1
|
Whelan R, Cyganek M, Oxley CL, Dickins B, Thomas JC, McVicker G. Genetic and phenotypic analysis of the virulence plasmid of a non-Shigatoxigenic enteroaggregative Escherichia coli O104:H4 outbreak strain. MICROBIOLOGY (READING, ENGLAND) 2025; 171:001550. [PMID: 40146611 PMCID: PMC11950199 DOI: 10.1099/mic.0.001550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 03/18/2025] [Indexed: 03/29/2025]
Abstract
Enteroaggregative Escherichia coli O104:H4 is best known for causing a worldwide outbreak in 2011 due to the acquisition of a Shiga-like toxin alongside traditional enteroaggregative virulence traits; however, whilst the 2011 outbreak strain has been well studied, the virulence plasmid of O104:H4 has been subjected to far less experimental analysis. In this paper, we analyse the genetic and phenotypic contribution of the pAA virulence plasmid to a non-Shigatoxigenic O104:H4 strain (1070/13) that was nonetheless implicated in a substantial UK outbreak in 2013. We find that pAA1070 is 99.95% identical across 88% of the plasmid sequence to pTY2 from the 2011 outbreak strain and has a copy number of ~2-3 plasmid molecules per chromosome. We demonstrate that pAA1070 carries a functional CcdAB plasmid addiction system that only marginally impacts its stability under the conditions tested. None of the other toxin-antitoxin systems encoded by the plasmid appear to be functional, though we note a surprisingly high stability of the plasmid in vitro regardless. We demonstrate the expected contribution of pAA1070 to intestinal cell adhesion but find that it does not contribute to biofilm formation. When assessing the impact of pAA1070 on motility, we discovered a region of the O104:H4 chromosome that can be excised, abolishing motility via truncation of the fliR gene. Ultimately, this work demonstrates the importance of mobile genetic elements to enteroaggregative E. coli as a pathovar in its own right and highlights the complexity but necessity of experimentally characterizing genuine outbreak strains rather than laboratory strains in order to understand virulence phenotypes.
Collapse
Affiliation(s)
- Rachel Whelan
- Department of Biosciences, Nottingham Trent University, Clifton, Nottingham, NG11 8NS, UK
| | - Martyna Cyganek
- Department of Biosciences, Nottingham Trent University, Clifton, Nottingham, NG11 8NS, UK
| | - Charlotte L. Oxley
- Department of Biosciences, Nottingham Trent University, Clifton, Nottingham, NG11 8NS, UK
| | - Benjamin Dickins
- Department of Biosciences, Nottingham Trent University, Clifton, Nottingham, NG11 8NS, UK
| | - Jonathan C. Thomas
- Department of Biosciences, Nottingham Trent University, Clifton, Nottingham, NG11 8NS, UK
| | - Gareth McVicker
- Department of Biosciences, Nottingham Trent University, Clifton, Nottingham, NG11 8NS, UK
| |
Collapse
|
2
|
Song N, De Greve H, Wang Q, Hernalsteens JP, Li Z. Plasmid parB contributes to uropathogenic Escherichia coli colonization in vivo by acting on biofilm formation and global gene regulation. Front Mol Biosci 2022; 9:1053888. [PMID: 36589237 PMCID: PMC9800825 DOI: 10.3389/fmolb.2022.1053888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 11/28/2022] [Indexed: 12/23/2022] Open
Abstract
The endogenous plasmid pUTI89 harbored by the uropathogenic Escherichia coli (UPEC) strain UTI89 plays an important role in the acute stage of infection. The partitioning gene parB is important for stable inheritance of pUTI89. However, the function of partitioning genes located on the plasmid in pathogenesis of UPEC still needs to be further investigated. In the present study, we observed that disruption of the parB gene leads to a deficiency in biofilm formation in vitro. Moreover, in a mixed infection with the wild type strain and the parB mutant, in an ascending UTI mouse model, the mutant displayed a lower bacterial burden in the bladder and kidneys, not only at the acute infection stage but also extending to 72 hours post infection. However, in the single infection test, the reduced colonization ability of the parB mutant was only observed at six hpi in the bladder, but not in the kidneys. The colonization capacity in vivo of the parB-complemented strain was recovered. qRT-PCR assay suggested that ParB could be a global regulator, influencing the expression of genes located on both the endogenous plasmid and chromosome, while the gene parA or the operon parAB could not. Our study demonstrates that parB contributes to the virulence of UPEC by influencing biofilm formation and proposes that the parB gene of the endogenous plasmid could regulate gene expression globally.
Collapse
Affiliation(s)
- Ningning Song
- School of Life Science and Technology, Weifang Medical University, Weifang, China,Department of Biology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Henri De Greve
- VIB-VUB Center for Structural Biology, Vrije Universiteit Brussel, Brussels, Belgium,Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| | - Quanjun Wang
- SAFE Pharmaceutical Technology Co, Ltd., Beijing, China
| | - Jean-Pierre Hernalsteens
- Department of Biology, Vrije Universiteit Brussel, Brussels, Belgium,*Correspondence: Jean-Pierre Hernalsteens, , Zhaoli Li,
| | - Zhaoli Li
- Department of Biology, Vrije Universiteit Brussel, Brussels, Belgium,SAFE Pharmaceutical Technology Co, Ltd., Beijing, China,*Correspondence: Jean-Pierre Hernalsteens, , Zhaoli Li,
| |
Collapse
|
3
|
The Specificity of ParR Binding Determines the Incompatibility of Conjugative Plasmids in Clostridium perfringens. mBio 2022; 13:e0135622. [PMID: 35726914 PMCID: PMC9426499 DOI: 10.1128/mbio.01356-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Plasmids that encode the same replication machinery are generally unable to coexist in the same bacterial cell. However, Clostridium perfringens strains often carry multiple conjugative toxin or antibiotic resistance plasmids that are closely related and encode similar Rep proteins. In many bacteria, plasmid partitioning upon cell division involves a ParMRC system; in C. perfringens plasmids, there are approximately 10 different ParMRC families, with significant differences in amino acid sequences between each ParM family (15% to 54% identity). Since plasmids carrying genes belonging to the same ParMRC family are not observed in the same strain, these families appear to represent the basis for plasmid compatibility in C. perfringens. To understand this process, we examined the key recognition steps between ParR DNA-binding proteins and their parC binding sites. The ParR proteins bound to sequences within a parC site from the same ParMRC family but could not interact with a parC site from a different ParMRC family. These data provide evidence that compatibility of the conjugative toxin plasmids of C. perfringens is mediated by their parMRC-like partitioning systems. This process provides a selective advantage by enabling the host bacterium to maintain separate plasmids that encode toxins that are specific for different host targets.
Collapse
|
4
|
Arroyo-Pérez EE, Ringgaard S. Interdependent Polar Localization of FlhF and FlhG and Their Importance for Flagellum Formation of Vibrio parahaemolyticus. Front Microbiol 2021; 12:655239. [PMID: 33815347 PMCID: PMC8009987 DOI: 10.3389/fmicb.2021.655239] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 02/23/2021] [Indexed: 11/14/2022] Open
Abstract
Failure of the cell to properly regulate the number and intracellular positioning of their flagella, has detrimental effects on the cells’ swimming ability. The flagellation pattern of numerous bacteria is regulated by the NTPases FlhF and FlhG. In general, FlhG controls the number of flagella produced, whereas FlhF coordinates the position of the flagella. In the human pathogen Vibrio parahaemolyticus, its single flagellum is positioned and formed at the old cell pole. Here, we describe the spatiotemporal localization of FlhF and FlhG in V. parahaemolyticus and their effect on swimming motility. Absence of either FlhF or FlhG caused a significant defect in swimming ability, resulting in absence of flagella in a ΔflhF mutant and an aberrant flagellated phenotype in ΔflhG. Both proteins localized to the cell pole in a cell cycle-dependent manner, but displayed different patterns of localization throughout the cell cycle. FlhF transitioned from a uni- to bi-polar localization, as observed in other polarly flagellated bacteria. Localization of FlhG was strictly dependent on the cell pole-determinant HubP, while polar localization of FlhF was HubP independent. Furthermore, localization of FlhF and FlhG was interdependent and required for each other’s proper intracellular localization and recruitment to the cell pole. In the absence of HubP or FlhF, FlhG forms non-polar foci in the cytoplasm of the cell, suggesting the possibility of a secondary localization site within the cell besides its recruitment to the cell poles.
Collapse
Affiliation(s)
- Erick Eligio Arroyo-Pérez
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany.,Department of Biology I, Microbiology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Simon Ringgaard
- Department of Biology I, Microbiology, Ludwig-Maximilians-Universität München, Munich, Germany
| |
Collapse
|
5
|
Daniel S, Goldlust K, Quebre V, Shen M, Lesterlin C, Bouet JY, Yamaichi Y. Vertical and Horizontal Transmission of ESBL Plasmid from Escherichia coli O104:H4. Genes (Basel) 2020; 11:genes11101207. [PMID: 33081159 PMCID: PMC7602700 DOI: 10.3390/genes11101207] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 10/05/2020] [Accepted: 10/13/2020] [Indexed: 12/16/2022] Open
Abstract
Multidrug resistance (MDR) often results from the acquisition of mobile genetic elements (MGEs) that encode MDR gene(s), such as conjugative plasmids. The spread of MDR plasmids is founded on their ability of horizontal transference, as well as their faithful inheritance in progeny cells. Here, we investigated the genetic factors involved in the prevalence of the IncI conjugative plasmid pESBL, which was isolated from the Escherichia coli O104:H4 outbreak strain in Germany in 2011. Using transposon-insertion sequencing, we identified the pESBL partitioning locus (par). Genetic, biochemical and microscopic approaches allowed pESBL to be characterized as a new member of the Type Ib partitioning system. Inactivation of par caused mis-segregation of pESBL followed by post-segregational killing (PSK), resulting in a great fitness disadvantage but apparent plasmid stability in the population of viable cells. We constructed a variety of pESBL derivatives with different combinations of mutations in par, conjugational transfer (oriT) and pnd toxin-antitoxin (TA) genes. Only the triple mutant exhibited plasmid-free cells in viable cell populations. Time-lapse tracking of plasmid dynamics in microfluidics indicated that inactivation of pnd improved the survival of plasmid-free cells and allowed oriT-dependent re-acquisition of the plasmid. Altogether, the three factors—active partitioning, toxin-antitoxin and conjugational transfer—are all involved in the prevalence of pESBL in the E. coli population.
Collapse
Affiliation(s)
- Sandra Daniel
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, 91198 Gif-sur-Yvette, France; (S.D.); (M.S.)
| | - Kelly Goldlust
- Microbiologie Moléculaire et Biochimie Structurale (MMSB), Université Lyon 1, CNRS, Inserm, UMR5086, 69007 Lyon, France; (K.G.); (C.L.)
| | - Valentin Quebre
- Laboratoire de Microbiologie et de Génétique Moléculaires (LMGM), CBI, CNRS, Université de Toulouse, UPS, 31062 Toulouse, France; (V.Q.); (J.-Y.B.)
| | - Minjia Shen
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, 91198 Gif-sur-Yvette, France; (S.D.); (M.S.)
- Graduate School of Structure and Dynamics of Living Systems, Université Paris-Saclay, CEA, CNRS, 91198 Gif-sur-Yvette, France
| | - Christian Lesterlin
- Microbiologie Moléculaire et Biochimie Structurale (MMSB), Université Lyon 1, CNRS, Inserm, UMR5086, 69007 Lyon, France; (K.G.); (C.L.)
| | - Jean-Yves Bouet
- Laboratoire de Microbiologie et de Génétique Moléculaires (LMGM), CBI, CNRS, Université de Toulouse, UPS, 31062 Toulouse, France; (V.Q.); (J.-Y.B.)
| | - Yoshiharu Yamaichi
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, 91198 Gif-sur-Yvette, France; (S.D.); (M.S.)
- Correspondence:
| |
Collapse
|
6
|
Abstract
Plasmids have a major role in the development of disease caused by enteric bacterial pathogens. Virulence plasmids are usually large (>40 kb) low copy elements and encode genes that promote host-pathogen interactions. Although virulence plasmids provide advantages to bacteria in specific conditions, they often impose fitness costs on their host. In this Review, we discuss virulence plasmids in Enterobacteriaceae that are important causes of diarrhoea in humans, Shigella spp., Salmonella spp., Yersinia spp and pathovars of Escherichia coli. We contrast these plasmids with those that are routinely used in the laboratory and outline the mechanisms by which virulence plasmids are maintained in bacterial populations. We highlight examples of virulence plasmids that encode multiple mechanisms for their maintenance (for example, toxin-antitoxin and partitioning systems) and speculate on how these might contribute to their propagation and success.
Collapse
|
7
|
Abstract
Plasmids are ubiquitous in the microbial world and have been identified in almost all species of bacteria that have been examined. Their localization inside the bacterial cell has been examined for about two decades; typically, they are not randomly distributed, and their positioning depends on copy number and their mode of segregation. Low-copy-number plasmids promote their own stable inheritance in their bacterial hosts by encoding active partition systems, which ensure that copies are positioned in both halves of a dividing cell. High-copy plasmids rely on passive diffusion of some copies, but many remain clustered together in the nucleoid-free regions of the cell. Here we review plasmid localization and partition (Par) systems, with particular emphasis on plasmids from Enterobacteriaceae and on recent results describing the in vivo localization properties and molecular mechanisms of each system. Partition systems also cause plasmid incompatibility such that distinct plasmids (with different replicons) with the same Par system cannot be stably maintained in the same cells. We discuss how partition-mediated incompatibility is a consequence of the partition mechanism.
Collapse
Affiliation(s)
- Jean-Yves Bouet
- Laboratoire de Microbiologie et Génétique Moléculaires, Centre de Biologie Intégrative (CBI), Centre National de la Recherche Scientifique (CNRS), Université de Toulouse, UPS, F-31000 Toulouse, France
| | - Barbara E Funnell
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada M5G 1M1
| |
Collapse
|
8
|
Hayashi I, Oda T, Sato M, Fuchigami S. Cooperative DNA Binding of the Plasmid Partitioning Protein TubR from the Bacillus cereus pXO1 Plasmid. J Mol Biol 2018; 430:5015-5028. [PMID: 30414406 DOI: 10.1016/j.jmb.2018.11.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 11/01/2018] [Accepted: 11/01/2018] [Indexed: 11/19/2022]
Abstract
Tubulin/FtsZ-like GTPase TubZ is responsible for maintaining the stability of pXO1-like plasmids in virulent Bacilli. TubZ forms a filament in a GTP-dependent manner, and like other partitioning systems of low-copy-number plasmids, it requires the centromere-binding protein TubR that connects the plasmid to the TubZ filament. Systems regulating TubZ partitioning have been identified in Clostridium prophages as well as virulent Bacillus species, in which TubZ facilitates partitioning by binding and towing the segrosome: the nucleoprotein complex composed of TubR and the centromere. However, the molecular mechanisms of segrosome assembly and the transient on-off interactions between the segrosome and the TubZ filament remain poorly understood. Here, we determined the crystal structure of TubR from Bacillus cereus at 2.0-Å resolution and investigated the DNA-binding ability of TubR using hydroxyl radical footprinting and electrophoretic mobility shift assays. The TubR dimer possesses 2-fold symmetry and binds to a 15-bp palindromic consensus sequence in the tubRZ promoter region. Continuous TubR-binding sites overlap each other, which enables efficient binding of TubR in a cooperative manner. Interestingly, the segrosome adopts an extended DNA-protein filament structure and likely gains conformational flexibility by introducing non-consensus residues into the palindromes in an asymmetric manner. Together, our experimental results and structural model indicate that the unique centromere recognition mechanism of TubR allows transient complex formation between the segrosome and the dynamic polymer of TubZ.
Collapse
Affiliation(s)
- Ikuko Hayashi
- Department of Medical Life Science, Yokohama City University, 1-7-29 Suehiro, Tsurumi, Yokohama, Kanagawa 230-0045, Japan.
| | - Takashi Oda
- Department of Medical Life Science, Yokohama City University, 1-7-29 Suehiro, Tsurumi, Yokohama, Kanagawa 230-0045, Japan
| | - Mamoru Sato
- Department of Medical Life Science, Yokohama City University, 1-7-29 Suehiro, Tsurumi, Yokohama, Kanagawa 230-0045, Japan
| | - Sotaro Fuchigami
- Department of Medical Life Science, Yokohama City University, 1-7-29 Suehiro, Tsurumi, Yokohama, Kanagawa 230-0045, Japan
| |
Collapse
|
9
|
Abstract
The genomes of all organisms throughout the tree of life are compacted and organized in chromatin by association of chromatin proteins. Eukaryotic genomes encode histones, which are assembled on the genome into octamers, yielding nucleosomes. Post-translational modifications of the histones, which occur mostly on their N-terminal tails, define the functional state of chromatin. Like eukaryotes, most archaeal genomes encode histones, which are believed to be involved in the compaction and organization of their genomes. Instead of discrete multimers, in vivo data suggest assembly of “nucleosomes” of variable size, consisting of multiples of dimers, which are able to induce repression of transcription. Based on these data and a model derived from X-ray crystallography, it was recently proposed that archaeal histones assemble on DNA into “endless” hypernucleosomes. In this review, we discuss the amino acid determinants of hypernucleosome formation and highlight differences with the canonical eukaryotic octamer. We identify archaeal histones differing from the consensus, which are expected to be unable to assemble into hypernucleosomes. Finally, we identify atypical archaeal histones with short N- or C-terminal extensions and C-terminal tails similar to the tails of eukaryotic histones, which are subject to post-translational modification. Based on the expected characteristics of these archaeal histones, we discuss possibilities of involvement of histones in archaeal transcription regulation. Both Archaea and eukaryotes express histones, but whereas the tertiary structure of histones is conserved, the quaternary structure of histone–DNA complexes is very different. In a recent study, the crystal structure of the archaeal hypernucleosome was revealed to be an “endless” core of interacting histones that wraps the DNA around it in a left-handed manner. The ability to form a hypernucleosome is likely determined by dimer–dimer interactions as well as stacking interactions between individual layers of the hypernucleosome. We analyzed a wide variety of archaeal histones and found that most but not all histones possess residues able to facilitate hypernucleosome formation. Among these are histones with truncated termini or extended histone tails. Based on our analysis, we propose several possibilities of archaeal histone involvement in transcription regulation.
Collapse
Affiliation(s)
- Bram Henneman
- Leiden Institute of Chemistry, Leiden University, Leiden, the Netherlands
| | - Clara van Emmerik
- Leiden Institute of Chemistry, Leiden University, Leiden, the Netherlands
| | - Hugo van Ingen
- Leiden Institute of Chemistry, Leiden University, Leiden, the Netherlands
| | - Remus T. Dame
- Leiden Institute of Chemistry, Leiden University, Leiden, the Netherlands
- Centre for Microbial Cell Biology, Leiden University, Leiden, the Netherlands
- * E-mail:
| |
Collapse
|
10
|
Muraleedharan S, Freitas C, Mann P, Glatter T, Ringgaard S. A cell length-dependent transition in MinD-dynamics promotes a switch in division-site placement and preservation of proliferating elongated Vibrio parahaemolyticus
swarmer cells. Mol Microbiol 2018; 109:365-384. [DOI: 10.1111/mmi.13996] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/17/2018] [Indexed: 12/18/2022]
Affiliation(s)
- Samada Muraleedharan
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology; Marburg 35043 Germany
| | - Carolina Freitas
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology; Marburg 35043 Germany
| | - Petra Mann
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology; Marburg 35043 Germany
| | - Timo Glatter
- Core facility for Mass Spectrometry and Proteomics, Max Planck Institute for Terrestrial Microbiology; Marburg 35043 Germany
| | - Simon Ringgaard
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology; Marburg 35043 Germany
| |
Collapse
|
11
|
Jecz P, Bartosik AA, Glabski K, Jagura-Burdzy G. A single parS sequence from the cluster of four sites closest to oriC is necessary and sufficient for proper chromosome segregation in Pseudomonas aeruginosa. PLoS One 2015; 10:e0120867. [PMID: 25794281 PMCID: PMC4368675 DOI: 10.1371/journal.pone.0120867] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Accepted: 01/27/2015] [Indexed: 11/19/2022] Open
Abstract
Among the mechanisms that control chromosome segregation in bacteria are highly-conserved partitioning systems comprising three components: ParA protein (a deviant Walker-type ATPase), ParB protein (a DNA-binding element) and multiple cis-acting palindromic centromere-like sequences, designated parS. Ten putative parS sites have been identified in the P. aeruginosa PAO1 genome, four localized in close proximity of oriC and six, diverged by more than one nucleotide from a perfect palindromic sequence, dispersed along the chromosome. Here, we constructed and analyzed P. aeruginosa mutants deprived of each single parS sequence and their different combinations. The analysis included evaluation of a set of phenotypic features, chromosome segregation, and ParB localization in the cells. It was found that ParB binds specifically to all ten parS sites, although with different affinities. The P. aeruginosa parS mutant with all ten parS sites modified (parSnull) is viable however it demonstrates the phenotype characteristic for parAnull or parBnull mutants: slightly slower growth rate, high frequency of anucleate cells, and defects in motility. The genomic position and sequence of parS determine its role in P. aeruginosa biology. It transpired that any one of the four parS sites proximal to oriC (parS1 to parS4), which are bound by ParB with the highest affinity, is necessary and sufficient for the parABS role in chromosome partitioning. When all these four sites are mutated simultaneously, the strain shows the parSnull phenotype, which indicates that none of the remaining six parS sites can substitute for these four oriC-proximal sites in this function. A single ectopic parS2 (inserted opposite oriC in the parSnull mutant) facilitates ParB organization into regularly spaced condensed foci and reverses some of the mutant phenotypes but is not sufficient for accurate chromosome segregation.
Collapse
Affiliation(s)
- Paulina Jecz
- Institute of Biochemistry and Biophysics, Department of Microbial Biochemistry, Polish Academy of Sciences, Warsaw, Poland
| | - Aneta A. Bartosik
- Institute of Biochemistry and Biophysics, Department of Microbial Biochemistry, Polish Academy of Sciences, Warsaw, Poland
| | - Krzysztof Glabski
- Institute of Biochemistry and Biophysics, Department of Microbial Biochemistry, Polish Academy of Sciences, Warsaw, Poland
| | - Grazyna Jagura-Burdzy
- Institute of Biochemistry and Biophysics, Department of Microbial Biochemistry, Polish Academy of Sciences, Warsaw, Poland
- * E-mail:
| |
Collapse
|
12
|
Ietswaart R, Szardenings F, Gerdes K, Howard M. Competing ParA structures space bacterial plasmids equally over the nucleoid. PLoS Comput Biol 2014; 10:e1004009. [PMID: 25521716 PMCID: PMC4270457 DOI: 10.1371/journal.pcbi.1004009] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 10/28/2014] [Indexed: 11/18/2022] Open
Abstract
Low copy number plasmids in bacteria require segregation for stable inheritance through cell division. This is often achieved by a parABC locus, comprising an ATPase ParA, DNA-binding protein ParB and a parC region, encoding ParB-binding sites. These minimal components space plasmids equally over the nucleoid, yet the underlying mechanism is not understood. Here we investigate a model where ParA-ATP can dynamically associate to the nucleoid and is hydrolyzed by plasmid-associated ParB, thereby creating nucleoid-bound, self-organizing ParA concentration gradients. We show mathematically that differences between competing ParA concentrations on either side of a plasmid can specify regular plasmid positioning. Such positioning can be achieved regardless of the exact mechanism of plasmid movement, including plasmid diffusion with ParA-mediated immobilization or directed plasmid motion induced by ParB/parC-stimulated ParA structure disassembly. However, we find experimentally that parABC from Escherichia coli plasmid pB171 increases plasmid mobility, inconsistent with diffusion/immobilization. Instead our observations favor directed plasmid motion. Our model predicts less oscillatory ParA dynamics than previously believed, a prediction we verify experimentally. We also show that ParA localization and plasmid positioning depend on the underlying nucleoid morphology, indicating that the chromosomal architecture constrains ParA structure formation. Our directed motion model unifies previously contradictory models for plasmid segregation and provides a robust mechanistic basis for self-organized plasmid spacing that may be widely applicable.
Collapse
Affiliation(s)
- Robert Ietswaart
- Computational and Systems Biology, John Innes Centre, Norwich, United Kingdom
| | - Florian Szardenings
- Centre for Bacterial Cell Biology, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Kenn Gerdes
- Centre for Bacterial Cell Biology, Newcastle University, Newcastle upon Tyne, United Kingdom
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Martin Howard
- Computational and Systems Biology, John Innes Centre, Norwich, United Kingdom
| |
Collapse
|
13
|
A model for the evolution of biological specificity: a cross-reacting DNA-binding protein causes plasmid incompatibility. J Bacteriol 2014; 196:3002-11. [PMID: 24914185 DOI: 10.1128/jb.01811-14] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Few biological systems permit rigorous testing of how changes in DNA sequence give rise to adaptive phenotypes. In this study, we sought a simplified experimental system with a detailed understanding of the genotype-to-phenotype relationship that could be altered by environmental perturbations. We focused on plasmid fitness, i.e., the ability of plasmids to be stably maintained in a bacterial population, which is dictated by the plasmid's replication and segregation machinery. Although plasmid replication depends on host proteins, the type II plasmid partitioning (Par) machinery is entirely plasmid encoded and relies solely on three components: parC, a centromere-like DNA sequence, ParR, a DNA-binding protein that interacts with parC, and ParM, which forms actin-like filaments that push two plasmids away from each other at cell division. Interactions between the Par operons of two related plasmids can cause incompatibility and the reduced transmission of one or both plasmids. We have identified segregation-dependent plasmid incompatibility between the highly divergent Par operons of plasmids pB171 and pCP301. Genetic and biochemical studies revealed that the incompatibility is due to the functional promiscuity of the DNA-binding protein ParRpB171, which interacts with both parC DNA sequences to direct plasmid segregation, indicating that the lack of DNA binding specificity is detrimental to plasmid fitness in this environment. This study therefore successfully utilized plasmid segregation to dissect the molecular interactions between genotype, phenotype, and fitness.
Collapse
|
14
|
Okibe N, Suzuki N, Inui M, Yukawa H. pCGR2 copy number depends on the par
locus that forms a ParC-ParB-DNA partition complex in Corynebacterium glutamicum. J Appl Microbiol 2013; 115:495-508. [DOI: 10.1111/jam.12257] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Revised: 04/12/2013] [Accepted: 04/29/2013] [Indexed: 11/28/2022]
Affiliation(s)
- Naoko Okibe
- Research Institute of Innovative Technology for the Earth; Kizugawa Kyoto Japan
| | - Nobuaki Suzuki
- Research Institute of Innovative Technology for the Earth; Kizugawa Kyoto Japan
| | - Masayuki Inui
- Research Institute of Innovative Technology for the Earth; Kizugawa Kyoto Japan
| | - Hideaki Yukawa
- Research Institute of Innovative Technology for the Earth; Kizugawa Kyoto Japan
| |
Collapse
|
15
|
Alp7R regulates expression of the actin-like protein Alp7A in Bacillus subtilis. J Bacteriol 2012; 194:2715-24. [PMID: 22427628 DOI: 10.1128/jb.06550-11] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Alp7A is a bacterial actin from Bacillus subtilis plasmid pLS20 that functions in plasmid segregation. Alp7A's function requires that it assemble into filaments that treadmill and exhibit dynamic instability. These dynamic properties require the two other components of the alp7A operon, the downstream alp7R gene and the upstream alp7C sequence, as does the ability of Alp7A to form filaments at its physiological concentration in the cell. Here, we show that these two other components of the operon also determine the amount of Alp7A that is produced in the cell. The deletion of alp7R leads to overproduction of Alp7A, which assembles into large, amorphous, static filaments that disrupt chromosome segregation and cell division. The product of the alp7R gene is a DNA-binding protein that represses transcription of the alp7A operon. Purified Alp7R protein binds specifically to alp7C, which contains two σ(A) promoters embedded within a series of near-repeats of a 10-mer. Alp7R also shows the typical nonspecific binding activity of a DNA-binding protein: Alp7R-GFP (green fluorescent protein) associates with the chromosomes of cells that lack alp7C. When Alp7A-GFP is produced in B. subtilis along with untagged Alp7R, Alp7A-GFP also colocalizes with the chromosome, indicating that Alp7R associates with Alp7A. Hence Alp7R, determines both the activity and the cellular concentration of Alp7A, and it can associate with Alp7A even if it is not bound to alp7C.
Collapse
|
16
|
Lenz P, Søgaard-Andersen L. Temporal and spatial oscillations in bacteria. Nat Rev Microbiol 2011; 9:565-77. [DOI: 10.1038/nrmicro2612] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
17
|
Yamaichi Y, Gerding MA, Davis BM, Waldor MK. Regulatory cross-talk links Vibrio cholerae chromosome II replication and segregation. PLoS Genet 2011; 7:e1002189. [PMID: 21811418 PMCID: PMC3141006 DOI: 10.1371/journal.pgen.1002189] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Accepted: 05/26/2011] [Indexed: 01/13/2023] Open
Abstract
There is little knowledge of factors and mechanisms for coordinating bacterial chromosome replication and segregation. Previous studies have revealed that genes (and their products) that surround the origin of replication (oriCII) of Vibrio cholerae chromosome II (chrII) are critical for controlling the replication and segregation of this chromosome. rctB, which flanks one side of oriCII, encodes a protein that initiates chrII replication; rctA, which flanks the other side of oriCII, inhibits rctB activity. The chrII parAB2 operon, which is essential for chrII partitioning, is located immediately downstream of rctA. Here, we explored how rctA exerts negative control over chrII replication. Our observations suggest that RctB has at least two DNA binding domains--one for binding to oriCII and initiating replication and the other for binding to rctA and thereby inhibiting RctB's ability to initiate replication. Notably, the inhibitory effect of rctA could be alleviated by binding of ParB2 to a centromere-like parS site within rctA. Furthermore, by binding to rctA, ParB2 and RctB inversely regulate expression of the parAB2 genes. Together, our findings suggest that fluctuations in binding of the partitioning protein ParB2 and the chrII initiator RctB to rctA underlie a regulatory network controlling both oriCII firing and the production of the essential chrII partitioning proteins. Thus, by binding both RctB and ParB2, rctA serves as a nexus for regulatory cross-talk coordinating chrII replication and segregation.
Collapse
Affiliation(s)
- Yoshiharu Yamaichi
- Channing Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Matthew A. Gerding
- Channing Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- Program in Biological and Biomedical Sciences, Graduate School of Arts and Sciences, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Brigid M. Davis
- Channing Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Matthew K. Waldor
- Channing Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- Howard Hughes Medical Institute, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
18
|
Abstract
Non-essential extra-chromosomal DNA elements such as plasmids are responsible for their own propagation in dividing host cells, and one means to ensure this is to carry a miniature active segregation system reminiscent of the mitotic spindle. Plasmids that are maintained at low numbers in prokaryotic cells have developed a range of such active partitioning systems, which are characterized by an impressive simplicity and efficiency and which are united by the use of dynamic, nucleotide-driven filaments to separate and position DNA molecules. A comparison of different plasmid segregation systems reveals (i) how unrelated filament-forming and DNA-binding proteins have been adopted and modified to create a range of simple DNA segregating complexes and (ii) how subtle changes in the few components of these DNA segregation machines has led to a remarkable diversity in the molecular mechanisms of closely related segregation systems. Here, our current understanding of plasmid segregation systems is reviewed and compared with other DNA segregation systems, and this is extended by a discussion of basic principles of plasmid segregation systems, evolutionary implications and the relationship between an autonomous DNA element and its host cell.
Collapse
Affiliation(s)
- Jeanne Salje
- MRC Laboratory of Molecular Biology, Cambridge, UK.
| |
Collapse
|
19
|
Gerdes K, Howard M, Szardenings F. Pushing and pulling in prokaryotic DNA segregation. Cell 2010; 141:927-42. [PMID: 20550930 DOI: 10.1016/j.cell.2010.05.033] [Citation(s) in RCA: 244] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2010] [Revised: 04/11/2010] [Accepted: 05/20/2010] [Indexed: 10/19/2022]
Abstract
In prokaryotes, DNA can be segregated by three different types of cytoskeletal filaments. The best-understood type of partitioning (par) locus encodes an actin homolog called ParM, which forms dynamically unstable filaments that push plasmids apart in a process reminiscent of mitosis. However, the most common type of par locus, which is present on many plasmids and most bacterial chromosomes, encodes a P loop ATPase (ParA) that distributes plasmids equidistant from one another on the bacterial nucleoid. A third type of par locus encodes a tubulin homolog (TubZ) that forms cytoskeletal filaments that move rapidly with treadmill dynamics.
Collapse
Affiliation(s)
- Kenn Gerdes
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne NE2 4AX, UK.
| | | | | |
Collapse
|
20
|
Movement and equipositioning of plasmids by ParA filament disassembly. Proc Natl Acad Sci U S A 2009; 106:19369-74. [PMID: 19906997 DOI: 10.1073/pnas.0908347106] [Citation(s) in RCA: 146] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Bacterial plasmids encode partitioning (par) loci that confer stable plasmid inheritance. We showed previously that, in the presence of ParB and parC encoded by the par2 locus of plasmid pB171, ParA formed cytoskeletal-like structures that dynamically relocated over the nucleoid. Simultaneously, the par2 locus distributed plasmids regularly over the nucleoid. We show here that the dynamic ParA patterns are not simple oscillations. Rather, ParA nucleates and polymerizes in between plasmids. When a ParA assembly reaches a plasmid, the assembly reaction reverses into disassembly. Strikingly, plasmids consistently migrate behind disassembling ParA cytoskeletal structures, suggesting that ParA filaments pull plasmids by depolymerization. The perpetual cycles of ParA assembly and disassembly result in continuous relocation of plasmids, which, on time averaging, results in equidistribution of the plasmids. Mathematical modeling of ParA and plasmid dynamics support these interpretations. Mutational analysis supports a molecular mechanism in which the ParB/parC complex controls ParA filament depolymerization.
Collapse
|
21
|
Recruitment of the ParG segregation protein to different affinity DNA sites. J Bacteriol 2009; 191:3832-41. [PMID: 19376860 DOI: 10.1128/jb.01630-08] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The segrosome is the nucleoprotein complex that mediates accurate plasmid segregation. In addition to its multifunctional role in segrosome assembly, the ParG protein of multiresistance plasmid TP228 is a transcriptional repressor of the parFG partition genes. ParG is a homodimeric DNA binding protein, with C-terminal regions that interlock into a ribbon-helix-helix fold. Antiparallel beta-strands in this fold are presumed to insert into the O(F) operator major groove to exert transcriptional control as established for other ribbon-helix-helix factors. The O(F) locus comprises eight degenerate tetramer boxes arranged in a combination of direct and inverted orientation. Each tetramer motif likely recruits one ParG dimer, implying that the fully bound operator is cooperatively coated by up to eight dimers. O(F) was subdivided experimentally into four overlapping 20-bp sites (A to D), each of which comprises two tetramer boxes separated by AT-rich spacers. Extensive interaction studies demonstrated that sites A to D individually are bound with different affinities by ParG (C > A approximately B >> D). Moreover, comprehensive scanning mutagenesis revealed the contribution of each position in the site core and flanking sequences to ParG binding. Natural variations in the tetramer box motifs and in the interbox spacers, as well as in flanking sequences, each influence ParG binding. The O(F) operator apparently has evolved with sites that bind ParG dissimilarly to produce a nucleoprotein complex fine-tuned for optimal interaction with the transcription machinery. The association of other ribbon-helix-helix proteins with complex recognition sites similarly may be modulated by natural sequence variations between subsites.
Collapse
|
22
|
Weaver KE, Kwong SM, Firth N, Francia MV. The RepA_N replicons of Gram-positive bacteria: a family of broadly distributed but narrow host range plasmids. Plasmid 2009; 61:94-109. [PMID: 19100285 PMCID: PMC2652615 DOI: 10.1016/j.plasmid.2008.11.004] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2008] [Revised: 10/30/2008] [Accepted: 11/06/2008] [Indexed: 10/21/2022]
Abstract
The pheromone-responsive conjugative plasmids of Enterococcus faecalis and the multiresistance plasmids pSK1 and pSK41 of Staphylococcus aureus are among the best studied plasmids native to Gram-positive bacteria. Although these plasmids seem largely restricted to their native hosts, protein sequence comparison of their replication initiator proteins indicates that they are clearly related. Homology searches indicate that these replicons are representatives of a large family of plasmids and a few phage that are widespread among the low G+C Gram-positive bacteria. We propose to name this family the RepA_N family of replicons after the annotated conserved domain that the initiator protein contains. Detailed sequence comparisons indicate that the initiator protein phylogeny is largely congruent with that of the host, suggesting that the replicons have evolved along with their current hosts and that intergeneric transfer has been rare. However, related proteins were identified on chromosomal regions bearing characteristics indicative of ICE elements, and the phylogeny of these proteins displayed evidence of more frequent intergeneric transfer. Comparison of stability determinants associated with the RepA_N replicons suggests that they have a modular evolution as has been observed in other plasmid families.
Collapse
Affiliation(s)
- Keith E Weaver
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD 57069, USA.
| | | | | | | |
Collapse
|
23
|
Rich RL, Myszka DG. Survey of the year 2007 commercial optical biosensor literature. J Mol Recognit 2008; 21:355-400. [DOI: 10.1002/jmr.928] [Citation(s) in RCA: 144] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
24
|
Salje J, Löwe J. Bacterial actin: architecture of the ParMRC plasmid DNA partitioning complex. EMBO J 2008; 27:2230-8. [PMID: 18650930 PMCID: PMC2519105 DOI: 10.1038/emboj.2008.152] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2008] [Accepted: 07/07/2008] [Indexed: 11/09/2022] Open
Abstract
The R1 plasmid employs ATP-driven polymerisation of the actin-like protein ParM to move newly replicated DNA to opposite poles of a bacterial cell. This process is essential for ensuring accurate segregation of the low-copy number plasmid and is the best characterised example of DNA partitioning in prokaryotes. In vivo, ParM only forms long filaments when capped at both ends by attachment to a centromere-like region parC, through a small DNA-binding protein ParR. Here, we present biochemical and electron microscopy data leading to a model for the mechanism by which ParR-parC complexes bind and stabilise elongating ParM filaments. We propose that the open ring formed by oligomeric ParR dimers with parC DNA wrapped around acts as a rigid clamp, which holds the end of elongating ParM filaments while allowing entry of new ATP-bound monomers. We propose a processive mechanism by which cycles of ATP hydrolysis in polymerising ParM drives movement of ParR-bound parC DNA. Importantly, our model predicts that each pair of plasmids will be driven apart in the cell by just a single double helical ParM filament.
Collapse
Affiliation(s)
- Jeanne Salje
- Structural Studies, MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Jan Löwe
- Structural Studies, MRC Laboratory of Molecular Biology, Cambridge, UK
| |
Collapse
|
25
|
Structural biology of plasmid partition: uncovering the molecular mechanisms of DNA segregation. Biochem J 2008; 412:1-18. [PMID: 18426389 DOI: 10.1042/bj20080359] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
DNA segregation or partition is an essential process that ensures stable genome transmission. In prokaryotes, partition is best understood for plasmids, which serve as tractable model systems to study the mechanistic underpinnings of DNA segregation at a detailed atomic level owing to their simplicity. Specifically, plasmid partition requires only three elements: a centromere-like DNA site and two proteins: a motor protein, generally an ATPase, and a centromere-binding protein. In the first step of the partition process, multiple centromere-binding proteins bind co-operatively to the centromere, which typically consists of several tandem repeats, to form a higher-order nucleoprotein complex called the partition complex. The partition complex recruits the ATPase to form the segrosome and somehow activates the ATPase for DNA separation. Two major families of plasmid par systems have been delineated based on whether they utilize ATPase proteins with deviant Walker-type motifs or actin-like folds. In contrast, the centromere-binding proteins show little sequence homology even within a given family. Recent structural studies, however, have revealed that these centromere-binding proteins appear to belong to one of two major structural groups: those that employ helix-turn-helix DNA-binding motifs or those with ribbon-helix-helix DNA-binding domains. The first structure of a higher-order partition complex was recently revealed by the structure of pSK41 centromere-binding protein, ParR, bound to its centromere site. This structure showed that multiple ParR ribbon-helix-helix motifs bind symmetrically to the tandem centromere repeats to form a large superhelical structure with dimensions suitable for capture of the filaments formed by the actinlike ATPases. Surprisingly, recent data indicate that the deviant Walker ATPase proteins also form polymer-like structures, suggesting that, although the par families harbour what initially appeared to be structurally and functionally divergent proteins, they actually utilize similar mechanisms of DNA segregation. Thus, in the present review, the known Par protein and Par-protein complex structures are discussed with regard to their functions in DNA segregation in an attempt to begin to define, at a detailed atomic level, the molecular mechanisms involved in plasmid segregation.
Collapse
|
26
|
Møller-Jensen J, Ringgaard S, Mercogliano CP, Gerdes K, Löwe J. Structural analysis of the ParR/parC plasmid partition complex. EMBO J 2007; 26:4413-22. [PMID: 17898804 PMCID: PMC2034672 DOI: 10.1038/sj.emboj.7601864] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2007] [Accepted: 08/31/2007] [Indexed: 11/09/2022] Open
Abstract
Accurate DNA partition at cell division is vital to all living organisms. In bacteria, this process can involve partition loci, which are found on both chromosomes and plasmids. The initial step in Escherichia coli plasmid R1 partition involves the formation of a partition complex between the DNA-binding protein ParR and its cognate centromere site parC on the DNA. The partition complex is recognized by a second partition protein, the actin-like ATPase ParM, which forms filaments required for the active bidirectional movement of DNA replicates. Here, we present the 2.8 A crystal structure of ParR from E. coli plasmid pB171. ParR forms a tight dimer resembling a large family of dimeric ribbon-helix-helix (RHH)2 site-specific DNA-binding proteins. Crystallographic and electron microscopic data further indicate that ParR dimers assemble into a helix structure with DNA-binding sites facing outward. Genetic and biochemical experiments support a structural arrangement in which the centromere-like parC DNA is wrapped around a ParR protein scaffold. This structure holds implications for how ParM polymerization drives active DNA transport during plasmid partition.
Collapse
Affiliation(s)
- Jakob Møller-Jensen
- MRC-Laboratory of Molecular Biology, Cambridge, UK
- Present address: Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, Odense M 5230, Denmark
| | - Simon Ringgaard
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense M, Denmark
| | | | - Kenn Gerdes
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, UK
| | - Jan Löwe
- MRC-Laboratory of Molecular Biology, Cambridge, UK
| |
Collapse
|
27
|
Ringgaard S, Löwe J, Gerdes K. Centromere pairing by a plasmid-encoded type I ParB protein. J Biol Chem 2007; 282:28216-25. [PMID: 17644524 DOI: 10.1074/jbc.m703733200] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The par2 locus of Escherichia coli plasmid pB171 encodes two trans-acting proteins, ParA and ParB, and two cis-acting sites, parC1 and parC2, to which ParB binds cooperatively. ParA is related to MinD and oscillates in helical structures and thereby positions ParB/parC-carrying plasmids regularly over the nucleoid. ParB ribbon-helix-helix dimers bind cooperatively to direct repeats in parC1 and parC2. Using four different assays we obtain solid evidence that ParB can pair parC1- and parC2-encoding DNA fragments in vitro. Convincingly, electron microscopy revealed that ParB mediates binary pairing of parC fragments. In addition to binary complexes, ParB mediated the formation of higher order complexes consisting of several DNA fragments joined by ParB at centromere site parC. N-terminal truncated versions of ParB still possessing specific DNA binding activity were incompetent in pairing, hence identifying the N terminus of ParB as a requirement for ParB-mediated centromere pairing. These observations suggest that centromere pairing is an important intermediate step in plasmid partitioning mediated by the common type I loci.
Collapse
Affiliation(s)
- Simon Ringgaard
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark
| | | | | |
Collapse
|