1
|
Yuan ZQ, Peng XC, Liu L, Yang FY, Qian F. Olfactory receptors and human diseases. Cell Tissue Res 2025:10.1007/s00441-025-03971-5. [PMID: 40278904 DOI: 10.1007/s00441-025-03971-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Accepted: 04/12/2025] [Indexed: 04/26/2025]
Abstract
Olfaction plays a crucial role in distinguishing odors, enabling organisms to seek benefits and evade hazards. Olfactory receptors (ORs), characterized by highly variable binding pockets, facilitate the detection of diverse odorants from both external and internal environments. Nasal ORs, expressed in olfactory sensory neurons (OSNs), are critical for olfactory cognition and associated neuronal plasticity. In contrast, extra-nasal ORs, expressed in extra-olfactory tissues, detect specific chemicals and modulate cellular processes such as proliferation, migration, inflammation, and apoptosis. Aberrant OR expression or dysfunction has been implicated in numerous human diseases, including anosmia, dementia, dermatopathies, obesity, infertility, cancers, respiratory disorders, atherosclerosis and viral infections. Olfactory training, such as aromatherapy, demonstrates significant therapeutic potential for anosmia, dementia and psychological distress. Natural or synthetic odorants have been applied for promoting hair regeneration and cutaneous wound healing. Conversely, overexpression of specific ORs in cancer cells may drive tumor progression. Additionally, ORs may mediate virus-host interactions during infection, owing to their structural variability. Collectively, OR-targeted agonists and antagonists (odorants) represent promising candidates for treating OR-associated pathologies.
Collapse
Affiliation(s)
- Zhong-Qi Yuan
- Department of Neurosurgery, Health Science Center, First Affiliated Hospital of Yangtze University, Yangtze University, Hubei Province, Jingzhou, 434023, China
- Department of Physiology, School of Basic Medicine, Health Science Center, Yangtze University, Hubei Province, Jingzhou, 434023, China
| | - Xiao-Chun Peng
- Department of Pathophysiology, School of Basic Medicine, Health Science Center, Yangtze University, Hubei Province, Jingzhou, 434023, China
| | - Lian Liu
- Department of Pharmacology, Health Science Center, Jingzhou Hospital Affiliated to Yangtze University, Yangtze University, Hubei Province, Jingzhou, 434023, China
| | - Fu-Yuan Yang
- Department of Physiology, School of Basic Medicine, Health Science Center, Yangtze University, Hubei Province, Jingzhou, 434023, China
| | - Feng Qian
- Department of Neurosurgery, Health Science Center, First Affiliated Hospital of Yangtze University, Yangtze University, Hubei Province, Jingzhou, 434023, China.
- Department of Physiology, School of Basic Medicine, Health Science Center, Yangtze University, Hubei Province, Jingzhou, 434023, China.
| |
Collapse
|
2
|
Chiera F, Costa G, Alcaro S, Artese A. An overview on olfaction in the biological, analytical, computational, and machine learning fields. Arch Pharm (Weinheim) 2025; 358:e2400414. [PMID: 39439128 PMCID: PMC11704061 DOI: 10.1002/ardp.202400414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 09/24/2024] [Accepted: 09/26/2024] [Indexed: 10/25/2024]
Abstract
Recently, the comprehension of odor perception has advanced, unveiling the mysteries of the molecular receptors within the nasal passages and the intricate mechanisms governing signal transmission between these receptors, the olfactory bulb, and the brain. This review provides a comprehensive panorama of odors, encompassing various topics ranging from the structural and molecular underpinnings of odorous substances to the physiological intricacies of olfactory perception. It extends to elucidate the analytical methods used for their identification and explores the frontiers of computational methodologies.
Collapse
Affiliation(s)
- Federica Chiera
- Dipartimento di Scienze della Salute, Campus “S. Venuta”Università degli Studi “Magna Græcia” di CatanzaroCatanzaroItaly
| | - Giosuè Costa
- Dipartimento di Scienze della Salute, Campus “S. Venuta”Università degli Studi “Magna Græcia” di CatanzaroCatanzaroItaly
- Net4Science S.r.l.Università degli Studi “Magna Græcia” di CatanzaroCatanzaroItaly
| | - Stefano Alcaro
- Dipartimento di Scienze della Salute, Campus “S. Venuta”Università degli Studi “Magna Græcia” di CatanzaroCatanzaroItaly
- Net4Science S.r.l.Università degli Studi “Magna Græcia” di CatanzaroCatanzaroItaly
- Associazione CRISEA ‐ Centro di Ricerca e Servizi Avanzati per l'Innovazione Rurale, Loc. CondoleoBelcastroItaly
| | - Anna Artese
- Dipartimento di Scienze della Salute, Campus “S. Venuta”Università degli Studi “Magna Græcia” di CatanzaroCatanzaroItaly
- Net4Science S.r.l.Università degli Studi “Magna Græcia” di CatanzaroCatanzaroItaly
| |
Collapse
|
3
|
Abaffy T, Fu O, Harume-Nagai M, Goldenberg JM, Kenyon V, Kenakin T. Intracellular Allosteric Antagonist of the Olfactory Receptor OR51E2. Mol Pharmacol 2024; 106:21-32. [PMID: 38719475 PMCID: PMC11187688 DOI: 10.1124/molpharm.123.000843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 04/16/2024] [Indexed: 06/20/2024] Open
Abstract
Olfactory receptors are members of class A (rhodopsin-like) family of G protein-coupled receptors (GPCRs). Their expression and function have been increasingly studied in nonolfactory tissues, and many have been identified as potential therapeutic targets. In this manuscript, we focus on the discovery of novel ligands for the olfactory receptor family 51 subfamily E2 (OR51E2). We performed an artificial intelligence-based virtual drug screen of a ∼2.2 million small molecule library. Cell-based functional assay identified compound 80 (C80) as an antagonist and inverse agonist, and detailed pharmacological analysis revealed C80 acts as a negative allosteric modulator by significantly decreasing the agonist efficacy, while having a minimal effect on receptor affinity for agonist. C80 binds to an allosteric binding site formed by a network of nine residues localized in the intracellular parts of transmembrane domains 3, 5, 6, 7, and H8, which also partially overlaps with a G protein binding site. Mutational experiments of residues involved in C80 binding uncovered the significance of the C2406.37 position in blocking the activation-related conformational change and keeping the receptor in the inactive form. Our study provides a mechanistic understanding of the negative allosteric action of C80 on agonist-ctivated OR51E2. We believe the identification of the antagonist of OR51E2 will enable a multitude of studies aiming to determine the functional role of this receptor in specific biologic processes. SIGNIFICANCE STATEMENT: OR51E2 has been implicated in various biological processes, and its antagonists that can effectively modulate its activity have therapeutic potential. Here we report the discovery of a negative allosteric modulator of OR51E2 and provide a mechanistic understanding of its action. We demonstrate that this modulator has an inhibitory effect on the efficacy of the agonist for the receptor and reveal a network of nine residues that constitute its binding pocket, which also partially overlaps with the G protein binding site.
Collapse
Affiliation(s)
- Tatjana Abaffy
- Department of Molecular Genetics and Microbiology, School of Medicine, Duke University, Durham, North Carolina (T.A., O.F.); Columbia Center for Human Development/Columbia Center for Stem Cell Therapies Department, Columbia University, New York (M.H.-N.); Chemistry Department, School of Math and Science at the United States Naval Academy, Annapolis, Maryland (J.M.G.); Atomwise Inc., San Francisco, California (J.M.G., V.K.); and Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (T.K.)
| | - Olivia Fu
- Department of Molecular Genetics and Microbiology, School of Medicine, Duke University, Durham, North Carolina (T.A., O.F.); Columbia Center for Human Development/Columbia Center for Stem Cell Therapies Department, Columbia University, New York (M.H.-N.); Chemistry Department, School of Math and Science at the United States Naval Academy, Annapolis, Maryland (J.M.G.); Atomwise Inc., San Francisco, California (J.M.G., V.K.); and Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (T.K.)
| | - Maira Harume-Nagai
- Department of Molecular Genetics and Microbiology, School of Medicine, Duke University, Durham, North Carolina (T.A., O.F.); Columbia Center for Human Development/Columbia Center for Stem Cell Therapies Department, Columbia University, New York (M.H.-N.); Chemistry Department, School of Math and Science at the United States Naval Academy, Annapolis, Maryland (J.M.G.); Atomwise Inc., San Francisco, California (J.M.G., V.K.); and Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (T.K.)
| | - Josh M Goldenberg
- Department of Molecular Genetics and Microbiology, School of Medicine, Duke University, Durham, North Carolina (T.A., O.F.); Columbia Center for Human Development/Columbia Center for Stem Cell Therapies Department, Columbia University, New York (M.H.-N.); Chemistry Department, School of Math and Science at the United States Naval Academy, Annapolis, Maryland (J.M.G.); Atomwise Inc., San Francisco, California (J.M.G., V.K.); and Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (T.K.)
| | - Victor Kenyon
- Department of Molecular Genetics and Microbiology, School of Medicine, Duke University, Durham, North Carolina (T.A., O.F.); Columbia Center for Human Development/Columbia Center for Stem Cell Therapies Department, Columbia University, New York (M.H.-N.); Chemistry Department, School of Math and Science at the United States Naval Academy, Annapolis, Maryland (J.M.G.); Atomwise Inc., San Francisco, California (J.M.G., V.K.); and Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (T.K.)
| | - Terry Kenakin
- Department of Molecular Genetics and Microbiology, School of Medicine, Duke University, Durham, North Carolina (T.A., O.F.); Columbia Center for Human Development/Columbia Center for Stem Cell Therapies Department, Columbia University, New York (M.H.-N.); Chemistry Department, School of Math and Science at the United States Naval Academy, Annapolis, Maryland (J.M.G.); Atomwise Inc., San Francisco, California (J.M.G., V.K.); and Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (T.K.)
| |
Collapse
|
4
|
Wang J, Wang D, Huang M, Sun B, Ren F, Wu J, Zhang J, Li H, Sun X. Decoding Molecular Mechanism Underlying Human Olfactory Receptor OR8D1 Activation by Sotolone Enantiomers. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:5403-5415. [PMID: 38386648 DOI: 10.1021/acs.jafc.3c09142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
Sotolone, a chiral compound, plays an important role in the food industry. Herein, (R)-/(S)-sotolone were separated to determine their odor characteristics and thresholds in air (R-form: smoky, burned, herb, and green aroma, 0.0514 μg/m3; S-form: sweet, milk, acid, and nutty aroma, 0.0048 μg/m3). OR8D1 responses to (R)-/(S)-sotolone were detected in a HEK293 cell-based luminescence assay. (S)-Sotolone was a more potent agonist than (R)-sotolone (EC50 values of 84.98 ± 1.05 and 167.20 ± 0.25 μmol/L, respectively). Molecular dynamics simulations and molecular mechanics Poisson-Boltzmann surface area analyses confirmed that the combination of (S)-sotolone and OR8D1 was more stable than that of (R)-sotolone. Odorant docking, multiple sequence alignments, site-directed mutagenesis, and functional studies with recombinant odorant receptors (ORs) in a cell-based luminescence assay identified 11 amino-acid residues that influence the enantioselectivity of OR8D1 toward sotolone significantly and that N2065.46 was indispensable to the activation of OR8D1 by (S)-sotolone.
Collapse
Affiliation(s)
- Juan Wang
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology & Business University (BTBU), Beijing 100048, China
- Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University, Ministry of Education, Beijing 100048, China
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| | - Danqing Wang
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology & Business University (BTBU), Beijing 100048, China
- Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University, Ministry of Education, Beijing 100048, China
| | - Mingquan Huang
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology & Business University (BTBU), Beijing 100048, China
- Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University, Ministry of Education, Beijing 100048, China
| | - Baoguo Sun
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology & Business University (BTBU), Beijing 100048, China
- Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University, Ministry of Education, Beijing 100048, China
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| | - Fazheng Ren
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| | - Jihong Wu
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology & Business University (BTBU), Beijing 100048, China
- Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University, Ministry of Education, Beijing 100048, China
| | - Jinglin Zhang
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology & Business University (BTBU), Beijing 100048, China
- Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University, Ministry of Education, Beijing 100048, China
| | - Hehe Li
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology & Business University (BTBU), Beijing 100048, China
- Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University, Ministry of Education, Beijing 100048, China
| | - Xiaotao Sun
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology & Business University (BTBU), Beijing 100048, China
- Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University, Ministry of Education, Beijing 100048, China
| |
Collapse
|
5
|
Ferreira JS, Bruschi DP. Tracking the Diversity and Chromosomal Distribution of the Olfactory Receptor Gene Repertoires of Three Anurans Species. J Mol Evol 2023; 91:793-805. [PMID: 37906255 DOI: 10.1007/s00239-023-10135-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 10/02/2023] [Indexed: 11/02/2023]
Abstract
Olfaction is a crucial capability for most vertebrates and is realized through olfactory receptors in the nasal cavity. The enormous diversity of olfactory receptors has been created by gene duplication, following a birth-and-death model of evolution. The olfactory receptor genes of the amphibians have received relatively little attention up to now, although recent studies have increased the number of species for which data are available. This study analyzed the diversity and chromosomal distribution of the OR genes of three anuran species (Engystomops pustulosus, Bufo bufo and Hymenochirus boettgeri). The OR genes were identified through searches for homologies, and sequence filtering and alignment using bioinformatic tools and scripts. A high diversity of OR genes was found in all three species, ranging from 917 in B. bufo to 1194 in H. boettgeri, and a total of 2076 OR genes in E. pustulosus. Six OR groups were recognized using an evolutionary gene tree analysis. While E. pustulosus has one of the highest numbers of genes of the gamma group (which detect airborne odorants) yet recorded in an anuran, B. bufo presented the smallest number of pseudogene sequences ever identified, with no pseudogenes in either the beta or epsilon groups. Although H. boettgeri shares many morphological adaptations for an aquatic lifestyle with Xenopus, and presented a similar number of genes related to the detection of water-soluble odorants, it had comparatively far fewer genes related to the detection of airborne odorants. This study is the first to describe the complete OR repertoire of the three study species and represents an important contribution to the understanding of the evolution and function of the sense of smell in vertebrates.
Collapse
Affiliation(s)
- Johnny Sousa Ferreira
- Laboratório de Citogenética Evolutiva e Conservação Animal (LabCECA), Departamento de Genética, Universidade Federal do Paraná (UFPR), Paraná, Brazil
| | - Daniel Pacheco Bruschi
- Laboratório de Citogenética Evolutiva e Conservação Animal (LabCECA), Departamento de Genética, Universidade Federal do Paraná (UFPR), Paraná, Brazil.
| |
Collapse
|
6
|
Xu L, Zou DJ, Firestein S. Odor mixtures: A chord with silent notes. Front Ecol Evol 2023. [DOI: 10.3389/fevo.2023.1135486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023] Open
Abstract
The olfactory world is one of complex mixtures and blends containing up to hundreds of molecules. Many of those molecules can act as agonists, antagonists or enhancers at different receptors. This complicates the mechanism by which higher centers construct perceptions of complex mixtures. We propose that along with structural chemistry, psychophysics, the techniques of medicinal chemistry and machine learning can begin to shed light on this difficult neural problem.
Collapse
|
7
|
Nicoli A, Haag F, Marcinek P, He R, Kreißl J, Stein J, Marchetto A, Dunkel A, Hofmann T, Krautwurst D, Di Pizio A. Modeling the Orthosteric Binding Site of the G Protein-Coupled Odorant Receptor OR5K1. J Chem Inf Model 2023; 63:2014-2029. [PMID: 36696962 PMCID: PMC10091413 DOI: 10.1021/acs.jcim.2c00752] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
With approximately 400 encoding genes in humans, odorant receptors (ORs) are the largest subfamily of class A G protein-coupled receptors (GPCRs). Despite its high relevance and representation, the odorant-GPCRome is structurally poorly characterized: no experimental structures are available, and the low sequence identity of ORs to experimentally solved GPCRs is a significant challenge for their modeling. Moreover, the receptive range of most ORs is unknown. The odorant receptor OR5K1 was recently and comprehensively characterized in terms of cognate agonists. Here, we report two additional agonists and functional data of the most potent compound on two mutants, L1043.32 and L2556.51. Experimental data was used to guide the investigation of the binding modes of OR5K1 ligands into the orthosteric binding site using structural information from AI-driven modeling, as recently released in the AlphaFold Protein Structure Database, and from homology modeling. Induced-fit docking simulations were used to sample the binding site conformational space for ensemble docking. Mutagenesis data guided side chain residue sampling and model selection. We obtained models that could better rationalize the different activity of active (agonist) versus inactive molecules with respect to starting models and also capture differences in activity related to minor structural differences. Therefore, we provide a model refinement protocol that can be applied to model the orthosteric binding site of ORs as well as that of GPCRs with low sequence identity to available templates.
Collapse
Affiliation(s)
- Alessandro Nicoli
- Leibniz Institute for Food Systems Biology at the Technical University of Munich, 85354 Freising, Germany
| | - Franziska Haag
- Leibniz Institute for Food Systems Biology at the Technical University of Munich, 85354 Freising, Germany
| | - Patrick Marcinek
- Leibniz Institute for Food Systems Biology at the Technical University of Munich, 85354 Freising, Germany
| | - Ruiming He
- Leibniz Institute for Food Systems Biology at the Technical University of Munich, 85354 Freising, Germany.,Department of Chemistry, Technical University of Munich, 85748 Garching, Germany
| | - Johanna Kreißl
- Leibniz Institute for Food Systems Biology at the Technical University of Munich, 85354 Freising, Germany
| | - Jörg Stein
- Leibniz Institute for Food Systems Biology at the Technical University of Munich, 85354 Freising, Germany
| | - Alessandro Marchetto
- Computational Biomedicine, Institute for Advanced Simulations (IAS)-5/Institute for Neuroscience and Medicine (INM)-9, Forschungszentrum Jülich, 52428 Jülich, Germany.,Department of Biology, Faculty of Mathematics, Computer Science and Natural Sciences, RWTH Aachen University, 52074 Aachen, Germany
| | - Andreas Dunkel
- Leibniz Institute for Food Systems Biology at the Technical University of Munich, 85354 Freising, Germany
| | - Thomas Hofmann
- Chair of Food Chemistry and Molecular Sensory Science, Technical University of Munich, 85354 Freising, Germany
| | - Dietmar Krautwurst
- Leibniz Institute for Food Systems Biology at the Technical University of Munich, 85354 Freising, Germany
| | - Antonella Di Pizio
- Leibniz Institute for Food Systems Biology at the Technical University of Munich, 85354 Freising, Germany
| |
Collapse
|
8
|
Kang W, Choi D, Son B, Park S, Park T. Activation of OR10A3 by Suberic Acid Promotes Collagen Synthesis in UVB-Irradiated Dermal Fibroblasts via the cAMP-Akt Pathway. Cells 2022; 11:cells11243961. [PMID: 36552724 PMCID: PMC9776755 DOI: 10.3390/cells11243961] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/01/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022] Open
Abstract
In recent years, there has been a great deal of interest in the ectopic roles of olfactory receptors (ORs) throughout the human body. Especially, the ectopic function of OR in the skin is one of the most actively researched areas. Suberic acid, a scent compound, was hypothesized to increase collagen synthesis in the ultraviolet B (UVB)-irradiated human dermal fibroblasts (Hs68) through a specific olfactory receptor. Suberic acid ameliorated UVB-induced decreases in collagen production in Hs68 cells. Using in silico docking to predict the binding conformation and affinity of suberic acid to 15 ectopic ORs detectable in Hs68, several ORs were identified as promising candidates. The effect of suberic acid on collagen synthesis in UVB-exposed dermal fibroblasts was nullified only by a reduction in OR10A3 expression via specific siRNA. In addition, using the cells transiently expressing OR10A3, we demonstrated that suberic acid can activate OR10A3 by assessing the downstream effector cAMP response element (CRE) luciferase activity. We examined that the activation of OR10A3 by suberic acid subsequently stimulates collagen synthesis via the downstream cAMP-Akt pathway. The findings support OR10A3 as a promising target for anti-aging treatments of the skin.
Collapse
Affiliation(s)
| | | | | | | | - Taesun Park
- Correspondence: ; Tel.: +82-2-2123-3123; Fax: +82-2-365-3118
| |
Collapse
|
9
|
Extracellular loop 2 of G protein-coupled olfactory receptors is critical for odorant recognition. J Biol Chem 2022; 298:102331. [PMID: 35926708 PMCID: PMC9442423 DOI: 10.1016/j.jbc.2022.102331] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 07/26/2022] [Accepted: 07/27/2022] [Indexed: 11/27/2022] Open
Abstract
G protein–coupled olfactory receptors (ORs) enable us to detect innumerous odorants. They are also ectopically expressed in nonolfactory tissues and emerging as attractive drug targets. ORs can be promiscuous or highly specific, which is part of a larger mechanism for odor discrimination. Here, we demonstrate that the OR extracellular loop 2 (ECL2) plays critical roles in OR promiscuity and specificity. Using site-directed mutagenesis and molecular modeling, we constructed 3D OR models in which ECL2 forms a lid over the orthosteric pocket. We demonstrate using molecular dynamics simulations that ECL2 controls the shape and volume of the odorant-binding pocket, maintains the pocket hydrophobicity, and acts as a gatekeeper of odorant binding. Therefore, we propose the interplay between the specific orthosteric pocket and the variable, less specific ECL2 controls OR specificity and promiscuity. Furthermore, the 3D models created here enabled virtual screening of new OR agonists and antagonists, which exhibited a 70% hit rate in cell assays. Our approach can potentially be generalized to structure-based ligand screening for other G protein–coupled receptors that lack high-resolution 3D structures.
Collapse
|
10
|
Abstract
Despite the identification of neural circuits and circulating hormones in olfactory regulation, the peripheral targets for olfactory modulation remain relatively unexplored. Here we show that dopamine D2 receptor (DRD2) is expressed in the cilia and somata of mature olfactory sensory neurons (OSNs), while nasal dopamine (DA) is mainly released from the sympathetic nerve terminals, which innervate the mouse olfactory mucosa (OM). We further demonstrate that DA-DRD2 signaling in the nose plays important roles in regulating olfactory function using genetic and pharmacological approaches. Moreover, the local DA synthesis in mouse OM is reduced during hunger, which contributes to starvation-induced olfactory enhancement. Altogether, we demonstrate that nasal DA and DRD2 receptor can serve as the potential peripheral targets for olfactory modulation. Olfactory behavior is important for animal survival, and olfactory dysfunction is a common feature of several diseases. Despite the identification of neural circuits and circulating hormones in olfactory regulation, the peripheral targets for olfactory modulation remain relatively unexplored. In analyzing the single-cell RNA sequencing data from mouse and human olfactory mucosa (OM), we found that the mature olfactory sensory neurons (OSNs) express high levels of dopamine D2 receptor (Drd2) rather than other dopamine receptor subtypes. The DRD2 receptor is expressed in the cilia and somata of mature OSNs, while nasal dopamine is mainly released from the sympathetic nerve terminals, which innervate the mouse OM. Intriguingly, genetic ablation of Drd2 in mature OSNs or intranasal application with DRD2 antagonist significantly increased the OSN response to odorants and enhanced the olfactory sensitivity in mice. Mechanistic studies indicated that dopamine, acting through DRD2 receptor, could inhibit odor-induced cAMP signaling of olfactory receptors. Interestingly, the local dopamine synthesis in mouse OM is down-regulated during starvation, which leads to hunger-induced olfactory enhancement. Moreover, pharmacological inhibition of local dopamine synthesis in mouse OM is sufficient to enhance olfactory abilities. Altogether, these results reveal nasal dopamine and DRD2 receptor as the potential peripheral targets for olfactory modulation.
Collapse
|
11
|
Francia S, Lodovichi C. The role of the odorant receptors in the formation of the sensory map. BMC Biol 2021; 19:174. [PMID: 34452614 PMCID: PMC8394594 DOI: 10.1186/s12915-021-01116-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 08/02/2021] [Indexed: 11/10/2022] Open
Abstract
In the olfactory system, odorant receptors (ORs) expressed at the cell membrane of olfactory sensory neurons detect odorants and direct sensory axons toward precise target locations in the brain, reflected in the presence of olfactory sensory maps. This dual role of ORs is corroborated by their subcellular expression both in cilia, where they bind odorants, and at axon terminals, a location suitable for axon guidance cues. Here, we provide an overview and discuss previous work on the role of ORs in establishing the topographic organization of the olfactory system and recent findings on the mechanisms of activation and function of axonal ORs.
Collapse
Affiliation(s)
- Simona Francia
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Genoa, Italy.,Veneto Institute of Molecular Medicine, Padua, Italy
| | - Claudia Lodovichi
- Veneto Institute of Molecular Medicine, Padua, Italy. .,Neuroscience Institute CNR, Via Orus 2, 35129, Padua, Italy. .,Department of Biomedical Sciences, University of Padua, Padua, Italy. .,Padova Neuroscience Center, Padua, Italy.
| |
Collapse
|
12
|
Shepard BD. The Sniffing Kidney: Roles for Renal Olfactory Receptors in Health and Disease. KIDNEY360 2021; 2:1056-1062. [PMID: 35373087 PMCID: PMC8791376 DOI: 10.34067/kid.0000712021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 04/19/2021] [Indexed: 12/17/2022]
Abstract
AbstractOlfactory receptors (ORs) represent the largest gene family in the human genome. Despite their name, functions exist for these receptors outside of the nose. Among the tissues known to take advantage of OR signaling is the kidney. From mouse to man, the list of renal ORs continues to expand, and they have now been linked to a variety of processes involved in the maintenance of renal homeostasis, including the modulation of blood pressure, response to acidemia, and the development of diabetes. In this review, we highlight the recent progress made on the growing appreciation for renal ORs in physiology and pathophysiology.
Collapse
|
13
|
Full J, Baumgarten Y, Delbrück L, Sauer A, Miehe R. Market Perspectives and Future Fields of Application of Odor Detection Biosensors within the Biological Transformation-A Systematic Analysis. BIOSENSORS-BASEL 2021; 11:bios11030093. [PMID: 33806819 PMCID: PMC8004717 DOI: 10.3390/bios11030093] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 03/18/2021] [Accepted: 03/20/2021] [Indexed: 02/06/2023]
Abstract
The technological advantages that biosensors have over conventional technical sensors for odor detection and the role they play in the biological transformation have not yet been comprehensively analyzed. However, this is necessary for assessing their suitability for specific fields of application as well as their improvement and development goals. An overview of biological basics of olfactory systems is given and different odor sensor technologies are described and classified in this paper. Specific market potentials of biosensors for odor detection are identified by applying a tailored methodology that enables the derivation and systematic comparison of both the performance profiles of biosensors as well as the requirement profiles for various application fields. Therefore, the fulfillment of defined requirements is evaluated for biosensors by means of 16 selected technical criteria in order to determine a specific performance profile. Further, a selection of application fields, namely healthcare, food industry, agriculture, cosmetics, safety applications, environmental monitoring for odor detection sensors is derived to compare the importance of the criteria for each of the fields, leading to market-specific requirement profiles. The analysis reveals that the requirement criteria considered to be the most important ones across all application fields are high specificity, high selectivity, high repeat accuracy, high resolution, high accuracy, and high sensitivity. All these criteria, except for the repeat accuracy, can potentially be better met by biosensors than by technical sensors, according to the results obtained. Therefore, biosensor technology in general has a high application potential for all the areas of application under consideration. Health and safety applications especially are considered to have high potential for biosensors due to their correspondence between requirement and performance profiles. Special attention is paid to new areas of application that require multi-sensing capability. Application scenarios for multi-sensing biosensors are therefore derived. Moreover, the role of biosensors within the biological transformation is discussed.
Collapse
Affiliation(s)
- Johannes Full
- Fraunhofer Institute of Manufacturing Engineering and Automation IPA, 70569 Stuttgart, Germany; (Y.B.); (L.D.); (A.S.); (R.M.)
- Correspondence: ; Tel.: +49-711-970-1434
| | - Yannick Baumgarten
- Fraunhofer Institute of Manufacturing Engineering and Automation IPA, 70569 Stuttgart, Germany; (Y.B.); (L.D.); (A.S.); (R.M.)
| | - Lukas Delbrück
- Fraunhofer Institute of Manufacturing Engineering and Automation IPA, 70569 Stuttgart, Germany; (Y.B.); (L.D.); (A.S.); (R.M.)
| | - Alexander Sauer
- Fraunhofer Institute of Manufacturing Engineering and Automation IPA, 70569 Stuttgart, Germany; (Y.B.); (L.D.); (A.S.); (R.M.)
- Institute for Energy Efficiency in Production (EEP), University of Stuttgart, 70569 Stuttgart, Germany
| | - Robert Miehe
- Fraunhofer Institute of Manufacturing Engineering and Automation IPA, 70569 Stuttgart, Germany; (Y.B.); (L.D.); (A.S.); (R.M.)
| |
Collapse
|
14
|
Kurtz R, Steinberg LG, Betcher M, Fowler D, Shepard BD. The Sensing Liver: Localization and Ligands for Hepatic Murine Olfactory and Taste Receptors. Front Physiol 2020; 11:574082. [PMID: 33123030 PMCID: PMC7573564 DOI: 10.3389/fphys.2020.574082] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 09/15/2020] [Indexed: 11/13/2022] Open
Abstract
Sensory receptors, including olfactory receptors (ORs), taste receptors (TRs), and opsins (Opns) have recently been found in a variety of non-sensory tissues where they have distinct physiological functions. As G protein-coupled receptors (GPCRs), these proteins can serve as important chemosensors by sensing and interpreting chemical cues in the environment. We reasoned that the liver, the largest metabolic organ in the body, is primed to take advantage of some of these sensory receptors in order to sense and regulate blood content and metabolism. In this study, we report the expression of novel hepatic sensory receptors - including 7 ORs, 6 bitter TRs, and 1 Opn - identified through a systematic molecular biology screening approach. We further determined that several of these receptors are expressed within hepatocytes, the parenchymal cells of the liver. Finally, we uncovered several agonists of the previously orphaned hepatic ORs. These compounds fall under two classes: methylpyrazines and monoterpenes. In particular, the latter chemicals are plant and fungal-derived compounds with known hepatic protective effects. Collectively, this study sheds light on the chemosensory functions of the liver and unveils potentially important regulators of hepatic homeostasis.
Collapse
Affiliation(s)
- Ryan Kurtz
- Department of Human Science, Georgetown University, Washington, DC, United States
| | - Lily G Steinberg
- Department of Human Science, Georgetown University, Washington, DC, United States
| | - Madison Betcher
- Department of Human Science, Georgetown University, Washington, DC, United States
| | - Dalton Fowler
- Department of Human Science, Georgetown University, Washington, DC, United States
| | - Blythe D Shepard
- Department of Human Science, Georgetown University, Washington, DC, United States
| |
Collapse
|
15
|
Haag F, Ahmed L, Reiss K, Block E, Batista VS, Krautwurst D. Copper-mediated thiol potentiation and mutagenesis-guided modeling suggest a highly conserved copper-binding motif in human OR2M3. Cell Mol Life Sci 2020; 77:2157-2179. [PMID: 31435697 PMCID: PMC7256108 DOI: 10.1007/s00018-019-03279-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 08/07/2019] [Accepted: 08/12/2019] [Indexed: 12/20/2022]
Abstract
Sulfur-containing compounds within a physiological relevant, natural odor space, such as the key food odorants, typically constitute the group of volatiles with the lowest odor thresholds. The observation that certain metals, such as copper, potentiate the smell of sulfur-containing, metal-coordinating odorants led to the hypothesis that their cognate receptors are metalloproteins. However, experimental evidence is sparse-so far, only one human odorant receptor, OR2T11, and a few mouse receptors, have been reported to be activated by sulfur-containing odorants in a copper-dependent way, while the activation of other receptors by sulfur-containing odorants did not depend on the presence of metals. Here we identified an evolutionary conserved putative copper interaction motif CC/CSSH, comprising two copper-binding sites in TMH5 and TMH6, together with the binding pocket for 3-mercapto-2-methylpentan-1-ol in the narrowly tuned human receptor OR2M3. To characterize the copper-binding motif, we combined homology modeling, docking studies, site-directed mutagenesis, and functional expression of recombinant ORs in a cell-based, real-time luminescence assay. Ligand activation of OR2M3 was potentiated in the presence of copper. This effect of copper was mimicked by ionic and colloidal silver. In two broadly tuned receptors, OR1A1 and OR2W1, which did not reveal a putative copper interaction motif, activation by their most potent, sulfur-containing key food odorants did not depend on the presence of copper. Our results suggest a highly conserved putative copper-binding motif to be necessary for a copper-modulated and thiol-specific function of members from three subfamilies of family 2 ORs.
Collapse
Affiliation(s)
- Franziska Haag
- Leibniz-Institute for Food Systems Biology, Technical University of Munich, Lise-Meitner-Str. 34, 85354, Freising, Germany
| | - Lucky Ahmed
- Department of Chemistry, Yale University, New Haven, CT, 06520, USA
| | - Krystle Reiss
- Department of Chemistry, Yale University, New Haven, CT, 06520, USA
| | - Eric Block
- Department of Chemistry, University at Albany, State University of New York, Albany, NY, 12222, USA
| | - Victor S Batista
- Department of Chemistry, Yale University, New Haven, CT, 06520, USA
| | - Dietmar Krautwurst
- Leibniz-Institute for Food Systems Biology, Technical University of Munich, Lise-Meitner-Str. 34, 85354, Freising, Germany.
| |
Collapse
|
16
|
Zhang R, Wang P, Yu S, Wang H. Computational prediction methods to simulate structure and binding sites of coumarin with olfactory receptor 5P3. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2020; 82:1199-1206. [PMID: 31959074 DOI: 10.1080/15287394.2019.1709313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Olfactory receptor 5P3 is coded by OR5P3 gene in human OR5P3 and recognized as the receptor for coumarin present in 30% of fragrances and might adversely affect human health. OR5P3 are also associated with coumarin-related breast cancer development and acquired tamoxifen resistance in breast cancer cells. Previously various investigators noted that coumarin acts as a ligand for OR5P3 and binding of this molecule to OR5P3 leads to downstream changes in the olfactory bulb and central nervous system. However, the interaction between OR5P3 and its ligands at molecular level is not well understood. The aim of this study was to develop a computerized approach to simulate the binding process of coumarin to OR5P3 and determine the binding sites at a molecular level. It is conceivable that understanding this binding mechanism to a specific OR may aid in identification of receptors responsible olfaction and non-olfaction disorders such as breast cancer. The approach employed in this study may thus be utilized in future studies to simulate bind of specific chemicals to ORs and potentially have therapeutic applications.
Collapse
Affiliation(s)
- Rui Zhang
- Xinjiang Laboratory of Minority Speech and Language Information Processing, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumchi, Xinjiang, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Pu Wang
- School of Health Sciences, University of Newcastle, Newcastle, China
| | - Shunbang Yu
- School of Health Sciences, University of Newcastle, Newcastle, China
| | - He Wang
- School of Health Sciences, University of Newcastle, Newcastle, China
| |
Collapse
|
17
|
Abstract
Olfactory and taste receptors are expressed primarily in the nasal olfactory epithelium and gustatory taste bud cells, where they transmit real-time sensory signals to the brain. However, they are also expressed in multiple extra-nasal and extra-oral tissues, being implicated in diverse biological processes including sperm chemotaxis, muscle regeneration, bronchoconstriction and bronchodilatation, inflammation, appetite regulation and energy metabolism. Elucidation of the physiological roles of these ectopic receptors is revealing potential therapeutic and diagnostic applications in conditions including wounds, hair loss, asthma, obesity and cancers. This Review outlines current understanding of the diverse functions of ectopic olfactory and taste receptors and assesses their potential to be therapeutically exploited.
Collapse
|
18
|
Bu P, Jian Z, Koshy J, Shen Y, Yue B, Fan Z. The olfactory subgenome and specific odor recognition in forest musk deer. Anim Genet 2019; 50:358-366. [DOI: 10.1111/age.12796] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/06/2019] [Indexed: 12/27/2022]
Affiliation(s)
- P. Bu
- Key Laboratory of Bioresources and Ecoenvironment (Ministry of Education) College of Life Sciences Sichuan University Chengdu 610064 China
| | - Z. Jian
- Key Laboratory of Bioresources and Ecoenvironment (Ministry of Education) College of Life Sciences Sichuan University Chengdu 610064 China
- Sichuan Key Laboratory of Conservation Biology on Endangered Wildlife College of Life Sciences Sichuan University Chengdu 610064 China
| | - J. Koshy
- Key Laboratory of Bioresources and Ecoenvironment (Ministry of Education) College of Life Sciences Sichuan University Chengdu 610064 China
| | - Y. Shen
- Sichuan Engineering Research Center for Medicinal Animals Xichang 615000 China
| | - B. Yue
- Key Laboratory of Bioresources and Ecoenvironment (Ministry of Education) College of Life Sciences Sichuan University Chengdu 610064 China
| | - Z. Fan
- Key Laboratory of Bioresources and Ecoenvironment (Ministry of Education) College of Life Sciences Sichuan University Chengdu 610064 China
| |
Collapse
|
19
|
Liu MT, Ho J, Liu JK, Purakait R, Morzan UN, Ahmed L, Batista VS, Matsunami H, Ryan K. Carbon chain shape selectivity by the mouse olfactory receptor OR-I7. Org Biomol Chem 2019; 16:2541-2548. [PMID: 29569669 DOI: 10.1039/c8ob00205c] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The rodent OR-I7 is an olfactory receptor exemplar activated by aliphatic aldehydes such as octanal. Normal alkanals shorter than heptanal bind OR-I7 without activating it and hence function as antagonists in vitro. We report a series of aldehydes designed to probe the structural requirements for aliphatic ligand chains too short to meet the minimum approximate 6.9 Å length requirement for receptor activation. Experiments using recombinant mouse OR-I7 expressed in heterologous cells show that in the context of short aldehyde antagonists, OR-I7 prefers binding aliphatic chains without branches, though a single methyl on carbon-3 is permitted. The receptor can accommodate a surprisingly large number of carbons (e.g. ten in adamantyl) as long as the carbons are part of a conformationally constrained ring system. A rhodopsin-based homology model of mouse OR-I7 docked with the new antagonists suggests that small alkyl branches on the alkyl chain sterically interfere with the hydrophobic residues lining the binding site, but branch carbons can be accommodated when tied back into a compact ring system like the adamantyl and bicyclo[2.2.2]octyl systems.
Collapse
Affiliation(s)
- Min Ting Liu
- Department of Chemistry and Biochemistry, The City College of New York, New York, NY 10031, USA. and Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, New York, NY 10016, USA
| | - Jianghai Ho
- Department of Molecular Genetics and Microbiology, and Neurobiology, Duke Institute for Brain Sciences, Duke University Medical Center, Durham, NC 27710, USA.
| | - Jason Karl Liu
- Department of Chemistry, Yale University, New Haven, CT 06520, USA
| | - Radhanath Purakait
- Department of Chemistry and Biochemistry, The City College of New York, New York, NY 10031, USA.
| | - Uriel N Morzan
- Department of Chemistry, Yale University, New Haven, CT 06520, USA
| | - Lucky Ahmed
- Department of Chemistry, Yale University, New Haven, CT 06520, USA
| | - Victor S Batista
- Department of Chemistry, Yale University, New Haven, CT 06520, USA
| | - Hiroaki Matsunami
- Department of Molecular Genetics and Microbiology, and Neurobiology, Duke Institute for Brain Sciences, Duke University Medical Center, Durham, NC 27710, USA.
| | - Kevin Ryan
- Department of Chemistry and Biochemistry, The City College of New York, New York, NY 10031, USA. and Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, New York, NY 10016, USA and Ph.D. Program in Biochemistry, The Graduate Center of the City University of New York, New York, NY 10016, USA
| |
Collapse
|
20
|
Sharma A, Kumar R, Aier I, Semwal R, Tyagi P, Varadwaj P. Sense of Smell: Structural, Functional, Mechanistic Advancements and Challenges in Human Olfactory Research. Curr Neuropharmacol 2019; 17:891-911. [PMID: 30520376 PMCID: PMC7052838 DOI: 10.2174/1570159x17666181206095626] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 11/08/2018] [Accepted: 11/28/2018] [Indexed: 02/07/2023] Open
Abstract
Olfaction, the sense of smell detects and discriminate odors as well as social cues which influence our innate responses. The olfactory system in human beings is found to be weak as compared to other animals; however, it seems to be very precise. It can detect and discriminate millions of chemical moieties (odorants) even in minuscule quantities. The process initiates with the binding of odorants to specialized olfactory receptors, encoded by a large family of Olfactory Receptor (OR) genes belonging to the G-protein-coupled receptor superfamily. Stimulation of ORs converts the chemical information encoded in the odorants, into respective neuronal action-potentials which causes depolarization of olfactory sensory neurons. The olfactory bulb relays this signal to different parts of the brain for processing. Odors are encrypted using a combinatorial approach to detect a variety of chemicals and encode their unique identity. The discovery of functional OR genes and proteins provided an important information to decipher the genomic, structural and functional basis of olfaction. ORs constitute 17 gene families, out of which 4 families were reported to contain more than hundred members each. The olfactory machinery is not limited to GPCRs; a number of non- GPCRs is also employed to detect chemosensory stimuli. The article provides detailed information about such olfaction machinery, structures, transduction mechanism, theories of odor perception, and challenges in the olfaction research. It covers the structural, functional and computational studies carried out in the olfaction research in the recent past.
Collapse
Affiliation(s)
| | | | | | | | | | - Pritish Varadwaj
- Address correspondence to this author at the Department of Applied Science, Indian Institute of Information Technology, Allahabad, Uttar Pradesh, India; E-mail:
| |
Collapse
|
21
|
Block E. Molecular Basis of Mammalian Odor Discrimination: A Status Report. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:13346-13366. [PMID: 30453735 DOI: 10.1021/acs.jafc.8b04471] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Humans have 396 unique, intact olfactory receptors (ORs), G-protein coupled receptors (GPCRs) containing receptor-specific binding sites; other mammals have more. Activation of these transmembrane proteins by an odorant initiates a signaling cascade, evoking an action potential leading to perception of a smell. Because the number of distinguishable odorants vastly exceeds the number of ORs, research has focused on mechanisms of recognition and signaling processes for classes of odorants. In this review, selected recent examples will be presented of "deorphaned" mammalian receptors, where the OR ligands (odorants) as well as key aspects of receptor-odorant interactions were identified using odorant-mediated receptor activation data together with site-directed mutagenesis and molecular modeling. Based on cumulative evidence from OR deorphaning and olfactory receptor neuron activation studies, a receptor-ligand docking model rather than an alternative bond vibration model is suggested to best explain the molecular basis of the exquisitely sensitive odor discrimination in mammals.
Collapse
Affiliation(s)
- Eric Block
- Department of Chemistry , University at Albany, SUNY , Albany , New York 12222 , United States
| |
Collapse
|
22
|
Abaffy T, Bain JR, Muehlbauer MJ, Spasojevic I, Lodha S, Bruguera E, O'Neal SK, Kim SY, Matsunami H. A Testosterone Metabolite 19-Hydroxyandrostenedione Induces Neuroendocrine Trans-Differentiation of Prostate Cancer Cells via an Ectopic Olfactory Receptor. Front Oncol 2018; 8:162. [PMID: 29892571 PMCID: PMC5985834 DOI: 10.3389/fonc.2018.00162] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 04/30/2018] [Indexed: 12/22/2022] Open
Abstract
Olfactory receptor OR51E2, also known as a Prostate Specific G-Protein Receptor, is highly expressed in prostate cancer but its function is not well understood. Through in silico and in vitro analyses, we identified 24 agonists and 1 antagonist for this receptor. We detected that agonist 19-hydroxyandrostenedione, a product of the aromatase reaction, is endogenously produced upon receptor activation. We characterized the effects of receptor activation on metabolism using a prostate cancer cell line and demonstrated decreased intracellular anabolic signals and cell viability, induction of cell cycle arrest, and increased expression of neuronal markers. Furthermore, upregulation of neuron-specific enolase by agonist treatment was abolished in OR51E2-KO cells. The results of our study suggest that OR51E2 activation results in neuroendocrine trans-differentiation. These findings reveal a new role for OR51E2 and establish this G-protein coupled receptor as a novel therapeutic target in the treatment of prostate cancer.
Collapse
Affiliation(s)
- Tatjana Abaffy
- Department of Molecular Genetics and Microbiology, Duke Cancer Institute, Duke University School of Medicine, Durham, NC, United States
| | - James R Bain
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, United States
| | - Michael J Muehlbauer
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, United States
| | - Ivan Spasojevic
- Department of Medicine, Duke University School of Medicine, Durham, NC, United States
| | - Shweta Lodha
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, United States
| | - Elisa Bruguera
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, United States
| | - Sara K O'Neal
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, United States
| | - So Young Kim
- Department of Molecular Genetics and Microbiology, Functional Genomics Shared Resource, Duke University School of Medicine, Durham, NC, United States
| | - Hiroaki Matsunami
- Department of Molecular Genetics and Microbiology, Department of Neurobiology, Duke Institute for Brain Sciences, Duke Cancer Institute, Duke University School of Medicine, Durham, NC, United States
| |
Collapse
|
23
|
Wolf S, Jovancevic N, Gelis L, Pietsch S, Hatt H, Gerwert K. Dynamical Binding Modes Determine Agonistic and Antagonistic Ligand Effects in the Prostate-Specific G-Protein Coupled Receptor (PSGR). Sci Rep 2017; 7:16007. [PMID: 29167480 PMCID: PMC5700038 DOI: 10.1038/s41598-017-16001-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 11/03/2017] [Indexed: 01/14/2023] Open
Abstract
We analysed the ligand-based activation mechanism of the prostate-specific G-protein coupled receptor (PSGR), which is an olfactory receptor that mediates cellular growth in prostate cancer cells. Furthermore, it is an olfactory receptor with a known chemically near identic antagonist/agonist pair, α- and β-ionone. Using a combined theoretical and experimental approach, we propose that this receptor is activated by a ligand-induced rearrangement of a protein-internal hydrogen bond network. Surprisingly, this rearrangement is not induced by interaction of the ligand with the network, but by dynamic van der Waals contacts of the ligand with the involved amino acid side chains, altering their conformations and intraprotein connectivity. Ligand recognition in this GPCR is therefore highly stereo selective, but seemingly lacks any ligand recognition via polar contacts. A putative olfactory receptor-based drug design scheme will have to take this unique mode of protein/ligand action into account.
Collapse
Affiliation(s)
- Steffen Wolf
- Department of Biophysics, ND 04 North, Ruhr-University Bochum, 44780, Bochum, Germany.
- Department of Biophysics, CAS-MPG Partner Institute for Computational Biology, Key Laboratory of Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 200031, Shanghai, P.R. China.
| | - Nikolina Jovancevic
- Department of Cellphysiology, ND 4, Ruhr-University Bochum, 44780, Bochum, Germany
| | - Lian Gelis
- Department of Cellphysiology, ND 4, Ruhr-University Bochum, 44780, Bochum, Germany
| | - Sebastian Pietsch
- Department of Biophysics, ND 04 North, Ruhr-University Bochum, 44780, Bochum, Germany
| | - Hanns Hatt
- Department of Cellphysiology, ND 4, Ruhr-University Bochum, 44780, Bochum, Germany
| | - Klaus Gerwert
- Department of Biophysics, ND 04 North, Ruhr-University Bochum, 44780, Bochum, Germany
- Department of Biophysics, CAS-MPG Partner Institute for Computational Biology, Key Laboratory of Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 200031, Shanghai, P.R. China
| |
Collapse
|
24
|
Geithe C, Protze J, Kreuchwig F, Krause G, Krautwurst D. Structural determinants of a conserved enantiomer-selective carvone binding pocket in the human odorant receptor OR1A1. Cell Mol Life Sci 2017; 74:4209-4229. [PMID: 28656349 PMCID: PMC11107518 DOI: 10.1007/s00018-017-2576-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 05/29/2017] [Accepted: 06/16/2017] [Indexed: 12/17/2022]
Abstract
Chirality is a common phenomenon within odorants. Most pairs of enantiomers show only moderate differences in odor quality. One example for enantiomers that are easily discriminated by their odor quality is the carvones: humans significantly distinguish between the spearmint-like (R)-(-)-carvone and caraway-like (S)-(+)-carvone enantiomers. Moreover, for the (R)-(-)-carvone, an anosmia is observed in about 8% of the population, suggesting enantioselective odorant receptors (ORs). With only about 15% de-orphaned human ORs, the lack of OR crystal structures, and few comprehensive studies combining in silico and experimental approaches to elucidate structure-function relations of ORs, knowledge on cognate odorant/OR interactions is still sparse. An adjusted homology modeling approach considering OR-specific proline-caused conformations, odorant docking studies, single-nucleotide polymorphism (SNP) analysis, site-directed mutagenesis, and subsequent functional studies with recombinant ORs in a cell-based, real-time luminescence assay revealed 11 amino acid positions to constitute an enantioselective binding pocket necessary for a carvone function in human OR1A1 and murine Olfr43, respectively. Here, we identified enantioselective molecular determinants in both ORs that discriminate between minty and caraway odor. Comparison with orthologs from 36 mammalian species demonstrated a hominid-specific carvone binding pocket with about 100% conservation. Moreover, we identified loss-of-function SNPs associated with the carvone binding pocket of OR1A1. Given carvone enantiomer-specific receptor activation patterns including OR1A1, our data suggest OR1A1 as a candidate receptor for constituting a carvone enantioselective phenotype, which may help to explain mechanisms underlying a (R)-(-)-carvone-specific anosmia in humans.
Collapse
Affiliation(s)
- Christiane Geithe
- Deutsche Forschungsanstalt für Lebensmittelchemie Leibniz Institut (DFA), Freising, Germany
| | - Jonas Protze
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany
| | - Franziska Kreuchwig
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany
- Max-Delbrück-Centrum für Molekulare Medizin (MDC), Berlin, Germany
| | - Gerd Krause
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany.
| | - Dietmar Krautwurst
- Deutsche Forschungsanstalt für Lebensmittelchemie Leibniz Institut (DFA), Freising, Germany.
| |
Collapse
|
25
|
Wu C, Hwang SH, Jia Y, Choi J, Kim YJ, Choi D, Pathiraja D, Choi IG, Koo SH, Lee SJ. Olfactory receptor 544 reduces adiposity by steering fuel preference toward fats. J Clin Invest 2017; 127:4118-4123. [PMID: 28990936 DOI: 10.1172/jci89344] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 08/29/2017] [Indexed: 12/13/2022] Open
Abstract
Olfactory receptors (ORs) are present in tissues outside the olfactory system; however, the function of these receptors remains relatively unknown. Here, we determined that olfactory receptor 544 (Olfr544) is highly expressed in the liver and adipose tissue of mice and regulates cellular energy metabolism and obesity. Azelaic acid (AzA), an Olfr544 ligand, specifically induced PKA-dependent lipolysis in adipocytes and promoted fatty acid oxidation (FAO) and ketogenesis in liver, thus shifting the fuel preference to fats. After 6 weeks of administration, mice fed a high-fat diet (HFD) exhibited a marked reduction in adiposity. AzA treatment induced expression of PPAR-α and genes required for FAO in the liver and induced the expression of PPAR-γ coactivator 1-α (Ppargc1a) and uncoupling protein-1 (Ucp1) genes in brown adipose tissue (BAT). Moreover, treatment with AzA increased insulin sensitivity and ketone body levels. This led to a reduction in the respiratory quotient and an increase in the FAO rate, as indicated by indirect calorimetry. AzA treatment had similar antiobesogenic effects in HFD-fed ob/ob mice. Importantly, AzA-associated metabolic changes were completely abrogated in HFD-fed Olfr544-/- mice. To our knowledge, this is the first report to show that Olfr544 orchestrates the metabolic interplay between the liver and adipose tissue, mobilizing stored fats from adipose tissue and shifting the fuel preference to fats in the liver and BAT.
Collapse
Affiliation(s)
| | | | | | | | | | - Dahee Choi
- Division of Life Sciences, School of Life Sciences and Biotechnology for BK21 PLUS, Korea University, Seoul, Republic of Korea
| | | | | | - Seung-Hoi Koo
- Division of Life Sciences, School of Life Sciences and Biotechnology for BK21 PLUS, Korea University, Seoul, Republic of Korea
| | | |
Collapse
|
26
|
Block E, Batista VS, Matsunami H, Zhuang H, Ahmed L. The role of metals in mammalian olfaction of low molecular weight organosulfur compounds. Nat Prod Rep 2017; 34:529-557. [PMID: 28471462 PMCID: PMC5542778 DOI: 10.1039/c7np00016b] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Covering: up to the end of 2017While suggestions concerning the possible role of metals in olfaction and taste date back 50 years, only recently has it been possible to confirm these proposals with experiments involving individual olfactory receptors (ORs). A detailed discussion of recent experimental results demonstrating the key role of metals in enhancing the response of human and other vertebrate ORs to specific odorants is presented against the backdrop of our knowledge of how the sense of smell functions both at the molecular and whole animal levels. This review emphasizes the role of metals in the detection of low molecular weight thiols, sulfides, and other organosulfur compounds, including those found in strong-smelling animal excretions and plant volatiles, and those used in gas odorization. Alternative theories of olfaction are described, with evidence favoring the modified "shape" theory. The use of quantum mechanical/molecular modeling (QM/MM), site-directed mutagenesis and saturation-transfer-difference (STD) NMR is discussed, providing support for biological studies of mouse and human receptors, MOR244-3 and OR OR2T11, respectively. Copper is bound at the active site of MOR244-3 by cysteine and histidine, while cysteine, histidine and methionine are involved with OR2T11. The binding pockets of these two receptors are found in different locations in the three-dimensional seven transmembrane models. Another recently deorphaned human olfactory receptor, OR2M3, highly selective for a thiol from onions, and a broadly-tuned thiol receptor, OR1A1, are also discussed. Other topics covered include the effects of nanoparticles and heavy metal toxicants on vertebrate and fish ORs, intranasal zinc products and the loss of smell (anosmia).
Collapse
Affiliation(s)
- Eric Block
- Department of Chemistry, University at Albany, State University of New York, Albany, New York 12222, USA.
| | | | | | | | | |
Collapse
|
27
|
Thach TT, Hong YJ, Lee S, Lee SJ. Molecular determinants of the olfactory receptor Olfr544 activation by azelaic acid. Biochem Biophys Res Commun 2017; 485:241-248. [DOI: 10.1016/j.bbrc.2017.02.104] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 02/20/2017] [Indexed: 01/03/2023]
|
28
|
Clark AA, Nurmukhambetova S, Li X, Munger SD, Lees JR. Odorants specifically modulate chemotaxis and tissue retention of CD4+ T cells via cyclic adenosine monophosphate induction. J Leukoc Biol 2016; 100:699-709. [PMID: 27154353 DOI: 10.1189/jlb.1a0914-425rr] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Accepted: 04/09/2016] [Indexed: 01/23/2023] Open
Abstract
Retention of T cells within affected tissue is a critical component of adaptive immune inflammation. However, the mechanisms involved in T cell retention remain largely undefined. Previous studies revealed the capacity of cAMP signaling to regulate immune cell migration, as well as dynamic regulation of receptors that could induce cAMP production in immune cells. The potential for cAMP to act as a retention signal has been mostly unexplored, partially as a result of this second messenger's well-characterized inhibition of effector function in immune cells. Here, we report that cAMP regulates the tissue retention of mouse T cells at concentrations well below those that inhibited proliferation or decreased acquisition of an effector phenotype. Stimulation of CD4+ T cells with odorants known to be cognate ligands for T cell-expressed olfactory receptors induced cAMP and inhibited chemokine-driven chemotaxis without decreasing T cell proliferation or effector functions. Similar effects were observed following treatment with relatively low concentrations of the cAMP analog Sp-5,6-dichloro-1-β-d-ribofuranosylbenzimidazole-3',5'-monophosphorothioate. Furthermore, pretreatment with odorants or cAMP at concentrations that did not inhibit effector function induced T cell tissue retention in mice by inhibiting chemokine-dependent T cell egress from the footpad to the draining lymph node. Together, these results suggest that odorant receptor-mediated increases in intracellular cAMP can modulate T cell tissue trafficking and may offer new therapeutic targets for controlling T cell tissue accumulation.
Collapse
Affiliation(s)
- Adam A Clark
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Saule Nurmukhambetova
- Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Xin Li
- Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Steven D Munger
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland, USA; Department of Medicine, Division of Endocrinology, Diabetes and Nutrition, University of Maryland School of Medicine, Baltimore, Maryland, USA; and
| | - Jason R Lees
- Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| |
Collapse
|
29
|
Burger JL, Jeerage KM, Bruno TJ. Direct nuclear magnetic resonance observation of odorant binding to mouse odorant receptor MOR244-3. Anal Biochem 2016; 502:64-72. [PMID: 27019154 DOI: 10.1016/j.ab.2016.03.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 03/01/2016] [Accepted: 03/15/2016] [Indexed: 10/22/2022]
Abstract
Mammals are able to perceive and differentiate a great number of structurally diverse odorants through the odorant's interaction with odorant receptors (ORs), proteins found within the cell membrane of olfactory sensory neurons. The natural gas industry has used human olfactory sensitivity to sulfur compounds (thiols, sulfides, etc.) to increase the safety of fuel gas transport, storage, and use through the odorization of this product. In the United States, mixtures of sulfur compounds are used, but the major constituent of odorant packages is 2-methylpropane-2-thiol, also known as tert-butyl mercaptan. It has been fundamentally challenging to understand olfaction and odorization due to the low affinity of odorous ligands to the ORs and the difficulty in expressing a sufficient number of OR proteins. Here, we directly observed the binding of tert-butyl mercaptan and another odiferous compound, cis-cyclooctene, to mouse OR MOR244-3 on living cells by saturation transfer difference (STD) nuclear magnetic resonance (NMR) spectroscopy. This effort lays the groundwork for resolving molecular mechanisms responsible for ligand binding and resulting signaling, which in turn will lead to a clearer understanding of odorant recognition and competition.
Collapse
Affiliation(s)
- Jessica L Burger
- Applied Chemicals and Materials Division, National Institute of Standards and Technology, Boulder, CO, 80305, USA.
| | - Kavita M Jeerage
- Applied Chemicals and Materials Division, National Institute of Standards and Technology, Boulder, CO, 80305, USA
| | - Thomas J Bruno
- Applied Chemicals and Materials Division, National Institute of Standards and Technology, Boulder, CO, 80305, USA
| |
Collapse
|
30
|
Responsiveness of G protein-coupled odorant receptors is partially attributed to the activation mechanism. Proc Natl Acad Sci U S A 2015; 112:14966-71. [PMID: 26627247 DOI: 10.1073/pnas.1517510112] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Mammals detect and discriminate numerous odors via a large family of G protein-coupled odorant receptors (ORs). However, little is known about the molecular and structural basis underlying OR response properties. Using site-directed mutagenesis and computational modeling, we studied ORs sharing high sequence homology but with different response properties. When tested in heterologous cells by diverse odorants, MOR256-3 responded broadly to many odorants, whereas MOR256-8 responded weakly to a few odorants. Out of 36 mutant MOR256-3 ORs, the majority altered the responses to different odorants in a similar manner and the overall response of an OR was positively correlated with its basal activity, an indication of ligand-independent receptor activation. Strikingly, a single mutation in MOR256-8 was sufficient to confer both high basal activity and broad responsiveness to this receptor. These results suggest that broad responsiveness of an OR is at least partially attributed to its activation likelihood.
Collapse
|
31
|
Baud O, Yuan S, Veya L, Filipek S, Vogel H, Pick H. Exchanging ligand-binding specificity between a pair of mouse olfactory receptor paralogs reveals odorant recognition principles. Sci Rep 2015; 5:14948. [PMID: 26449412 PMCID: PMC4598832 DOI: 10.1038/srep14948] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 09/07/2015] [Indexed: 12/20/2022] Open
Abstract
A multi-gene family of ~1000 G protein-coupled olfactory receptors (ORs) constitutes the molecular basis of mammalian olfaction. Due to the lack of structural data its remarkable capacity to detect and discriminate thousands of odorants remains poorly understood on the structural level of the receptor. Using site-directed mutagenesis we transferred ligand specificity between two functionally related ORs and thereby revealed amino acid residues of central importance for odorant recognition and discrimination of the two receptors. By exchanging two of three residues, differing at equivalent positions of the putative odorant binding site between the mouse OR paralogs Olfr73 (mOR-EG) and Olfr74 (mOR-EV), we selectively changed ligand preference but remarkably also signaling activation strength in both ORs. Computer modeling proposed structural details at atomic resolution how the very same odorant molecule might interact with different contact residues to induce different functional responses in two related receptors. Our findings provide a mechanistic explanation of how the olfactory system distinguishes different molecular aspects of a given odorant molecule, and unravel important molecular details of the combinatorial encoding of odorant identity at the OR level.
Collapse
Affiliation(s)
- Olivia Baud
- Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne Switzerland
| | - Shuguang Yuan
- Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne Switzerland
| | - Luc Veya
- Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne Switzerland
| | - Slawomir Filipek
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Poland
| | - Horst Vogel
- Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne Switzerland
| | - Horst Pick
- Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne Switzerland
| |
Collapse
|
32
|
de March CA, Kim SK, Antonczak S, Goddard WA, Golebiowski J. G protein-coupled odorant receptors: From sequence to structure. Protein Sci 2015; 24:1543-8. [PMID: 26044705 PMCID: PMC4570547 DOI: 10.1002/pro.2717] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 05/25/2015] [Indexed: 12/14/2022]
Abstract
Odorant receptors (ORs) are the largest subfamily within class A G protein-coupled receptors (GPCRs). No experimental structural data of any OR is available to date and atomic-level insights are likely to be obtained by means of molecular modeling. In this article, we critically align sequences of ORs with those GPCRs for which a structure is available. Here, an alignment consistent with available site-directed mutagenesis data on various ORs is proposed. Using this alignment, the choice of the template is deemed rather minor for identifying residues that constitute the wall of the binding cavity or those involved in G protein recognition.
Collapse
Affiliation(s)
- Claire A de March
- Institute of Chemistry—Nice, UMR 7272 CNRS—University Nice—Sophia AntipolisNice Cedex 2, 06108, France
| | - Soo-Kyung Kim
- Materials and Process Simulation Center (MC139-74), California Institute of TechnologyPasadena, California, 91125
| | - Serge Antonczak
- Institute of Chemistry—Nice, UMR 7272 CNRS—University Nice—Sophia AntipolisNice Cedex 2, 06108, France
| | - William A Goddard
- Materials and Process Simulation Center (MC139-74), California Institute of TechnologyPasadena, California, 91125
| | - Jérôme Golebiowski
- Institute of Chemistry—Nice, UMR 7272 CNRS—University Nice—Sophia AntipolisNice Cedex 2, 06108, France
| |
Collapse
|
33
|
Harini K, Sowdhamini R. Computational Approaches for Decoding Select Odorant-Olfactory Receptor Interactions Using Mini-Virtual Screening. PLoS One 2015. [PMID: 26221959 PMCID: PMC4519343 DOI: 10.1371/journal.pone.0131077] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Olfactory receptors (ORs) belong to the class A G-Protein Coupled Receptor superfamily of proteins. Unlike G-Protein Coupled Receptors, ORs exhibit a combinatorial response to odors/ligands. ORs display an affinity towards a range of odor molecules rather than binding to a specific set of ligands and conversely a single odorant molecule may bind to a number of olfactory receptors with varying affinities. The diversity in odor recognition is linked to the highly variable transmembrane domains of these receptors. The purpose of this study is to decode the odor-olfactory receptor interactions using in silico docking studies. In this study, a ligand (odor molecules) dataset of 125 molecules was used to carry out in silico docking using the GLIDE docking tool (SCHRODINGER Inc Pvt LTD). Previous studies, with smaller datasets of ligands, have shown that orthologous olfactory receptors respond to similarly-tuned ligands, but are dramatically different in their efficacy and potency. Ligand docking results were applied on homologous pairs (with varying sequence identity) of ORs from human and mouse genomes and ligand binding residues and the ligand profile differed among such related olfactory receptor sequences. This study revealed that homologous sequences with high sequence identity need not bind to the same/ similar ligand with a given affinity. A ligand profile has been obtained for each of the 20 receptors in this analysis which will be useful for expression and mutation studies on these receptors.
Collapse
Affiliation(s)
- K. Harini
- National Centre for Biological Sciences (TIFR), GKVK Campus, Bellary Road, Bangalore, India
| | - Ramanathan Sowdhamini
- National Centre for Biological Sciences (TIFR), GKVK Campus, Bellary Road, Bangalore, India
- * E-mail:
| |
Collapse
|
34
|
de March CA, Yu Y, Ni MJ, Adipietro KA, Matsunami H, Ma M, Golebiowski J. Conserved Residues Control Activation of Mammalian G Protein-Coupled Odorant Receptors. J Am Chem Soc 2015; 137:8611-8616. [PMID: 26090619 PMCID: PMC4497840 DOI: 10.1021/jacs.5b04659] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Odorant receptor (OR) genes and proteins represent more than 2% of our genome and 4% of our proteome and constitute the largest subgroup of G protein-coupled receptors (GPCRs). The mechanism underlying OR activation remains poorly understood, as they do not share some of the highly conserved motifs critical for activation of non-olfactory GPCRs. By combining site-directed mutagenesis, heterologous expression, and molecular dynamics simulations that capture the conformational change of constitutively active mutants, we tentatively identified crucial residues for the function of these receptors using the mouse MOR256-3 (Olfr124) as a model. The toggle switch for sensing agonists involves a highly conserved tyrosine residue in helix VI. The ionic lock is located between the "DRY" motif in helix III and a positively charged "R/K" residue in helix VI. This study provides an unprecedented model that captures the main mechanisms of odorant receptor activation.
Collapse
Affiliation(s)
- Claire A. de March
- Institute of Chemistry - Nice, UMR 7272 CNRS - University Nice - Sophia Antipolis, 06108 Nice cedex 2, France
| | - Yiqun Yu
- Department of Neuroscience, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Mengjue J. Ni
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Kaylin A. Adipietro
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Hiroaki Matsunami
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Minghong Ma
- Department of Neuroscience, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Jérôme Golebiowski
- Institute of Chemistry - Nice, UMR 7272 CNRS - University Nice - Sophia Antipolis, 06108 Nice cedex 2, France
| |
Collapse
|
35
|
de March CA, Ryu S, Sicard G, Moon C, Golebiowski J. Structure-odour relationships reviewed in the postgenomic era. FLAVOUR FRAG J 2015. [DOI: 10.1002/ffj.3249] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Claire A. de March
- Institut de Chimie de Nice; Université Nice Sophia Antipolis; UMR CNRS 7272, parc Valrose 06108 Nice cedex 02 France
| | - SangEun Ryu
- Laboratory of Chemical Senses, Department of Brain and Cognitive Science; DGIST (Daegu Gyeongbuk Institute of Science & Technology); 50-1 Sang-Ri, Hyeonpung-Myeon, Dalseong-Gun Daegu 711-873 Korea
| | - Gilles Sicard
- Neurobiology of Cellular Interactions and Neurophysiopathology; Aix-Marseille Université; UMR CNRS 7259 13331 Marseille cedex 03 France
| | - Cheil Moon
- Laboratory of Chemical Senses, Department of Brain and Cognitive Science; DGIST (Daegu Gyeongbuk Institute of Science & Technology); 50-1 Sang-Ri, Hyeonpung-Myeon, Dalseong-Gun Daegu 711-873 Korea
| | - Jérôme Golebiowski
- Institut de Chimie de Nice; Université Nice Sophia Antipolis; UMR CNRS 7272, parc Valrose 06108 Nice cedex 02 France
| |
Collapse
|
36
|
Ho J, Perez-Aguilar JM, Gao L, Saven JG, Matsunami H, Eckenhoff RG. Molecular recognition of ketamine by a subset of olfactory G protein-coupled receptors. Sci Signal 2015; 8:ra33. [PMID: 25829447 DOI: 10.1126/scisignal.2005912] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Ketamine elicits various neuropharmacological effects, including sedation, analgesia, general anesthesia, and antidepressant activity. Through an in vitro screen, we identified four mouse olfactory receptors (ORs) that responded to ketamine. In addition to their presence in the olfactory epithelium, these G protein (heterotrimeric guanine nucleotide-binding protein)-coupled receptors (GPCRs) are distributed throughout the central nervous system. To better understand the molecular basis of the interactions between ketamine and ORs, we used sequence comparison and molecular modeling to design mutations that (i) increased, reduced, or abolished ketamine responsiveness in responding receptors, and (ii) rendered nonresponding receptors responsive to ketamine. We showed that olfactory sensory neurons (OSNs) that expressed distinct ORs responded to ketamine in vivo, suggesting that ORs may serve as functional targets for ketamine. The ability to both abolish and introduce responsiveness to ketamine in GPCRs enabled us to identify and confirm distinct interaction loci in the binding site, which suggested a signature ketamine-binding pocket that may guide exploration of additional receptors for this general anesthetic drug.
Collapse
Affiliation(s)
- Jianghai Ho
- Department of Molecular Genetics and Microbiology, and Department of Neurobiology, Duke University, Durham, NC 27710, USA
| | | | - Lu Gao
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jeffery G Saven
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Hiroaki Matsunami
- Department of Molecular Genetics and Microbiology, and Department of Neurobiology, Duke University, Durham, NC 27710, USA.,Duke Institute for Brain Sciences, Duke University, Durham, NC 27710, USA
| | - Roderic G Eckenhoff
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
37
|
Kim SK, Goddard WA. Predicted 3D structures of olfactory receptors with details of odorant binding to OR1G1. J Comput Aided Mol Des 2014; 28:1175-90. [PMID: 25224127 DOI: 10.1007/s10822-014-9793-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Accepted: 09/02/2014] [Indexed: 11/24/2022]
Abstract
Olfactory receptors (ORs) are responsible for mediating the sense of smell; they allow humans to recognize an enormous number of odors but the connection between binding and perception is not known. We predict the ensemble of low energy structures for the human OR1G1 (hOR1G1) and also for six other diverse ORs, using the G protein-coupled receptor Ensemble of Structures in Membrane BiLayer Environment complete sampling method that samples 13 trillion different rotations and tilts using four different templates to predict the 24 structures likely to be important in binding and activation. Our predicted most stable structures of hOR1G1 have a salt-bridge between the conserved D3.49 and K6.30 in the D(E)RY region, that we expect to be associated with an inactive form. The hOR1G1 structure also has specific interaction in transmembrane domains (TMD) 3-6 (E3.39 and H6.40), which is likely an important conformational feature for all hORs because of the ~94 to 98 % conservation among all hOR sequences. Of the five ligands studied (nonanal, 9-decen-1-ol, 1-nonanol, camphor, and n-butanal), we find that the 4 expected to bind lead to similar binding energies with nonanol the strongest.
Collapse
Affiliation(s)
- Soo-Kyung Kim
- Materials and Process Simulation Center (MC139-74), California Institute of Technology, 1200 E. California Blvd., Pasadena, CA, 91125, USA,
| | | |
Collapse
|
38
|
|
39
|
Azzouzi N, Barloy-Hubler F, Galibert F. Inventory of the cichlid olfactory receptor gene repertoires: identification of olfactory genes with more than one coding exon. BMC Genomics 2014; 15:586. [PMID: 25015101 PMCID: PMC4122780 DOI: 10.1186/1471-2164-15-586] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Accepted: 07/01/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND To help understand the molecular mechanisms underlying the remarkable phenotypic diversity displayed by cichlids, the genome sequences of O. niloticus, P. nyererei, H. burtoni, N. brichardi and M. zebra were recently determined. Here, we present the contents of the olfactory receptor (OR) repertoires in the genomes of these five fishes. RESULTS We performed an exhaustive TBLASTN search of the five cichlid genomes to identify their OR repertoires as completely as possible. We used as bait a set of ORs described in the literature. The cichlid repertoires thereby extracted contained large numbers of complete genes (O. niloticus 158; H. burtoni 90; M. zebra 102; N. brichardi 69; P. nyererei 88), a small numbers of pseudogenes and many "edge genes" corresponding to incomplete genes located at the ends of contigs. A phylogenetic tree was constructed and showed these repertoires include a large number of families and subfamilies. It also allowed the identification of a large number of OR analogues between cichlids with very high amino-acid identity (≥ 99%). Nearly 9% of the full-length cichlid OR genes are composed of several coding exons. This is very unusual for vertebrate OR genes. Nevertheless, the evidence is strong, and includes the donor and acceptor splice junction sequences; also, the positions of these genes in the phylogenetic tree indicate that they constitute subfamilies well apart from non-OR G protein-coupled receptor families. CONCLUSIONS Cichlid OR repertoires are made up of a larger number of genes and fewer pseudogenes than those in other teleosts except zebrafish. These ORs share all identified properties common to all fish ORs; however, the large number of families and subfamilies, each containing few ORs implies that they have evolved more rapidly. This high level of OR diversity is consistent with the substantial phenotypic diversity that characterizes cichlids.
Collapse
Affiliation(s)
| | | | - Francis Galibert
- Institut Génétique et Développement (UMR 6290) CNRS/Université de Rennes 1, Rennes, France.
| |
Collapse
|
40
|
Busse D, Kudella P, Grüning NM, Gisselmann G, Ständer S, Luger T, Jacobsen F, Steinsträßer L, Paus R, Gkogkolou P, Böhm M, Hatt H, Benecke H. A synthetic sandalwood odorant induces wound-healing processes in human keratinocytes via the olfactory receptor OR2AT4. J Invest Dermatol 2014; 134:2823-2832. [PMID: 24999593 DOI: 10.1038/jid.2014.273] [Citation(s) in RCA: 162] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Revised: 02/19/2014] [Accepted: 03/05/2014] [Indexed: 12/23/2022]
Abstract
As the outermost barrier of the body, the skin is exposed to multiple environmental factors, including temperature, humidity, mechanical stress, and chemical stimuli such as odorants that are often used in cosmetic articles. Keratinocytes, the major cell type of the epidermal layer, express a variety of different sensory receptors that enable them to react to various environmental stimuli and process information in the skin. Here we report the identification of a novel type of chemoreceptors in human keratinocytes, the olfactory receptors (ORs). We cloned and functionally expressed the cutaneous OR, OR2AT4, and identified Sandalore, a synthetic sandalwood odorant, as an agonist of this receptor. Sandalore induces strong Ca(2+) signals in cultured human keratinocytes, which are mediated by OR2AT4, as demonstrated by receptor knockdown experiments using RNA interference. The activation of OR2AT4 induces a cAMP-dependent pathway and phosphorylation of extracellular signal-regulated kinases (Erk1/2) and p38 mitogen-activated protein kinases (p38 MAPK). Moreover, the long-term stimulation of keratinocytes with Sandalore positively affected cell proliferation and migration, and regeneration of keratinocyte monolayers in an in vitro wound scratch assay. These findings combined with our studies on human skin organ cultures strongly indicate that the OR 2AT4 is involved in human keratinocyte re-epithelialization during wound-healing processes.
Collapse
Affiliation(s)
- Daniela Busse
- Department of Cellphysiology, Ruhr-University Bochum, Bochum, Germany
| | - Philipp Kudella
- Department of Cellphysiology, Ruhr-University Bochum, Bochum, Germany
| | | | - Günter Gisselmann
- Department of Cellphysiology, Ruhr-University Bochum, Bochum, Germany
| | - Sonja Ständer
- Department of Dermatology, Competence Centre Chronic Pruritus, University Hospital Münster, Münster, Germany
| | | | - Frank Jacobsen
- Department of Plastic Surgery, BG University Hospital Bergmannsheil, Ruhr-University Bochum, Bochum, Germany
| | - Lars Steinsträßer
- Department of Plastic Surgery, BG University Hospital Bergmannsheil, Ruhr-University Bochum, Bochum, Germany
| | - Ralf Paus
- Institute of Inflammation and Repair, University of Manchester, Manchester, UK
| | - Paraskevi Gkogkolou
- Laboratory for Neuroendocrinology of the Skin and Interdisciplinary Endocrinology, Department of Dermatology, University Hospital Münster, Münster, Germany
| | - Markus Böhm
- Laboratory for Neuroendocrinology of the Skin and Interdisciplinary Endocrinology, Department of Dermatology, University Hospital Münster, Münster, Germany
| | - Hanns Hatt
- Department of Cellphysiology, Ruhr-University Bochum, Bochum, Germany.
| | - Heike Benecke
- Department of Cellphysiology, Ruhr-University Bochum, Bochum, Germany
| |
Collapse
|
41
|
Peterlin Z, Firestein S, Rogers ME. The state of the art of odorant receptor deorphanization: a report from the orphanage. ACTA ACUST UNITED AC 2014; 143:527-42. [PMID: 24733839 PMCID: PMC4003190 DOI: 10.1085/jgp.201311151] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The odorant receptors (ORs) provide our main gateway to sensing the world of volatile chemicals. This involves a complex encoding process in which multiple ORs, each of which detects its own set of odorants, work as an ensemble to produce a distributed activation code that is presumably unique to each odorant. One marked challenge to decoding the olfactory code is OR deorphanization, the identification of a set of activating odorants for a particular receptor. Here, we survey various methods used to try to express defined ORs of interest. We also suggest strategies for selecting odorants for test panels to evaluate the functional expression of an OR. Integrating these tools, while retaining awareness of their idiosyncratic limitations, can provide a multi-tiered approach to OR deorphanization, spanning the initial discovery of a ligand to vetting that ligand in a physiologically relevant setting.
Collapse
Affiliation(s)
- Zita Peterlin
- Corporate Research and Development, Firmenich Incorporated, Plainsboro, NJ 08536
| | | | | |
Collapse
|
42
|
Bavan S, Sherman B, Luetje CW, Abaffy T. Discovery of novel ligands for mouse olfactory receptor MOR42-3 using an in silico screening approach and in vitro validation. PLoS One 2014; 9:e92064. [PMID: 24637889 PMCID: PMC3956865 DOI: 10.1371/journal.pone.0092064] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2013] [Accepted: 02/17/2014] [Indexed: 11/19/2022] Open
Abstract
The ligands for many olfactory receptors remain largely unknown despite successful heterologous expression of these receptors. Understanding the molecular receptive range of olfactory receptors and deciphering the olfactory recognition code are hampered by the huge number of odorants and large number of olfactory receptors, as well as the complexity of their combinatorial coding. Here, we present an in silico screening approach to find additional ligands for a mouse olfactory receptor that allows improved definition of its molecular receptive range. A virtual library of 574 odorants was screened against a mouse olfactory receptor MOR42-3. We selected the top 20 candidate ligands using two different scoring functions. These 40 odorant candidate ligands were then tested in vitro using the Xenopus oocyte heterologous expression system and two-electrode voltage clamp electrophysiology. We experimentally confirmed 22 of these ligands. The candidate ligands were screened for both agonist and antagonist activity. In summary, we validated 19 agonists and 3 antagonists. Two of the newly identified antagonists were of low potency. Several previously known ligands (mono- and dicarboxylic acids) are also confirmed in this study. However, some of the newly identified ligands were structurally dissimilar compounds with various functional groups belonging to aldehydes, phenyls, alkenes, esters and ethers. The high positive predictive value of our in silico approach is promising. We believe that this approach can be used for initial deorphanization of olfactory receptors as well as for future comprehensive studies of molecular receptive range of olfactory receptors.
Collapse
Affiliation(s)
- Selvan Bavan
- Department of Molecular and Cellular Pharmacology, Miller School of Medicine, University of Miami, Miami, Florida, United States of America
| | - Benjamin Sherman
- Department of Molecular and Cellular Pharmacology, Miller School of Medicine, University of Miami, Miami, Florida, United States of America
| | - Charles W Luetje
- Department of Molecular and Cellular Pharmacology, Miller School of Medicine, University of Miami, Miami, Florida, United States of America
| | - Tatjana Abaffy
- Department of Molecular and Cellular Pharmacology, Miller School of Medicine, University of Miami, Miami, Florida, United States of America
| |
Collapse
|
43
|
Lai PC, Guida B, Shi J, Crasto CJ. Preferential binding of an odor within olfactory receptors: a precursor to receptor activation. Chem Senses 2014; 39:107-23. [PMID: 24398973 PMCID: PMC3894857 DOI: 10.1093/chemse/bjt060] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Using computational methods, which allow mechanistic insights at a molecular level, we explored the olfactory receptor (OR)-odor interactions for 2 mouse ORs, S79 and S86. Both ORs have been previously experimentally, functionally characterized. The odors used were mostly carboxylic acids, which differed in chain length, substituents on the primary carbon atom-chain and degree of unsaturation. These odors elicited varied activation responses from both ORs. Our studies revealed that both receptors have 2 distinct binding sites. Preferential binding in 1 of the 2 sites is correlated with OR activation. The activating odorants: nonanedioic acid, heptanoic acid, and octanoic acid for OR S79 and nonanoic acid for OR S86 preferentially bind in the region bound by transmembranes (TMs [helical domains]) III, IV, V, and VI. The non excitatory odorants heptanol for S79 and heptanoic acid for S86 showed a greater likelihood of binding in the region bound by TMs I, II, III, and VII. Nanosecond-scale molecular dynamics simulations of the physiologically relevant conditions of docked OR-odorant complexes enabled us to quantitatively assess the roles of individual OR amino acids in odor binding. Amino acid-odorant contact maps and distance determinations over the course of the simulations lend support to our conclusions.
Collapse
Affiliation(s)
- Peter C Lai
- Department of Genetics, Division of Research, University of Alabama at Birmingham, 720 20th Street S., Birmingham, AL 35294, USA.
| | | | | | | |
Collapse
|
44
|
Extrasensory perception: odorant and taste receptors beyond the nose and mouth. Pharmacol Ther 2013; 142:41-61. [PMID: 24280065 DOI: 10.1016/j.pharmthera.2013.11.004] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Accepted: 11/04/2013] [Indexed: 12/22/2022]
Abstract
G protein-coupled receptors (GPCRs) represent the largest family of transmembrane receptors and are prime therapeutic targets. The odorant and taste receptors account for over half of the GPCR repertoire, yet they are generally excluded from large-scale, drug candidate analyses. Accumulating molecular evidence indicates that the odorant and taste receptors are widely expressed throughout the body and functional beyond the oronasal cavity - with roles including nutrient sensing, autophagy, muscle regeneration, regulation of gut motility, protective airway reflexes, bronchodilation, and respiratory disease. Given this expanding array of actions, the restricted perception of these GPCRs as mere mediators of smell and taste is outdated. Moreover, delineation of the precise actions of odorant and taste GPCRs continues to be hampered by the relative paucity of selective and specific experimental tools, as well as the lack of defined receptor pharmacology. In this review, we summarize the evidence for expression and function of odorant and taste receptors in tissues beyond the nose and mouth, and we highlight their broad potential in physiology and pathophysiology.
Collapse
|
45
|
Sehar U, Mehmood MA, Hussain K, Nawaz S, Nadeem S, Siddique MH, Nadeem H, Gull M, Ahmad N, Sohail I, Gill SS, Majeed S. Domain wise docking analyses of the modular chitin binding protein CBP50 from Bacillus thuringiensis serovar konkukian S4. Bioinformation 2013; 9:901-7. [PMID: 24307767 PMCID: PMC3842575 DOI: 10.6026/97320630009901] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Accepted: 10/19/2013] [Indexed: 11/23/2022] Open
Abstract
This paper presents an in silico characterization of the chitin binding protein CBP50 from B. thuringiensis serovar konkukian S4 through homology modeling and molecular docking. The CBP50 has shown a modular structure containing an N-terminal CBM33 domain, two consecutive fibronectin-III (Fn-III) like domains and a C-terminal CBM5 domain. The protein presented a unique modular structure which could not be modeled using ordinary procedures. So, domain wise modeling using MODELLER and docking analyses using Autodock Vina were performed. The best conformation for each domain was selected using standard procedure. It was revealed that four amino acid residues Glu-71, Ser-74, Glu-76 and Gln-90 from N-terminal domain are involved in protein-substrate interaction. Similarly, amino acid residues Trp-20, Asn-21, Ser-23 and Val-30 of Fn-III like domains and Glu-15, Ala-17, Ser-18 and Leu-35 of C-terminal domain were involved in substrate binding. Site-directed mutagenesis of these proposed amino acid residues in future will elucidate the key amino acids involved in chitin binding activity of CBP50 protein.
Collapse
Affiliation(s)
- Ujala Sehar
- Department of Bioinformatics and Biotechnology, Faculty of Science & Technology, Government College University Faisalabad, Faisalabad, Pakistan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Abstract
Providing a rationale that associates a chemical structure of an odorant to its induced perception has been sought for a long time. To achieve this, a detailed atomic structure of both the odorant and the olfactory receptor must be known. State-of-the-art techniques to model the 3D structure of an olfactory receptor in complex with various odorants are presented here. These range from sequence alignment with known structures to molecular dynamics simulations in a realistic environment.
Collapse
|
47
|
Date P, Dweck HKM, Stensmyr MC, Shann J, Hansson BS, Rollmann SM. Divergence in olfactory host plant preference in D. mojavensis in response to cactus host use. PLoS One 2013; 8:e70027. [PMID: 23936137 PMCID: PMC3723661 DOI: 10.1371/journal.pone.0070027] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Accepted: 06/19/2013] [Indexed: 11/18/2022] Open
Abstract
Divergence in host adaptive traits has been well studied from an ecological and evolutionary perspective, but identification of the proximate mechanisms underlying such divergence is less well understood. Behavioral preferences for host plants are often mediated by olfaction and shifts in preference may be accompanied by changes in the olfactory system. In this study, we examine the evolution of host plant preferences in cactophilic Drosophila mojavensis that feeds and breeds on different cacti throughout its range. We show divergence in electrophysiological responses and olfactory behavior among populations with host plant shifts. Specifically, significant divergence was observed in the Mojave Desert population that specializes on barrel cactus. Differences were observed in electrophysiological responses of the olfactory organs and in behavioral responses to barrel cactus volatiles. Together our results suggest that the peripheral nervous system has changed in response to different ecological environments and that these changes likely contribute to divergence among D. mojavensis populations.
Collapse
Affiliation(s)
- Priya Date
- Department of Biological Sciences, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Hany K. M. Dweck
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Marcus C. Stensmyr
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Jena, Germany
- * E-mail: (MCS); (SMR)
| | - Jodi Shann
- Department of Biological Sciences, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Bill S. Hansson
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Stephanie M. Rollmann
- Department of Biological Sciences, University of Cincinnati, Cincinnati, Ohio, United States of America
- * E-mail: (MCS); (SMR)
| |
Collapse
|
48
|
Luetje CW, Nichols AS, Castro A, Sherman BL. Functional assay of mammalian and insect olfactory receptors using Xenopus oocytes. Methods Mol Biol 2013; 1003:187-202. [PMID: 23585043 DOI: 10.1007/978-1-62703-377-0_14] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The large number of olfactory receptors (ORs) expressed by various mammalian and insect species, as well as the large number of potential odorant ligands, has made the pairing of odorants with receptors -(de-orphaning) exceedingly difficult. These efforts are further complicated by difficulties in expressing ORs in many standard expression systems. Xenopus laevis oocytes offer a versatile expression platform for the de-orphaning and functional characterization of ORs. Two-electrode voltage clamp electrophysiology is a common and relatively straightforward approach to the functional assay of receptors expressed in Xenopus oocytes, and this technique has been discussed extensively in the literature. However, laboratories that are new to the use of Xenopus oocytes are often stymied by some of the peculiarities of the Xenopus oocyte expression system. We discuss some of the key methodological issues in Xenopus care, oocyte -isolation and receptor expression, with a focus on using this expression system to study the ORs of mammals and insects.
Collapse
Affiliation(s)
- Charles W Luetje
- Department of Molecular and Cellular Pharmacology, Miller School of Medicine, University of Miami, Miami, FL, USA
| | | | | | | |
Collapse
|
49
|
Niimura Y. Olfactory receptor multigene family in vertebrates: from the viewpoint of evolutionary genomics. Curr Genomics 2012; 13:103-14. [PMID: 23024602 PMCID: PMC3308321 DOI: 10.2174/138920212799860706] [Citation(s) in RCA: 159] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2011] [Revised: 07/12/2011] [Accepted: 09/29/2011] [Indexed: 01/17/2023] Open
Abstract
Olfaction is essential for the survival of animals. Diverse odor molecules in the environment are detected by the olfactory receptors (ORs) in the olfactory epithelium of the nasal cavity. There are ~400 and ~1,000 OR genes in the human and mouse genomes, respectively, forming the largest multigene family in mammals. The relationships between ORs and odorants are multiple-to-multiple, which allows for discriminating almost unlimited number of different odorants by a combination of ORs. However, the OR-ligand relationships are still largely unknown, and predicting the quality of odor from its molecular structure is unsuccessful.Extensive bioinformatic analyses using the whole genomes of various organisms revealed a great variation in number of OR genes among species, reflecting the diversity of their living environments. For example, higher primates equipped with a well-developed vision system and dolphins that are secondarily adapted to the aquatic life have considerably smaller numbers of OR genes than most of other mammals do. OR genes are characterized by extremely frequent gene duplications and losses. The OR gene repertories are also diverse among human individuals, explaining the diversity of odor perception such as the specific anosmia.OR genes are present in all vertebrates. The number of OR genes is smaller in teleost fishes than in mammals, while the diversity is higher in the former than the latter. Because the genome of amphioxus, the most basal chordate species, harbors vertebrate-like OR genes, the origin of OR genes can be traced back to the common ancestor of the phylum Chordata.
Collapse
Affiliation(s)
- Yoshihito Niimura
- Department of Bioinformatics, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| |
Collapse
|
50
|
Launay G, Sanz G, Pajot-Augy E, Gibrat JF. Modeling of mammalian olfactory receptors and docking of odorants. Biophys Rev 2012; 4:255-269. [PMID: 28510073 DOI: 10.1007/s12551-012-0080-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2012] [Accepted: 05/24/2012] [Indexed: 11/29/2022] Open
Abstract
Olfactory receptors (ORs) belong to the superfamily of G protein-coupled receptors (GPCRs), the second largest class of genes after those related to immunity, and account for about 3 % of mammalian genomes. ORs are present in all multicellular organisms and represent more than half the GPCRs in mammalian species (e.g., the mouse OR repertoire contains >1,000 functional genes). ORs are mainly expressed in the olfactory epithelium where they detect odorant molecules, but they are also expressed in a number of other cells, such as sperm cells, although their functions in these cells remain mostly unknown. It has recently been reported that ORs are present in tumoral tissues where they are expressed at different levels than in healthy tissues. A specific OR is over-expressed in prostate cancer cells, and activation of this OR has been shown to inhibit the proliferation of these cells. Odorant stimulation of some of these receptors results in inhibition of cell proliferation. Even though their biological role has not yet been elucidated, these receptors might constitute new targets for diagnosis and therapeutics. It is important to understand the activation mechanism of these receptors at the molecular level, in particular to be able to predict which ligands are likely to activate a particular receptor ('deorphanization') or to design antagonists for a given receptor. In this review, we describe the in silico methodologies used to model the three-dimensional (3D) structure of ORs (in the more general framework of GPCR modeling) and to dock ligands into these 3D structures.
Collapse
Affiliation(s)
- Guillaume Launay
- Equipe interactions hôte-pathogène, Bases Moléculaires et Structurales des Systèmes Infectieux, UMR5086 CNRS/Université de Lyon1, 7 Passage du Vercors, Lyon cedex 07, France
| | - Guenhaël Sanz
- Neurobiologie de l'Olfaction et Modélisation en Imagerie UR1197, INRA, 78350, Jouy-en-Josas, France
| | - Edith Pajot-Augy
- Neurobiologie de l'Olfaction et Modélisation en Imagerie UR1197, INRA, 78350, Jouy-en-Josas, France
| | | |
Collapse
|