1
|
Hörner SJ, Couturier N, Bruch R, Koch P, Hafner M, Rudolf R. hiPSC-Derived Schwann Cells Influence Myogenic Differentiation in Neuromuscular Cocultures. Cells 2021; 10:cells10123292. [PMID: 34943800 PMCID: PMC8699767 DOI: 10.3390/cells10123292] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/20/2021] [Accepted: 11/21/2021] [Indexed: 12/13/2022] Open
Abstract
Motoneurons, skeletal muscle fibers, and Schwann cells form synapses, termed neuromuscular junctions (NMJs). These control voluntary body movement and are affected in numerous neuromuscular diseases. Therefore, a variety of NMJ in vitro models have been explored to enable mechanistic and pharmacological studies. So far, selective integration of Schwann cells in these models has been hampered, due to technical limitations. Here we present robust protocols for derivation of Schwann cells from human induced pluripotent stem cells (hiPSC) and their coculture with hiPSC-derived motoneurons and C2C12 muscle cells. Upon differentiation with tuned BMP signaling, Schwann cells expressed marker proteins, S100b, Gap43, vimentin, and myelin protein zero. Furthermore, they displayed typical spindle-shaped morphologies with long processes, which often aligned with motoneuron axons. Inclusion of Schwann cells in coculture experiments with hiPSC-derived motoneurons and C2C12 myoblasts enhanced myotube growth and affected size and number of acetylcholine receptor plaques on myotubes. Altogether, these data argue for the availability of a consistent differentiation protocol for Schwann cells and their amenability for functional integration into neuromuscular in vitro models, fostering future studies of neuromuscular mechanisms and disease.
Collapse
Affiliation(s)
- Sarah Janice Hörner
- Institute of Molecular and Cell Biology, Mannheim University of Applied Sciences, 68163 Mannheim, Germany; (S.J.H.); (N.C.); (R.B.); (M.H.)
- Interdisciplinary Center for Neurosciences, Heidelberg University, 69120 Heidelberg, Germany
| | - Nathalie Couturier
- Institute of Molecular and Cell Biology, Mannheim University of Applied Sciences, 68163 Mannheim, Germany; (S.J.H.); (N.C.); (R.B.); (M.H.)
| | - Roman Bruch
- Institute of Molecular and Cell Biology, Mannheim University of Applied Sciences, 68163 Mannheim, Germany; (S.J.H.); (N.C.); (R.B.); (M.H.)
| | - Philipp Koch
- Central Institute of Mental Health, Medical Faculty Mannheim of Heidelberg University, 68159 Mannheim, Germany;
- Hector Institute for Translational Brain Research (HITBR gGmbH), 68159 Mannheim, Germany
- German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Mathias Hafner
- Institute of Molecular and Cell Biology, Mannheim University of Applied Sciences, 68163 Mannheim, Germany; (S.J.H.); (N.C.); (R.B.); (M.H.)
- Institute of Medical Technology, Mannheim University of Applied Sciences and Heidelberg University, 68163 Mannheim, Germany
| | - Rüdiger Rudolf
- Institute of Molecular and Cell Biology, Mannheim University of Applied Sciences, 68163 Mannheim, Germany; (S.J.H.); (N.C.); (R.B.); (M.H.)
- Interdisciplinary Center for Neurosciences, Heidelberg University, 69120 Heidelberg, Germany
- Institute of Medical Technology, Mannheim University of Applied Sciences and Heidelberg University, 68163 Mannheim, Germany
- Correspondence:
| |
Collapse
|
2
|
An Inside Job: Molecular Determinants for Postsynaptic Localization of Nicotinic Acetylcholine Receptors. Molecules 2021; 26:molecules26113065. [PMID: 34063759 PMCID: PMC8196675 DOI: 10.3390/molecules26113065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/13/2021] [Accepted: 05/15/2021] [Indexed: 11/29/2022] Open
Abstract
Nicotinic acetylcholine receptors (nAChRs) mediate fast synaptic transmission at neuromuscular and autonomic ganglionic synapses in the peripheral nervous system. The postsynaptic localization of muscle ((α1)2β1γδ) and neuronal ((α3β4)2β4) nicotinic receptors at these synapses is mediated by interactions between the nAChR intracellular domains and cytoplasmic scaffolding proteins. Recent high resolution structures and functional studies provide new insights into the molecular determinants that mediate these interactions. Surprisingly, they reveal that the muscle nAChR binds 1–3 rapsyn scaffolding molecules, which dimerize and thereby form an interconnected lattice between receptors. Moreover, rapsyn binds two distinct sites on the nAChR subunit cytoplasmic loops; the MA-helix on one or more subunits and a motif specific to the β subunit. Binding at the latter site is regulated by agrin-induced phosphorylation of βY390, and increases the stoichiometry of rapsyn/AChR complexes. Similarly, the neuronal nAChR may be localized at ganglionic synapses by phosphorylation-dependent interactions with 14-3-3 adaptor proteins which bind specific motifs in each of the α3 subunit cytoplasmic loops. Thus, postsynaptic localization of nAChRs is mediated by regulated interactions with multiple scaffolding molecules, and the stoichiometry of these complexes likely helps regulate the number, density, and stability of receptors at the synapse.
Collapse
|
3
|
Xing G, Xiong WC, Mei L. Rapsyn as a signaling and scaffolding molecule in neuromuscular junction formation and maintenance. Neurosci Lett 2020; 731:135013. [DOI: 10.1016/j.neulet.2020.135013] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 04/23/2020] [Indexed: 12/20/2022]
|
4
|
Cheng JW, Sip CG, Lindstedt PR, Boitano R, Bluestein BM, Gamble LJ, Folch A. “Chip-on-a-Transwell” Devices for User-Friendly Control of the Microenvironment of Cultured Cells. ACS APPLIED BIO MATERIALS 2019; 2:4998-5011. [DOI: 10.1021/acsabm.9b00672] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jonathan W. Cheng
- Department of Bioengineering, University of Washington, Box 355061, Seattle, Washington 98195-5061, United States
| | - Christopher G. Sip
- Department of Bioengineering, University of Washington, Box 355061, Seattle, Washington 98195-5061, United States
| | - Philip R. Lindstedt
- Department of Bioengineering, University of Washington, Box 355061, Seattle, Washington 98195-5061, United States
| | - Ross Boitano
- Department of Bioengineering, University of Washington, Box 355061, Seattle, Washington 98195-5061, United States
| | - Blake M. Bluestein
- Department of Bioengineering, University of Washington, Box 355061, Seattle, Washington 98195-5061, United States
| | - Lara J. Gamble
- Department of Bioengineering, University of Washington, Box 355061, Seattle, Washington 98195-5061, United States
| | - Albert Folch
- Department of Bioengineering, University of Washington, Box 355061, Seattle, Washington 98195-5061, United States
| |
Collapse
|
5
|
Rudell JB, Ferns MJ. Regulation of muscle acetylcholine receptor turnover by β subunit tyrosine phosphorylation. Dev Neurobiol 2013; 73:399-410. [PMID: 23325468 DOI: 10.1002/dneu.22070] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Revised: 11/17/2012] [Accepted: 12/29/2012] [Indexed: 12/21/2022]
Abstract
At the neuromuscular junction (NMJ), the postsynaptic localization of muscle acetylcholine receptor (AChR) is regulated by neural signals and occurs via several processes including metabolic stabilization of the receptor. However, the molecular mechanisms that influence receptor stability remain poorly defined. Here, we show that neural agrin and the tyrosine phosphatase inhibitor, pervanadate slow the degradation of surface receptor in cultured muscle cells. Their action is mediated by tyrosine phosphorylation of the AChR β subunit, as agrin and pervandate had no effect on receptor half-life in AChR-β(3F/3F) muscle cells, which have targeted mutations of the β subunit cytoplasmic tyrosines. Moreover, in wild type AChR-β(3Y) muscle cells, we found a linear relationship between average receptor half-life and the percentage of AChR with phosphorylated β subunit, with half-lives of 12.7 and 23 h for nonphosphorylated and phosphorylated receptor, respectively. Surprisingly, pervanadate increased receptor half-life in AChR-β(3Y) myotubes in the absence of clustering, and agrin failed to increase receptor half-life in AChR-β(3F/3F) myotubes even in the presence of clustering. The metabolic stabilization of the AChR was mediated specifically by phosphorylation of βY390 as mutation of this residue abolished β subunit phosphorylation but did not affect δ subunit phosphorylation. Receptor stabilization also led to higher receptor levels, as agrin increased surface AChR by 30% in AChR-β(3Y) but not AChR-β(3F/3F) myotubes. Together, these findings identify an unexpected role for agrin-induced phosphorylation of β(Y390) in downregulating AChR turnover. This likely stabilizes AChR at developing synapses, and contributes to the extended half-life of AChR at adult NMJs.
Collapse
Affiliation(s)
- John B Rudell
- Department of Physiology and Membrane Biology, University of California Davis, Davis, CA, USA
| | | |
Collapse
|
6
|
Acetylcholine receptors enable the transport of rapsyn from the Golgi complex to the plasma membrane. J Neurosci 2012; 32:7356-63. [PMID: 22623681 DOI: 10.1523/jneurosci.0397-12.2012] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The accumulation of acetylcholine receptors (AChRs) at nerve terminals is critical for signal transmission at the neuromuscular junction, and rapsyn is essential for this process. Previous studies suggest that AChRs might direct rapsyn self-clusters to the synapse. In vivo experiments with fluorescently tagged AChR or rapsyn in zebrafish larvae revealed that rapsyn self-clusters separate from AChRs did not exist before synapse formation. Examination of rapsyn in the AChR-less mutant sofa potato revealed that rapsyn in the absence of AChR was localized in the Golgi complex. Expression of muscle-type AChR in sofa potato restored synaptic clustering of rapsyn, while neuronal type AChR had no effect. To determine whether this requirement of protein interaction is reciprocal, we examined the mutant twitch once, which has a missense mutation in rapsyn. While the AChRs distributed nonsynaptically on the plasma membrane in twitch once, mutant rapsyn was retained in the Golgi complex. We conclude that AChRs enable the transport of rapsyn from the Golgi complex to the plasma membrane through a molecule-specific interaction.
Collapse
|
7
|
Borroni V, Barrantes FJ. Cholesterol modulates the rate and mechanism of acetylcholine receptor internalization. J Biol Chem 2011; 286:17122-32. [PMID: 21357688 DOI: 10.1074/jbc.m110.211870] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Stability of the nicotinic acetylcholine receptor (AChR) at the cell surface is key to the correct functioning of the cholinergic synapse. Cholesterol (Chol) is necessary for homeostasis of AChR levels at the plasmalemma and for ion translocation. Here we characterize the endocytic pathway followed by muscle-type AChR in Chol-depleted cells (Chol(-)). Under such conditions, the AChR is internalized by a ligand-, clathrin-, and dynamin-independent mechanism. Expression of a dominant negative form of the small GTPase Rac1, Rac1N17, abolishes receptor endocytosis. Unlike the endocytic pathway in control CHO cells (1), accelerated AChR internalization proceeds even upon disruption of the actin cytoskeleton. Under Chol(-) conditions, AChR internalization is furthermore found to require the activity of Arf6 and its effectors Rac1 and phospholipase D. The Arf6-dependent mechanism may constitute the default endocytic pathway followed by the AChR in the absence of external ligands, membrane Chol levels acting as a key homeostatic regulator of cell surface receptor levels.
Collapse
Affiliation(s)
- Virginia Borroni
- Instituto Investigaciones Bioquímicas de Bahía Blanca, C Carrindanga Km 7, B8000FWB Bahía Blanca, Argentina
| | | |
Collapse
|
8
|
Piguet J, Schreiter C, Segura JM, Vogel H, Hovius R. Acetylcholine receptor organization in membrane domains in muscle cells: evidence for rapsyn-independent and rapsyn-dependent mechanisms. J Biol Chem 2010; 286:363-9. [PMID: 20978122 DOI: 10.1074/jbc.m110.139782] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Nicotinic acetylcholine receptors (nAChR) in muscle fibers are densely packed in the postsynaptic region at the neuromuscular junction. Rapsyn plays a central role in directing and clustering nAChR during cellular differentiation and neuromuscular junction formation; however, it has not been demonstrated whether rapsyn is the only cause of receptor immobilization. Here, we used single-molecule tracking methods to investigate nAChR mobility in plasma membranes of myoblast cells during their differentiation to myotubes in the presence and absence of rapsyn. We found that in myoblasts the majority of nAChR were immobile and that ∼20% of the receptors showed restricted diffusion in small domains of ∼50 nm. In myoblasts devoid of rapsyn, the fraction of mobile nAChR was considerably increased, accompanied by a 3-fold decrease in the immobile population of nAChR with respect to rapsyn-expressing cells. Half of the mobile receptors were confined to domains of ∼120 nm. Measurements performed in heterologously transfected HEK cells confirmed the direct immobilization of nAChR by rapsyn. However, irrespective of the presence of rapsyn, about one-third of nAChR were confined in 300-nm domains. Our results show (i) that rapsyn efficiently immobilizes nAChR independently of other postsynaptic scaffold components; (ii) nAChR is constrained in confined membrane domains independently of rapsyn; and (iii) in the presence of rapsyn, the size of these domains is strongly reduced.
Collapse
Affiliation(s)
- Joachim Piguet
- Laboratoire de Chimie Physique des Polymères et Membranes, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | | | | | | | | |
Collapse
|
9
|
Arias HR. Positive and negative modulation of nicotinic receptors. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2010; 80:153-203. [PMID: 21109220 DOI: 10.1016/b978-0-12-381264-3.00005-9] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Nicotinic acetylcholine receptors (AChRs) are one of the best characterized ion channels from the Cys-loop receptor superfamily. The study of acetylcholine binding proteins and prokaryotic ion channels from different species has been paramount for the understanding of the structure-function relationship of the Cys-loop receptor superfamily. AChR function can be modulated by different ligand types. The neurotransmitter ACh and other agonists trigger conformational changes in the receptor, finally opening the intrinsic cation channel. The so-called gating process couples ligand binding, located at the extracellular portion, to the opening of the ion channel, located at the transmembrane region. After agonist activation, in the prolonged presence of agonists, the AChR becomes desensitized. Competitive antagonists overlap the agonist-binding sites inhibiting the pharmacological action of agonists. Positive allosteric modulators (PAMs) do not bind to the orthostetic binding sites but allosterically enhance the activity elicited by agonists by increasing the gating process (type I) and/or by decreasing desensitization (type II). Instead, negative allosteric modulators (NAMs) produce the opposite effects. Interestingly, this negative effect is similar to that found for another class of allosteric drugs, that is, noncompetitive antagonists (NCAs). However, the main difference between both categories of drugs is based on their distinct binding site locations. Although both NAMs and NCAs do not bind to the agonist sites, NACs bind to sites located in the ion channel, whereas NAMs bind to nonluminal sites. However, this classification is less clear for NAMs interacting at the extracellular-transmembrane interface where the ion channel mouth might be involved. Interestingly, PAMs and NAMs might be developed as potential medications for the treatment of several diseases involving AChRs, including dementia-, skin-, and immunological-related diseases, drug addiction, and cancer. More exciting is the potential combination of specific agonists with specific PAMs. However, we are still in the beginning of understanding how these compounds act and how these drugs can be used therapeutically.
Collapse
Affiliation(s)
- Hugo R Arias
- Department of Pharmaceutical Sciences, Midwestern University, Glendale, AZ, USA
| |
Collapse
|
10
|
Bartos M, Corradi J, Bouzat C. Structural basis of activation of cys-loop receptors: the extracellular-transmembrane interface as a coupling region. Mol Neurobiol 2009; 40:236-52. [PMID: 19859835 DOI: 10.1007/s12035-009-8084-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2009] [Accepted: 09/22/2009] [Indexed: 10/25/2022]
Abstract
Cys-loop receptors mediate rapid transmission throughout the nervous system by converting a chemical signal into an electric one. They are pentameric proteins with an extracellular domain that carries the transmitter binding sites and a transmembrane region that forms the ion pore. Their essential function is to couple the binding of the agonist at the extracellular domain to the opening of the ion pore. How the structural changes elicited by agonist binding are propagated through a distance of 50 A to the gate is therefore central for the understanding of the receptor function. A step forward toward the identification of the structures involved in gating has been given by the recently elucidated high-resolution structures of Cys-loop receptors and related proteins. The extracellular-transmembrane interface has attracted attention because it is a structural transition zone where beta-sheets from the extracellular domain merge with alpha-helices from the transmembrane domain. Within this zone, several regions form a network that relays structural changes from the binding site toward the pore, and therefore, this interface controls the beginning and duration of a synaptic response. In this review, the most recent findings on residues and pairwise interactions underlying channel gating are discussed, the main focus being on the extracellular-transmembrane interface.
Collapse
Affiliation(s)
- Mariana Bartos
- Instituto de Investigaciones Bioquímicas, UNS-CONICET, Bahía Blanca, Argentina
| | | | | |
Collapse
|
11
|
Zouridakis M, Zisimopoulou P, Poulas K, Tzartos SJ. Recent advances in understanding the structure of nicotinic acetylcholine receptors. IUBMB Life 2009; 61:407-23. [PMID: 19319967 DOI: 10.1002/iub.170] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Nicotinic acetylcholine receptors (nAChRs), members of the Cys-loop ligand-gated ion channels (LGICs) superfamily, are involved in signal transduction upon binding of the neurotransmitter acetylcholine or exogenous ligands, such as nicotine. nAChRs are pentameric assemblies of homologous subunits surrounding a central pore that gates cation flux, and are expressed at the neuromuscular junction and in the nervous system and several nonneuronal cell types. The 17 known nAChR subunits assemble into a variety of pharmacologically distinct receptor subtypes. nAChRs are implicated in a range of physiological functions and pathophysiological conditions related to muscle contraction, learning and memory, reward, motor control, arousal, and analgesia, and therefore present an important target for drug research. Such studies would be greatly facilitated by knowledge of the high-resolution structure of the nAChR. Although this information is far from complete, important progress has been made mainly based on electron microscopy studies of Torpedo nAChR and the high-resolution X-ray crystal structures of the homologous molluscan acetylcholine-binding proteins, the extracellular domain of the mouse nAChR alpha1 subunit, and two prokaryotic pentameric LGICs. Here, we review some of the latest advances in our understanding of nAChR structure and gating.
Collapse
Affiliation(s)
- Marios Zouridakis
- Department of Biochemistry, Hellenic Pasteur Institute, Athens, Greece
| | | | | | | |
Collapse
|
12
|
Nam S, Min K, Hwang H, Lee HO, Lee JH, Yoon J, Lee H, Park S, Lee J. Control of rapsyn stability by the CUL-3-containing E3 ligase complex. J Biol Chem 2009; 284:8195-206. [PMID: 19158078 PMCID: PMC3282941 DOI: 10.1074/jbc.m808230200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2008] [Revised: 01/13/2009] [Indexed: 11/06/2022] Open
Abstract
Rapsyn is a postsynaptic protein required for clustering of nicotinic acetylcholine receptors (nAChRs) at the neuromuscular junction. Here we report the mechanism for posttranslational control of rapsyn protein stability. We confirmed that C18H9.7-encoded RPY-1 is a rapsyn homolog in Caenorhabditis elegans by showing that human rapsyn rescued rpy-1 mutant phenotypes in nematodes, as determined by levamisole assays and micropost array behavioral assays. We found that RPY-1 was degraded in the absence of functional UNC-29, a non-alpha subunit of the receptor, in an allele-specific manner, but not in the absence of other receptor subunits. The cytoplasmic loop of UNC-29 was found to be critical for RPY-1 stability. Through RNA interference screening, we found that UBC-1, UBC-12, NEDD-8, and RBX-1 were required for degradation of RPY-1. We identified cullin (CUL)-3 as a component of E3 ligase and KEL-8 as the substrate adaptor of RPY-1. Mammalian rapsyn was ubiquitinated by the CUL3/KLHL8-containing E3 ligase in vitro, and the knockdown of KLHL-8, a mammalian KEL-8 homolog, inhibited rapsyn ubiquitination in vivo, implying evolutionary conservation of the rapsyn stability control machinery. kel-8 suppression and rpy-1 overexpression in C. elegans produced a phenotype similar to that of a loss-of-function mutation of rpy-1, suggesting that control of rapsyn abundance is important for proper function of the receptor. Our results suggest a link between the control of rapsyn abundance and congenital myasthenic syndromes.
Collapse
Affiliation(s)
- Seunghee Nam
- Research Center for
Cellulomics, Institute of Molecular Biology and Genetics, School of Biological
Sciences, Seoul National University, 151-742 Seoul, Korea, the
Division of Nano Sciences (BK21),
Ewha Womans University, 120-750 Seoul, Korea,
Protein Network Research Center,
Department of Biochemistry, Yonsei University, 134 Shinchon, 120-749 Seoul,
Korea
| | - Kyoengwoo Min
- Research Center for
Cellulomics, Institute of Molecular Biology and Genetics, School of Biological
Sciences, Seoul National University, 151-742 Seoul, Korea, the
Division of Nano Sciences (BK21),
Ewha Womans University, 120-750 Seoul, Korea,
Protein Network Research Center,
Department of Biochemistry, Yonsei University, 134 Shinchon, 120-749 Seoul,
Korea
| | - Hyejin Hwang
- Research Center for
Cellulomics, Institute of Molecular Biology and Genetics, School of Biological
Sciences, Seoul National University, 151-742 Seoul, Korea, the
Division of Nano Sciences (BK21),
Ewha Womans University, 120-750 Seoul, Korea,
Protein Network Research Center,
Department of Biochemistry, Yonsei University, 134 Shinchon, 120-749 Seoul,
Korea
| | - Hae-ock Lee
- Research Center for
Cellulomics, Institute of Molecular Biology and Genetics, School of Biological
Sciences, Seoul National University, 151-742 Seoul, Korea, the
Division of Nano Sciences (BK21),
Ewha Womans University, 120-750 Seoul, Korea,
Protein Network Research Center,
Department of Biochemistry, Yonsei University, 134 Shinchon, 120-749 Seoul,
Korea
| | - Jung Hwa Lee
- Research Center for
Cellulomics, Institute of Molecular Biology and Genetics, School of Biological
Sciences, Seoul National University, 151-742 Seoul, Korea, the
Division of Nano Sciences (BK21),
Ewha Womans University, 120-750 Seoul, Korea,
Protein Network Research Center,
Department of Biochemistry, Yonsei University, 134 Shinchon, 120-749 Seoul,
Korea
| | - Jongbok Yoon
- Research Center for
Cellulomics, Institute of Molecular Biology and Genetics, School of Biological
Sciences, Seoul National University, 151-742 Seoul, Korea, the
Division of Nano Sciences (BK21),
Ewha Womans University, 120-750 Seoul, Korea,
Protein Network Research Center,
Department of Biochemistry, Yonsei University, 134 Shinchon, 120-749 Seoul,
Korea
| | - Hyunsook Lee
- Research Center for
Cellulomics, Institute of Molecular Biology and Genetics, School of Biological
Sciences, Seoul National University, 151-742 Seoul, Korea, the
Division of Nano Sciences (BK21),
Ewha Womans University, 120-750 Seoul, Korea,
Protein Network Research Center,
Department of Biochemistry, Yonsei University, 134 Shinchon, 120-749 Seoul,
Korea
| | - Sungsu Park
- Research Center for
Cellulomics, Institute of Molecular Biology and Genetics, School of Biological
Sciences, Seoul National University, 151-742 Seoul, Korea, the
Division of Nano Sciences (BK21),
Ewha Womans University, 120-750 Seoul, Korea,
Protein Network Research Center,
Department of Biochemistry, Yonsei University, 134 Shinchon, 120-749 Seoul,
Korea
| | - Junho Lee
- Research Center for
Cellulomics, Institute of Molecular Biology and Genetics, School of Biological
Sciences, Seoul National University, 151-742 Seoul, Korea, the
Division of Nano Sciences (BK21),
Ewha Womans University, 120-750 Seoul, Korea,
Protein Network Research Center,
Department of Biochemistry, Yonsei University, 134 Shinchon, 120-749 Seoul,
Korea
| |
Collapse
|
13
|
Borges LS, Yechikhov S, Lee YI, Rudell JB, Friese MB, Burden SJ, Ferns MJ. Identification of a motif in the acetylcholine receptor beta subunit whose phosphorylation regulates rapsyn association and postsynaptic receptor localization. J Neurosci 2008; 28:11468-76. [PMID: 18987183 PMCID: PMC2606670 DOI: 10.1523/jneurosci.2508-08.2008] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2008] [Revised: 09/10/2008] [Accepted: 09/22/2008] [Indexed: 11/21/2022] Open
Abstract
At the neuromuscular junction, the acetylcholine receptor (AChR) is specifically clustered in the postsynaptic membrane via interactions with rapsyn and other scaffolding proteins. However, it remains unclear where these proteins bind on the AChR and how the interactions are regulated. Here, we define a phosphorylation-dependent binding site on the receptor that mediates agrin-induced clustering. Using chimeric proteins in which CD4 is fused to the large intracellular loop of each of the AChR subunits we found that agrin induced clustering of only chimeras containing the beta subunit loop. By making deletions in the beta loop we defined a 20 amino-acid sequence that is sufficient for clustering. The sequence contains a conserved tyrosine (Y390) whose phosphorylation is induced by agrin and whose mutation abolished clustering of beta loop chimeras and their ability to inhibit agrin-induced clustering of the endogenous AChR. Phosphorylation of the AChR beta subunit is correlated with increased rapsyn/AChR binding, suggesting that the effect of betaY390 phosphorylation on clustering is mediated by rapsyn. Indeed, we found that rapsyn associated with CD4-beta loop chimeras in a phosphorylation-dependent manner, and that agrin increased the ratio of rapsyn binding to wild type AChR but not to AChR-beta(3F/3F), which lacks beta loop tyrosine phosphorylation sites. Together, these findings suggest that agrin-induced phosphorylation of the beta subunit motif increases the stoichiometry of rapsyn binding to the AChR, thereby helping to stably cluster the receptor and anchor it at high density in the postsynaptic membrane.
Collapse
Affiliation(s)
- Lucia S. Borges
- Departments of Anesthesiology and Physiology and Membrane Biology, University of California, Davis, Davis, California 95616, and
| | - Sergey Yechikhov
- Departments of Anesthesiology and Physiology and Membrane Biology, University of California, Davis, Davis, California 95616, and
| | - Young I. Lee
- Departments of Anesthesiology and Physiology and Membrane Biology, University of California, Davis, Davis, California 95616, and
| | - John B. Rudell
- Departments of Anesthesiology and Physiology and Membrane Biology, University of California, Davis, Davis, California 95616, and
| | - Matthew B. Friese
- Molecular Neurobiology Program, Skirball Institute of Biomolecular Medicine, New York University Medical School, New York, New York 10016
| | - Steven J. Burden
- Molecular Neurobiology Program, Skirball Institute of Biomolecular Medicine, New York University Medical School, New York, New York 10016
| | - Michael J. Ferns
- Departments of Anesthesiology and Physiology and Membrane Biology, University of California, Davis, Davis, California 95616, and
| |
Collapse
|
14
|
Bruneau EG, Esteban JA, Akaaboune M. Receptor-associated proteins and synaptic plasticity. FASEB J 2008; 23:679-88. [PMID: 18978155 DOI: 10.1096/fj.08-107946] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Changes in synaptic strength are important for synaptic development and synaptic plasticity. Most directly responsible for these synaptic changes are alterations in synaptic receptor number and density. Although alterations in receptor density mediated by the insertion, lateral mobility, removal, and recycling of receptors have been extensively studied, the dynamics and regulators of intracellular scaffolding proteins have only recently begun to be illuminated. In particular, a closer look at the receptor-associated proteins, which bind to receptors and are necessary for their synaptic localization and clustering, has revealed broader functions than previously thought and some rather unexpected thematic similarities. More than just "placeholders" or members of a passive protein "scaffold," receptor-associated proteins in every synapse studied have been shown to provide a number of signaling roles. In addition, the most recent state-of-the-art imaging has revealed that receptor-associated proteins are highly dynamic and are involved in regulating synaptic receptor density. Together, these results challenge the view that receptor-associated proteins are members of a static and stable scaffold and argue that their dynamic mobility may be essential for regulating activity-dependent changes in synaptic strength.
Collapse
Affiliation(s)
- Emile G Bruneau
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | | | | |
Collapse
|
15
|
Brockhausen J, Cole RN, Gervásio OL, Ngo ST, Noakes PG, Phillips WD. Neural agrin increases postsynaptic ACh receptor packing by elevating rapsyn protein at the mouse neuromuscular synapse. Dev Neurobiol 2008; 68:1153-69. [PMID: 18506821 DOI: 10.1002/dneu.20654] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Fluorescence resonance energy transfer (FRET) experiments at neuromuscular junctions in the mouse tibialis anterior muscle show that postsynaptic acetylcholine receptors (AChRs) become more tightly packed during the first month of postnatal development. Here, we report that the packing of AChRs into postsynaptic aggregates was reduced in 4-week postnatal mice that had reduced amounts of the AChR-associated protein, rapsyn, in the postsynaptic membrane (rapsyn(+/-) mice). We hypothesize that nerve-derived agrin increases postsynaptic expression and targeting of rapsyn, which then drives the developmental increase in AChR packing. Neural agrin treatment elevated the expression of rapsyn in C2 myotubes by a mechanism that involved slowing of rapsyn protein degradation. Similarly, exposure of synapses in postnatal muscle to exogenous agrin increased rapsyn protein levels and elevated the intensity of anti-rapsyn immunofluorescence, relative to AChR, in the postsynaptic membrane. This increase in the rapsyn-to-AChR immunofluorescence ratio was associated with tighter postsynaptic AChR packing and slowed AChR turnover. Acute blockade of synaptic AChRs with alpha-bungarotoxin lowered the rapsyn-to-AChR immunofluorescence ratio, suggesting that AChR signaling also helps regulate the assembly of extra rapsyn in the postsynaptic membrane. The results suggest that at the postnatal neuromuscular synapse agrin signaling elevates the expression and targeting of rapsyn to the postsynaptic membrane, thereby packing more AChRs into stable, functionally-important AChR aggregates.
Collapse
Affiliation(s)
- Jennifer Brockhausen
- School of Medical Sciences (Physiology), Bosch Institute, University of Sydney, Sydney, Australia
| | | | | | | | | | | |
Collapse
|
16
|
Luo S, Zhang B, Dong XP, Tao Y, Ting A, Zhou Z, Meixiong J, Luo J, Chiu FA, Xiong WC, Mei L. HSP90 beta regulates rapsyn turnover and subsequent AChR cluster formation and maintenance. Neuron 2008; 60:97-110. [PMID: 18940591 PMCID: PMC2586976 DOI: 10.1016/j.neuron.2008.08.013] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2008] [Revised: 06/06/2008] [Accepted: 08/10/2008] [Indexed: 10/21/2022]
Abstract
Rapsyn, an acetylcholine receptor (AChR)-interacting protein, is essential for synapse formation at the neuromuscular junction (NMJ). Like many synaptic proteins, rapsyn turns over rapidly at synapses. However, little is known about molecular mechanisms that govern rapsyn stability. Using a differential mass-spectrometry approach, we identified heat-shock protein 90beta (HSP90beta) as a component in surface AChR clusters. The HSP90beta-AChR interaction required rapsyn and was stimulated by agrin. Inhibition of HSP90beta activity or expression, or disruption of its interaction with rapsyn attenuated agrin-induced formation of AChR clusters in vitro and impaired the development and maintenance of the NMJ in vivo. Finally, we showed that HSP90beta was necessary for rapsyn stabilization and regulated its proteasome-dependent degradation. Together, these results indicate a role of HSP90beta in NMJ development by regulating rapsyn turnover and subsequent AChR cluster formation and maintenance.
Collapse
Affiliation(s)
- Shiwen Luo
- Program of Developmental Neurobiology, Institute of Molecular Medicine and Genetics, Medical College of Georgia, Augusta, Georgia 30912
| | - Bin Zhang
- Program of Developmental Neurobiology, Institute of Molecular Medicine and Genetics, Medical College of Georgia, Augusta, Georgia 30912
| | - Xian-ping Dong
- Program of Developmental Neurobiology, Institute of Molecular Medicine and Genetics, Medical College of Georgia, Augusta, Georgia 30912
| | - Yanmei Tao
- Program of Developmental Neurobiology, Institute of Molecular Medicine and Genetics, Medical College of Georgia, Augusta, Georgia 30912
| | - Annie Ting
- Program of Developmental Neurobiology, Institute of Molecular Medicine and Genetics, Medical College of Georgia, Augusta, Georgia 30912
| | - Zheng Zhou
- Program of Developmental Neurobiology, Institute of Molecular Medicine and Genetics, Medical College of Georgia, Augusta, Georgia 30912
| | - James Meixiong
- Program of Developmental Neurobiology, Institute of Molecular Medicine and Genetics, Medical College of Georgia, Augusta, Georgia 30912
| | - Junjie Luo
- Program of Developmental Neurobiology, Institute of Molecular Medicine and Genetics, Medical College of Georgia, Augusta, Georgia 30912
| | - F.C. Alex Chiu
- Program of Developmental Neurobiology, Institute of Molecular Medicine and Genetics, Medical College of Georgia, Augusta, Georgia 30912
| | - Wen C. Xiong
- Program of Developmental Neurobiology, Institute of Molecular Medicine and Genetics, Medical College of Georgia, Augusta, Georgia 30912
| | - Lin Mei
- Program of Developmental Neurobiology, Institute of Molecular Medicine and Genetics, Medical College of Georgia, Augusta, Georgia 30912
| |
Collapse
|
17
|
Bruneau EG, Brenner DS, Kuwada JY, Akaaboune M. Acetylcholine Receptor Clustering Is Required for the Accumulation and Maintenance of Scaffolding Proteins. Curr Biol 2008; 18:109-15. [DOI: 10.1016/j.cub.2007.12.029] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2007] [Revised: 12/06/2007] [Accepted: 12/07/2007] [Indexed: 11/29/2022]
|