in distribution among animals. Combined with phylogenetic signal analysis, we find that the bilirubin reductase clades exhibit significant associations with specific animals and animal physiological traits like gastrointestinal anatomy and diet. These patterns demonstrate that bilirubin reductase is specifically adapted to the anoxic lower gut environment of animals and that its evolutionary history is complex, involving adaptation to a diverse collection of animals harboring bilirubin-reducing microbes. The findings suggest that bilirubin reductase evolution has been shaped by the host environment, providing a new perspective on heme metabolism in animals and highlighting the importance of the microbiome in animal physiology and evolution.
Collapse
Affiliation(s)
- Keith Dufault-Thompson
- National Library of Medicine, National Institutes of Health, 8600 Rockville Pike, Bethesda, Maryland 20894, United States
| | - Sophia Levy
- Department of Cell Biology and Molecular Genetics, University of Maryland, 4062 Campus Drive, College Park, Maryland 20742, United States
| | - Brantley Hall
- Department of Cell Biology and Molecular Genetics, University of Maryland, 4062 Campus Drive, College Park, Maryland 20742, United States
- Center for Bioinformatics and Computational Biology, University of Maryland, 8125 Paint Branch Drive, College Park, Maryland 20742, United States
| | - Xiaofang Jiang
- National Library of Medicine, National Institutes of Health, 8600 Rockville Pike, Bethesda, Maryland 20894, United States
| |
Collapse
|
3
|
Singh Y, Sharma R, Mishra M, Verma PK, Saxena AK. Crystal structure of ArOYE6 reveals a novel C‐terminal helical extension and mechanistic insights into the distinct class III OYEs from pathogenic fungi. FEBS J 2022; 289:5531-5550. [DOI: 10.1111/febs.16445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 03/02/2022] [Accepted: 03/18/2022] [Indexed: 11/28/2022]
Affiliation(s)
- Yeshveer Singh
- Plant Immunity Laboratory National Institute of Plant Genome Research New Delhi India
| | - Ruby Sharma
- Rm‐403/440 Structural Biology Laboratory School of Life Science Jawaharlal Nehru University New Delhi India
| | - Manasi Mishra
- Plant Immunity Laboratory National Institute of Plant Genome Research New Delhi India
| | - Praveen Kumar Verma
- Plant Immunity Laboratory National Institute of Plant Genome Research New Delhi India
- Plant Immunity Laboratory School of Life Science Jawaharlal Nehru University New Delhi India
| | - Ajay Kumar Saxena
- Rm‐403/440 Structural Biology Laboratory School of Life Science Jawaharlal Nehru University New Delhi India
| |
Collapse
|
4
|
Zhu TT, Cheng ZH, Yu SS, Li WW, Liu DF, Yu HQ. Unexpected role of electron-transfer hub in direct degradation of pollutants by exoelectrogenic bacteria. Environ Microbiol 2022; 24:1838-1848. [PMID: 35170205 DOI: 10.1111/1462-2920.15939] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 01/28/2022] [Accepted: 02/11/2022] [Indexed: 11/25/2022]
Abstract
Exoelectrogenic bacteria (EEB) are capable of anaerobic respiration with diverse extracellular electron acceptors including insoluble minerals, electrodes and flavins, but the detailed electron transfer pathways and reaction mechanisms remain elusive. Here, we discover that CymA, which is usually considered to solely serve as an inner-membrane electron transfer hub in Shewanella oneidensis MR-1 (a model EEB), might also function as a reductase for direct reducing diverse nitroaromatic compounds (e.g., 2,4-dichloronitrobenzene) and azo dyes. Such a process can be accelerated by dosing anthraquinone-2,6-disulfonate. The CymA-based reduction pathways in S. oneidensis MR-1 for different contaminants could be functionally reconstructed and strengthened in Escherichia coli. The direct reduction of lowly polar contaminants by quinol oxidases like CymA homologs might be universal in diverse microbes. This work offers new insights into the pollutant reduction mechanisms of EEB and unveils a new function of CymA to act as a terminal reductase. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Ting-Ting Zhu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Zhou-Hua Cheng
- School of Life Sciences, University of Science and Technology of China, Hefei, 230026, China
| | - Sheng-Song Yu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Wen-Wei Li
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026, China.,University of Science and Technology of China-City University of Hong Kong Joint Advanced Research Center, Suzhou Institute for Advance Research of USTC, Suzhou, 215123, China
| | - Dong-Feng Liu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026, China.,Anhui Key Laboratory of Sewage Purification and Ecological Rehabilitation Materials, Hefei, 230601, China
| | - Han-Qing Yu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
5
|
Whole-genome sequencing, genome mining, metabolic reconstruction and evolution of pentachlorophenol and other xenobiotic degradation pathways in Bacillus tropicus strain AOA-CPS1. Funct Integr Genomics 2021; 21:171-193. [PMID: 33547987 DOI: 10.1007/s10142-021-00768-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 09/30/2020] [Accepted: 01/19/2021] [Indexed: 12/11/2022]
Abstract
A pentachlorophenol degrading bacterium was isolated from effluent of a wastewater treatment plant in Durban, South Africa, and identified as Bacillus tropicus strain AOA-CPS1 (BtAOA). The isolate degraded 29% of pentachlorophenol (PCP) within 9 days at an initial PCP concentration of 100 mg L-1 and 62% of PCP when the initial concentration was set at 350 mg L-1. The whole-genome of BtAOA was sequenced using Pacific Biosciences RS II sequencer with the Single Molecule, Real-Time (SMRT) Link (version 7.0.1.66975) and analysed using the HGAP4-de-novo assembly application. The contigs were annotated at NCBI, RASTtk and PROKKA prokaryotic genome annotation pipelines. The BtAOA genome is comprised of a 5,246,860-bp chromosome and a 58,449-bp plasmid with a GC content of 35.4%. The metabolic reconstruction for BtAOA showed that the organism has been naturally exposed to various chlorophenolic compounds including PCP and other xenobiotics. The chromosome encodes genes for core processes, stress response and PCP catabolic genes. Analogues of PCP catabolic gene (cpsBDCAE, and p450) sequences were identified from the NCBI annotation data, PCR-amplified from the whole genome of BtAOA, cloned into pET15b expression vector, overexpressed in E. coli BL21 (DE3) expression host, purified and characterized. Sequence mining and comparative analysis of the metabolic reconstruction of the BtAOA genome with closely related strains suggests that the operon encoding the first two enzymes in the PCP degradation pathway were acquired from a pre-existing pterin-carbinolamine dehydratase subsystem. The other two enzymes were recruited via horizontal gene transfer (HGT) from the pool of hypothetical proteins with no previous specific function, while the last enzyme was recruited from pre-existing enzymes from the TCA or serine-glyoxalase cycle via HGT events. This study provides a comprehensive understanding of the role of BtAOA in PCP degradation and its potential exploitation for bioremediation of other xenobiotic compounds.
Collapse
|
6
|
The crystal structure of XdpB, the bacterial old yellow enzyme, in an FMN-free form. PLoS One 2018; 13:e0195299. [PMID: 29630677 PMCID: PMC5891007 DOI: 10.1371/journal.pone.0195299] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 03/20/2018] [Indexed: 11/19/2022] Open
Abstract
Old Yellow Enzymes (OYEs) are NAD(P)H dehydrogenases of not fully resolved physiological roles that are widespread among bacteria, plants, and fungi and have a great potential for biotechnological applications. We determined the apo form crystal structure of a member of the OYE class, glycerol trinitrate reductase XdpB, from Agrobacterium bohemicum R89-1 at 2.1 Å resolution. In agreement with the structures of the related bacterial OYEs, the structure revealed the TIM barrel fold with an N-terminal β-hairpin lid, but surprisingly, the structure did not contain its cofactor FMN. Its putative binding site was occupied by a pentapeptide TTSDN from the C-terminus of a symmetry related molecule. Biochemical experiments confirmed a specific concentration-dependent oligomerization and a low FMN content. The blocking of the FMN binding site can exist in vivo and regulates enzyme activity. Our bioinformatic analysis indicated that a similar self-inhibition could be expected in more OYEs which we designated as subgroup OYE C1. This subgroup is widespread among G-bacteria and can be recognized by the conserved sequence GxxDYP in proximity of the C termini. In proteobacteria, the C1 subgroup OYEs are typically coded in one operon with short-chain dehydrogenase. This operon is controlled by the tetR-like transcriptional regulator. OYEs coded in these operons are unlikely to be involved in the oxidative stress response as the other known members of the OYE family because no upregulation of XdpB was observed after exposing A. bohemicum R89-1 to oxidative stress.
Collapse
|
7
|
Elegheert J, Brigé A, Van Beeumen J, Savvides SN. Structural dissection ofShewanella oneidensisold yellow enzyme 4 bound to a Meisenheimer complex and (nitro)phenolic ligands. FEBS Lett 2017; 591:3391-3401. [DOI: 10.1002/1873-3468.12833] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 08/17/2017] [Accepted: 08/25/2017] [Indexed: 11/08/2022]
Affiliation(s)
- Jonathan Elegheert
- Laboratory for Protein Biochemistry and Biomolecular Engineering (L-ProBE); Department of Biochemistry and Microbiology; Ghent University; Belgium
| | - Ann Brigé
- Laboratory for Protein Biochemistry and Biomolecular Engineering (L-ProBE); Department of Biochemistry and Microbiology; Ghent University; Belgium
- Ablynx NV; Zwijnaarde Belgium
| | - Jozef Van Beeumen
- Laboratory for Protein Biochemistry and Biomolecular Engineering (L-ProBE); Department of Biochemistry and Microbiology; Ghent University; Belgium
| | - Savvas N. Savvides
- Laboratory for Protein Biochemistry and Biomolecular Engineering (L-ProBE); Department of Biochemistry and Microbiology; Ghent University; Belgium
- VIB-UGent Center for Inflammation Research (IRC); Ghent University; Zwijnaarde Belgium
| |
Collapse
|
8
|
Opperman DJ. Structural investigation into the C-terminal extension of the ene-reductase from Ralstonia (Cupriavidus) metallidurans. Proteins 2017; 85:2252-2257. [PMID: 28833623 DOI: 10.1002/prot.25372] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 08/16/2017] [Accepted: 08/18/2017] [Indexed: 01/25/2023]
Abstract
Ene-reductases (ERs), or Old Yellow Enzymes, catalyze the asymmetric reduction of various activated alkenes. This class of biocatalysts is considered an attractive alternative to current chemical technologies for hydrogenation due to their high selectivity and specificity. Here the X-ray crystal structure of RmER, a "thermophilic"-like ER from Ralstonia (Cupriavidus) metallidurans, is reported. Unlike other members of this class of ERs, RmER is monomeric in solution which we previously related to its atypical elongated C-terminus. A typical dimer interface was however observed in our crystal structure, with the conserved Arg-"finger" forming part of the adjacent monomer's active site and the elongated C-terminus extending into the active site through contacting the "capping" domain. This dimerization also resulted in the loss of one FMN cofactor from each dimer pair. This potential transient dimerization and dissociation of FMN could conceivably explain the rapid rates previously observed when an FMN light-driven cofactor regeneration system was used during catalysis with RmER.
Collapse
Affiliation(s)
- Diederik J Opperman
- Department of Biotechnology, University of the Free State, 205 Nelson Mandela Drive, Bloemfontein, 9300, South Africa
| |
Collapse
|
9
|
Waller J, Toogood HS, Karuppiah V, Rattray NJW, Mansell DJ, Leys D, Gardiner JM, Fryszkowska A, Ahmed ST, Bandichhor R, Reddy GP, Scrutton NS. Structural insights into the ene-reductase synthesis of profens. Org Biomol Chem 2017; 15:4440-4448. [PMID: 28485453 DOI: 10.1039/c7ob00163k] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Reduction of double bonds of α,β-unsaturated carboxylic acids and esters by ene-reductases remains challenging and it typically requires activation by a second electron-withdrawing moiety, such as a halide or second carboxylate group. We showed that profen precursors, 2-arylpropenoic acids and their esters, were efficiently reduced by Old Yellow Enzymes (OYEs). The XenA and GYE enzymes showed activity towards acids, while a wider range of enzymes were active towards the equivalent methyl esters. Comparative co-crystal structural analysis of profen-bound OYEs highlighted key interactions important in determining substrate binding in a catalytically active conformation. The general utility of ene reductases for the synthesis of (R)-profens was established and this work will now drive future mutagenesis studies to screen for the production of pharmaceutically-active (S)-profens.
Collapse
Affiliation(s)
- J Waller
- Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester M1 7DN, UK.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Catucci G, Romagnolo A, Spina F, Varese GC, Gilardi G, Di Nardo G. Enzyme-substrate matching in biocatalysis: in silico studies to predict substrate preference of ten putative ene-reductases from Mucor circinelloides MUT44. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.molcatb.2016.06.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
11
|
Horita S, Kataoka M, Kitamura N, Nakagawa T, Miyakawa T, Ohtsuka J, Nagata K, Shimizu S, Tanokura M. An engineered old yellow enzyme that enables efficient synthesis of (4R,6R)-Actinol in a one-pot reduction system. Chembiochem 2015; 16:440-5. [PMID: 25639703 DOI: 10.1002/cbic.201402555] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Indexed: 11/06/2022]
Abstract
(4R,6R)-Actinol can be stereo-selectively synthesized from ketoisophorone by a two-step conversion using a mixture of two enzymes: Candida macedoniensis old yellow enzyme (CmOYE) and Corynebacterium aquaticum (6R)-levodione reductase. However, (4S)-phorenol, an intermediate, accumulates because of the limited substrate range of CmOYE. To address this issue, we solved crystal structures of CmOYE in the presence and absence of a substrate analogue p-HBA, and introduced point mutations into the substrate-recognition loop. The most effective mutant (P295G) showed two- and 12-fold higher catalytic activities toward ketoisophorone and (4S)-phorenol, respectively, than the wild-type, and improved the yield of the two-step conversion from 67.2 to 90.1%. Our results demonstrate that the substrate range of an enzyme can be changed by introducing mutation(s) into a substrate-recognition loop. This method can be applied to the development of other favorable OYEs with different substrate preferences.
Collapse
Affiliation(s)
- Shoichiro Horita
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657 (Japan)
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Spellmon N, Holcomb J, Trescott L, Sirinupong N, Yang Z. Structure and function of SET and MYND domain-containing proteins. Int J Mol Sci 2015; 16:1406-28. [PMID: 25580534 PMCID: PMC4307310 DOI: 10.3390/ijms16011406] [Citation(s) in RCA: 107] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Accepted: 01/05/2015] [Indexed: 12/26/2022] Open
Abstract
SET (Suppressor of variegation, Enhancer of Zeste, Trithorax) and MYND (Myeloid-Nervy-DEAF1) domain-containing proteins (SMYD) have been found to methylate a variety of histone and non-histone targets which contribute to their various roles in cell regulation including chromatin remodeling, transcription, signal transduction, and cell cycle control. During early development, SMYD proteins are believed to act as an epigenetic regulator for myogenesis and cardiomyocyte differentiation as they are abundantly expressed in cardiac and skeletal muscle. SMYD proteins are also of therapeutic interest due to the growing list of carcinomas and cardiovascular diseases linked to SMYD overexpression or dysfunction making them a putative target for drug intervention. This review will examine the biological relevance and gather all of the current structural data of SMYD proteins.
Collapse
Affiliation(s)
- Nicholas Spellmon
- Department of Biochemistry and Molecular Biology, Wayne State University School of Medicine, 540 East Canfield Street, Detroit, MI 48201, USA.
| | - Joshua Holcomb
- Department of Biochemistry and Molecular Biology, Wayne State University School of Medicine, 540 East Canfield Street, Detroit, MI 48201, USA.
| | - Laura Trescott
- Department of Biochemistry and Molecular Biology, Wayne State University School of Medicine, 540 East Canfield Street, Detroit, MI 48201, USA.
| | - Nualpun Sirinupong
- Nutraceuticals and Functional Food Research and Development Center, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand.
| | - Zhe Yang
- Department of Biochemistry and Molecular Biology, Wayne State University School of Medicine, 540 East Canfield Street, Detroit, MI 48201, USA.
| |
Collapse
|
13
|
Golden E, Karton A, Vrielink A. High-resolution structures of cholesterol oxidase in the reduced state provide insights into redox stabilization. ACTA ACUST UNITED AC 2014; 70:3155-66. [PMID: 25478834 DOI: 10.1107/s139900471402286x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 10/17/2014] [Indexed: 01/09/2023]
Abstract
Cholesterol oxidase (CO) is a flavoenzyme that catalyzes the oxidation and isomerization of cholesterol to cholest-4-en-3-one. The reductive half reaction occurs via a hydride transfer from the substrate to the FAD cofactor. The structures of CO reduced with dithionite under aerobic conditions and in the presence of the substrate 2-propanol under both aerobic and anaerobic conditions are presented. The 1.32 Å resolution structure of the dithionite-reduced enzyme reveals a sulfite molecule covalently bound to the FAD cofactor. The isoalloxazine ring system displays a bent structure relative to that of the oxidized enzyme, and alternate conformations of a triad of aromatic residues near to the cofactor are evident. A 1.12 Å resolution anaerobically trapped reduced enzyme structure in the presence of 2-propanol does not show a similar bending of the flavin ring system, but does show alternate conformations of the aromatic triad. Additionally, a significant difference electron-density peak is observed within a covalent-bond distance of N5 of the flavin moiety, suggesting that a hydride-transfer event has occurred as a result of substrate oxidation trapping the flavin in the electron-rich reduced state. The hydride transfer generates a tetrahedral geometry about the flavin N5 atom. High-level density-functional theory calculations were performed to correlate the crystallographic findings with the energetics of this unusual arrangement of the flavin moiety. These calculations suggest that strong hydrogen-bond interactions between Gly120 and the flavin N5 centre may play an important role in these structural features.
Collapse
Affiliation(s)
- Emily Golden
- School of Chemistry and Biochemistry, University of Western Australia, Crawley, Western Australia 6009, Australia
| | - Amir Karton
- School of Chemistry and Biochemistry, University of Western Australia, Crawley, Western Australia 6009, Australia
| | - Alice Vrielink
- School of Chemistry and Biochemistry, University of Western Australia, Crawley, Western Australia 6009, Australia
| |
Collapse
|
14
|
Nizam S, Gazara RK, Verma S, Singh K, Verma PK. Comparative structural modeling of six old yellow enzymes (OYEs) from the necrotrophic fungus Ascochyta rabiei: insight into novel OYE classes with differences in cofactor binding, organization of active site residues and stereopreferences. PLoS One 2014; 9:e95989. [PMID: 24776850 PMCID: PMC4002455 DOI: 10.1371/journal.pone.0095989] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Accepted: 04/02/2014] [Indexed: 11/29/2022] Open
Abstract
Old Yellow Enzyme (OYE1) was the first flavin-dependent enzyme identified and characterized in detail by the entire range of physical techniques. Irrespective of this scrutiny, true physiological role of the enzyme remains a mystery. In a recent study, we systematically identified OYE proteins from various fungi and classified them into three classes viz. Class I, II and III. However, there is no information about the structural organization of Class III OYEs, eukaryotic Class II OYEs and Class I OYEs of filamentous fungi. Ascochyta rabiei, a filamentous phytopathogen which causes Ascochyta blight (AB) in chickpea possesses six OYEs (ArOYE1-6) belonging to the three OYE classes. Here we carried out comparative homology modeling of six ArOYEs representing all the three classes to get an in depth idea of structural and functional aspects of fungal OYEs. The predicted 3D structures of A. rabiei OYEs were refined and evaluated using various validation tools for their structural integrity. Analysis of FMN binding environment of Class III OYE revealed novel residues involved in interaction. The ligand para-hydroxybenzaldehyde (PHB) was docked into the active site of the enzymes and interacting residues were analyzed. We observed a unique active site organization of Class III OYE in comparison to Class I and II OYEs. Subsequently, analysis of stereopreference through structural features of ArOYEs was carried out, suggesting differences in R/S selectivity of these proteins. Therefore, our comparative modeling study provides insights into the FMN binding, active site organization and stereopreference of different classes of ArOYEs and indicates towards functional differences of these enzymes. This study provides the basis for future investigations towards the biochemical and functional characterization of these enigmatic enzymes.
Collapse
Affiliation(s)
- Shadab Nizam
- Plant Immunity Laboratory, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India
| | - Rajesh Kumar Gazara
- Plant Immunity Laboratory, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India
| | - Sandhya Verma
- Plant Immunity Laboratory, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India
| | - Kunal Singh
- Plant Immunity Laboratory, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India
| | - Praveen Kumar Verma
- Plant Immunity Laboratory, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India
- * E-mail:
| |
Collapse
|
15
|
Jiang Y, Trescott L, Holcomb J, Zhang X, Brunzelle J, Sirinupong N, Shi X, Yang Z. Structural insights into estrogen receptor α methylation by histone methyltransferase SMYD2, a cellular event implicated in estrogen signaling regulation. J Mol Biol 2014; 426:3413-25. [PMID: 24594358 DOI: 10.1016/j.jmb.2014.02.019] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2014] [Revised: 02/20/2014] [Accepted: 02/23/2014] [Indexed: 12/13/2022]
Abstract
Estrogen receptor (ER) signaling plays a pivotal role in many developmental processes and has been implicated in numerous diseases including cancers. We recently showed that direct ERα methylation by the multi-specificity histone lysine methyltransferase SMYD2 regulates estrogen signaling through repressing ERα-dependent transactivation. However, the mechanism controlling the specificity of the SMYD2-ERα interaction and the structural basis of SMYD2 substrate binding diversity are unknown. Here we present the crystal structure of SMYD2 in complex with a target lysine (Lys266)-containing ERα peptide. The structure reveals that ERα binds SMYD2 in a U-shaped conformation with the binding specificity determined mainly by residues C-terminal to the target lysine. The structure also reveals numerous intrapeptide contacts that ensure shape complementarity between the substrate and the active site of the enzyme, thereby likely serving as an additional structural determinant of substrate specificity. In addition, comparison of the SMYD2-ERα and SMYD2-p53 structures provides the first structural insight into the diverse nature of SMYD2 substrate recognition and suggests that the broad specificity of SMYD2 is achieved by multiple molecular mechanisms such as distinct peptide binding modes and the intrinsic dynamics of peptide ligands. Strikingly, a novel potentially SMYD2-specific polyethylene glycol binding site is identified in the CTD domain, implicating possible functions in extended substrate binding or protein-protein interactions. Our study thus provides the structural basis for the SMYD2-mediated ERα methylation, and the resulting knowledge of SMYD2 substrate specificity and target binding diversity could have important implications in selective drug design against a wide range of ERα-related diseases.
Collapse
Affiliation(s)
- Yuanyuan Jiang
- Department of Biochemistry and Molecular Biology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Laura Trescott
- Department of Biochemistry and Molecular Biology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Joshua Holcomb
- Department of Biochemistry and Molecular Biology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Xi Zhang
- Department of Biochemistry and Molecular Biology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Center for Cancer Epigenetics, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Joseph Brunzelle
- Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60439, USA
| | - Nualpun Sirinupong
- Nutraceuticals and Functional Food Research and Development Center, Faculty of Agro-Industry, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand
| | - Xiaobing Shi
- Department of Biochemistry and Molecular Biology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Center for Cancer Epigenetics, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Zhe Yang
- Department of Biochemistry and Molecular Biology, Wayne State University School of Medicine, Detroit, MI 48201, USA.
| |
Collapse
|
16
|
Litthauer S, Gargiulo S, van Heerden E, Hollmann F, Opperman D. Heterologous expression and characterization of the ene-reductases from Deinococcus radiodurans and Ralstonia metallidurans. ACTA ACUST UNITED AC 2014. [DOI: 10.1016/j.molcatb.2013.10.020] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
17
|
Oberdorfer G, Binter A, Wallner S, Durchschein K, Hall M, Faber K, Macheroux P, Gruber K. The structure of glycerol trinitrate reductase NerA from Agrobacterium radiobacter reveals the molecular reason for nitro- and ene-reductase activity in OYE homologues. Chembiochem 2013; 14:836-45. [PMID: 23606302 PMCID: PMC3659409 DOI: 10.1002/cbic.201300136] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Indexed: 11/08/2022]
Abstract
In recent years, Old Yellow Enzymes (OYEs) and their homologues have found broad application in the efficient asymmetric hydrogenation of activated C=C bonds with high selectivities and yields. Members of this class of enzymes have been found in many different organisms and are rather diverse on the sequence level, with pairwise identities as low as 20 %, but they exhibit significant structural similarities with the adoption of a conserved (αβ)8-barrel fold. Some OYEs have been shown not only to reduce C=C double bonds, but also to be capable of reducing nitro groups in both saturated and unsaturated substrates. In order to understand this dual activity we determined and analyzed X-ray crystal structures of NerA from Agrobacterium radiobacter, both in its apo form and in complex with 4-hydroxybenzaldehyde and with 1-nitro-2-phenylpropene. These structures, together with spectroscopic studies of substrate binding to several OYEs, indicate that nitro-containing substrates can bind to OYEs in different binding modes, one of which leads to C=C double bond reduction and the other to nitro group reduction.
Collapse
Affiliation(s)
- Gustav Oberdorfer
- ACIB--Austrian Centre of Industrial Biotechnology, Petergasse 14, 8010 Graz, Austria
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Identification of pOENI-1 and related plasmids in Oenococcus oeni strains performing the malolactic fermentation in wine. PLoS One 2012; 7:e49082. [PMID: 23139835 PMCID: PMC3489775 DOI: 10.1371/journal.pone.0049082] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Accepted: 10/04/2012] [Indexed: 12/22/2022] Open
Abstract
Plasmids in lactic acid bacteria occasionally confer adaptive advantages improving the growth and behaviour of their host cells. They are often associated to starter cultures used in the food industry and could be a signature of their superiority. Oenococcus oeni is the main lactic acid bacteria species encountered in wine. It performs the malolactic fermentation that occurs in most wines after alcoholic fermentation and contributes to their quality and stability. Industrial O. oeni starters may be used to better control malolactic fermentation. Starters are selected empirically by virtue of their fermentation kinetics and capacity to survive in wine. This study was initiated with the aim to determine whether O. oeni contains plasmids of technological interest. Screening of 11 starters and 33 laboratory strains revealed two closely related plasmids, named pOENI-1 (18.3-kb) and pOENI-1v2 (21.9-kb). Sequence analyses indicate that they use the theta mode of replication, carry genes of maintenance and replication and two genes possibly involved in wine adaptation encoding a predicted sulphite exporter (tauE) and a NADH:flavin oxidoreductase of the old yellow enzyme family (oye). Interestingly, pOENI-1 and pOENI-1v2 were detected only in four strains, but this included three industrial starters. PCR screenings also revealed that tauE is present in six of the 11 starters, being probably inserted in the chromosome of some strains. Microvinification assays performed using strains with and without plasmids did not disclose significant differences of survival in wine or fermentation kinetics. However, analyses of 95 wines at different phases of winemaking showed that strains carrying the plasmids or the genes tauE and oye were predominant during spontaneous malolactic fermentation. Taken together, the results revealed a family of related plasmids associated with industrial starters and indigenous strains performing spontaneous malolactic fermentation that possibly contribute to the technological performance of strains in wine.
Collapse
|
19
|
Oberdorfer G, Steinkellner G, Stueckler C, Faber K, Gruber K. Stereopreferences of Old Yellow Enzymes: Structure Correlations and Sequence Patterns in Enoate Reductases. ChemCatChem 2011. [DOI: 10.1002/cctc.201100141] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
20
|
Okamoto N, Yamaguchi K, Mizohata E, Tokuoka K, Uchiyama N, Sugiyama S, Matsumura H, Inaka K, Urade Y, Inoue T. Structural insight into the stereoselective production of PGF2α by Old Yellow Enzyme from Trypanosoma cruzi. J Biochem 2011; 150:563-8. [PMID: 21840922 DOI: 10.1093/jb/mvr096] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Old yellow enzyme (OYE) is an NADPH oxidoreductase capable of reducing a variety of compounds. It contains flavin mononucleotide (FMN) as a prosthetic group. A ternary complex structure of OYE from Trypanosoma cruzi (TcOYE) with FMN and one of the substrates, p-hydroxybenzaldehyde, shows a striking movement around the active site upon binding of the substrate. From a structural comparison of other OYE complexed with 12-oxophytodienoate, we have constructed a complex structure with another substrate, prostaglandin H(2) (PGH(2)), to provide a proposed stereoselective reaction mechanism for the reduction of PGH(2) to prostaglandin F(2α) by TcOYE.
Collapse
Affiliation(s)
- Naoki Okamoto
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Yamada-Oka, Suita, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Toogood HS, Fryszkowska A, Hulley M, Sakuma M, Mansell D, Stephens GM, Gardiner JM, Scrutton NS. A site-saturated mutagenesis study of pentaerythritol tetranitrate reductase reveals that residues 181 and 184 influence ligand binding, stereochemistry and reactivity. Chembiochem 2011; 12:738-49. [PMID: 21374779 DOI: 10.1002/cbic.201000662] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2010] [Indexed: 11/09/2022]
Abstract
We have conducted a site-specific saturation mutagenesis study of H181 and H184 of flavoprotein pentaerythritol tetranitrate reductase (PETN reductase) to probe the role of these residues in substrate binding and catalysis with a variety of α,β-unsaturated alkenes. Single mutations at these residues were sufficient to dramatically increase the enantiopurity of products formed by reduction of 2-phenyl-1-nitropropene. In addition, many mutants exhibited a switch in reactivity to predominantly catalyse nitro reduction, as opposed to CC reduction. These mutants showed an enhancement in a minor side reaction and formed 2-phenylpropanal oxime from 2-phenyl-1-nitropropene. The multiple binding conformations of hydroxy substituted nitro-olefins in PETN reductase were examined by using both structural and catalytic techniques. These compounds were found to bind in both active and inhibitory complexes; this highlights the plasticity of the active site and the ability of the H181/H184 couple to coordinate with multiple functional groups. These properties demonstrate the potential to use PETN reductase as a scaffold in the development of industrially useful biocatalysts.
Collapse
Affiliation(s)
- Helen S Toogood
- Faculty of Life Sciences, University of Manchester, 131 Princess Street, Manchester M1 7DN, UK.
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Pauwels E, Declerck R, Verstraelen T, De Sterck B, Kay CWM, Van Speybroeck V, Waroquier M. Influence of Protein Environment on the Electron Paramagnetic Resonance Properties of Flavoprotein Radicals: A QM/MM Study. J Phys Chem B 2010; 114:16655-65. [DOI: 10.1021/jp109763t] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ewald Pauwels
- Center for Molecular Modeling, Ghent University, Technologiepark 903, B-9052 Zwijnaarde, Belgium QCMM - alliance Ghent-Brussels, Belgium, and Institute of Structural and Molecular Biology and London Centre for Nanotechnology, University College London, Gower Street, London WC1E 6BT, United Kingdom
| | - Reinout Declerck
- Center for Molecular Modeling, Ghent University, Technologiepark 903, B-9052 Zwijnaarde, Belgium QCMM - alliance Ghent-Brussels, Belgium, and Institute of Structural and Molecular Biology and London Centre for Nanotechnology, University College London, Gower Street, London WC1E 6BT, United Kingdom
| | - Toon Verstraelen
- Center for Molecular Modeling, Ghent University, Technologiepark 903, B-9052 Zwijnaarde, Belgium QCMM - alliance Ghent-Brussels, Belgium, and Institute of Structural and Molecular Biology and London Centre for Nanotechnology, University College London, Gower Street, London WC1E 6BT, United Kingdom
| | - Bart De Sterck
- Center for Molecular Modeling, Ghent University, Technologiepark 903, B-9052 Zwijnaarde, Belgium QCMM - alliance Ghent-Brussels, Belgium, and Institute of Structural and Molecular Biology and London Centre for Nanotechnology, University College London, Gower Street, London WC1E 6BT, United Kingdom
| | - Christopher W. M. Kay
- Center for Molecular Modeling, Ghent University, Technologiepark 903, B-9052 Zwijnaarde, Belgium QCMM - alliance Ghent-Brussels, Belgium, and Institute of Structural and Molecular Biology and London Centre for Nanotechnology, University College London, Gower Street, London WC1E 6BT, United Kingdom
| | - Veronique Van Speybroeck
- Center for Molecular Modeling, Ghent University, Technologiepark 903, B-9052 Zwijnaarde, Belgium QCMM - alliance Ghent-Brussels, Belgium, and Institute of Structural and Molecular Biology and London Centre for Nanotechnology, University College London, Gower Street, London WC1E 6BT, United Kingdom
| | - Michel Waroquier
- Center for Molecular Modeling, Ghent University, Technologiepark 903, B-9052 Zwijnaarde, Belgium QCMM - alliance Ghent-Brussels, Belgium, and Institute of Structural and Molecular Biology and London Centre for Nanotechnology, University College London, Gower Street, London WC1E 6BT, United Kingdom
| |
Collapse
|
23
|
Toogood H, Gardiner J, Scrutton N. Biocatalytic Reductions and Chemical Versatility of the Old Yellow Enzyme Family of Flavoprotein Oxidoreductases. ChemCatChem 2010. [DOI: 10.1002/cctc.201000094] [Citation(s) in RCA: 250] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
24
|
Opperman DJ, Sewell BT, Litthauer D, Isupov MN, Littlechild JA, van Heerden E. Crystal structure of a thermostable old yellow enzyme from Thermus scotoductus SA-01. Biochem Biophys Res Commun 2010; 393:426-31. [PMID: 20138824 DOI: 10.1016/j.bbrc.2010.02.011] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2010] [Accepted: 02/03/2010] [Indexed: 11/20/2022]
Abstract
Recent characterization of the chromate reductase (CrS) from the thermophile Thermus scotoductus SA-01 revealed this enzyme to be related to the Old Yellow Enzyme (OYE) family. Here, we report the structure of a thermostable OYE homolog in its holoform at 2.2A as well as its complex with p-hydroxybenzaldehyde (pHBA). The enzyme crystallized as octamers with the monomers showing a classical TIM barrel fold which upon dimerization yields the biologically active form of the protein. A sulfate ion is bound above the si-side of the non-covalently bound FMN cofactor in the oxidized solved structure but is displaced upon pHBA binding. The active-site architecture is highly conserved as with other members of this enzyme family. The pHBA in the CrS complex is positioned by hydrogen bonding to the two conserved catalytic-site histidines. The most prominent structural difference between CrS and other OYE homologs is the size of the "capping domain". Thermostabilization of the enzyme is achieved in part through increased proline content within loops and turns as well as increased intersubunit interactions through hydrogen bonding and complex salt bridge networks. CrS is able to reduce the C=C bonds of alpha,beta-unsaturated carbonyl compounds with a preference towards cyclic substrates however no activity was observed towards beta-substituted substrates. Mutational studies have confirmed the role of Tyr177 as the proposed proton donor although reduction could still occur at a reduced rate when this residue was mutated to phenylalanine.
Collapse
Affiliation(s)
- Diederik J Opperman
- Department of Microbial, Biochemical and Food Biotechnology, BioPAD Metagenomics Platform, University of the Free State, Bloemfontein 9300, South Africa
| | | | | | | | | | | |
Collapse
|
25
|
Spiegelhauer O, Mende S, Dickert F, Knauer SH, Ullmann GM, Dobbek H. Cysteine as a modulator residue in the active site of xenobiotic reductase A: a structural, thermodynamic and kinetic study. J Mol Biol 2010; 398:66-82. [PMID: 20206186 DOI: 10.1016/j.jmb.2010.02.044] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2009] [Revised: 02/20/2010] [Accepted: 02/24/2010] [Indexed: 11/18/2022]
Abstract
Xenobiotic reductase A (XenA) from Pseudomonas putida 86 catalyzes the NADH/NADPH-dependent reduction of various substrates, including 2-cyclohexenone and 8-hydroxycoumarin. XenA is a member of the old yellow enzyme (OYE) family of flavoproteins and is structurally and functionally similar to other bacterial members of this enzyme class. A characteristic feature of XenA is the presence of a cysteine residue (Cys25) in the active site, where in most members of the OYE family a threonine residue is found that modulates the reduction potential of the FMN/FMNH(-) couple. We investigated the role of Cys25 by studying two variants in which the residue has been exchanged for a serine and an alanine residue. While the exchange against alanine has a remarkably small effect on the reduction potential, the reactivity and the structure of XenA, the exchange against serine increases the reduction potential by +82 mV, increases the rate constant of the reductive half-reaction and decreases the rate constant in the oxidative half-reaction. We determined six crystal structures at high to true atomic resolution (d(min) 1.03-1.80 A) of the three XenA variants with and without the substrate coumarin bound in the active site. The atomic resolution structure of XenA in complex with coumarin reveals a compressed active site geometry in which the isoalloxazine ring is sandwiched between coumarin and the protein backbone. The structures further reveal that the conformation of the active site and substrate interactions are preserved in the two variants, indicating that the observed changes are due to local effects only. We propose that Cys25 and the residues in its place determine which of the two half-reactions is rate limiting, depending on the substrate couple. This might help to explain why the genome of Pseudomonas putida encodes multiple xenobiotic reductases containing either cysteine, threonine or alanine in the active site.
Collapse
Affiliation(s)
- Olivia Spiegelhauer
- Bioinorganic Chemistry, Universität Bayreuth, Universitätsstrasse 30, 95447 Bayreuth, Germany
| | | | | | | | | | | |
Collapse
|
26
|
Elegheert J, van den Hemel D, Dix I, Stout J, Van Beeumen J, Brigé A, Savvides SN. Towards structural studies of the old yellow enzyme homologue SYE4 from Shewanella oneidensis and its complexes at atomic resolution. Acta Crystallogr Sect F Struct Biol Cryst Commun 2009; 66:85-90. [PMID: 20057079 DOI: 10.1107/s1744309109050386] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2009] [Accepted: 11/23/2009] [Indexed: 11/10/2022]
Abstract
Shewanella oneidensis is an environmentally versatile Gram-negative gamma-proteobacterium that is endowed with an unusually large proteome of redox proteins. Of the four old yellow enzyme (OYE) homologues found in S. oneidensis, SYE4 is the homologue most implicated in resistance to oxidative stress. SYE4 was recombinantly expressed in Escherichia coli, purified and crystallized using the hanging-drop vapour-diffusion method. The crystals belonged to the orthorhombic space group P2(1)2(1)2(1) and were moderately pseudo-merohedrally twinned, emulating a P422 metric symmetry. The native crystals of SYE4 were of exceptional diffraction quality and provided complete data to 1.10 A resolution using synchrotron radiation, while crystals of the reduced enzyme and of the enzyme in complex with a wide range of ligands typically led to high-quality complete data sets to 1.30-1.60 A resolution, thus providing a rare opportunity to dissect the structure-function relationships of a good-sized enzyme (40 kDa) at true atomic resolution. Here, the attainment of a number of experimental milestones in the crystallographic studies of SYE4 and its complexes are reported, including isolation of the elusive hydride-Meisenheimer complex.
Collapse
Affiliation(s)
- Jonathan Elegheert
- Department of Biochemistry and Microbiology, Laboratory for Protein Biochemistry and Biomolecular Engineering (L-ProBE), Ghent University, K. L. Ledeganckstraat 35, 9000 Ghent, Belgium
| | | | | | | | | | | | | |
Collapse
|
27
|
Senda T, Senda M, Kimura S, Ishida T. Redox control of protein conformation in flavoproteins. Antioxid Redox Signal 2009; 11:1741-66. [PMID: 19243237 DOI: 10.1089/ars.2008.2348] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Flavin adenine dinucleotide (FAD) and flavin mononucleotide (FMN) are two flavin prosthetic groups utilized as the redox centers of various proteins. The conformations and chemical properties of these flavins can be affected by their redox states as well as by photoreactions. Thus, proteins containing flavin (flavoproteins) can function not only as redox enzymes, but also as signaling molecules by using the redox- and/or light-dependent changes of the flavin. Redox and light-dependent conformational changes of flavoproteins are critical to many biological signaling systems. In this review, we summarize the molecular mechanisms of the redox-dependent conformational changes of flavoproteins and discuss their relationship to signaling functions. The redox-dependent (or light-excited) changes of flavin and neighboring residues in proteins act as molecular "switches" that "turn on" various conformational changes in proteins, and can be classified into five types. On the basis of the present analysis, we recommend future directions in molecular structural research on flavoproteins and related proteins.
Collapse
Affiliation(s)
- Toshiya Senda
- Biomedicinal Information Research Center, National Institute of Advanced Industrial Science and Technology, Tokyo, Japan.
| | | | | | | |
Collapse
|
28
|
Redundancy of enzymes for formaldehyde detoxification in Pseudomonas putida. J Bacteriol 2009; 191:3367-74. [PMID: 19304846 DOI: 10.1128/jb.00076-09] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pseudomonas putida KT2440 exhibits redundant formaldehyde dehydrogenases and formate dehydrogenases that contribute to the detoxification of formaldehyde, a highly toxic compound. Physical and transcriptional analyses showed that the open reading frame (ORF) PP0328, encoding one of the formaldehyde dehydrogenases, is self-sufficient, whereas the other functional formaldehyde dehydrogenase gene (ORF PP3970) forms an operon with another gene of unknown function. Two formate dehydrogenase gene clusters (PP0489 to PP0492 and PP2183 to PP2186) were identified, and genes in these clusters were found to form operons. All four transcriptional promoters were mapped by primer extension and revealed the presence of noncanonical promoters expressed at basal level in the exponential growth phase and at a higher level in the stationary phase regardless of the presence of extracellular formaldehyde or formate. These promoters were characterized by a 5'-AG-CCA-C/A-CT-3' conserved region between -7 and -16. To determine the contribution of the different gene products to formaldehyde and formate mineralization, mutants with single and double mutations of formaldehyde dehydrogenases were generated, and the effect of the mutations on formaldehyde catabolism was tested by measuring (14)CO(2) evolution from (14)C-labeled formaldehyde. The results showed that both enzymes contributed to formaldehyde catabolism. A double mutant lacking these two enzymes still evolved CO(2) from formaldehyde, suggesting the presence of one or more still-unidentified formaldehyde dehydrogenases. Mutants with single and double mutations in the clusters for formate dehydrogenases were also generated, and all of them were able to metabolize [(14)C]formate to (14)CO(2), suggesting a redundancy of functions that was not limited to only the annotated genes. Single and double mutants deficient in formaldehyde dehydrogenases and formate dehydrogenases exhibited longer lag phases than did the parental strain when confronted with concentrations of formaldehyde close to the MICs. This suggests a role for the detoxification system in tolerance to sublethal concentrations of formaldehyde.
Collapse
|
29
|
Chaparro-Riggers J, Rogers T, Vazquez-Figueroa E, Polizzi K, Bommarius A. Comparison of Three Enoate Reductases and their Potential Use for Biotransformations. Adv Synth Catal 2007. [DOI: 10.1002/adsc.200700074] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|