1
|
Young DH, Meunier B, Wang NX. Interaction of picolinamide fungicide primary metabolites UK-2A and CAS-649 with the cytochrome bc 1 complex Qi site: mutation effects and modelling in Saccharomyces cerevisiae. PEST MANAGEMENT SCIENCE 2022; 78:2657-2666. [PMID: 35355395 DOI: 10.1002/ps.6893] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 03/30/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Fenpicoxamid and florylpicoxamid are picolinamide fungicides targeting the Qi site of the cytochrome bc1 complex, via their primary metabolites UK-2A and CAS-649, respectively. We explore binding interactions and resistance mechanisms for picolinamides, antimycin A and ilicicolin H in yeast by testing effects of cytochrome b amino acid changes on fungicide sensitivity and interpreting results using molecular docking. RESULTS Effects of amino acid changes on sensitivity to UK-2A and CAS-649 were similar, with highest resistance associated with exchanges involving G37 and substitutions N31K and L198F. These changes, as well as K228M, also affected antimycin A, while ilicicolin H was affected by changes at G37 and L198, as well as Q22E. N31 substitution patterns suggest that a lysine at position 31 introduces an electrostatic interaction with neighbouring D229, causing disruption of a key salt-bridge interaction with picolinamides. Changes involving G37 and L198 imply resistance primarily through steric interference. G37 changes also showed differences between CAS-649 and UK-2A or antimycin A with respect to branched versus unbranched amino acids. N31K and substitution of G37 by large amino acids reduced growth rate substantially while L198 substitutions showed little effect on growth. CONCLUSION Binding of UK-2A and CAS-649 at the Qi site involves similar interactions such that general cross-resistance between fenpicoxamid and florylpicoxamid is anticipated in target pathogens. Some resistance mutations reduced growth rate and could carry a fitness penalty in pathogens. However, certain changes involving G37 and L198 carry little or no growth penalty and may pose the greatest risk for resistance development in the field. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- David H Young
- Crop Protection Discovery and Development, Corteva Agriscience, Indianapolis, IN, USA
| | - Brigitte Meunier
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, Gif-sur-Yvette, France
| | - Nick X Wang
- Crop Protection Discovery and Development, Corteva Agriscience, Indianapolis, IN, USA
| |
Collapse
|
2
|
Fouché G, Michel T, Lalève A, Wang NX, Young DH, Meunier B, Debieu D, Fillinger S, Walker AS. Directed evolution predicts cytochrome b G37V target site modification as probable adaptive mechanism towards the QiI fungicide fenpicoxamid in Zymoseptoria tritici. Environ Microbiol 2021; 24:1117-1132. [PMID: 34490974 DOI: 10.1111/1462-2920.15760] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 09/03/2021] [Accepted: 09/04/2021] [Indexed: 02/06/2023]
Abstract
Acquired resistance is a threat to antifungal efficacy in medicine and agriculture. The diversity of possible resistance mechanisms and highly adaptive traits of pathogens make it difficult to predict evolutionary outcomes of treatments. We used directed evolution as an approach to assess the resistance risk to the new fungicide fenpicoxamid in the wheat pathogenic fungus Zymoseptoria tritici. Fenpicoxamid inhibits complex III of the respiratory chain at the ubiquinone reduction site (Qi site) of the mitochondrially encoded cytochrome b, a different site than the widely used strobilurins which inhibit the same complex at the ubiquinol oxidation site (Qo site). We identified the G37V change within the cytochrome b Qi site as the most likely resistance mechanism to be selected in Z. tritici. This change triggered high fenpicoxamid resistance and halved the enzymatic activity of cytochrome b, despite no significant penalty for in vitro growth. We identified negative cross-resistance between isolates harbouring G37V or G143A, a Qo site change previously selected by strobilurins. Double mutants were less resistant to both QiIs and quinone outside inhibitors compared to single mutants. This work is a proof of concept that experimental evolution can be used to predict adaptation to fungicides and provides new perspectives for the management of QiIs.
Collapse
Affiliation(s)
- Guillaume Fouché
- Université Paris-Saclay, INRAE, AgroParisTech, UMR BIOGER, Thiverval-Grignon, 78850, France.,Corteva Agriscience, 9330 Zionsville Road, Indianapolis, IN, 46268, USA
| | - Thomas Michel
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, 91198, France
| | - Anaïs Lalève
- Université Paris-Saclay, INRAE, AgroParisTech, UMR BIOGER, Thiverval-Grignon, 78850, France
| | - Nick X Wang
- Corteva Agriscience, 9330 Zionsville Road, Indianapolis, IN, 46268, USA
| | - David H Young
- Corteva Agriscience, 9330 Zionsville Road, Indianapolis, IN, 46268, USA
| | - Brigitte Meunier
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, 91198, France
| | - Danièle Debieu
- Université Paris-Saclay, INRAE, AgroParisTech, UMR BIOGER, Thiverval-Grignon, 78850, France
| | - Sabine Fillinger
- Université Paris-Saclay, INRAE, AgroParisTech, UMR BIOGER, Thiverval-Grignon, 78850, France
| | - Anne-Sophie Walker
- Université Paris-Saclay, INRAE, AgroParisTech, UMR BIOGER, Thiverval-Grignon, 78850, France
| |
Collapse
|
3
|
Wall RJ, Carvalho S, Milne R, Bueren-Calabuig JA, Moniz S, Cantizani-Perez J, MacLean L, Kessler A, Cotillo I, Sastry L, Manthri S, Patterson S, Zuccotto F, Thompson S, Martin J, Marco M, Miles TJ, De Rycker M, Thomas MG, Fairlamb AH, Gilbert IH, Wyllie S. The Q i Site of Cytochrome b is a Promiscuous Drug Target in Trypanosoma cruzi and Leishmania donovani. ACS Infect Dis 2020; 6:515-528. [PMID: 31967783 PMCID: PMC7076694 DOI: 10.1021/acsinfecdis.9b00426] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Indexed: 01/29/2023]
Abstract
Available treatments for Chagas' disease and visceral leishmaniasis are inadequate, and there is a pressing need for new therapeutics. Drug discovery efforts for both diseases principally rely upon phenotypic screening. However, the optimization of phenotypically active compounds is hindered by a lack of information regarding their molecular target(s). To combat this issue we initiate target deconvolution studies at an early stage. Here, we describe comprehensive genetic and biochemical studies to determine the targets of three unrelated phenotypically active compounds. All three structurally diverse compounds target the Qi active-site of cytochrome b, part of the cytochrome bc1 complex of the electron transport chain. Our studies go on to identify the Qi site as a promiscuous drug target in Leishmania donovani and Trypanosoma cruzi with a propensity to rapidly mutate. Strategies to rapidly identify compounds acting via this mechanism are discussed to ensure that drug discovery portfolios are not overwhelmed with inhibitors of a single target.
Collapse
Affiliation(s)
- Richard J. Wall
- Division of Biological
Chemistry and Drug Discovery, Wellcome Centre for Anti-Infectives
Research, School of Life Sciences, University
of Dundee, Dow Street, Dundee DD1
5EH, United Kingdom
| | - Sandra Carvalho
- Division of Biological
Chemistry and Drug Discovery, Wellcome Centre for Anti-Infectives
Research, School of Life Sciences, University
of Dundee, Dow Street, Dundee DD1
5EH, United Kingdom
| | - Rachel Milne
- Division of Biological
Chemistry and Drug Discovery, Wellcome Centre for Anti-Infectives
Research, School of Life Sciences, University
of Dundee, Dow Street, Dundee DD1
5EH, United Kingdom
| | - Juan A. Bueren-Calabuig
- Drug Discovery Unit,
Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, United Kingdom
| | - Sonia Moniz
- Division of Biological
Chemistry and Drug Discovery, Wellcome Centre for Anti-Infectives
Research, School of Life Sciences, University
of Dundee, Dow Street, Dundee DD1
5EH, United Kingdom
| | | | - Lorna MacLean
- Drug Discovery Unit,
Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, United Kingdom
| | - Albane Kessler
- Global Health R&D, GlaxoSmithKline, Tres Cantos 28760, Spain
| | - Ignacio Cotillo
- Global Health R&D, GlaxoSmithKline, Tres Cantos 28760, Spain
| | - Lalitha Sastry
- Drug Discovery Unit,
Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, United Kingdom
| | - Sujatha Manthri
- Drug Discovery Unit,
Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, United Kingdom
| | - Stephen Patterson
- Division of Biological
Chemistry and Drug Discovery, Wellcome Centre for Anti-Infectives
Research, School of Life Sciences, University
of Dundee, Dow Street, Dundee DD1
5EH, United Kingdom
| | - Fabio Zuccotto
- Drug Discovery Unit,
Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, United Kingdom
| | - Stephen Thompson
- Drug Discovery Unit,
Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, United Kingdom
| | - Julio Martin
- Global Health R&D, GlaxoSmithKline, Tres Cantos 28760, Spain
| | - Maria Marco
- Global Health R&D, GlaxoSmithKline, Tres Cantos 28760, Spain
| | | | - Manu De Rycker
- Drug Discovery Unit,
Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, United Kingdom
| | - Michael G. Thomas
- Drug Discovery Unit,
Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, United Kingdom
| | - Alan H. Fairlamb
- Division of Biological
Chemistry and Drug Discovery, Wellcome Centre for Anti-Infectives
Research, School of Life Sciences, University
of Dundee, Dow Street, Dundee DD1
5EH, United Kingdom
| | - Ian H. Gilbert
- Drug Discovery Unit,
Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, United Kingdom
| | - Susan Wyllie
- Division of Biological
Chemistry and Drug Discovery, Wellcome Centre for Anti-Infectives
Research, School of Life Sciences, University
of Dundee, Dow Street, Dundee DD1
5EH, United Kingdom
| |
Collapse
|
4
|
Mounkoro P, Michel T, Benhachemi R, Surpateanu G, Iorga BI, Fisher N, Meunier B. Mitochondrial complex III Q i -site inhibitor resistance mutations found in laboratory selected mutants and field isolates. PEST MANAGEMENT SCIENCE 2019; 75:2107-2114. [PMID: 30426681 DOI: 10.1002/ps.5264] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 11/08/2018] [Accepted: 11/08/2018] [Indexed: 06/09/2023]
Abstract
BACKGROUND Complex III inhibitors targeting the Qi -site have been known for decades; some are used or being developed as antimicrobial compounds. Target site resistance mutations have been reported in laboratory-selected mutants and in field isolates. Here, we present a brief overview of mutations found in laboratory-selected resistant mutants. We also provide a study of mutations observed in field isolates of Plasmopara viticola, in particular the ametoctradin resistance substitution, S34L that we analysed in the yeast model. RESULTS A survey of laboratory mutants showed that resistance could be caused by a large number of substitutions in the Qi -site. Four residues seemed key in term of resistance: N31, G37, L198 and K228. Using yeast, we analysed the effect of the ametoctradin resistance substitution S34L reported in field isolates of P. viticola. We showed that S34L caused a high level of resistance combined with a loss of complex III activity and growth competence. CONCLUSION Use of single site Qi -site inhibitors is expected to result in the selection of resistant mutants. However, if the substitution is associated with a fitness penalty, as may be the case with S34L, resistance development might not be an insuperable obstacle, although careful monitoring is required. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- Pierre Mounkoro
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Thomas Michel
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Rafik Benhachemi
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Georgiana Surpateanu
- Institut de Chimie des Substances Naturelles, CNRS, UPR 2301, Université Paris-Saclay, Labex LERMIT, Gif-sur-Yvette, France
| | - Bogdan I Iorga
- Institut de Chimie des Substances Naturelles, CNRS, UPR 2301, Université Paris-Saclay, Labex LERMIT, Gif-sur-Yvette, France
| | - Nicholas Fisher
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, Michigan, USA
| | - Brigitte Meunier
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, France
| |
Collapse
|
5
|
Young DH, Wang NX, Meyer ST, Avila‐Adame C. Characterization of the mechanism of action of the fungicide fenpicoxamid and its metabolite UK-2A. PEST MANAGEMENT SCIENCE 2018; 74:489-498. [PMID: 28960782 PMCID: PMC5813142 DOI: 10.1002/ps.4743] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 08/31/2017] [Accepted: 09/22/2017] [Indexed: 05/04/2023]
Abstract
BACKGROUND Fenpicoxamid is a new fungicide for control of Zymoseptoria tritici, and is a derivative of the natural product UK-2A. Its mode of action and target site interactions have been investigated. RESULTS UK-2A strongly inhibited cytochrome c reductase, whereas fenpicoxamid was much less active, consistent with UK-2A being the fungicidally active species generated from fenpicoxamid by metabolism. Both compounds caused rapid loss of mitochondrial membrane potential in Z. tritici spores. In Saccharomyces cerevisiae, amino acid substitutions N31K, G37C and L198F at the Qi quinone binding site of cytochrome b reduced sensitivity to fenpicoxamid, UK-2A and antimycin A. Activity of fenpicoxamid was not reduced by the G143A exchange responsible for strobilurin resistance. A docking pose for UK-2A at the Qi site overlaid that of antimycin A. Activity towards Botrytis cinerea was potentiated by salicylhydroxamic acid, showing an ability of alternative respiration to mitigate activity. Fungitoxicity assays against Z. tritici field isolates showed no cross-resistance to strobilurin, azole or benzimidazole fungicides. CONCLUSION Fenpicoxamid is a Qi inhibitor fungicide that provides a new mode of action for Z. tritici control. Mutational and modeling studies suggest that the active species UK-2A binds at the Qi site in a similar, but not identical, fashion to antimycin A. © 2017 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
| | - Nick X Wang
- Dow AgroSciencesDiscovery ResearchIndianapolisINUSA
| | | | | |
Collapse
|
6
|
Khare S, Roach SL, Barnes SW, Hoepfner D, Walker JR, Chatterjee AK, Neitz RJ, Arkin MR, McNamara CW, Ballard J, Lai Y, Fu Y, Molteni V, Yeh V, McKerrow JH, Glynne RJ, Supek F. Utilizing Chemical Genomics to Identify Cytochrome b as a Novel Drug Target for Chagas Disease. PLoS Pathog 2015; 11:e1005058. [PMID: 26186534 PMCID: PMC4506092 DOI: 10.1371/journal.ppat.1005058] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Accepted: 06/30/2015] [Indexed: 11/19/2022] Open
Abstract
Unbiased phenotypic screens enable identification of small molecules that inhibit pathogen growth by unanticipated mechanisms. These small molecules can be used as starting points for drug discovery programs that target such mechanisms. A major challenge of the approach is the identification of the cellular targets. Here we report GNF7686, a small molecule inhibitor of Trypanosoma cruzi, the causative agent of Chagas disease, and identification of cytochrome b as its target. Following discovery of GNF7686 in a parasite growth inhibition high throughput screen, we were able to evolve a GNF7686-resistant culture of T. cruzi epimastigotes. Clones from this culture bore a mutation coding for a substitution of leucine by phenylalanine at amino acid position 197 in cytochrome b. Cytochrome b is a component of complex III (cytochrome bc1) in the mitochondrial electron transport chain and catalyzes the transfer of electrons from ubiquinol to cytochrome c by a mechanism that utilizes two distinct catalytic sites, QN and QP. The L197F mutation is located in the QN site and confers resistance to GNF7686 in both parasite cell growth and biochemical cytochrome b assays. Additionally, the mutant cytochrome b confers resistance to antimycin A, another QN site inhibitor, but not to strobilurin or myxothiazol, which target the QP site. GNF7686 represents a promising starting point for Chagas disease drug discovery as it potently inhibits growth of intracellular T. cruzi amastigotes with a half maximal effective concentration (EC50) of 0.15 µM, and is highly specific for T. cruzi cytochrome b. No effect on the mammalian respiratory chain or mammalian cell proliferation was observed with up to 25 µM of GNF7686. Our approach, which combines T. cruzi chemical genetics with biochemical target validation, can be broadly applied to the discovery of additional novel drug targets and drug leads for Chagas disease. Chagas Disease, or American trypanosomiasis, is caused by the kinetoplastid protozoan Trypanosoma cruzi and is primarily transmitted to a mammalian host via a triatomine insect vector (the “kissing bug”) infected with T. cruzi parasites. Although discovered in 1909 by the physician Dr. Carlos Chagas, the disease gained recognition by the public health community only following a major outbreak in Brazil during the 1960s. Approximately eight million people (primarily in Central and South America) are infected with T. cruzi and cases are becoming more widespread due to migration out of the endemic regions. Current treatment options have severe problems with toxicity, limited efficacy, and long administration. Hence, discovery of new drugs for treatment of Chagas disease has become of prime interest to the biomedical research community. In this study, we report identification of a potent inhibitor of T. cruzi growth and use a chemical genetics-based approach to elucidate the associated mechanism of action. We found that this compound, GNF7686, targets cytochrome b, a component of the mitochondrial electron transport chain crucial for ATP generation. Our study provides new insights into the use of phenotypic screening to identify novel targets for kinetoplastid drug discovery.
Collapse
Affiliation(s)
- Shilpi Khare
- Department of Genetics and Neglected Diseases, Genomics Institute of the Novartis Research Foundation, San Diego, California, United States of America
| | - Steven L. Roach
- Department of Medicinal Chemistry, Genomics Institute of the Novartis Research Foundation, San Diego, California, United States of America
| | - S. Whitney Barnes
- Department of Genetics and Neglected Diseases, Genomics Institute of the Novartis Research Foundation, San Diego, California, United States of America
| | - Dominic Hoepfner
- Novartis Institutes for BioMedical Research, Novartis Campus, Basel, Switzerland
| | - John R. Walker
- Department of Genetics and Neglected Diseases, Genomics Institute of the Novartis Research Foundation, San Diego, California, United States of America
| | - Arnab K. Chatterjee
- Department of Medicinal Chemistry, Genomics Institute of the Novartis Research Foundation, San Diego, California, United States of America
| | - R. Jeffrey Neitz
- Small Molecule Discovery Center and Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California, United States of America
| | - Michelle R. Arkin
- Small Molecule Discovery Center and Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California, United States of America
| | - Case W. McNamara
- Department of Genetics and Neglected Diseases, Genomics Institute of the Novartis Research Foundation, San Diego, California, United States of America
| | - Jaime Ballard
- Department of Genetics and Neglected Diseases, Genomics Institute of the Novartis Research Foundation, San Diego, California, United States of America
| | - Yin Lai
- Department of Genetics and Neglected Diseases, Genomics Institute of the Novartis Research Foundation, San Diego, California, United States of America
| | - Yue Fu
- Department of Genetics and Neglected Diseases, Genomics Institute of the Novartis Research Foundation, San Diego, California, United States of America
| | - Valentina Molteni
- Department of Medicinal Chemistry, Genomics Institute of the Novartis Research Foundation, San Diego, California, United States of America
| | - Vince Yeh
- Department of Medicinal Chemistry, Genomics Institute of the Novartis Research Foundation, San Diego, California, United States of America
| | - James H. McKerrow
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California, United States of America
| | - Richard J. Glynne
- Department of Genetics and Neglected Diseases, Genomics Institute of the Novartis Research Foundation, San Diego, California, United States of America
| | - Frantisek Supek
- Department of Genetics and Neglected Diseases, Genomics Institute of the Novartis Research Foundation, San Diego, California, United States of America
- * E-mail:
| |
Collapse
|
7
|
Singh SB, Liu W, Li X, Chen T, Shafiee A, Dreikorn S, Hornak V, Meinz M, Onishi JC. Structure-activity relationship of cytochrome bc1 reductase inhibitor broad spectrum antifungal ilicicolin H. Bioorg Med Chem Lett 2013; 23:3018-22. [PMID: 23562597 DOI: 10.1016/j.bmcl.2013.03.023] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Accepted: 03/06/2013] [Indexed: 12/01/2022]
Abstract
Ilicicolin H is a broad spectrum antifungal agent showing sub micro g/mL MICs against Candida spp., Aspergillus fumigatus and Cryptococcus spp. It is a potent inhibitor (C50 2-3ng/mL) of the mitochondrial cytochrome bc1 reductase with over 1000-fold selectivity against rat liver cytochrome bc1 reductase. Structure-activity relationship of semisynthetic derivatives by chemical modification of ilicicolin H and its 19-hydroxy derivative produced by biotransformation have been described. Basic 4'-esters and moderately polar N- and O-alkyl derivatives retained antifungal and the cytochrome bc1 reductase activities. 4',19-Diacetate and 19-cyclopropyl acetate retained antifungal and enzyme activity and selectivity with over 20-fold improvement of plasma protein binding.
Collapse
Affiliation(s)
- Sheo B Singh
- Departments of Medicinal Chemistry and Infectious Disease, Merck Research Laboratories, PO Box 2000, Rahway, NJ 07065, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Singh SB, Liu W, Li X, Chen T, Shafiee A, Card D, Abruzzo G, Flattery A, Gill C, Thompson JR, Rosenbach M, Dreikorn S, Hornak V, Meinz M, Kurtz M, Kelly R, Onishi JC. Antifungal spectrum, in vivo efficacy, and structure-activity relationship of ilicicolin h. ACS Med Chem Lett 2012; 3:814-7. [PMID: 24900384 DOI: 10.1021/ml300173e] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2012] [Accepted: 08/30/2012] [Indexed: 11/29/2022] Open
Abstract
Ilicicolin H is a polyketide-nonribosomal peptide synthase (NRPS)-natural product isolated from Gliocadium roseum, which exhibits potent and broad spectrum antifungal activity, with sub-μg/mL MICs against Candida spp., Aspergillus fumigatus, and Cryptococcus spp. It showed a novel mode of action, potent inhibition (IC50 = 2-3 ng/mL) of the mitochondrial cytochrome bc1 reductase, and over 1000-fold selectivity relative to rat liver cytochrome bc1 reductase. Ilicicolin H exhibited in vivo efficacy in murine models of Candida albicans and Cryptococcus neoformans infections, but efficacy may have been limited by high plasma protein binding. Systematic structural modification of ilicicolin H was undertaken to understand the structural requirement for the antifungal activity. The details of the biological activity of ilicicolin H and structural modification of some of the key parts of the molecule and resulting activity of the derivatives are discussed. These data suggest that the β-keto group is critical for the antifungal activity.
Collapse
Affiliation(s)
- Sheo B. Singh
- Departments
Medicinal Chemistry and Infectious Diseases, Merck Research Laboratories, Rahway, New Jersey 07065,
United States
| | - Weiguo Liu
- Departments
Medicinal Chemistry and Infectious Diseases, Merck Research Laboratories, Rahway, New Jersey 07065,
United States
| | - Xiaohua Li
- Departments
Medicinal Chemistry and Infectious Diseases, Merck Research Laboratories, Rahway, New Jersey 07065,
United States
| | - Tom Chen
- Departments
Medicinal Chemistry and Infectious Diseases, Merck Research Laboratories, Rahway, New Jersey 07065,
United States
| | - Ali Shafiee
- Departments
Medicinal Chemistry and Infectious Diseases, Merck Research Laboratories, Rahway, New Jersey 07065,
United States
| | - Deborah Card
- Departments
Medicinal Chemistry and Infectious Diseases, Merck Research Laboratories, Rahway, New Jersey 07065,
United States
| | - George Abruzzo
- Departments
Medicinal Chemistry and Infectious Diseases, Merck Research Laboratories, Rahway, New Jersey 07065,
United States
| | - Amy Flattery
- Departments
Medicinal Chemistry and Infectious Diseases, Merck Research Laboratories, Rahway, New Jersey 07065,
United States
| | - Charles Gill
- Departments
Medicinal Chemistry and Infectious Diseases, Merck Research Laboratories, Rahway, New Jersey 07065,
United States
| | - John R. Thompson
- Departments
Medicinal Chemistry and Infectious Diseases, Merck Research Laboratories, Rahway, New Jersey 07065,
United States
| | - Mark Rosenbach
- Departments
Medicinal Chemistry and Infectious Diseases, Merck Research Laboratories, Rahway, New Jersey 07065,
United States
| | - Sarah Dreikorn
- Departments
Medicinal Chemistry and Infectious Diseases, Merck Research Laboratories, Rahway, New Jersey 07065,
United States
| | - Viktor Hornak
- Departments
Medicinal Chemistry and Infectious Diseases, Merck Research Laboratories, Rahway, New Jersey 07065,
United States
| | - Maria Meinz
- Departments
Medicinal Chemistry and Infectious Diseases, Merck Research Laboratories, Rahway, New Jersey 07065,
United States
| | - Myra Kurtz
- Departments
Medicinal Chemistry and Infectious Diseases, Merck Research Laboratories, Rahway, New Jersey 07065,
United States
| | - Rosemarie Kelly
- Departments
Medicinal Chemistry and Infectious Diseases, Merck Research Laboratories, Rahway, New Jersey 07065,
United States
| | - Janet C. Onishi
- Departments
Medicinal Chemistry and Infectious Diseases, Merck Research Laboratories, Rahway, New Jersey 07065,
United States
| |
Collapse
|
9
|
Vallières C, Fisher N, Antoine T, Al-Helal M, Stocks P, Berry NG, Lawrenson AS, Ward SA, O'Neill PM, Biagini GA, Meunier B. HDQ, a potent inhibitor of Plasmodium falciparum proliferation, binds to the quinone reduction site of the cytochrome bc1 complex. Antimicrob Agents Chemother 2012; 56:3739-47. [PMID: 22547613 PMCID: PMC3393389 DOI: 10.1128/aac.00486-12] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Accepted: 04/17/2012] [Indexed: 11/20/2022] Open
Abstract
The mitochondrial bc(1) complex is a multisubunit enzyme that catalyzes the transfer of electrons from ubiquinol to cytochrome c coupled to the vectorial translocation of protons across the inner mitochondrial membrane. The complex contains two distinct quinone-binding sites, the quinol oxidation site of the bc(1) complex (Q(o)) and the quinone reduction site (Q(i)), located on opposite sides of the membrane within cytochrome b. Inhibitors of the Q(o) site such as atovaquone, active against the bc(1) complex of Plasmodium falciparum, have been developed and formulated as antimalarial drugs. Unfortunately, single point mutations in the Q(o) site can rapidly render atovaquone ineffective. The development of drugs that could circumvent cross-resistance with atovaquone is needed. Here, we report on the mode of action of a potent inhibitor of P. falciparum proliferation, 1-hydroxy-2-dodecyl-4(1H)quinolone (HDQ). We show that the parasite bc(1) complex--from both control and atovaquone-resistant strains--is inhibited by submicromolar concentrations of HDQ, indicating that the two drugs have different targets within the complex. The binding site of HDQ was then determined by using a yeast model. Introduction of point mutations into the Q(i) site, namely, G33A, H204Y, M221Q, and K228M, markedly decreased HDQ inhibition. In contrast, known inhibitor resistance mutations at the Q(o) site did not cause HDQ resistance. This study, using HDQ as a proof-of-principle inhibitor, indicates that the Q(i) site of the bc(1) complex is a viable target for antimalarial drug development.
Collapse
Affiliation(s)
- Cindy Vallières
- Centre de Génétique Moléculaire, CNRS, FRC 3115, Avenue de la Terrasse, Gif-sur-Yvette, France
| | - Nicholas Fisher
- Centre for Tropical and Infectious Diseases, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, United Kingdom
| | - Thomas Antoine
- Centre for Tropical and Infectious Diseases, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, United Kingdom
| | - Mohammed Al-Helal
- Centre for Tropical and Infectious Diseases, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, United Kingdom
| | - Paul Stocks
- Centre for Tropical and Infectious Diseases, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, United Kingdom
| | - Neil G. Berry
- Department of Chemistry, University of Liverpool, Liverpool, United Kingdom
| | | | - Stephen A. Ward
- Centre for Tropical and Infectious Diseases, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, United Kingdom
| | - Paul M. O'Neill
- Department of Chemistry, University of Liverpool, Liverpool, United Kingdom
| | - Giancarlo A. Biagini
- Centre for Tropical and Infectious Diseases, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, United Kingdom
| | - Brigitte Meunier
- Centre de Génétique Moléculaire, CNRS, FRC 3115, Avenue de la Terrasse, Gif-sur-Yvette, France
| |
Collapse
|
10
|
Zhao PL, Wang L, Zhu XL, Huang X, Zhan CG, Wu JW, Yang GF. Subnanomolar inhibitor of cytochrome bc1 complex designed by optimizing interaction with conformationally flexible residues. J Am Chem Soc 2010; 132:185-94. [PMID: 19928849 DOI: 10.1021/ja905756c] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cytochrome bc(1) complex (EC 1.10.2.2, bc(1)), an essential component of the cellular respiratory chain and the photosynthetic apparatus in photosynthetic bacteria, has been identified as a promising target for new drugs and agricultural fungicides. X-ray diffraction structures of the free bc(1) complex and its complexes with various inhibitors revealed that the phenyl group of Phe274 in the binding pocket exhibited significant conformational flexibility upon different inhibitors binding to optimize respective pi-pi interactions, whereas the side chains of other hydrophobic residues showed conformational stability. Therefore, in the present study, a strategy of optimizing the pi-pi interaction with conformationally flexible residues was proposed to design and discover new bc(1) inhibitors with a higher potency. Eight new compounds were designed and synthesized, among which compound 5c, with a K(i) value of 570 pM, was identified as the most promising drug or fungicide candidate, significantly more potent than the commercially available bc(1) inhibitors, including azoxystrobin (AZ), kresoxim-methyl (KM), and pyraclostrobin (PY). To our knowledge, this is the first bc(1) inhibitor discovered from structure-based design with a potency of subnanomolar K(i) value. For all of the compounds synthesized and assayed, the calculated binding free energies correlated reasonably well with the binding free energies derived from the experimental K(i) values, with a correlation coefficient of r(2) = 0.89. The further inhibitory kinetics studies revealed that 5c is a noncompetitive inhibitor with respect to substrate cytochrome c, but it is a competitive inhibitor with respect to substrate ubiquinol. Due to its subnanomolar K(i) potency and slow dissociation rate constant (k(-0) = 0.00358 s(-1)), 5c could be used as a specific probe for further elucidation of the mechanism of bc(1) function and as a new lead compound for future drug discovery.
Collapse
Affiliation(s)
- Pei-Liang Zhao
- Key Laboratory of Pesticide & Chemical Biology, College of Chemistry, Ministry of Education, Central China Normal University, Wuhan 430079, PR China
| | | | | | | | | | | | | |
Collapse
|
11
|
Gleeson O, O'Gara F, Morrissey JP. The Pseudomonas fluorescens secondary metabolite 2,4 diacetylphloroglucinol impairs mitochondrial function in Saccharomyces cerevisiae. Antonie van Leeuwenhoek 2009; 97:261-73. [PMID: 20091224 DOI: 10.1007/s10482-009-9407-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2009] [Accepted: 12/10/2009] [Indexed: 11/25/2022]
Abstract
Pseudomonas fluorescens strains are known to produce a wide range of secondary metabolites including phenazines, siderophores, pyoluteorin, and 2,4 diacetylphloroglucinol (DAPG). DAPG is of particular interest because of its antifungal properties and because its production is associated with inhibition of phytopathogenic fungi in natural disease-suppressive soils. This trait has been exploited to develop strains of P. fluorescens that have potential application as biocontrol agents. Although the biochemistry, genetics and regulation of DAPG production have been well-studied, relatively little is known about how DAPG inhibits fungal growth and how fungi respond to DAPG. Employing a yeast model and a combination of phenotypic assays, molecular genetics and molecular physiological probes, we established that inhibition of fungal growth is caused by impairment of mitochondrial function. The effect of DAPG on yeast is largely fungistatic but DAPG also induces the formation of petite cells. Expression of the multidrug export proteins Pdr5p and Snq2p is increased by DAPG-treatment but this appears to be a secondary effect of mitochondrial damage as no role in enhancing DAPG-tolerance was identified for either Pdr5p or Snq2p.
Collapse
Affiliation(s)
- Olive Gleeson
- Department of Microbiology, University College Cork, Cork, Ireland
| | | | | |
Collapse
|
12
|
Ding MG, di Rago JP, Trumpower BL. Combining Inhibitor Resistance-conferring Mutations in Cytochrome b Creates Conditional Synthetic Lethality in Saccharomyces cerevisiae. J Biol Chem 2009; 284:8478-85. [PMID: 19179332 DOI: 10.1074/jbc.m809278200] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The mitochondrial cytochrome bc(1) complex is an essential respiratory enzyme in oxygen-utilizing eukaryotic cells. Its core subunit, cytochrome b, contains two sites, center P and center N, that participate in the electron transfer activity of the bc(1) complex and that can be blocked by specific inhibitors. In yeast, there are various point mutations that confer inhibitor resistance at center P or center N. However, there are no yeast strains in which the bc(1) complex is resistant to both center P and center N inhibitors. We attempted to create such strains by crossing yeast strains with inhibitor-resistant mutations at center P with yeast strains with inhibitor-resistant mutations at center N. Characterization of yeast colonies emerging from the cross revealed that there were multiple colonies resistant against either inhibitor alone but that the mutational changes were ineffective when combined and when the yeast were grown in the presence of both inhibitors. Inhibitor titrations of bc(1) complex activities in mitochondrial membranes from the various yeast mutants showed that a mutation that confers resistance to an inhibitor at center P, when combined with a mutation that confers resistance to an inhibitor at center N, eliminates or markedly decreases the resistance conferred by the center N mutation. These results indicate that there is a pathway for structural communication between the two active sites of cytochrome b and open new possibilities for the utilization of center N as a potential drug target.
Collapse
Affiliation(s)
- Martina G Ding
- Department of Biochemistry, Dartmouth Medical School, Hanover, New Hampshire 03755, USA
| | | | | |
Collapse
|
13
|
Covian R, Trumpower BL. Ilicicolin Inhibition and Binding at Center N of the Dimeric Cytochrome bc1 Complex Reveal Electron Transfer and Regulatory Interactions between Monomers. J Biol Chem 2009; 284:8614-20. [PMID: 19176478 DOI: 10.1074/jbc.m808914200] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have determined the kinetics of ilicicolin binding and dissociation at center N of the yeast bc(1) complex and its effect on the reduction of cytochrome b with center P blocked. The addition of ilicicolin to the oxidized complex resulted in a non-linear inhibition of the extent of cytochrome b reduction by quinol together with a shift of the reduced b(H) heme spectrum, indicating electron transfer between monomers. The possibility of a fast exchange of ilicicolin between center N sites was excluded in two ways. First, kinetic modeling showed that fast movement of an inhibitor between monomers would result in a linear inhibition of the extent of cytochrome b reduction through center N. Second, we determined a very slow dissociation rate for ilicicolin (k = 1.2 x 10(-3) s(-1)) as calculated from its displacement by antimycin. Ilicicolin binding to the reduced bc(1) complex occurred in a single phase (k(on) = 1.5-1.7 x 10(5) m(-1) s(-1)) except in the presence of stigmatellin, where a second slower binding phase comprising approximately 50% of the spectral change was observed. This second kinetic event was weakly dependent on ilicicolin concentration, which suggests that binding of ilicicolin to one center N in the dimer transmits a slow (k = 2-3 s(-1)) conformational change that allows binding of the inhibitor in the other monomer. These results, together with the evidence for intermonomeric electron transfer, provide further support for a dimeric model of regulatory interactions between center P and center N sites in the bc(1) complex.
Collapse
Affiliation(s)
- Raul Covian
- Department of Biochemistry, Dartmouth Medical School, Hanover, New Hampshire 03755, USA
| | | |
Collapse
|
14
|
Ding MG, Butler CA, Saracco SA, Fox TD, Godard F, di Rago JP, Trumpower BL. Introduction of cytochrome b mutations in Saccharomyces cerevisiae by a method that allows selection for both functional and non-functional cytochrome b proteins. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2008; 1777:1147-56. [PMID: 18498758 DOI: 10.1016/j.bbabio.2008.04.029] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2008] [Revised: 04/16/2008] [Accepted: 04/16/2008] [Indexed: 11/24/2022]
Abstract
We have previously used inhibitors interacting with the Qn site of the yeast cytochrome bc(1) complex to obtain yeast strains with resistance-conferring mutations in cytochrome b as a means to investigate the effects of amino acid substitutions on Qn site enzymatic activity [M.G. Ding, J.-P. di Rago, B.L. Trumpower, Investigating the Qn site of the cytochrome bc1 complex in Saccharomyces cerevisiae with mutants resistant to ilicicolin H, a novel Qn site inhibitor, J. Biol. Chem. 281 (2006) 36036-36043.]. Although the screening produced various interesting cytochrome b mutations, it depends on the availability of inhibitors and can only reveal a very limited number of mutations. Furthermore, mutations leading to a respiratory deficient phenotype remain undetected. We therefore devised an approach where any type of mutation can be efficiently introduced in the cytochrome b gene. In this method ARG8, a gene that is normally encoded by nuclear DNA, replaces the naturally occurring mitochondrial cytochrome b gene, resulting in ARG8 expressed from the mitochondrial genome (ARG8(m)). Subsequently replacing ARG8(m) with mutated versions of cytochrome b results in arginine auxotrophy. Respiratory competent cytochrome b mutants can be selected directly by virtue of their ability to restore growth on non-fermentable substrates. If the mutated cytochrome b is non-functional, the presence of the COX2 respiratory gene marker on the mitochondrial transforming plasmid enables screening for cytochrome b mutants with a stringent respiratory deficiency (mit(-)). With this system, we created eight different yeast strains containing point mutations at three different codons in cytochrome b affecting center N. In addition, we created three point mutations affecting arginine 79 in center P. This is the first time mutations have been created for three of the loci presented here, and nine of the resulting mutants have never been described before.
Collapse
Affiliation(s)
- Martina G Ding
- Department of Biochemistry, Dartmouth Medical School, Hanover, New Hampshire 03755, USA
| | | | | | | | | | | | | |
Collapse
|
15
|
Mutations in cytochrome b that affect kinetics of the electron transfer reactions at center N in the yeast cytochrome bc1 complex. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2008; 1777:239-49. [DOI: 10.1016/j.bbabio.2007.08.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2007] [Revised: 08/15/2007] [Accepted: 08/17/2007] [Indexed: 11/24/2022]
|
16
|
Rotsaert FAJ, Ding MG, Trumpower BL. Differential efficacy of inhibition of mitochondrial and bacterial cytochrome bc1 complexes by center N inhibitors antimycin, ilicicolin H and funiculosin. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2007; 1777:211-9. [PMID: 18022381 DOI: 10.1016/j.bbabio.2007.10.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2007] [Revised: 10/16/2007] [Accepted: 10/17/2007] [Indexed: 10/22/2022]
Abstract
We have compared the efficacy of inhibition of the cytochrome bc1 complexes from yeast and bovine heart mitochondria and Paracoccus denitrificans by antimycin, ilicicolin H, and funiculosin, three inhibitors that act at the quinone reduction site at center N of the enzyme. Although the three inhibitors have some structural features in common, they differ significantly in their patterns of inhibition. Also, while the overall folding pattern of cytochrome b around center N is similar in the enzymes from the three species, amino acid sequence differences create sufficient structural differences so that there are striking differences in the inhibitors binding to the three enzymes. Antimycin is the most tightly bound of the three inhibitors, and binds stoichiometrically to the isolated enzymes from all three species under the cytochrome c reductase assay conditions. Ilicicolin H also binds stoichiometrically to the yeast enzyme, but binds approximately 2 orders of magnitude less tightly to the bovine enzyme and is essentially non-inhibitory to the Paracoccus enzyme. Funiculosin on the other hand inhibits the yeast and bovine enzymes similarly, with IC50 approximately 10 nM, while the IC50 for the Paracoccus enzyme is more than 10-fold higher. Similar differences in inhibitor efficacy were noted in bc1 complexes from yeast mutants with single amino acid substitutions at the center N site, although the binding affinity of quinone and quinol substrates were not perturbed to a degree that impaired catalytic function in the variant enzymes. These results reveal a high degree of specificity in the determinants of ligand-binding at center N, accompanied by sufficient structural plasticity for substrate binding as to not compromise center N function. The results also demonstrate that, in principle, it should be possible to design novel inhibitors targeted toward center N of the bc1 complex with appropriate species selectivity to allow their use as drugs against pathogenic fungi and parasites.
Collapse
|
17
|
Kessl JJ, Meshnick SR, Trumpower BL. Modeling the molecular basis of atovaquone resistance in parasites and pathogenic fungi. Trends Parasitol 2007; 23:494-501. [PMID: 17826334 DOI: 10.1016/j.pt.2007.08.004] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2006] [Revised: 06/27/2007] [Accepted: 08/23/2007] [Indexed: 10/22/2022]
Abstract
Atovaquone is a substituted hydroxynaphthoquinone that is used therapeutically for treating Plasmodium falciparum malaria, Pneumocystis jirovecii pneumonia and Toxoplasma gondii toxoplasmosis. It is thought to act on these organisms by inhibiting parasite and fungal respiration by binding to the cytochrome bc1 complex. The recent, growing failure of atovaquone treatment and increased mortality of patients with malaria or Pneumocystis pneumonia has been linked to the appearance of mutations in the cytochrome b gene. To better understand the molecular basis of drug resistance, we have developed the yeast and bovine bc1 complexes as surrogates to model the molecular interaction of atovaquone with human and resistant pathogen enzymes.
Collapse
Affiliation(s)
- Jacques J Kessl
- Center for Retrovirus Research, College of Pharmacy, Ohio State University, Columbus, OH 43210, USA
| | | | | |
Collapse
|
18
|
Current awareness on yeast. Yeast 2007. [DOI: 10.1002/yea.1328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|