1
|
Isabelle G, Mohammad FK, Evi Z, Fabienne V, Martine R, Evelyne D. Glutamine transport as a possible regulator of nitrogen catabolite repression in Saccharomyces cerevisiae. Yeast 2022; 39:493-507. [PMID: 35942513 DOI: 10.1002/yea.3809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 07/19/2022] [Accepted: 08/03/2022] [Indexed: 11/08/2022] Open
Abstract
Nitrogen Catabolite Repression (NCR) is a major transcriptional control pathway governing nitrogen use in yeast, with several hundred of target genes identified to date. Early and extensive studies on NCR led to the identification of the 4 GATA zinc finger transcription factors, but the primary mechanism initiating NCR is still unclear up till now. To identify novel players of NCR, we have undertaken a genetic screen in an NCR-relieved gdh1Δ mutant, which led to the identification of four genes directly linked to protein ubiquitylation. Ubiquitylation is an important way of regulating amino acid transporters and our observations being specifically observed in glutamine-containing media, we hypothesized that glutamine transport could be involved in establishing NCR. Stabilization of Gap1 at the plasma membrane restored NCR in gdh1Δ cells and AGP1 (but not GAP1) deletion could relieve repression in the ubiquitylation mutants isolated during the screen. Altogether, our results suggest that deregulated glutamine transporter function in all three weak nitrogen derepressed (wnd) mutants restores the repression of NCR-sensitive genes consecutive to GDH1 deletion. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
| | - Fayyad-Kazan Mohammad
- Université Libre de Bruxelles, Belgium.,Biotechnology Department, American International University (AIU), Saad Al Abdullah, Al Jahra, Kuwait
| | - Zaremba Evi
- Labiris, Brussels, Belgium.,Université Libre de Bruxelles, Belgium
| | | | | | - Dubois Evelyne
- Labiris, Brussels, Belgium.,Université Libre de Bruxelles, Belgium
| |
Collapse
|
2
|
Tate JJ, Marsikova J, Vachova L, Palkova Z, Cooper TG. Effects of abolishing Whi2 on the proteome and nitrogen catabolite repression-sensitive protein production. G3 (BETHESDA, MD.) 2022; 12:jkab432. [PMID: 35100365 PMCID: PMC9210300 DOI: 10.1093/g3journal/jkab432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 12/08/2021] [Indexed: 11/17/2022]
Abstract
In yeast physiology, a commonly used reference condition for many experiments, including those involving nitrogen catabolite repression (NCR), is growth in synthetic complete (SC) medium. Four SC formulations, SCCSH,1990, SCCSH,1994, SCCSH,2005, and SCME, have been used interchangeably as the nitrogen-rich medium of choice [Cold Spring Harbor Yeast Course Manuals (SCCSH) and a formulation in the methods in enzymology (SCME)]. It has been tacitly presumed that all of these formulations support equivalent responses. However, a recent report concluded that (i) TorC1 activity is downregulated by the lower concentration of primarily leucine in SCME relative to SCCSH. (ii) The Whi2-Psr1/2 complex is responsible for this downregulation. TorC1 is a primary nitrogen-responsive regulator in yeast. Among its downstream targets is control of NCR-sensitive transcription activators Gln3 and Gat1. They in turn control production of catabolic transporters and enzymes needed to scavenge poor nitrogen sources (e.g., Proline) and activate autophagy (ATG14). One of the reporters used in Chen et al. was an NCR-sensitive DAL80-GFP promoter fusion. This intrigued us because we expected minimal if any DAL80 expression in SC medium. Therefore, we investigated the source of the Dal80-GFP production and the proteomes of wild-type and whi2Δ cells cultured in SCCSH and SCME. We found a massive and equivalent reorientation of amino acid biosynthetic proteins in both wild-type and whi2Δ cells even though both media contained high overall concentrations of amino acids. Gcn2 appears to play a significant regulatory role in this reorientation. NCR-sensitive DAL80 expression and overall NCR-sensitive protein production were only marginally affected by the whi2Δ. In contrast, the levels of 58 proteins changed by an absolute value of log2 between 3 and 8 when Whi2 was abolished relative to wild type. Surprisingly, with only two exceptions could those proteins be related in GO analyses, i.e., GO terms associated with carbohydrate metabolism and oxidative stress after shifting a whi2Δ from SCCSH to SCME for 6 h. What was conspicuously missing were proteins related by TorC1- and NCR-associated GO terms.
Collapse
Affiliation(s)
- Jennifer J Tate
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Jana Marsikova
- Department of Genetics and Microbiology, Faculty of Science, Charles University, BIOCEV, 128 00 Prague, Czech Republic
| | - Libuse Vachova
- Institute of Microbiology of the Czech Academy of Sciences, BIOCEV, 142 20 Prague, Czech Republic
| | - Zdena Palkova
- Department of Genetics and Microbiology, Faculty of Science, Charles University, BIOCEV, 128 00 Prague, Czech Republic
| | - Terrance G Cooper
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| |
Collapse
|
3
|
Brito AS, Neuhäuser B, Wintjens R, Marini AM, Boeckstaens M. Yeast filamentation signaling is connected to a specific substrate translocation mechanism of the Mep2 transceptor. PLoS Genet 2020; 16:e1008634. [PMID: 32069286 PMCID: PMC7048316 DOI: 10.1371/journal.pgen.1008634] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 02/28/2020] [Accepted: 01/28/2020] [Indexed: 11/18/2022] Open
Abstract
The dimorphic transition from the yeast to the filamentous form of growth allows cells to explore their environment for more suitable niches and is often crucial for the virulence of pathogenic fungi. In contrast to their Mep1/3 paralogues, fungal Mep2-type ammonium transport proteins of the conserved Mep-Amt-Rh family have been assigned an additional receptor role required to trigger the filamentation signal in response to ammonium scarcity. Here, genetic, kinetic and structure-function analyses were used to shed light on the poorly characterized signaling role of Saccharomyces cerevisiae Mep2. We show that Mep2 variants lacking the C-terminal tail conserve the ability to induce filamentation, revealing that signaling can proceed in the absence of exclusive binding of a putative partner to the largest cytosolic domain of the protein. Our data support that filamentation signaling requires the conformational changes accompanying substrate translocation through the pore crossing the hydrophobic core of Mep2. pHluorin reporter assays show that the transport activity of Mep2 and of non-signaling Mep1 differently affect yeast cytosolic pH in vivo, and that the unique pore variant Mep2H194E, with apparent uncoupling of transport and signaling functions, acquires increased ability of acidification. Functional characterization in Xenopus oocytes reveals that Mep2 mediates electroneutral substrate translocation while Mep1 performs electrogenic transport. Our findings highlight that the Mep2-dependent filamentation induction is connected to its specific transport mechanism, suggesting a role of pH in signal mediation. Finally, we show that the signaling process is conserved for the Mep2 protein from the human pathogen Candida albicans. Fungal Mep2-type ammonium transport proteins of the conserved Mep-Amt-Rh family that includes human Rhesus factors are specifically required to allow filamentation in response to ammonium limitation. These proteins were therefore assigned a receptor role while the underlying mechanism of signal transduction remains poorly understood. The “transceptor” property has subsequently been proposed to concern transporters of all kind of micro- and macro- nutrients in eukaryotes, from fungi to human. However, bringing the firm demonstration of their existence remains challenging as variants with full uncoupling of transport and receptor functions are difficult to obtain. Our data question the involvement of the C-terminal extremity of Saccharomyces cerevisiae Mep2 in the signal mediation leading to filamentation. If signaling partners exist, they should also bind to cytosolic loops and/or membrane-embedded domains. The capacity of Mep2 to enable filamentation is closely intertwined to the mechanism of substrate translocation through the pore of the hydrophobic core of the protein. In Xenopus oocytes, the transport activity of non-signaling Mep1 is electrogenic while it is electroneutral for Mep2, the latter likely translocating the weak base NH3, but not the proton released after NH4+ recognition and depronotation. We propose that given consequences of a Mep2-specific transport process, such as an intracellular pH modification, could be the underlying cause of the filamentation signal ensured by Mep2-type proteins.
Collapse
Affiliation(s)
- Ana Sofia Brito
- Biology of Membrane Transport Laboratory, Molecular Biology Department, Université Libre de Bruxelles, Gosselies, Belgium
| | - Benjamin Neuhäuser
- Institute of Crop Science, Nutritional Crop Physiology, University of Hohenheim, Stuttgart, Germany
| | - René Wintjens
- Unité Microbiologie, Chimie Bioorganique et Macromoléculaire, Département RD3, Faculté de Pharmacie, Université Libre de Bruxelles, Brussels, Belgium
| | - Anna Maria Marini
- Biology of Membrane Transport Laboratory, Molecular Biology Department, Université Libre de Bruxelles, Gosselies, Belgium
- * E-mail: (AMM); (MB)
| | - Mélanie Boeckstaens
- Biology of Membrane Transport Laboratory, Molecular Biology Department, Université Libre de Bruxelles, Gosselies, Belgium
- * E-mail: (AMM); (MB)
| |
Collapse
|
4
|
Brito AS, Soto Diaz S, Van Vooren P, Godard P, Marini AM, Boeckstaens M. Pib2-Dependent Feedback Control of the TORC1 Signaling Network by the Npr1 Kinase. iScience 2019; 20:415-433. [PMID: 31622882 PMCID: PMC6817644 DOI: 10.1016/j.isci.2019.09.025] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 05/10/2019] [Accepted: 09/13/2019] [Indexed: 01/21/2023] Open
Abstract
To adjust cell growth and metabolism according to environmental conditions, the conserved TORC1 signaling network controls autophagy, protein synthesis, and turnover. Here, we dissected the signals controlling phosphorylation and activity of the TORC1-effector kinase Npr1, involved in tuning the plasma membrane permeability to nitrogen sources. By evaluating a role of pH as a signal, we show that, although a transient cytosolic acidification accompanies nitrogen source entry and is correlated to a rapid TORC1-dependent phosphorylation of Npr1, a pH drop is not a prerequisite for TORC1 activation. We show that the Gtr1/Gtr2 and Pib2 regulators of TORC1 both independently and differently contribute to regulate Npr1 phosphorylation and activity. Finally, our data reveal that Npr1 mediates nitrogen-dependent phosphorylation of Pib2, as well as a Pib2-dependent inhibition of TORC1. This work highlights a feedback control loop likely enabling efficient downregulation and faster re-activation of TORC1 in response to a novel stimulating signal.
Collapse
Affiliation(s)
- Ana Sofia Brito
- Laboratory of Biology of Membrane Transport, IBMM, Université Libre de Bruxelles, rue des Professeurs Jeener et Brachet 12, 6041 Gosselies, Belgium
| | - Silvia Soto Diaz
- Laboratory of Biology of Membrane Transport, IBMM, Université Libre de Bruxelles, rue des Professeurs Jeener et Brachet 12, 6041 Gosselies, Belgium
| | - Pascale Van Vooren
- Laboratory of Biology of Membrane Transport, IBMM, Université Libre de Bruxelles, rue des Professeurs Jeener et Brachet 12, 6041 Gosselies, Belgium
| | - Patrice Godard
- UCB Pharma, Chemin du Foriest, 1420 Braine-l'Alleud, Belgium
| | - Anna Maria Marini
- Laboratory of Biology of Membrane Transport, IBMM, Université Libre de Bruxelles, rue des Professeurs Jeener et Brachet 12, 6041 Gosselies, Belgium
| | - Mélanie Boeckstaens
- Laboratory of Biology of Membrane Transport, IBMM, Université Libre de Bruxelles, rue des Professeurs Jeener et Brachet 12, 6041 Gosselies, Belgium.
| |
Collapse
|
5
|
Ariz I, Boeckstaens M, Gouveia C, Martins AP, Sanz-Luque E, Fernández E, Soveral G, von Wirén N, Marini AM, Aparicio-Tejo PM, Cruz C. Nitrogen isotope signature evidences ammonium deprotonation as a common transport mechanism for the AMT-Mep-Rh protein superfamily. SCIENCE ADVANCES 2018; 4:eaar3599. [PMID: 30214933 PMCID: PMC6135547 DOI: 10.1126/sciadv.aar3599] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 07/27/2018] [Indexed: 06/08/2023]
Abstract
Ammonium is an important nitrogen (N) source for living organisms, a key metabolite for pH control, and a potent cytotoxic compound. Ammonium is transported by the widespread AMT-Mep-Rh membrane proteins, and despite their significance in physiological processes, the nature of substrate translocation (NH3/NH4+) by the distinct members of this family is still a matter of controversy. Using Saccharomyces cerevisiae cells expressing representative AMT-Mep-Rh ammonium carriers and taking advantage of the natural chemical-physical property of the N isotopic signature linked to NH4+/NH3 conversion, this study shows that only cells expressing AMT-Mep-Rh proteins were depleted in 15N relative to 14N when compared to the external ammonium source. We observed 15N depletion over a wide range of external pH, indicating its independence of NH3 formation in solution. On the basis of inhibitor studies, ammonium transport by nonspecific cation channels did not show isotope fractionation but competition with K+. We propose that kinetic N isotope fractionation is a common feature of AMT-Mep-Rh-type proteins, which favor 14N over 15N, owing to the dissociation of NH4+ into NH3 + H+ in the protein, leading to 15N depletion in the cell and allowing NH3 passage or NH3/H+ cotransport. This deprotonation mechanism explains these proteins' essential functions in environments under a low NH4+/K+ ratio, allowing organisms to specifically scavenge NH4+. We show that 15N isotope fractionation may be used in vivo not only to determine the molecular species being transported by ammonium transport proteins, but also to track ammonium toxicity and associated amino acids excretion.
Collapse
Affiliation(s)
- Idoia Ariz
- Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências da Universidade de Lisboa, 1749-016 Lisboa, Portugal
| | - Mélanie Boeckstaens
- Biology of Membrane Transport, Department of Molecular Biology, Université Libre de Bruxelles, 6041 Gosselies, Belgium
| | - Catarina Gouveia
- Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências da Universidade de Lisboa, 1749-016 Lisboa, Portugal
| | - Ana Paula Martins
- iMed.ULisboa–Research Institute for Medicines, Faculdade de Farmácia da Universidade de Lisboa, 1649-003 Lisboa, Portugal
| | - Emanuel Sanz-Luque
- Department of Biochemistry and Molecular Biology, Univeristy of Córdoba, 14071 Cordoba, Spain
| | - Emilio Fernández
- Department of Biochemistry and Molecular Biology, Univeristy of Córdoba, 14071 Cordoba, Spain
| | - Graça Soveral
- iMed.ULisboa–Research Institute for Medicines, Faculdade de Farmácia da Universidade de Lisboa, 1649-003 Lisboa, Portugal
| | - Nicolaus von Wirén
- Department of Physiology and Cell Biology, Leibniz Institute for Plant Genetics and Crop Plant Research, Seeland, 06466 OT Gatersleben, Germany
| | - Anna M. Marini
- Biology of Membrane Transport, Department of Molecular Biology, Université Libre de Bruxelles, 6041 Gosselies, Belgium
| | | | - Cristina Cruz
- Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências da Universidade de Lisboa, 1749-016 Lisboa, Portugal
| |
Collapse
|
6
|
Varlakhanova NV, Tornabene BA, Ford MGJ. Feedback regulation of TORC1 by its downstream effectors Npr1 and Par32. Mol Biol Cell 2018; 29:2751-2765. [PMID: 30156471 PMCID: PMC6249832 DOI: 10.1091/mbc.e18-03-0158] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
TORC1 (target of rapamycin complex) integrates complex nutrient signals to generate and fine-tune a growth and metabolic response. Npr1 (nitrogen permease reactivator) is a downstream effector kinase of TORC1 that regulates the stability, activity, and trafficking of various nutrient permeases including the ammonium permeases Mep1, Mep2, and Mep3 and the general amino acid permease Gap1. Npr1 exerts its regulatory effects on Mep1 and Mep3 via Par32 (phosphorylated after rapamycin). Activation of Npr1 leads to phosphorylation of Par32, resulting in changes in its subcellular localization and function. Here we demonstrate that Par32 is a positive regulator of TORC1 activity. Loss of Par32 renders cells unable to recover from exposure to rapamycin and reverses the resistance to rapamycin of Δ npr1 cells. The sensitivity to rapamycin of cells lacking Par32 is dependent on Mep1 and Mep3 and the presence of ammonium, linking ammonium metabolism to TORC1 activity. Par32 function requires its conserved repeated glycine-rich motifs to be intact but, surprisingly, does not require its localization to the plasma membrane. In all, this work elucidates a novel mechanism by which Npr1 and Par32 exert regulatory feedback on TORC1.
Collapse
Affiliation(s)
- Natalia V Varlakhanova
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261
| | - Bryan A Tornabene
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261
| | - Marijn G J Ford
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261
| |
Collapse
|
7
|
Wen X, Klionsky DJ. An overview of macroautophagy in yeast. J Mol Biol 2016; 428:1681-99. [PMID: 26908221 DOI: 10.1016/j.jmb.2016.02.021] [Citation(s) in RCA: 191] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 02/15/2016] [Accepted: 02/16/2016] [Indexed: 12/19/2022]
Abstract
Macroautophagy is an evolutionarily conserved dynamic pathway that functions primarily in a degradative manner. A basal level of macroautophagy occurs constitutively, but this process can be further induced in response to various types of stress including starvation, hypoxia and hormonal stimuli. The general principle behind macroautophagy is that cytoplasmic contents can be sequestered within a transient double-membrane organelle, an autophagosome, which subsequently fuses with a lysosome or vacuole (in mammals, or yeast and plants, respectively), allowing for degradation of the cargo followed by recycling of the resulting macromolecules. Through this basic mechanism, macroautophagy has a critical role in cellular homeostasis; however, either insufficient or excessive macroautophagy can seriously compromise cell physiology, and thus, it needs to be properly regulated. In fact, a wide range of diseases are associated with dysregulation of macroautophagy. There has been substantial progress in understanding the regulation and molecular mechanisms of macroautophagy in different organisms; however, many questions concerning some of the most fundamental aspects of macroautophagy remain unresolved. In this review, we summarize current knowledge about macroautophagy mainly in yeast, including the mechanism of autophagosome biogenesis, the function of the core macroautophagic machinery, the regulation of macroautophagy and the process of cargo recognition in selective macroautophagy, with the goal of providing insights into some of the key unanswered questions in this field.
Collapse
Affiliation(s)
- Xin Wen
- Life Sciences Institute and Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Daniel J Klionsky
- Life Sciences Institute and Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
8
|
Fayyad-Kazan M, Feller A, Bodo E, Boeckstaens M, Marini AM, Dubois E, Georis I. Yeast nitrogen catabolite repression is sustained by signals distinct from glutamine and glutamate reservoirs. Mol Microbiol 2015; 99:360-79. [DOI: 10.1111/mmi.13236] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/28/2015] [Indexed: 01/29/2023]
Affiliation(s)
- Mohammad Fayyad-Kazan
- Institut de Recherches Microbiologiques J.-M. Wiame; 1070 Brussels Belgium
- Laboratoire de Biologie du Transport Membranaire; Institut de Biologie et de Médecine Moléculaires; Université Libre de Bruxelles; 6041 Gosselies Belgium
| | - A. Feller
- Institut de Recherches Microbiologiques J.-M. Wiame; 1070 Brussels Belgium
- Laboratoire de Microbiologie; Institut de Biologie et de Médecine Moléculaires; Université Libre de Bruxelles; 6041 Gosselies Belgium
| | - E. Bodo
- Unité de Biotechnologie; 1070 Brussels Belgium
| | - M. Boeckstaens
- Laboratoire de Biologie du Transport Membranaire; Institut de Biologie et de Médecine Moléculaires; Université Libre de Bruxelles; 6041 Gosselies Belgium
| | - A. M. Marini
- Laboratoire de Biologie du Transport Membranaire; Institut de Biologie et de Médecine Moléculaires; Université Libre de Bruxelles; 6041 Gosselies Belgium
| | - E. Dubois
- Institut de Recherches Microbiologiques J.-M. Wiame; 1070 Brussels Belgium
- Laboratoire de Microbiologie; Institut de Biologie et de Médecine Moléculaires; Université Libre de Bruxelles; 6041 Gosselies Belgium
| | - I. Georis
- Institut de Recherches Microbiologiques J.-M. Wiame; 1070 Brussels Belgium
| |
Collapse
|
9
|
The TORC1 effector kinase Npr1 fine tunes the inherent activity of the Mep2 ammonium transport protein. Nat Commun 2015; 5:3101. [PMID: 24476960 DOI: 10.1038/ncomms4101] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Accepted: 12/13/2013] [Indexed: 12/30/2022] Open
Abstract
The TORC1 complex controls cell growth upon integrating nutritional signals including amino-acid availability. TORC1 notably adapts the plasma membrane protein content by regulating arrestin-mediated endocytosis of amino-acid transporters. Here we demonstrate that TORC1 further fine tunes the inherent activity of the ammonium transport protein, Mep2, a yeast homologue of mammalian Rhesus factors, independently of arrestin-mediated endocytosis. The TORC1 effector kinase Npr1 and the upstream TORC1 regulator Npr2 control Mep2 transport activity by phospho-silencing a carboxy-terminal autoinhibitory domain. Under poor nitrogen supply, Npr1 enables Mep2 S457 phosphorylation and thus ammonium transport activity. Supplementation of the preferred nitrogen source glutamine leads to Mep2 inactivation and instant S457 dephosphorylation via plasma membrane Psr1 and Psr2 redundant phosphatases. This study underscores that TORC1 also adjusts nutrient permeability to regulate cell growth in a fast and flexible response to environmental perturbation, establishing a hierarchy in the transporters to be degraded, inactivated or maintained active at the plasma membrane.
Collapse
|
10
|
Boeckstaens M, Merhi A, Llinares E, Van Vooren P, Springael JY, Wintjens R, Marini AM. Identification of a Novel Regulatory Mechanism of Nutrient Transport Controlled by TORC1-Npr1-Amu1/Par32. PLoS Genet 2015; 11:e1005382. [PMID: 26172854 PMCID: PMC4501750 DOI: 10.1371/journal.pgen.1005382] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 06/22/2015] [Indexed: 01/12/2023] Open
Abstract
Fine-tuning the plasma-membrane permeability to essential nutrients is fundamental to cell growth optimization. Nutritional signals including nitrogen availability are integrated by the TORC1 complex which notably regulates arrestin-mediated endocytosis of amino-acid transporters. Ammonium is a ubiquitous compound playing key physiological roles in many, if not all, organisms. In yeast, it is a preferred nitrogen source transported by three Mep proteins which are orthologues of the mammalian Rhesus factors. By combining genetic, kinetic, biochemical and cell microscopy analyses, the current study reveals a novel mechanism enabling TORC1 to regulate the inherent activity of ammonium transport proteins, independently of arrestin-mediated endocytosis, identifying the still functional orphan Amu1/Par32 as a selective regulator intermediate. We show that, under poor nitrogen supply, the TORC1 effector kinase' Npr1' promotes phosphorylation of Amu1/Par32 which appears mainly cytosolic while ammonium transport proteins are active. Upon preferred nitrogen supplementation, like glutamine or ammonium addition, TORC1 upregulation enables Npr1 inhibition and Amu1/Par32 dephosphorylation. In these conditions, as in Npr1-lacking cells, hypophosphorylated Amu1/Par32 accumulates at the cell surface and mediates the inhibition of specific ammonium transport proteins. We show that the integrity of a conserved repeated motif of Amu1/Par32 is required for the interaction with these transport proteins. This study underscores the diversity of strategies enabling TORC1-Npr1 to selectively monitor cell permeability to nutrients by discriminating between transporters to be degraded or transiently inactivated and kept stable at the plasma membrane. This study further identifies the function of Amu1/Par32 in acute control of ammonium transport in response to variations in nitrogen availability. Cells have evolved a variety of mechanisms to control the permeability of the plasma membrane to face environmental perturbations. Transcriptional regulation, endocytosis, gating and activity control of channels and transporters enable global or specific responses to stressful conditions and focused variations in nutrient availability. Emerging data from the yeast model reveal that the conserved TORC1 pathway regulates arrestin-mediated endocytosis of amino-acid transporters. We provide genetic and biochemical evidence for a novel mechanism enabling TORC1 to regulate the inherent activity of transport proteins via the Amu1/Par32 regulator intermediate. This low complexity protein mediates inhibition of specific proteins dedicated to the transport of ammonium, a favored nitrogen source, underscoring that TORC1 selects transporters to be degraded or transiently inactivated and preserved at the cell surface according to the environmental situation. The here-revealed mechanism of transport inhibition by Amu/Par32 is reminiscent to the inhibition of prokaryotic ammonium transport proteins mediated by PII-type proteins, key nitrogen signal transducers widespread in bacteria and Archaea.
Collapse
Affiliation(s)
- Mélanie Boeckstaens
- Biology of Membrane Transport, IBMM, Université Libre de Bruxelles, Gosselies, Belgium
| | - Ahmad Merhi
- Biology of Membrane Transport, IBMM, Université Libre de Bruxelles, Gosselies, Belgium
| | - Elisa Llinares
- Biology of Membrane Transport, IBMM, Université Libre de Bruxelles, Gosselies, Belgium
| | - Pascale Van Vooren
- Biology of Membrane Transport, IBMM, Université Libre de Bruxelles, Gosselies, Belgium
| | | | - René Wintjens
- Laboratoire des Biopolymères et des nanomatériaux supramoléculaires, Université Libre de Bruxelles, Brussels, Belgium
| | - Anna Maria Marini
- Biology of Membrane Transport, IBMM, Université Libre de Bruxelles, Gosselies, Belgium
- * E-mail:
| |
Collapse
|
11
|
Pfannmüller A, Wagner D, Sieber C, Schönig B, Boeckstaens M, Marini AM, Tudzynski B. The General Amino Acid Permease FfGap1 of Fusarium fujikuroi Is Sorted to the Vacuole in a Nitrogen-Dependent, but Npr1 Kinase-Independent Manner. PLoS One 2015; 10:e0125487. [PMID: 25909858 PMCID: PMC4409335 DOI: 10.1371/journal.pone.0125487] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Accepted: 03/14/2015] [Indexed: 12/18/2022] Open
Abstract
The rice pathogenic fungus Fusarium fujikuroi is well known for the production of a broad spectrum of secondary metabolites (SMs) such as gibberellic acids (GAs), mycotoxins and pigments. The biosynthesis of most of these SMs strictly depends on nitrogen availability and of the activity of permeases of nitrogen sources, e.g. the ammonium and amino acid permeases. One of the three ammonium permeases, MepB, was recently shown to act not only as a transporter but also as a nitrogen sensor affecting the production of nitrogen-repressed SMs. Here we describe the identification of a general amino acid permease, FfGap1, among the 99 putative amino acid permeases (AAPs) in the genome of F. fujikuroi. FfGap1 is able to fully restore growth of the yeast gap1∆ mutant on several amino acids including citrulline and tryptophane. In S. cerevisiae, Gap1 activity is regulated by shuttling between the plasma membrane (nitrogen limiting conditions) and the vacuole (nitrogen sufficiency), which we also show for FfGap1. In yeast, the Npr1 serine/threonine kinase stabilizes the Gap1 position at the plasma membrane. Here, we identified and characterized three NPR1-homologous genes, encoding the putative protein kinases FfNpr1-1, FfNpr1-2 and FfNpr1-3 with significant similarity to yeast Npr1. Complementation of the yeast npr1Δ mutant with each of the three F. fujikuroi NPR1 homologues, resulted in partial restoration of ammonium, arginine and proline uptake by FfNPR1-1 while none of the three kinases affect growth on different nitrogen sources and nitrogen-dependent sorting of FfGap1 in F. fujikuroi. However, exchange of the putative ubiquitin-target lysine 9 (K9A) and 15 (K15A) residues of FfGap1 resulted in extended localization to the plasma membrane and increased protein stability independently of nitrogen availability. These data suggest a similar regulation of FfGap1 by nitrogen-dependent ubiquitination, but differences regarding the role of Fusarium Npr1 homologues compared to yeast.
Collapse
Affiliation(s)
- Andreas Pfannmüller
- Institut für Biologie und Biotechnologie der Pflanzen, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - Dominik Wagner
- Institut für Biologie und Biotechnologie der Pflanzen, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - Christian Sieber
- Institute of Bioinformatics and Systems Biology, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Birgit Schönig
- Institut für Biologie und Biotechnologie der Pflanzen, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - Mélanie Boeckstaens
- Laboratoire de Biologie du Transport Membranaire, Institut de Biologie et de Médecine Moléculaires, Université Libre de Bruxelles, Gosselies, Belgium
| | - Anna Maria Marini
- Laboratoire de Biologie du Transport Membranaire, Institut de Biologie et de Médecine Moléculaires, Université Libre de Bruxelles, Gosselies, Belgium
| | - Bettina Tudzynski
- Institut für Biologie und Biotechnologie der Pflanzen, Westfälische Wilhelms-Universität Münster, Münster, Germany
| |
Collapse
|
12
|
Dunkel N, Biswas K, Hiller E, Fellenberg K, Satheesh SV, Rupp S, Morschhäuser J. Control of morphogenesis, protease secretion and gene expression in Candida albicans by the preferred nitrogen source ammonium. MICROBIOLOGY-SGM 2014; 160:1599-1608. [PMID: 24841705 DOI: 10.1099/mic.0.078238-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Micro-organisms sense the availability of nutrients in their environment to control cellular behaviour and the expression of transporters and enzymes that are required for the utilization of these nutrients. In the pathogenic yeast Candida albicans, the preferred nitrogen source ammonium suppresses the switch from yeast to filamentous growth in response to certain stimuli, and it also represses the secretion of proteases, which are required for the utilization of proteins as an alternative nitrogen source. To investigate whether C. albicans senses the availability of ammonium in the extracellular environment or if ammonium uptake into the cell is required to regulate morphogenesis and gene expression, we compared the behaviour of wild-type cells and ammonium uptake-deficient mutants in the presence and absence of extracellular ammonium. Arginine-induced filamentous growth was suppressed by ammonium in the wild-type, but not in mutants lacking the ammonium permeases Mep1 and Mep2. Similarly, ammonium suppressed protease secretion and extracellular protein degradation in the wild-type, but not in mutants lacking the ammonium transporters. By comparing the gene expression profiles of C. albicans grown in the presence of low or high ammonium concentrations, we identified a set of genes whose expression is controlled by nitrogen availability. The repression of genes involved in the utilization of alternative nitrogen sources, which occurred under ammonium-replete conditions in the wild-type, was abrogated in mep1Δ mep2Δ mutants. These results demonstrate that C. albicans does not respond to the presence of sufficient amounts of the preferred nitrogen source ammonium by sensing its availability in the environment. Instead, ammonium has to be taken up into the cell to control morphogenesis, protease secretion and gene expression.
Collapse
Affiliation(s)
- Nico Dunkel
- Institut für Molekulare Infektionsbiologie, Universität Würzburg, Josef-Schneider-Str. 2, D-97080 Würzburg, Germany
| | - Kajal Biswas
- Institut für Molekulare Infektionsbiologie, Universität Würzburg, Josef-Schneider-Str. 2, D-97080 Würzburg, Germany
| | - Ekkehard Hiller
- Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik, Nobelstrasse 12, D-70569 Stuttgart, Germany
| | - Kurt Fellenberg
- Forschungszentrum Borstel, Parkallee 30, D-23845 Borstel, Germany
| | - Somisetty V Satheesh
- Institut für Molekulare Infektionsbiologie, Universität Würzburg, Josef-Schneider-Str. 2, D-97080 Würzburg, Germany
| | - Steffen Rupp
- Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik, Nobelstrasse 12, D-70569 Stuttgart, Germany
| | - Joachim Morschhäuser
- Institut für Molekulare Infektionsbiologie, Universität Würzburg, Josef-Schneider-Str. 2, D-97080 Würzburg, Germany
| |
Collapse
|
13
|
Bai L, Ma X, Zhang G, Song S, Zhou Y, Gao L, Miao Y, Song CP. A Receptor-Like Kinase Mediates Ammonium Homeostasis and Is Important for the Polar Growth of Root Hairs in Arabidopsis. THE PLANT CELL 2014; 26:1497-1511. [PMID: 24769480 PMCID: PMC4036567 DOI: 10.1105/tpc.114.124586] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Revised: 03/30/2014] [Accepted: 04/09/2014] [Indexed: 05/19/2023]
Abstract
Ammonium (NH4+) is both a necessary nutrient and an important signal in plants, but can be toxic in excess. Ammonium sensing and regulatory mechanisms in plant cells have not been fully elucidated. To decipher the complex network of NH4+ signaling, we analyzed [Ca2+]cyt-associated protein kinase (CAP) genes, which encode signaling components that undergo marked changes in transcription levels in response to various stressors. We demonstrated that CAP1, a tonoplast-localized receptor-like kinase, regulates root hair tip growth by maintaining cytoplasmic Ca2+ gradients. A CAP1 knockout mutant (cap1-1) produced elevated levels of cytoplasmic NH4+. Furthermore, root hair growth of cap1-1 was inhibited on Murashige and Skoog medium, but NH4+ depletion reestablished the Ca2+ gradient necessary for normal growth. The lower net NH4+ influx across the vacuolar membrane and relatively alkaline cytosolic pH of cap1-1 root hairs implied that mutation of CAP1 increased NH4+ accumulation in the cytoplasm. Furthermore, CAP1 functionally complemented the npr1 (nitrogen permease reactivator protein) kinase yeast mutant, which is defective in high-affinity NH4+ uptake via MEP2 (methylammonium permease 2), distinguishing CAP1 as a cytosolic modulator of NH4+ levels that participates in NH4+ homeostasis-regulated root hair growth by modulating tip-focused cytoplasmic Ca2+ gradients.
Collapse
Affiliation(s)
- Ling Bai
- Institute of Plant Stress Biology, State Key Laboratory of Cotton Biology, Department of Biology, Henan University, Kaifeng 475001, China
| | - Xiaonan Ma
- Institute of Plant Stress Biology, State Key Laboratory of Cotton Biology, Department of Biology, Henan University, Kaifeng 475001, China
| | - Guozeng Zhang
- Institute of Plant Stress Biology, State Key Laboratory of Cotton Biology, Department of Biology, Henan University, Kaifeng 475001, China
| | - Shufei Song
- Institute of Plant Stress Biology, State Key Laboratory of Cotton Biology, Department of Biology, Henan University, Kaifeng 475001, China
| | - Yun Zhou
- Institute of Plant Stress Biology, State Key Laboratory of Cotton Biology, Department of Biology, Henan University, Kaifeng 475001, China
| | - Lijie Gao
- Institute of Plant Stress Biology, State Key Laboratory of Cotton Biology, Department of Biology, Henan University, Kaifeng 475001, China
| | - Yuchen Miao
- Institute of Plant Stress Biology, State Key Laboratory of Cotton Biology, Department of Biology, Henan University, Kaifeng 475001, China
| | - Chun-Peng Song
- Institute of Plant Stress Biology, State Key Laboratory of Cotton Biology, Department of Biology, Henan University, Kaifeng 475001, China
| |
Collapse
|
14
|
Fayyadkazan M, Tate JJ, Vierendeels F, Cooper TG, Dubois E, Georis I. Components of Golgi-to-vacuole trafficking are required for nitrogen- and TORC1-responsive regulation of the yeast GATA factors. Microbiologyopen 2014; 3:271-87. [PMID: 24644271 PMCID: PMC4082702 DOI: 10.1002/mbo3.168] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Revised: 01/20/2014] [Accepted: 01/27/2014] [Indexed: 01/18/2023] Open
Abstract
Nitrogen catabolite repression (NCR) is the regulatory pathway through which Saccharomyces cerevisiae responds to the available nitrogen status and selectively utilizes rich nitrogen sources in preference to poor ones. Expression of NCR-sensitive genes is mediated by two transcription activators, Gln3 and Gat1, in response to provision of a poorly used nitrogen source or following treatment with the TORC1 inhibitor, rapamycin. During nitrogen excess, the transcription activators are sequestered in the cytoplasm in a Ure2-dependent fashion. Here, we show that Vps components are required for Gln3 localization and function in response to rapamycin treatment when cells are grown in defined yeast nitrogen base but not in complex yeast peptone dextrose medium. On the other hand, Gat1 function was altered in vps mutants in all conditions tested. A significant fraction of Gat1, like Gln3, is associated with light intracellular membranes. Further, our results are consistent with the possibility that Ure2 might function downstream of the Vps components during the control of GATA factor-mediated gene expression. These observations demonstrate distinct media-dependent requirements of vesicular trafficking components for wild-type responses of GATA factor localization and function. As a result, the current model describing participation of Vps system components in events associated with translocation of Gln3 into the nucleus following rapamycin treatment or growth in nitrogen-poor medium requires modification.
Collapse
Affiliation(s)
- Mohammad Fayyadkazan
- Institut de Recherches Microbiologiques J.-M. Wiame, Laboratoire de Microbiologie, Université Libre de Bruxelles, 1070, Brussels, Belgium; Laboratoire de Biologie du Transport Membranaire, Institut de Biologie et de Médecine Moléculaires, Université Libre de Bruxelles, 6041, Gosselies, Belgium
| | | | | | | | | | | |
Collapse
|
15
|
Bai L, Zhou Y, Ma X, Gao L, Song CP. Arabidopsis CAP1-mediated ammonium sensing required reactive oxygen species in plant cell growth. PLANT SIGNALING & BEHAVIOR 2014; 9:e29582. [PMID: 25763633 PMCID: PMC4205142 DOI: 10.4161/psb.29582] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Revised: 06/13/2014] [Accepted: 06/13/2014] [Indexed: 05/24/2023]
Abstract
[Ca(2+)]cyt-associated protein kinase (CAP) gene 1 is a receptor-like kinase that belongs to CrRLK1L (Catharanthus roseus Receptor like kinase) subfamily. CAP1 has been identified as a novel modulator of NH4(+) in the tonoplast, which regulates root hair growth by maintaining the cytoplasmic Ca(2+) gradients. Different expression pattern of tonoplast intrinsic protein (TIP2;3) in the CAP1 knock out mutant and wild type on Murashige and Skoog (MS) medium suggested that CAP1 influences transport activity to regulate the compartmentalization of NH4(+) into vacuole. Lower expression level of Oxidative Signal-Inducible1(OXI1) in the cap1-1 root and the abnormal reactive oxygen species (ROS) gradient in root hair of cap1-1 on MS medium indicated that ROS signaling involve in CAP1-regulated root hair growth. Wild-type-like ROS distribution pattern in the cap1-1 root hair can be reestablished in seedlings grown on NH4(+) deficient medium, which indicated that CAP1 functions as a sensor for NH4(+) signaling in maintaining tip-focused ROS gradient in root hairs polar growth.
Collapse
|
16
|
Nitrogen-dependent calcineurin activation in the yeast Hansenula polymorpha. Fungal Genet Biol 2013; 53:34-41. [PMID: 23403359 DOI: 10.1016/j.fgb.2013.01.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Revised: 01/25/2013] [Accepted: 01/28/2013] [Indexed: 11/23/2022]
Abstract
Non-preferred nitrogen sources, unlike preferred ones, raised total cell Ca(2+) content and expression of ENA1, a very well-known calcineurin-regulated gene. This indicates calcineurin activation is regulated by nitrogen source. Nitrogen catabolite repression (NCR) and nitrate induction mechanisms, both regulating nitrate assimilation in Hansenula polymorpha, are controlled by calcineurin. Concerning NCR, lack of calcineurin (cnb1 mutant) decreased nitrate-assimilation gene expression, levels of the transcription factor Gat1 and growth in several nitrogen sources. We found that the role of calcineurin in NCR was mediated by Crz1 via Gat1. Regarding nitrate induction, calcineurin also affects the levels of transcription factors Gat2 and Yna2 involved in this process. We conclude that Ca(2+) and calcineurin play a central role in nitrogen signalling and assimilation. Thus, the nitrogen source modulates Ca(2+) content and calcineurin activation. Calcineurin in turn regulates nitrogen assimilation genes.
Collapse
|
17
|
Regulation of amino acid, nucleotide, and phosphate metabolism in Saccharomyces cerevisiae. Genetics 2012; 190:885-929. [PMID: 22419079 DOI: 10.1534/genetics.111.133306] [Citation(s) in RCA: 365] [Impact Index Per Article: 28.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Ever since the beginning of biochemical analysis, yeast has been a pioneering model for studying the regulation of eukaryotic metabolism. During the last three decades, the combination of powerful yeast genetics and genome-wide approaches has led to a more integrated view of metabolic regulation. Multiple layers of regulation, from suprapathway control to individual gene responses, have been discovered. Constitutive and dedicated systems that are critical in sensing of the intra- and extracellular environment have been identified, and there is a growing awareness of their involvement in the highly regulated intracellular compartmentalization of proteins and metabolites. This review focuses on recent developments in the field of amino acid, nucleotide, and phosphate metabolism and provides illustrative examples of how yeast cells combine a variety of mechanisms to achieve coordinated regulation of multiple metabolic pathways. Importantly, common schemes have emerged, which reveal mechanisms conserved among various pathways, such as those involved in metabolite sensing and transcriptional regulation by noncoding RNAs or by metabolic intermediates. Thanks to the remarkable sophistication offered by the yeast experimental system, a picture of the intimate connections between the metabolomic and the transcriptome is becoming clear.
Collapse
|
18
|
Harsch MJ, Gardner RC. Yeast genes involved in sulfur and nitrogen metabolism affect the production of volatile thiols from Sauvignon Blanc musts. Appl Microbiol Biotechnol 2012; 97:223-35. [PMID: 22684328 DOI: 10.1007/s00253-012-4198-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2012] [Revised: 05/19/2012] [Accepted: 05/21/2012] [Indexed: 11/27/2022]
Abstract
Two volatile thiols, 3-mercaptohexan-1-ol (3MH), and 3-mercaptohexyl-acetate (3MHA), reminiscent of grapefruit and passion fruit respectively, are critical varietal aroma compounds in Sauvignon Blanc (SB) wines. These aromatic thiols are not present in the grape juice but are synthesized and released by the yeast during alcoholic fermentation. Single deletion mutants of 67 candidate genes in a laboratory strain of Saccharomyces cerevisiae were screened using gas chromatography mass spectrometry for their thiol production after fermentation of SB grape juice. None of the deletions abolished production of the two volatile thiols. However, deletion of 17 genes caused increases or decreases in production by as much as twofold. These 17 genes, mostly related to sulfur and nitrogen metabolism in yeast, may act by altering the regulation of the pathway(s) of thiol production or altering substrate supply. Deleting subsets of these genes in a wine yeast strain gave similar results to the laboratory strain for sulfur pathway genes but showed strain differences for genes involved in nitrogen metabolism. The addition of two nitrogen sources, urea and di-ammonium phosphate, as well as two sulfur compounds, cysteine and S-ethyl-L-cysteine, increased 3MH and 3MHA concentrations in the final wines. Collectively these results suggest that sulfur and nitrogen metabolism are important in regulating the synthesis of 3MH and 3MHA during yeast fermentation of grape juice.
Collapse
Affiliation(s)
- Michael J Harsch
- School of Biological Sciences, University of Auckland, Private Bag, 92019, Auckland, New Zealand.
| | | |
Collapse
|
19
|
Brückner S, Mösch HU. Choosing the right lifestyle: adhesion and development in Saccharomyces cerevisiae. FEMS Microbiol Rev 2011; 36:25-58. [PMID: 21521246 DOI: 10.1111/j.1574-6976.2011.00275.x] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The budding yeast Saccharomyces cerevisiae is a eukaryotic microorganism that is able to choose between different unicellular and multicellular lifestyles. The potential of individual yeast cells to switch between different growth modes is advantageous for optimal dissemination, protection and substrate colonization at the population level. A crucial step in lifestyle adaptation is the control of self- and foreign adhesion. For this purpose, S. cerevisiae contains a set of cell wall-associated proteins, which confer adhesion to diverse biotic and abiotic surfaces. Here, we provide an overview of different aspects of S. cerevisiae adhesion, including a detailed description of known lifestyles, recent insights into adhesin structure and function and an outline of the complex regulatory network for adhesin gene regulation. Our review shows that S. cerevisiae is a model system suitable for studying not only the mechanisms and regulation of cell adhesion, but also the role of this process in microbial development, ecology and evolution.
Collapse
Affiliation(s)
- Stefan Brückner
- Department of Genetics, Philipps-Universität Marburg, Marburg, Germany
| | | |
Collapse
|
20
|
Role of the Npr1 kinase in ammonium transport and signaling by the ammonium permease Mep2 in Candida albicans. EUKARYOTIC CELL 2011; 10:332-42. [PMID: 21278231 DOI: 10.1128/ec.00293-10] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The ammonium permease Mep2 induces a switch from unicellular yeast to filamentous growth in response to nitrogen limitation in Saccharomyces cerevisiae and Candida albicans. In S. cerevisiae, the function of Mep2 and other ammonium permeases depends on the protein kinase Npr1. Mutants lacking NPR1 cannot grow on low concentrations of ammonium and do not filament under limiting nitrogen conditions. A G349C mutation in Mep2 renders the protein independent of Npr1 and results in increased ammonium transport and hyperfilamentous growth, suggesting that the signaling activity of Mep2 directly correlates with its ammonium transport activity. In this study, we investigated the role of Npr1 in ammonium transport and Mep2-mediated filamentation in C. albicans. We found that the two ammonium permeases Mep1 and Mep2 of C. albicans differ in their dependency on Npr1. While Mep1 could function well in the absence of the Npr1 kinase, ammonium transport by Mep2 was virtually abolished in npr1Δ mutants. However, the dependence of Mep2 activity on Npr1 was relieved at higher temperatures (37°C), and Mep2 could efficiently induce filamentous growth under limiting nitrogen conditions in npr1Δ mutants. Like in S. cerevisiae, mutation of the conserved glycine at position 343 in Mep2 of C. albicans to cysteine resulted in Npr1-independent ammonium uptake. In striking contrast, however, the mutation abolished the ability of Mep2 to induce filamentous growth both in the wild type and in npr1Δ mutants. Therefore, a mutation that improves ammonium transport by Mep2 under nonpermissible conditions eliminates its signaling activity in C. albicans.
Collapse
|
21
|
The yeast GATA factor Gat1 occupies a central position in nitrogen catabolite repression-sensitive gene activation. Mol Cell Biol 2009; 29:3803-15. [PMID: 19380492 DOI: 10.1128/mcb.00399-09] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Saccharomyces cerevisiae cells are able to adapt their metabolism according to the quality of the nitrogen sources available in the environment. Nitrogen catabolite repression (NCR) restrains the yeast's capacity to use poor nitrogen sources when rich ones are available. NCR-sensitive expression is modulated by the synchronized action of four DNA-binding GATA factors. Although the first identified GATA factor, Gln3, was considered the major activator of NCR-sensitive gene expression, our work positions Gat1 as a key factor for the integrated control of NCR in yeast for the following reasons: (i) Gat1 appeared to be the limiting factor for NCR gene expression, (ii) GAT1 expression was regulated by the four GATA factors in response to nitrogen availability, (iii) the two negative GATA factors Dal80 and Gzf3 interfered with Gat1 binding to DNA, and (iv) Gln3 binding to some NCR promoters required Gat1. Our study also provides mechanistic insights into the mode of action of the two negative GATA factors. Gzf3 interfered with Gat1 by nuclear sequestration and by competition at its own promoter. Dal80-dependent repression of NCR-sensitive gene expression occurred at three possible levels: Dal80 represses GAT1 expression, it competes with Gat1 for binding, and it directly represses NCR gene transcription.
Collapse
|
22
|
Abstract
Yeast cells sense the amount and quality of external nutrients through multiple interconnected signaling networks, which allow them to adjust their metabolism, transcriptional profile and developmental program to adapt readily and appropriately to changing nutritional states. We present our current understanding of the nutritional sensing networks yeast cells rely on for perceiving the nutritional landscape, with particular emphasis on those sensitive to carbon and nitrogen sources. We describe the means by which these networks inform the cell's decision among the different developmental programs available to them-growth, quiescence, filamentous development, or meiosis/sporulation. We conclude that the highly interconnected signaling networks provide the cell with a highly nuanced view of the environment and that the cell can interpret that information through a sophisticated calculus to achieve optimum responses to any nutritional condition.
Collapse
Affiliation(s)
- Shadia Zaman
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA
| | | | | | | |
Collapse
|
23
|
Cardona F, Aranda A, del Olmo M. Ubiquitin ligase Rsp5p is involved in the gene expression changes during nutrient limitation in Saccharomyces cerevisiae. Yeast 2009; 26:1-15. [PMID: 19180642 DOI: 10.1002/yea.1645] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Rsp5p is an essential ubiquitin ligase involved in many different cellular events, including amino acid transporters degradation, transcription initiation and mRNA export. It plays important role in both stress resistance and adaptation to the change of nutrients. We have found that ubiquitination machinery is necessary for the correct induction of the stress response SPI1 gene at the entry of the stationary phase. SPI1 is a gene whose expression is regulated by the nutritional status of the cell and whose deletion causes hypersensitivity to various stresses, such as heat shock, alkaline stress and oxidative stress. Its regulation is mastered by Rsp5p, as mutations in this gene lead to a lower SPI1 expression. In this process, Rsp5p is helped by several proteins, such as Rsp5p-interacting proteins Bul1p/2p, the ubiquitin conjugating protein Ubc1p and ubiquitin proteases Ubp4p and Ubp16p. Moreover, a mutation in the RSP5 gene has a global effect at the gene expression level when cells enter the stationary phase. Rsp5p particularly controls the levels of the ribosomal proteins mRNAs at this stage. Rsp5p is also necessary for a correct induction of p-bodies under stress conditions, indicating that this protein plays an important role in the post-transcriptional fate of mRNA under nutrient starvation.
Collapse
Affiliation(s)
- F Cardona
- Department of Biochemistry and Molecular Biology, University of Valencia, Spain
| | | | | |
Collapse
|
24
|
Nitrogen catabolite repression-sensitive transcription as a readout of Tor pathway regulation: the genetic background, reporter gene and GATA factor assayed determine the outcomes. Genetics 2008; 181:861-74. [PMID: 19104072 DOI: 10.1534/genetics.108.099051] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Nitrogen catabolite repression (NCR)-sensitive genes, whose expression is highly repressed when provided with excess nitrogen and derepressed when nitrogen is limited or cells are treated with rapamycin, are routinely used as reporters in mechanistic studies of the Tor signal transduction pathway in Saccharomyces cerevisiae. Two GATA factors, Gln3 and Gat1, are responsible for NCR-sensitive transcription, but recent evidence demonstrates that Tor pathway regulation of NCR-sensitive transcription bifurcates at the level of GATA factor localization. Gln3 requires Sit4 phosphatase for nuclear localization and NCR-sensitive transcription while Gat1 does not. In this article, we demonstrate that the extent to which Sit4 plays a role in NCR-sensitive transcription depends upon whether or not (i) Gzf3, a GATA repressor homologous to Dal80, is active in the genetic background assayed; (ii) Gat1 is able to activate transcription of the assayed gene in the absence of Gln3 in that genetic background; and (iii) the gene chosen as a reporter is able to be transcribed by Gln3 or Gat1 in the absence of the other GATA factor. Together, the data indicate that in the absence of these three pieces of information, overall NCR-sensitive gene transcription data are unreliable as Tor pathway readouts.
Collapse
|
25
|
Georis I, Tate JJ, Cooper TG, Dubois E. Tor pathway control of the nitrogen-responsive DAL5 gene bifurcates at the level of Gln3 and Gat1 regulation in Saccharomyces cerevisiae. J Biol Chem 2008; 283:8919-29. [PMID: 18245087 DOI: 10.1074/jbc.m708811200] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The Tor1,2 protein kinases globally influence many cellular processes including nitrogen-responsive gene expression that correlates with intracellular localization of GATA transcription activators Gln3 and Gat1/Nil1. Gln3-Myc(13) and Gat1-Myc(13) are restricted to the cytoplasm of cells provided with good nitrogen sources, e.g. glutamine. Following the addition of the Tor1,2 inhibitor, rapamycin, both transcription factors relocate to the nucleus. Gln3-Myc(13) localization is highly dependent upon Ure2 and type 2A-related phosphatase, Sit4. Ure2 is required for Gln3 to be restricted to the cytoplasm of cells provided with good nitrogen sources, and Sit4 is required for its location to the nucleus following rapamycin treatment. The paucity of analogous information concerning Gat1 regulation prompted us to investigate the effects of deleting SIT4 and URE2 on Gat1-Myc(13) localization, DNA binding, and NCR-sensitive transcription. Our data demonstrate that Tor pathway control of NCR-responsive transcription bifurcates at the regulation of Gln3 and Gat1. Gat1-Myc(13) localization is not strongly influenced by deleting URE2, nor is its nuclear targeting following rapamycin treatment strongly dependent on Sit4. ChIP experiments demonstrated that Gat1-Myc(13) can bind to the DAL5 promoter in the absence of Gln3. Gln3-Myc(13), on the other hand, cannot bind to DAL5 in the absence of Gat1. We conclude that: (i) Tor pathway regulation of Gat1 differs markedly from that of Gln3, (ii) nuclear targeting of Gln3-Myc(13) is alone insufficient for its recruitment to the DAL5 promoter, and (iii) the Tor pathway continues to play an important regulatory role in NCR-sensitive transcription even after Gln3-Myc(13) is localized to the nucleus.
Collapse
Affiliation(s)
- Isabelle Georis
- Institut de Recherches Microbiologiques J.-M. Wiame, Laboratoire de Microbiologie Université Libre de Bruxelles, B1070 Brussels, Belgium
| | | | | | | |
Collapse
|
26
|
Boeckstaens M, André B, Marini AM. The yeast ammonium transport protein Mep2 and its positive regulator, the Npr1 kinase, play an important role in normal and pseudohyphal growth on various nitrogen media through retrieval of excreted ammonium. Mol Microbiol 2007; 64:534-46. [PMID: 17493133 DOI: 10.1111/j.1365-2958.2007.05681.x] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Three ammonium transport systems of the Mep/Amt/Rh superfamily contribute to ammonium uptake for use as a nitrogen source in Saccharomyces cerevisiae. A specific sensor role has further been proposed for Mep2 in the stimulation of pseudohyphal development during ammonium limitation. Optimal ammonium transport by the Mep proteins requires the Npr1 kinase, a potential target of the target-of-rapamycin signalling pathway. We show here that the growth impairment of cells lacking Npr1 on many nitrogen sources is shared by cells deprived of the three Mep proteins and is a consequence of deficient ammonium retrieval. Expression of a newly isolated Npr1-independent and hyperactive Mep2 in cells lacking Npr1 and/or the Mep proteins restores growth on low ammonium but also on other nitrogen sources. This hyperactive Mep2 variant efficiently counteracts ammonium excretion. Hence, ammonium uptake activity plays an important role in compensating for leakage of catabolic ammonium. Our data also reveal that the requirement of Npr1 for ammonium-induced pseudohyphal growth is an indirect consequence of its necessity for Mep2-mediated ammonium transport. Finally, we show that Mep2 participates, through ammonium leakage compensation, in pseudohyphal growth induced by amino acid starvation. This argues further in favour of tight coupling of Mep2 transport and sensor functions.
Collapse
Affiliation(s)
- Mélanie Boeckstaens
- Laboratoire de Physiologie Moléculaire de la Cellule, Institut de Biologie et de Médecine Moléculaires, Université Libre de Bruxelles CP300, Rue des Professeurs Jeener et Brachet 12, 6041 Gosselies, Belgium
| | | | | |
Collapse
|
27
|
John Wiley & Sons, Ltd.. Current awareness on yeast. Yeast 2007. [DOI: 10.1002/yea.1326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
28
|
Tate JJ, Cooper TG. Stress-responsive Gln3 localization in Saccharomyces cerevisiae is separable from and can overwhelm nitrogen source regulation. J Biol Chem 2007; 282:18467-18480. [PMID: 17439949 PMCID: PMC2269007 DOI: 10.1074/jbc.m609550200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Intracellular localization of Saccharomyces cerevisiae GATA family transcription activator, Gln3, is used as a downstream readout of rapamycin-inhibited Tor1,2 control of Tap42 and Sit4 activities. Gln3 is cytoplasmic in cells provided with repressive nitrogen sources such as glutamine and is nuclear in cells growing with a derepressive nitrogen source such as proline or those treated with rapamycin or methionine sulfoximine (Msx). Although gross Gln3-Myc13 phosphorylation levels in wild type cells do not correlate with nitrogen source-determined intracellular Gln3-Myc13 localization, the phosphorylation levels are markedly influenced by several environmental perturbations. Msx treatment increases Snf1-independent Gln3-Myc13 phosphorylation, whereas carbon starvation increases both Snf1-dependent and -independent Gln3-Myc13 phosphorylation. Here we demonstrate that a broad spectrum of environmental stresses (temperature, osmotic, and oxidative) increase Gln3-Myc13 phosphorylation. In parallel, these stresses elicit rapid (<5 min for NaCl) Gln3-Myc13 relocalization from the nucleus to the cytoplasm. The response of Gln3-Myc13 localization to stressful conditions can completely overwhelm its response to nitrogen source quality or inhibitor-generated disruption of the Tor1,2 signal transduction pathway. Adding NaCl to cells cultured under conditions in which Gln3-Myc13 is normally nuclear, i.e. proline-grown, nitrogen-starved, Msx-, caffeine-, and rapamycin-treated wild type cells, or ure2Delta cells, results in its prompt relocalization to the cytoplasm. Together these data identify a major new level of regulation to which Gln3 responds, and adds a new dimension to mechanistic studies of the regulation of this transcription factor.
Collapse
Affiliation(s)
- Jennifer J Tate
- Department of Molecular Sciences, University of Tennessee, Memphis, Tennessee 38163
| | - Terrance G Cooper
- Department of Molecular Sciences, University of Tennessee, Memphis, Tennessee 38163.
| |
Collapse
|
29
|
Rubio-Texeira M. Urmylation controls Nil1p and Gln3p-dependent expression of nitrogen-catabolite repressed genes in Saccharomyces cerevisiae. FEBS Lett 2007; 581:541-50. [PMID: 17254574 DOI: 10.1016/j.febslet.2007.01.019] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2006] [Revised: 12/22/2006] [Accepted: 01/09/2007] [Indexed: 11/28/2022]
Abstract
Urm1 is a modifier protein that is conjugated to substrate proteins through thioester formation with the E1-like enzyme, Uba4. Here is shown that the lack of urmylation causes derepression of the GAP1 gene (encoding a nitrogen-regulated broad-spectrum amino acid-scavenging permease) in the presence of rich nitrogen sources, and simultaneous inhibition of the expression of CIT2, a TCA-cycle gene involved in the production of glutamate and glutamine. This effect is dependent on the TORC1- and nutrient-regulated transcriptional factors, Nil1p and Gln3p. Evidence is provided that, in the absence of urmylation, nuclear/cytosolic shuffling of both transcriptional factors is altered, ultimately leading to inability to repress GAP1 gene in the presence of a rich nitrogen source. Altogether, the data presented here indicate an important role of the urmylation pathway in regulating the expression of genes involved in sensing and controlling amino acids levels.
Collapse
Affiliation(s)
- Marta Rubio-Texeira
- Whitehead Institute, Massachusetts Institute of Technology, 9 Cambridge Center 653, Cambridge, MA 02142, USA.
| |
Collapse
|
30
|
Devasahayam G, Ritz D, Helliwell SB, Burke DJ, Sturgill TW. Pmr1, a Golgi Ca2+/Mn2+-ATPase, is a regulator of the target of rapamycin (TOR) signaling pathway in yeast. Proc Natl Acad Sci U S A 2006; 103:17840-5. [PMID: 17095607 PMCID: PMC1693834 DOI: 10.1073/pnas.0604303103] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2006] [Indexed: 11/18/2022] Open
Abstract
The rapamycin.FKBP12 complex inhibits target of rapamycin (TOR) kinase in TORC1. We screened the yeast nonessential gene deletion collection to identify mutants that conferred rapamycin resistance, and we identified PMR1, encoding the Golgi Ca2+/Mn2+ -ATPase. Deleting PMR1 in two genetic backgrounds confers rapamycin resistance. Epistasis analyses show that Pmr1 functions upstream from Npr1 and Gln-3 in opposition to Lst8, a regulator of TOR. Npr1 kinase is largely cytoplasmic, and a portion localizes to the Golgi where amino acid permeases are modified and sorted. Nuclear translocation of Gln-3 and Gln-3 reporter activity in pmr1 cells are impaired, but expression of functional Gap1 in the plasma membrane of a pmr1 strain in response to nitrogen limitation is enhanced. These two phenotypes suggest up-regulation of Npr1 function in the absence of Pmr1. Together, our results establish that Pmr1-dependent Ca2+ and/or Mn2+ ion homeostasis is necessary for TOR signaling.
Collapse
Affiliation(s)
| | - Danilo Ritz
- Division of Biochemistry, Biozentrum, University of Basel, CH-4056 Basel, Switzerland
| | - Stephen B. Helliwell
- Division of Biochemistry, Biozentrum, University of Basel, CH-4056 Basel, Switzerland
| | - Daniel J. Burke
- Biochemistry and Molecular Genetics, University of Virginia Health Sciences Center, 1300 Jefferson Park Avenue, Charlottesville, VA 22908; and
| | | |
Collapse
|