1
|
Domínguez-López A, Magaña-Guerrero FS, Buentello-Volante B, Vivanco-Rojas Ó, Garfias Y. NFAT5: a stress-related transcription factor with multiple functions in health and disease. Cell Stress 2025; 9:16-48. [PMID: 40421201 PMCID: PMC12105643 DOI: 10.15698/cst2025.05.304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 04/06/2025] [Accepted: 04/23/2025] [Indexed: 05/28/2025] Open
Abstract
Nuclear factor of activated T cells 5 (NFAT5) is a transcription factor within the Rel family, primarily recognized for its role in cellular adaptation to osmotic stress, particularly in hypertonic and hyperosmotic environments. Beyond osmotic regulation, NFAT5 responds to diverse stimuli, including cytokines, growth factors, oxidative stress, and microbial signals. This versatility enables NFAT5 to regulate essential cellular processes such as proliferation, survival, migration, and vascular remodelling. In the immune system, NFAT5 modulates the function of monocytes, macrophages, astrocytes, microglia, and T cells, contributing to immune homeostasis and inflammatory responses. Dysregulation of NFAT5 activity is implicated in various pathological conditions, including autoimmune diseases, cancer, and cardiovascular disorders, largely due to its ability to control genes involved in inflammatory and immune pathways under both isotonic and hypertonic conditions. Recent studies have unveiled new regulatory mechanisms, including interactions with non-coding RNAs, offering deeper insights into the functional landscape of NFAT5 and its therapeutic potential. This review delves into the multifaceted roles of NFAT5 in health and disease, emphasizing its emerging importance as a promising therapeutic target.
Collapse
Affiliation(s)
- Alfredo Domínguez-López
- Department of Biochemistry, Faculty of Medicine, Universidad Nacional Autónoma de México. Mexico City, Mexico. 04510
- Cell and Tissue Biology Department, Research Unit, Institute of Ophthalmology Conde de Valenciana. Mexico City, Mexico. 06800
| | - Fátima S. Magaña-Guerrero
- Cell and Tissue Biology Department, Research Unit, Institute of Ophthalmology Conde de Valenciana. Mexico City, Mexico. 06800
| | - Beatriz Buentello-Volante
- Cell and Tissue Biology Department, Research Unit, Institute of Ophthalmology Conde de Valenciana. Mexico City, Mexico. 06800
| | - Óscar Vivanco-Rojas
- Department of Biochemistry, Faculty of Medicine, Universidad Nacional Autónoma de México. Mexico City, Mexico. 04510
- Cell and Tissue Biology Department, Research Unit, Institute of Ophthalmology Conde de Valenciana. Mexico City, Mexico. 06800
| | - Yonathan Garfias
- Department of Biochemistry, Faculty of Medicine, Universidad Nacional Autónoma de México. Mexico City, Mexico. 04510
- Cell and Tissue Biology Department, Research Unit, Institute of Ophthalmology Conde de Valenciana. Mexico City, Mexico. 06800
| |
Collapse
|
2
|
Li J, Wang X, Lan T, Lu Y, Hong M, Ding L, Wang L. CDK5/NFAT5-Regulated Transporters Involved in Osmoregulation in Fejervarya cancrivora. BIOLOGY 2022; 11:biology11060858. [PMID: 35741379 PMCID: PMC9220195 DOI: 10.3390/biology11060858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 05/30/2022] [Accepted: 06/01/2022] [Indexed: 11/19/2022]
Abstract
Crab-eating frogs (Fejervarya cancrivora) can live in brackish water with a salinity of up to 18‱, although most amphibians are not able to tolerate such high saline environments. To investigate its potential osmoregulation, we conducted experiments in F. cancrivora and F. multistriata. The results showed that F. cancrivora made use of ions (such as Na+ and Cl−) to increase intracellular concentrations via the Na+/K+-ATPase (NKA) enzyme. The mRNA expression of aldose reductase (AR) was significantly higher in F. cancrivora (p < 0.05), indicating that more organic osmolytes were produced and transported to maintain cellular homeosis. The mRNA expressions of Aquaporin 1 (AQP1) and AQP3 in kidney were significantly higher in F. cancrivora, while AQP expression in skin was higher in F. multistriata (p < 0.05). The mRNA level in activating the transcription of the nuclear factor of activated T cells-5 (NFAT5) which is one of the target genes of regulating the cellular response to hypertonicity, was higher in F. cancrivora. The protein expression of CDK5, the upstream protein of the NFAT5 pathway, was 2 times higher in F. cancrivora. Therefore, we can conclude that CDK5/NFAT5-regulated transporters might be involved in osmoregulation in F. cancrivora.
Collapse
Affiliation(s)
| | | | | | | | | | - Li Ding
- Correspondence: (L.D.); (L.W.)
| | | |
Collapse
|
3
|
NFAT5-Mediated Signalling Pathways in Viral Infection and Cardiovascular Dysfunction. Int J Mol Sci 2021; 22:ijms22094872. [PMID: 34064510 PMCID: PMC8124654 DOI: 10.3390/ijms22094872] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 04/30/2021] [Accepted: 05/02/2021] [Indexed: 02/06/2023] Open
Abstract
The nuclear factor of activated T cells 5 (NFAT5) is well known for its sensitivity to cellular osmolarity changes, such as in the kidney medulla. Accumulated evidence indicates that NFAT5 is also a sensitive factor to stress signals caused by non-hypertonic stimuli such as heat shock, biomechanical stretch stress, ischaemia, infection, etc. These osmolality-related and -unrelated stimuli can induce NFAT5 upregulation, activation and nuclear accumulation, leading to its protective role against various detrimental effects. However, dysregulation of NFAT5 expression may cause pathological conditions in different tissues, leading to a variety of diseases. These protective or pathogenic effects of NFAT5 are dictated by the regulation of its target gene expression and activation of its signalling pathways. Recent studies have found a number of kinases that participate in the phosphorylation/activation of NFAT5 and related signal proteins. Thus, this review will focus on the NFAT5-mediated signal transduction pathways. As for the stimuli that upregulate NFAT5, in addition to the stresses caused by hyperosmotic and non-hyperosmotic environments, other factors such as miRNA, long non-coding RNA, epigenetic modification and viral infection also play an important role in regulating NFAT5 expression; thus, the discussion in this regard is another focus of this review. As the heart, unlike the kidneys, is not normally exposed to hypertonic environments, studies on NFAT5-mediated cardiovascular diseases are just emerging and rapidly progressing. Therefore, we have also added a review on the progress made in this field of research.
Collapse
|
4
|
Chen BL, Li Y, Xu S, Nie Y, Zhang J. NFAT5 Regulated by STUB1, Facilitates Malignant Cell Survival and p38 MAPK Activation by Upregulating AQP5 in Chronic Lymphocytic Leukemia. Biochem Genet 2021; 59:870-883. [PMID: 33544297 DOI: 10.1007/s10528-021-10040-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 01/22/2021] [Indexed: 02/07/2023]
Abstract
Chronic lymphocytic leukemia (CLL) is a clonal proliferative disease of mature B lymphocytes. To further improve the prognosis of patients, it is necessary to further elucidate the pathogenesis of CLL and find more effective therapeutic targets. Nuclear Factor of Activated T cells 5 (NFAT5) is the major activated transcription factor (TF) upon osmotic pressure increase in mammalian cells, and it also regulates many target genes to affect various cellular functions. The effects of NFAT5 on tumor growth and metastasis have also been widely revealed. However, the effects of NFAT5 on the progression of CLL are still unclear. In this study, we found abnormally high expression of NFAT5 in human CLL patients. Additionally, NFAT5 depletion suppressed proliferation and stimulated apoptosis of CLL cells. Our data further confirmed NFAT5 regulated AQP5 expression and the phosphorylation of p38 MAPK. We also found that AQP5 overexpression reversed the inhibitory effect of NFAT5 depletion on cell proliferation in CLL cells. Furthermore, we revealed STUB1 directly bound to NFAT5 and promoted its degradation. Taken together, our results indicate the involvement of NFAT5 in CLL progression and suggest that NFAT5 could serve as a promising therapeutic target for CLL treatment.
Collapse
Affiliation(s)
- Bei Li Chen
- Department of Hematology, Affiliated Hospital of Guilin Medical University, Guilin, 541001, Guangxi Zhuang Autonomous Region, China
| | - Yuchuan Li
- Department of Gynaecology, Affiliated Hospital of Guilin Medical University, Guilin, 541001, Guangxi Zhuang Autonomous Region, China
| | - Shujuan Xu
- Department of Hematology, Affiliated Hospital of Guilin Medical University, Guilin, 541001, Guangxi Zhuang Autonomous Region, China
| | - Yuwei Nie
- Department of Hematology, Affiliated Hospital of Guilin Medical University, Guilin, 541001, Guangxi Zhuang Autonomous Region, China
| | - Jiang Zhang
- Department of Clinical Laboratory, The First Affiliated Hospital, Sun Yat-sen University, No. 58 Zhongshan Second Road, Yuexiu District, Guangzhou, 510080, Guangdong, China.
| |
Collapse
|
5
|
Cen L, Xing F, Xu L, Cao Y. Potential Role of Gene Regulator NFAT5 in the Pathogenesis of Diabetes Mellitus. J Diabetes Res 2020; 2020:6927429. [PMID: 33015193 PMCID: PMC7512074 DOI: 10.1155/2020/6927429] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 07/15/2020] [Accepted: 08/31/2020] [Indexed: 02/05/2023] Open
Abstract
Nuclear factor of activated T cells 5 (NFAT5), a Rel/nuclear factor- (NF-) κB family member, is the only known gene regulator of the mammalian adaptive response to osmotic stress. Exposure to elevated glucose increases the expression and nuclear translocation of NFAT5, as well as NFAT5-driven transcriptional activity in vivo and in vitro. Increased expression of NFAT5 is closely correlated with the progression of diabetes in patients. The distinct structure of NFAT5 governs its physiological and pathogenic roles, indicating its opposing functions. The ability of NFAT5 to maintain cell homeostasis and proliferation is impaired in patients with diabetes. NFAT5 promotes the formation of aldose reductase, pathogenesis of diabetic vascular complications, and insulin resistance. Additionally, NFAT5 activates inflammation at a very early stage of diabetes and induces persistent inflammation. Recent studies revealed that NFAT5 is an effective therapeutic target for diabetes. Here, we describe the current knowledge about NFAT5 and its relationship with diabetes, focusing on its diverse regulatory functions, and highlight the importance of this protein as a potential therapeutic target in patients with diabetes.
Collapse
Affiliation(s)
- Lusha Cen
- Department of Ophthalmology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Fengling Xing
- Department of Dermatology, Hangzhou Hospital of Traditional Chinese Medicine, Hangzhou, China
| | - Liying Xu
- Department of Emergency, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Yi Cao
- Department of Dermatology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Youdian Rd. 54th, Hangzhou 310006, China
| |
Collapse
|
6
|
Sági JC, Egyed B, Kelemen A, Kutszegi N, Hegyi M, Gézsi A, Herlitschke MA, Rzepiel A, Fodor LE, Ottóffy G, Kovács GT, Erdélyi DJ, Szalai C, Semsei ÁF. Possible roles of genetic variations in chemotherapy related cardiotoxicity in pediatric acute lymphoblastic leukemia and osteosarcoma. BMC Cancer 2018; 18:704. [PMID: 29970035 PMCID: PMC6029426 DOI: 10.1186/s12885-018-4629-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 06/22/2018] [Indexed: 12/26/2022] Open
Abstract
Background The treatment of acute lymphoblastic leukemia (ALL) and osteosarcoma (OSC) is very effective: the vast majority of patients recover and survive for decades. However, they still need to face serious adverse effects of chemotherapy. One of these is cardiotoxicity which may lead to progressive heart failure in the long term. Cardiotoxicity is contributed mainly to the use of anthracyclines and might have genetic risk factors. Our goal was to test the association between left ventricular function and genetic variations of candidate genes. Methods Echocardiography data from medical records of 622 pediatric ALL and 39 OSC patients were collected from the period 1989–2015. Fractional shortening (FS) and ejection fraction (EF) were determined, 70 single nucleotide polymorphisms (SNPs) in 26 genes were genotyped. Multivariate logistic regression and multi-adjusted general linear model were performed to investigate the influence of genetic polymorphisms on the left ventricular parameters. Bayesian network based Bayesian multilevel analysis of relevance (BN-BMLA) method was applied to test for the potential interaction of the studied cofactors and SNPs. Results Our results indicate that variations in ABCC2, CYP3A5, NQO1, SLC22A6 and SLC28A3 genes might influence the left ventricular parameters. CYP3A5 rs4646450 TT was 17% among ALL cases with FS lower than 28, and 3% in ALL patients without pathological FS (p = 5.60E-03; OR = 6.94 (1.76–27.39)). SLC28A3 rs7853758 AA was 12% in ALL cases population, while only 1% among controls (p = 6.50E-03; OR = 11.56 (1.98–67.45)). Patients with ABCC2 rs3740066 GG genotype had lower FS during the acute phase of therapy and 5–10 years after treatment (p = 7.38E-03, p = 7.11E-04, respectively). NQO1 rs1043470 rare T allele was associated with lower left ventricular function in the acute phase and 5–10 years after the diagnosis (p = 4.28E-03 and 5.82E-03, respectively), and SLC22A6 gene rs6591722 AA genotype was associated with lower mean FS (p = 1.71E-03), 5–10 years after the diagnosis. Conclusions Genetic variants in transporters and metabolic enzymes might modulate the individual risk to cardiac toxicity after chemotherapy. Electronic supplementary material The online version of this article (10.1186/s12885-018-4629-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Judit C Sági
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, 1089 Nagyvárad tér 4., 6 em, Budapest, 611, Hungary
| | - Bálint Egyed
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, 1089 Nagyvárad tér 4., 6 em, Budapest, 611, Hungary.,Second Department of Pediatrics, Semmelweis University, Tűzoltó utca 7-9, Budapest, H-1094, Hungary
| | - Andrea Kelemen
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, 1089 Nagyvárad tér 4., 6 em, Budapest, 611, Hungary
| | - Nóra Kutszegi
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, 1089 Nagyvárad tér 4., 6 em, Budapest, 611, Hungary.,Second Department of Pediatrics, Semmelweis University, Tűzoltó utca 7-9, Budapest, H-1094, Hungary
| | - Márta Hegyi
- Second Department of Pediatrics, Semmelweis University, Tűzoltó utca 7-9, Budapest, H-1094, Hungary
| | - András Gézsi
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, 1089 Nagyvárad tér 4., 6 em, Budapest, 611, Hungary
| | - Martina Ayaka Herlitschke
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, 1089 Nagyvárad tér 4., 6 em, Budapest, 611, Hungary
| | - Andrea Rzepiel
- Second Department of Pediatrics, Semmelweis University, Tűzoltó utca 7-9, Budapest, H-1094, Hungary
| | - Lili E Fodor
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, 1089 Nagyvárad tér 4., 6 em, Budapest, 611, Hungary
| | - Gábor Ottóffy
- Department of Pediatrics, Oncohaematology Division, Pécs University, József Attila út 7, Pécs, H-7623, Hungary
| | - Gábor T Kovács
- Second Department of Pediatrics, Semmelweis University, Tűzoltó utca 7-9, Budapest, H-1094, Hungary
| | - Dániel J Erdélyi
- Second Department of Pediatrics, Semmelweis University, Tűzoltó utca 7-9, Budapest, H-1094, Hungary
| | - Csaba Szalai
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, 1089 Nagyvárad tér 4., 6 em, Budapest, 611, Hungary.,Central Laboratory, Heim Pal Children Hospital, Üllői út 86, Budapest, H-1089, Hungary
| | - Ágnes F Semsei
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, 1089 Nagyvárad tér 4., 6 em, Budapest, 611, Hungary.
| |
Collapse
|
7
|
Cleavage of osmosensitive transcriptional factor NFAT5 by Coxsackieviral protease 2A promotes viral replication. PLoS Pathog 2017; 13:e1006744. [PMID: 29220410 PMCID: PMC5738146 DOI: 10.1371/journal.ppat.1006744] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 12/20/2017] [Accepted: 11/10/2017] [Indexed: 12/16/2022] Open
Abstract
Nuclear factor of activated T cells 5 (NFAT5)/Tonicity enhancer binding protein (TonEBP) is a transcription factor induced by hypertonic stress in the kidney. However, the function of NFAT5 in other organs has rarely been studied, even though it is ubiquitously expressed. Indeed, although NFAT5 was reported to be critical for heart development and function, its role in infectious heart diseases has remained obscure. In this study, we aimed to understand the mechanism by which NFAT5 interferes with infection of Coxsackievirus B3 (CVB3), a major cause of viral myocarditis. Our initial results demonstrated that although the mRNA level of NFAT5 remained constant during CVB3 infection, NFAT5 protein level decreased because the protein was cleaved. Bioinformatic prediction and verification of the predicted site by site-directed mutagenesis experiments determined that the NFAT5 protein was cleaved by CVB3 protease 2A at Glycine 503. Such cleavage led to the inactivation of NFAT5, and the 70-kDa N-terminal cleavage product (p70-NFAT5) exerted a dominant negative effect on the full-length NFAT5 protein. We further showed that elevated expression of NFAT5 to counteract viral protease cleavage, especially overexpression of a non-cleavable mutant of NFAT5, significantly inhibited CVB3 replication. Ectopic expression of NFAT5 resulted in elevated expression of inducible nitric oxide synthase (iNOS), a factor reported to inhibit CVB3 replication. The necessity of iNOS for the anti-CVB3 effect of NFAT5 was supported by the observation that inhibition of iNOS blocked the anti-CVB3 effect of NFAT5. In a murine model of viral myocarditis, we observed that treatment with hypertonic saline or mannitol solution upregulated NFAT5 and iNOS expression, inhibited CVB3 replication and reduced tissue damage in the heart. Taken together, our data demonstrate that the anti-CVB3 activity of NFAT5 is impaired during CVB3 infection due to 2A-mediated cleavage of NFAT5. Thus induction of NFAT5 by hypertonic agents may be a promising strategy for the development of anti-CVB3 therapeutics.
Collapse
|
8
|
Shoukry HS, Ammar HI, Rashed LA, Zikri MB, Shamaa AA, Abou elfadl SG, Rub EAA, Saravanan S, Dhingra S. Prophylactic supplementation of resveratrol is more effective than its therapeutic use against doxorubicin induced cardiotoxicity. PLoS One 2017; 12:e0181535. [PMID: 28727797 PMCID: PMC5519168 DOI: 10.1371/journal.pone.0181535] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2016] [Accepted: 07/03/2017] [Indexed: 02/03/2023] Open
Abstract
Resveratrol (RSV), a polyphenolic compound and naturally occurring phytoalexin, has been reported to exert cardio-protective effects in several animal studies. However, the outcome of initial clinical trials with RSV was less effective compared to pre-clinical studies. Therefore, RSV treatment protocols need to be optimized. In this study we evaluated prophylactic versus therapeutic effect of resveratrol (RSV) in mitigating doxorubicin (Dox)-induced cardiac toxicity in rats. To investigate prophylactic effects, RSV was supplemented for 2 weeks along with Dox administration. After 2 weeks, Dox treatment was stopped and RSV was continued for another 4 weeks. To study therapeutic effects, RSV treatment was initiated after 2 weeks of Dox administration and continued for 4 weeks. Both prophylactic and therapeutic use of RSV mitigated Dox induced deterioration of cardiac function as assessed by echocardiography. Also RSV treatment (prophylactic and therapeutic) prevented Dox induced myocardial damage as measured by cardiac enzymes (LDH and CK-MB) in serum. Which was associated with decrease in Dox induced myocardial apoptosis and fibrosis. Interestingly our study also reveals that prophylactic use of RSV was more effective than its therapeutic use in mitigating Dox induced apoptosis and fibrosis in the myocardium. Therefore, prophylactic use of resveratrol may be projected as a possible future adjuvant therapy to minimize cardiotoxic side effects of doxorubicin in cancer patients.
Collapse
Affiliation(s)
- Heba Samy Shoukry
- Department of Physiology, Biochemistry and Histology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Hania Ibrahim Ammar
- Department of Physiology, Biochemistry and Histology, Faculty of Medicine, Cairo University, Cairo, Egypt
- * E-mail: (SD); (HIA)
| | - Laila Ahmed Rashed
- Department of Physiology, Biochemistry and Histology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Maha Balegh Zikri
- Department of Physiology, Biochemistry and Histology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Ashraf Ali Shamaa
- Department of Surgery, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Sahar Gamal Abou elfadl
- Department of Physiology, Biochemistry and Histology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Ejlal Abu-Al Rub
- St. Boniface Hospital Research Centre, Department of Physiology, University of Manitoba, Winnipeg, Canada
| | - Sekaran Saravanan
- St. Boniface Hospital Research Centre, Department of Physiology, University of Manitoba, Winnipeg, Canada
| | - Sanjiv Dhingra
- St. Boniface Hospital Research Centre, Department of Physiology, University of Manitoba, Winnipeg, Canada
- * E-mail: (SD); (HIA)
| |
Collapse
|
9
|
Küper C, Beck FX, Neuhofer W. Dual effect of lithium on NFAT5 activity in kidney cells. Front Physiol 2015; 6:264. [PMID: 26441681 PMCID: PMC4585311 DOI: 10.3389/fphys.2015.00264] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 09/07/2015] [Indexed: 01/20/2023] Open
Abstract
Lithium salts are used widely for treatment of bipolar and other mental disorders. Lithium therapy is accompanied frequently by renal side effects, such as nephrogenic diabetes insipidus or chronic kidney disease (CKD), but the molecular mechanisms underlying these effects are still poorly understood. In the present study we examined the effect of lithium on the activity of the osmosensitive transcriptional activator nuclear factor of activated T cells 5 (NFAT5, also known as TonEBP), which plays a key role in renal cellular osmoprotection and urinary concentrating ability. Interestingly, we found different effects of lithium on NFAT5 activity, depending on medium osmolality and incubation time. When cells were exposed to lithium for a relative short period (24 h), NFAT5 activity was significantly increased, especially under isosmotic conditions, resulting in an enhanced expression of the NFAT5 target gene heat shock protein 70 (HSP70). Further analysis revealed that the increase of NFAT5 activity depended primarily on an enhanced activity of the c-terminal transactivation domain (TAD), while NFAT5 protein abundance was largely unaffected. Enhanced activity of the TAD is probably mediated by lithium-induced inhibitory phosphorylation of glycogen synthase kinase 3β (GSK-3β), which is in accordance with previous studies. When cells were exposed to lithium for a longer period (96 h), cellular NFAT5 activity and subsequently expression of HSP70 significantly decreased under hyperosmotic conditions, due to diminished NFAT5 protein abundance, also resulting from GSK-3β inhibition. Taken together, our results provide evidence that lithium has opposing effects on NFAT5 activity, depending on environmental osmolality and exposure duration. The potential impacts of these observations on the diverse effects of lithium on kidney function are discussed.
Collapse
Affiliation(s)
- Christoph Küper
- Department of Physiology, University of Munich Munich, Germany
| | | | - Wolfgang Neuhofer
- Medical Clinic V, University Hospital Mannheim, University of Heidelberg Mannheim, Germany
| |
Collapse
|
10
|
Ito T, Yoshikawa N, Ito H, Schaffer SW. Impact of taurine depletion on glucose control and insulin secretion in mice. J Pharmacol Sci 2015; 129:59-64. [PMID: 26382103 DOI: 10.1016/j.jphs.2015.08.007] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Revised: 08/19/2015] [Accepted: 08/21/2015] [Indexed: 11/26/2022] Open
Abstract
Taurine, an endogenous sulfur-containing amino acid, is found in millimolar concentrations in mammalian tissue, and its tissue content is altered by diet, disease and aging. The effectiveness of taurine administration against obesity and its related diseases, including type 2 diabetes, has been well documented. However, the impact of taurine depletion on glucose metabolism and fat deposition has not been elucidated. In this study, we investigated the effect of taurine depletion (in the taurine transporter (TauT) knockout mouse model) on blood glucose control and high fat diet-induced obesity. TauT-knockout (TauTKO) mice exhibited lower body weight and abdominal fat mass when maintained on normal chow than wild-type (WT) mice. Blood glucose disposal after an intraperitoneal glucose injection was faster in TauTKO mice than in WT mice despite lower serum insulin levels. Islet beta-cells (insulin positive area) were also decreased in TauTKO mice compared to WT mice. Meanwhile, overnutrition by high fat (60% fat)-diet could lead to obesity in TauTKO mice despite lower body weight under normal chow diet condition, indicating nutrition in normal diet is not enough for TauTKO mice to maintain body weight comparable to WT mice. In conclusion, taurine depletion causes enhanced glucose disposal despite lowering insulin levels and lower body weight, implying deterioration in tissue energy metabolism.
Collapse
Affiliation(s)
- Takashi Ito
- Hyogo University of Health Sciences, 1-3-6 Minatojima, Chuo-ku, Kobe, Hyogo, Japan.
| | - Natsumi Yoshikawa
- Hyogo University of Health Sciences, 1-3-6 Minatojima, Chuo-ku, Kobe, Hyogo, Japan
| | - Hiromi Ito
- Hyogo University of Health Sciences, 1-3-6 Minatojima, Chuo-ku, Kobe, Hyogo, Japan
| | - Stephen W Schaffer
- College of Medicine, University of South Alabama, 307 University Blvd. N, Mobile, AL 36688, USA
| |
Collapse
|
11
|
Tsimokha AS, Kulichkova VA, Karpova EV, Zaykova JJ, Aksenov ND, Vasilishina AA, Kropotov AV, Antonov A, Barlev NA. DNA damage modulates interactions between microRNAs and the 26S proteasome. Oncotarget 2015; 5:3555-67. [PMID: 25004448 PMCID: PMC4116502 DOI: 10.18632/oncotarget.1957] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
26S proteasomes are known as major non-lysosomal cellular machines for coordinated and specific destruction of ubiquitinylated proteins. The proteolytic activities of proteasomes are controlled by various post-translational modifications in response to environmental cues, including DNA damage. Besides proteolysis, proteasomes also associate with RNA hydrolysis and splicing. Here, we extend the functional diversity of proteasomes by showing that they also dynamically associate with microRNAs (miRNAs) both in the nucleus and cytoplasm of cells. Moreover, DNA damage induced by an anti-cancer drug, doxorubicin, alters the repertoire of proteasome-associated miRNAs, enriching the population of miRNAs that target cell cycle checkpoint regulators and DNA repair proteins. Collectively, these data uncover yet another potential mode of action for proteasomes in the cell via their dynamic association with microRNAs.
Collapse
Affiliation(s)
- Anna S Tsimokha
- Institute of Cytology, Russian Academy of Sciences, 194064 St. Petersburg, Russia
| | | | | | | | | | | | | | | | - Nikolai A Barlev
- Institute of Cytology, Russian Academy of Sciences, 194064 St. Petersburg, Russia; Department of Biochemistry, University of Leicester, Leicester, LE1 9HN; Molecular Pharmacology laboratory, Saint-Petersburg Institute of Technology, Saint-Petersburg 190013, Russia
| |
Collapse
|
12
|
Tissue depletion of taurine accelerates skeletal muscle senescence and leads to early death in mice. PLoS One 2014; 9:e107409. [PMID: 25229346 PMCID: PMC4167997 DOI: 10.1371/journal.pone.0107409] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Accepted: 08/09/2014] [Indexed: 12/31/2022] Open
Abstract
Taurine (2-aminoethanesulfonic acid) is found in milimolar concentrations in mammalian tissues. One of its main functions is osmoregulation; however, it also exhibits cytoprotective activity by diminishing injury caused by stress and disease. Taurine depletion is associated with several defects, many of which are found in the aging animal, suggesting that taurine might exert anti-aging actions. Therefore, in the present study, we examined the hypothesis that taurine depletion accelerates aging by reducing longevity and accelerating aging-associated tissue damage. Tissue taurine depletion in taurine transporter knockout (TauTKO) mouse was found to shorten lifespan and accelerate skeletal muscle histological and functional defects, including an increase in central nuclei containing myotubes, a reduction in mitochondrial complex 1 activity and an induction in an aging biomarker, Cyclin-dependent kinase 4 inhibitor A (p16INK4a). Tissue taurine depletion also enhances unfolded protein response (UPR), which may be associated with an improvement in protein folding by taurine. Our data reveal that tissue taurine depletion affects longevity and cellular senescence; an effect possibly linked to a disturbance in protein folding.
Collapse
|
13
|
Lindsey ML, Lange RA, Parsons H, Andrews T, Aune GJ. The tell-tale heart: molecular and cellular responses to childhood anthracycline exposure. Am J Physiol Heart Circ Physiol 2014; 307:H1379-89. [PMID: 25217655 DOI: 10.1152/ajpheart.00099.2014] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Since the modern era of cancer chemotherapy that began in the mid-1940s, survival rates for children afflicted with cancer have steadily improved from 10% to current rates that approach 80% (60). Unfortunately, many long-term survivors of pediatric cancer develop chemotherapy-related health effects; 25% are afflicted with a severe or life-threatening medical condition, with cardiovascular disease being a primary risk (96). Childhood cancer survivors have markedly elevated incidences of stroke, congestive heart failure (CHF), coronary artery disease, and valvular disease (96). Their cardiac mortality is 8.2 times higher than expected (93). Anthracyclines are a key component of most curative chemotherapeutic regimens used in pediatric cancer, and approximately half of all childhood cancer patients are exposed to them (78). Numerous epidemiologic and observational studies have linked childhood anthracycline exposure to an increased risk of developing cardiomyopathy and CHF, often decades after treatment. The acute toxic effects of anthracyclines on cardiomyocytes are well described; however, myocardial tissue is comprised of additional resident cell types, and events occurring in the cardiomyocyte do not fully explain the pathological processes leading to late cardiomyopathy and CHF. This review will summarize the current literature regarding the cellular and molecular responses to anthracyclines, with an important emphasis on nonmyocyte cardiac cell types as well as those that mediate the myocardial injury response.
Collapse
Affiliation(s)
- Merry L Lindsey
- Department of Physiology and Biophysics, San Antonio Cardiovascular Proteomics Center and Jackson Center for Heart Research, Mississippi Medical Center, Jackson, Mississippi
| | - Richard A Lange
- Division of Cardiology, Department of Medicine, San Antonio Cardiovascular Proteomics Center, University of Texas Health Science Center San Antonio, San Antonio, Texas
| | - Helen Parsons
- Department of Epidemiology and Biostatistics, University of Texas Health Science Center San Antonio, San Antonio, Texas; and
| | - Thomas Andrews
- Division of Hematology-Oncology, Department of Pediatrics, Greehey Children's Cancer Research Institute, University of Texas Health Science Center San Antonio, San Antonio, Texas
| | - Gregory J Aune
- Division of Hematology-Oncology, Department of Pediatrics, Greehey Children's Cancer Research Institute, University of Texas Health Science Center San Antonio, San Antonio, Texas
| |
Collapse
|
14
|
Moiseeva TN, Bottrill A, Melino G, Barlev NA. DNA damage-induced ubiquitylation of proteasome controls its proteolytic activity. Oncotarget 2014; 4:1338-48. [PMID: 23907514 PMCID: PMC3824523 DOI: 10.18632/oncotarget.1060] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Stability of proteins is largely controlled by post-translational covalent modifications. Among those, ubiquitylation plays a central role as it marks the proteins for proteasome-dependent degradation. Proteolytic activities of proteasomes are critical for execution of various cellular processes, including DNA damage signaling and repair. However, very little is known about the regulation of proteasomal activity in cells during genotoxic stress. Here we investigated post-translational modifications of the 20S proteasomal subunits upon DNA damage induced by doxorubicin. Using mass-spectrometry, we found novel sites of phosphorylation and ubiquitylation in multiple proteasome subunits upon doxorubicin treatment. Ectopic co-expression of proteasome subunits and tagged ubiquitin confirmed the presence of ubiquitylated forms of PSMA5, PSMA1, PSMA3 and PSMB5 in cells. Moreover, we demonstrated that ubiquitylation in vitro inhibited chymotrypsin-like and caspase-like activities of proteasomes. In vivo, doxorubicin increased the activity of proteasomes, paralleling with attenuation of the overall level of proteasome ubiquitylation. Collectively, our results suggest a novel mechanism whereby the proteolytic activities of proteasomes are dynamically regulated by ubiquitylation upon DNA damage.
Collapse
Affiliation(s)
- Tatiana N Moiseeva
- Institute of Cytology, Russian Academy of Sciences, St-Petersburg, Russia
| | | | | | | |
Collapse
|
15
|
WILLERMAIN FRANÇOIS, JANSSENS SARAH, ARSENIJEVIC TATJANA, PIENS ISABELLE, BOLAKY NARGIS, CASPERS LAURE, PERRET JASON, DELPORTE CHRISTINE. Osmotic stress decreases aquaporin-4 expression in the human retinal pigment epithelial cell line, ARPE-19. Int J Mol Med 2014; 34:533-8. [DOI: 10.3892/ijmm.2014.1791] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Accepted: 05/20/2014] [Indexed: 11/06/2022] Open
|
16
|
Mazevet M, Moulin M, Llach-Martinez A, Chargari C, Deutsch E, Gomez AM, Morel E. Complications of chemotherapy, a basic science update. Presse Med 2013; 42:e352-61. [PMID: 23972551 DOI: 10.1016/j.lpm.2013.06.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Accepted: 06/12/2013] [Indexed: 11/25/2022] Open
Abstract
Anthracyclines, discovered 50 years ago, are antibiotics widely used as antineoplastic agents and are among the most successful anticancer therapies ever developed to treat a wide range of cancers, including hematological malignancies, soft tissue sarcomas and solid tumors. However, some anthracyclines, including doxorubicin, exhibit major signs of cardiotoxicity that may ultimately lead to heart failure (HF). Despite intensive research on doxorubicine-induced cardiotoxicity, the underlying mechanisms responsible for doxorubicin-induced cardiotoxicity have not been fully elucidated yet. Published literature so far has focused mostly on mitochondria dysfunction with consequent oxidative stress, Ca(2+) overload, and cardiomyocyte death as doxorubicin side effects, leading to heart dysfunction. This review focuses on the current understanding of the molecular mechanisms underlying doxorubicin-induced cardiomyocyte death (i.e.: cardiomyocyte death, mitochondria metabolism and bioenergetic alteration), but we will also point to new directions of possible mechanisms, suggesting potent prior or concomitant alterations of specific signaling pathways with molecular actors directly targeted by the anticancer drugs itself (i.e. calcium homeostasis or cAMP signaling cascade). The mechanisms of anticancer cardiac toxicity may be more complex than just mitochondria dysfunction. Partnership of both basic and clinical research is needed to promote new strategies in diagnosis, therapies with concomitant cardioprotection in order to achieve cancer treatment with acceptable cardiotoxicity along life span.
Collapse
Affiliation(s)
- Marianne Mazevet
- Inserm UMR-S 769, LabEx Lermit-DHU Torino, université Paris-Sud, faculté de pharmacie, signalisation et physiopathologie cardiaque, 92296 Châtenay-Malabry cedex, France
| | | | | | | | | | | | | |
Collapse
|
17
|
Aissiou M, Périé D, Cheriet F, Dahdah NS, Laverdière C, Curnier D. Imaging of early modification in cardiomyopathy: the doxorubicin-induced model. Int J Cardiovasc Imaging 2013; 29:1459-76. [PMID: 23744127 DOI: 10.1007/s10554-013-0248-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2013] [Accepted: 05/27/2013] [Indexed: 12/29/2022]
Abstract
Doxorubicin chemotherapy is effective and widely used to treat acute lymphoblastic leukemia. However, its effectiveness is hampered by a wide spectrum of dose-dependent cardiotoxicity including both morphological and functional changes, affecting primarily the myocardium. Non-invasive imaging techniques are used for the diagnosis and monitoring of these cardiotoxic effects. The purpose of this review is to summarize and compare the most common imaging techniques used in early detection and therapeutic monitoring of doxorubicin-induced cardiotoxicity and the suggested mechanisms of such side effects. Imaging techniques using echocardiography including conventional 2D and 3D echocardiography along with MRI sequences including Tagging, Cine, and quantitative MRI in detecting early myocardial damage are also reviewed. As there is a multitude of reported indices and imaging methods to assess particular functional alterations, we limit this review to the most relevant techniques based on their clinical application and their potential to early detection of doxorubicin-induced cardiotoxic effects.
Collapse
Affiliation(s)
- Mohamed Aissiou
- Mechanical Engineering Department, École Polytechnique de Montréal, Montreal, Canada
| | | | | | | | | | | |
Collapse
|
18
|
NFAT5 regulates the canonical Wnt pathway and is required for cardiomyogenic differentiation. Biochem Biophys Res Commun 2012; 426:317-23. [PMID: 22935419 DOI: 10.1016/j.bbrc.2012.08.069] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Accepted: 08/15/2012] [Indexed: 11/20/2022]
Abstract
While nuclear factor of activated T cells 5 (NFAT5), a transcription factor implicated in osmotic stress response, is suggested to be involved in other processes such as migration and proliferation, its role in cardiomyogenesis is largely unknown. Here, we examined the role of NFAT5 in cardiac differentiation of P19CL6 cells, and observed that it was abundantly expressed in undifferentiated P19CL6 cells, and its protein expression was significantly downregulated by enhanced proteasomal degradation during DMSO-induced cardiomyogenesis. Expression of a dominant negative mutant of NFAT5 markedly attenuated cardiomyogenesis, which was associated with the inhibition of mesodermal differentiation. TOPflash reporter assay revealed that the transcriptional activity of canonical Wnt signaling was activated prior to mesodermal differentiation, and this activation was markedly attenuated by NFAT5 inhibition. Pharmacological activation of canonical Wnt signaling by [2'Z, 3'E]-6-bromoindirubin-3'-oxime (BIO) restored Brachyury expression in NFAT5DN-expressing cells. Inhibition of NFAT5 markedly attenuated Wnt3 and Wnt3a induction. Expression of Dkk1 and Cerberus1, which are secreted Wnt antagonists, was also inhibited by NFAT5 inhibition. Thus, endogenous NFAT5 regulates the coordinated expression of Wnt ligands and antagonists, which are essential for cardiomyogenesis through the canonical Wnt pathway. These results demonstrated a novel role of NFAT5 in cardiac differentiation of stem cells.
Collapse
|
19
|
Brocker C, Thompson DC, Vasiliou V. The role of hyperosmotic stress in inflammation and disease. Biomol Concepts 2012; 3:345-364. [PMID: 22977648 PMCID: PMC3438915 DOI: 10.1515/bmc-2012-0001] [Citation(s) in RCA: 202] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Hyperosmotic stress is an often overlooked process that potentially contributes to a number of human diseases. Whereas renal hyperosmolarity is a well-studied phenomenon, recent research provides evidence that many non-renal tissues routinely experience hyperosmotic stress that may contribute significantly to disease initiation and progression. Moreover, a growing body of evidence implicates hyperosmotic stress as a potent inflammatory stimulus by triggering proinflammatory cytokine release and inflammation. Under physiological conditions, the urine concentrating mechanism within the inner medullary region of the mammalian kidney exposes cells to high extracellular osmolarity. As such, renal cells have developed many adaptive strategies to compensate for increased osmolarity. Hyperosmotic stress is linked to many maladies, including acute and chronic, as well as local and systemic, inflammatory disorders. Hyperosmolarity triggers cell shrinkage, oxidative stress, protein carbonylation, mitochondrial depolarization, DNA damage, and cell cycle arrest, thus rendering cells susceptible to apoptosis. However, many adaptive mechanisms exist to counter the deleterious effects of hyperosmotic stress, including cytoskeletal rearrangement and up-regulation of antioxidant enzymes, transporters, and heat shock proteins. Osmolyte synthesis is also up-regulated and many of these compounds have been shown to reduce inflammation. The cytoprotective mechanisms and associated regulatory pathways that accompany the renal response to hyperosmolarity are found in many non-renal tissues, suggesting cells are commonly confronted with hyperosmotic conditions. Osmoadaptation allows cells to survive and function under potentially cytotoxic conditions. This review covers the pathological consequences of hyperosmotic stress in relation to disease and emphasizes the importance of considering hyperosmolarity in inflammation and disease progression.
Collapse
Affiliation(s)
- Chad Brocker
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - David C. Thompson
- Department of Clinical Pharmacy, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Vasilis Vasiliou
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
20
|
Sepsis-induced urinary concentration defect is related to nitric oxide–dependent inactivation of TonEBP/NFAT5, which downregulates renal medullary solute transport proteins and aquaporin-2*. Crit Care Med 2012; 40:1887-95. [DOI: 10.1097/ccm.0b013e31824e1186] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
21
|
Shi Y, Moon M, Dawood S, McManus B, Liu PP. Mechanisms and management of doxorubicin cardiotoxicity. Herz 2012; 36:296-305. [PMID: 21656050 DOI: 10.1007/s00059-011-3470-3] [Citation(s) in RCA: 150] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Doxorubicin is an effective anti-tumor agent with a cumulative dose-dependent cardiotoxicity. In addition to its principal toxic mechanisms involving iron and redox reactions, recent studies have described new mechanisms of doxorubicin-induced cell death, including abnormal protein processing, hyper-activated innate immune responses, inhibition of neuregulin-1 (NRG1)/ErbB(HER) signalling, impaired progenitor cell renewal/cardiac repair, and decreased vasculogenesis. Although multiple mechanisms involved in doxorubicin cardiotoxicity have been studied, there is presently no clinically proven treatment established for doxorubicin cardiomyopathy. Iron chelator dexrazoxane, angiotensin converting enzyme (ACE) inhibitors, and β-blockade have been proposed as potential preventive strategies for doxorubicin cardiotoxicity. Novel approaches such as anti-miR-146 or recombinant NRG1 to increase cardiomyocyte resistance to toxicity may be of interest in the future.
Collapse
Affiliation(s)
- Y Shi
- Division of Cardiology, Heart and Stroke/Richard Lewar Centre of Excellence, University Health Network, University of Toronto, Toronto General Hospital, Ontario, Canada
| | | | | | | | | |
Collapse
|
22
|
Ortells MC, Morancho B, Drews-Elger K, Viollet B, Laderoute KR, López-Rodríguez C, Aramburu J. Transcriptional regulation of gene expression during osmotic stress responses by the mammalian target of rapamycin. Nucleic Acids Res 2012; 40:4368-84. [PMID: 22287635 PMCID: PMC3378878 DOI: 10.1093/nar/gks038] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Although stress can suppress growth and proliferation, cells can induce adaptive responses that allow them to maintain these functions under stress. While numerous studies have focused on the inhibitory effects of stress on cell growth, less is known on how growth-promoting pathways influence stress responses. We have approached this question by analyzing the effect of mammalian target of rapamycin (mTOR), a central growth controller, on the osmotic stress response. Our results showed that mammalian cells exposed to moderate hypertonicity maintained active mTOR, which was required to sustain their cell size and proliferative capacity. Moreover, mTOR regulated the induction of diverse osmostress response genes, including targets of the tonicity-responsive transcription factor NFAT5 as well as NFAT5-independent genes. Genes sensitive to mTOR-included regulators of stress responses, growth and proliferation. Among them, we identified REDD1 and REDD2, which had been previously characterized as mTOR inhibitors in other stress contexts. We observed that mTOR facilitated transcription-permissive conditions for several osmoresponsive genes by enhancing histone H4 acetylation and the recruitment of RNA polymerase II. Altogether, these results reveal a previously unappreciated role of mTOR in regulating transcriptional mechanisms that control gene expression during cellular stress responses.
Collapse
Affiliation(s)
- M Carmen Ortells
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra, 08003 Barcelona, Spain
| | | | | | | | | | | | | |
Collapse
|
23
|
Desai SD, Reed RE, Burks J, Wood LM, Pullikuth AK, Haas AL, Liu LF, Breslin JW, Meiners S, Sankar S. ISG15 disrupts cytoskeletal architecture and promotes motility in human breast cancer cells. Exp Biol Med (Maywood) 2011; 237:38-49. [PMID: 22185919 DOI: 10.1258/ebm.2011.011236] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The interferon-stimulated gene 15 (ISG15) pathway is highly elevated in breast cancer; however, very little is known about how the ISG15 pathway contributes to breast tumorigenesis. In the current study, using the gene disruption approach, we demonstrate that both ISG15 and UbcH8 (ISG15-specific conjugating enzyme) disrupt F-actin architecture and formation of focal adhesions in ZR-75-1 breast cancer cells. In addition, ISG15 and UbcH8 promote breast cancer cell migration. We also demonstrate that ISG15 inhibits ubiquitin/26S proteasome-mediated turnover of proteins implicated in tumor cell motility, invasion and metastasis. Together, our results suggest that the aberrant activation of the ISG15 pathway confers a motile phenotype to breast cancer cells by disrupting cell architecture and stabilizing proteins involved in cell motility, invasion and metastasis. Because the cellular architecture is conserved and the ISG15 pathway is constitutively activated in tumor cells of different lineages, it is reasonable to assume that our observations in breast cancer must hold true for many other tumors.
Collapse
Affiliation(s)
- Shyamal D Desai
- Department of Biochemistry and Molecular Biology, LSU Health Sciences Center-School of Medicine, 1901 Perdido Street, New Orleans, LA 70112, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Left ventricular remodeling in swine after myocardial infarction: a transcriptional genomics approach. Basic Res Cardiol 2011; 106:1269-81. [PMID: 22057716 PMCID: PMC3228945 DOI: 10.1007/s00395-011-0229-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Revised: 10/04/2011] [Accepted: 10/20/2011] [Indexed: 01/06/2023]
Abstract
Despite the apparent appropriateness of left ventricular (LV) remodeling following myocardial infarction (MI), it poses an independent risk factor for development of heart failure. There is a paucity of studies into the molecular mechanisms of LV remodeling in large animal species. We took an unbiased molecular approach to identify candidate transcription factors (TFs) mediating the genetic reprogramming involved in post-MI LV remodeling in swine. Left ventricular tissue was collected from remote, non-infarcted myocardium, 3 weeks after MI-induction or sham-surgery. Microarray analysis identified 285 upregulated and 278 downregulated genes (FDR < 0.05). Of these differentially expressed genes, the promoter regions of the human homologs were searched for common TF binding sites (TFBS). Eighteen TFBS were overrepresented >two-fold (p < 0.01) in upregulated and 13 in downregulated genes. Left ventricular nuclear protein extracts were assayed for DNA-binding activity by protein/DNA array. Out of 345 DNA probes, 30 showed signal intensity changes >two-fold. Five TFs were identified in both TFBS and protein/DNA array analyses, which showed matching changes for COUP-TFII and glucocorticoid receptor (GR) only. Treatment of swine with the GR antagonist mifepristone after MI reduced the post-MI increase in LV mass, but LV dilation remained unaffected. Thus, using an unbiased approach to study post-MI LV remodeling in a physiologically relevant large animal model, we identified COUP-TFII and GR as potential key mediators of post-MI remodeling.
Collapse
|
25
|
Li YF, Wang X. The role of the proteasome in heart disease. BIOCHIMICA ET BIOPHYSICA ACTA 2011; 1809:141-9. [PMID: 20840877 PMCID: PMC3021001 DOI: 10.1016/j.bbagrm.2010.09.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2010] [Revised: 09/01/2010] [Accepted: 09/02/2010] [Indexed: 01/23/2023]
Abstract
Intensive investigations into the pathophysiological significance of the proteasome in the heart did not start until the beginning of the past decade but exciting progress has been made and summarized here as two fronts. First, strong evidence continues to emerge to support a novel hypothesis that proteasome functional insufficiency represents a common pathological phenomenon in a large subset of heart disease, compromises protein quality control in heart muscle cells, and thereby acts as a major pathogenic factor promoting the progression of the subset of heart disease to congestive heart failure. This front is represented by the studies on the ubiquitin-proteasome system (UPS) in cardiac proteinopathy, which have taken advantage of a transgenic mouse model expressing a fluorescence reporter for UPS proteolytic function. Second, pharmacological inhibition of the proteasome has been explored experimentally as a potential therapeutic strategy to intervene on some forms of heart disease, such as pressure-overload cardiac hypertrophy, viral myocarditis, and myocardial ischemic injury. Not only between the two fronts but also within each one, a multitude of inconsistencies and controversies remain to be explained and clarified. At present, the controversy perhaps reflects the sophistication of cardiac proteasomes in terms of the composition, assembly, and regulation, as well as the intricacy and diversity of heart disease in terms of its etiology and pathogenesis. A definitive role of altered proteasome function in the development of various forms of heart disease remains to be established. This article is part of a Special Issue entitled The 26S Proteasome: When degradation is just not enough!
Collapse
Affiliation(s)
- Yi-Fan Li
- Division of Basic, Biomedical Sciences, Sanford School of Medicine of the University of South Dakota, Vermillion, SD 57069, USA
| | | |
Collapse
|
26
|
Moiseeva TN, Fedorova OA, Tsimokha AS, Mittenberg AG, Barlev NA. Effect of ubiquitination on peptidase activities of proteasomes in genotoxic stress. DOKL BIOCHEM BIOPHYS 2010; 435:307-11. [PMID: 21184300 DOI: 10.1134/s1607672910060074] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2010] [Indexed: 11/23/2022]
Affiliation(s)
- T N Moiseeva
- Institute of Cytology, Russian Academy of Sciences, Tikhoretskii pr. 4, St. Petersburg 194064, Russia
| | | | | | | | | |
Collapse
|
27
|
CREB5 Computational Regulation Network Construction and Analysis Between Frontal Cortex of HIV Encephalitis (HIVE) and HIVE-Control Patients. Cell Biochem Biophys 2010; 60:199-207. [DOI: 10.1007/s12013-010-9140-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
28
|
Sorokin AV, Kim ER, Ovchinnikov LP. Proteasome system of protein degradation and processing. BIOCHEMISTRY (MOSCOW) 2010; 74:1411-42. [PMID: 20210701 DOI: 10.1134/s000629790913001x] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In eukaryotic cells, degradation of most intracellular proteins is realized by proteasomes. The substrates for proteolysis are selected by the fact that the gate to the proteolytic chamber of the proteasome is usually closed, and only proteins carrying a special "label" can get into it. A polyubiquitin chain plays the role of the "label": degradation affects proteins conjugated with a ubiquitin (Ub) chain that consists at minimum of four molecules. Upon entering the proteasome channel, the polypeptide chain of the protein unfolds and stretches along it, being hydrolyzed to short peptides. Ubiquitin per se does not get into the proteasome, but, after destruction of the "labeled" molecule, it is released and labels another molecule. This process has been named "Ub-dependent protein degradation". In this review we systematize current data on the Ub-proteasome system, describe in detail proteasome structure, the ubiquitination system, and the classical ATP/Ub-dependent mechanism of protein degradation, as well as try to focus readers' attention on the existence of alternative mechanisms of proteasomal degradation and processing of proteins. Data on damages of the proteasome system that lead to the development of different diseases are given separately.
Collapse
Affiliation(s)
- A V Sorokin
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Moscow Region, Russia.
| | | | | |
Collapse
|
29
|
Abstract
Doxorubicin (Dox) is a very potent anticancer agent, but its use is limited by its dose-dependent, irreversible cardiotoxicity. Despite intensive research efforts, the mechanism of Dox cardiotoxicity remains poorly understood, so very limited means are available for its prevention or effective management. Recent studies have revealed that a therapeutic dose of Dox can activate proteolysis in cardiomyocytes that is mediated by the ubiquitin-proteasome system (UPS), and that the UPS-mediated degradation of a number of pivotal cardiac transcription factors and/or survival factors is enhanced by Dox treatment. These findings suggest that Dox-induced UPS activation may represent a new mechanism underlying Dox cardiotoxicity. Notably, recent experimental studies suggest that proteasome activation promotes cardiac remodeling during hypertension. This review surveys the current literature on the impact of Dox on the UPS and the potential mechanisms by which UPS activation may compromise the heart during Dox therapy.
Collapse
|
30
|
Pautz A, Rauschkolb P, Schmidt N, Art J, Oelze M, Wenzel P, Förstermann U, Daiber A, Kleinert H. Effects of nitroglycerin or pentaerithrityl tetranitrate treatment on the gene expression in rat hearts: evidence for cardiotoxic and cardioprotective effects. Physiol Genomics 2009; 38:176-85. [PMID: 19417013 DOI: 10.1152/physiolgenomics.00035.2009] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Nitroglycerin (NTG) and pentaerithrityl tetranitrate (PETN) are organic nitrates used in the treatment of angina pectoris, myocardial infarction, and congestive heart failure. Recent data show marked differences in the effects of NTG and PETN on the generation of reactive oxygen species. These differences are attributed to different effects of NTG and PETN on the expression of antioxidative proteins like the heme oxygenase-I. To analyze the expressional effects of NTG and PETN in a more comprehensive manner we performed whole genome expression profiling experiments using cardiac total RNA from NTG- or PETN-treated rats and DNA microarrays containing oligonucleotides representing 27,044 rat gene transcripts. The data obtained show that NTG and PETN together significantly modify the expression of >1,600 genes (NTG 532, PETN 1212). However, the expression of only a small group of these genes (68) was modified by both treatments, indicating marked differences in the expressional effects of NTG and PETN. NTG treatment resulted in the enhanced expression of genes that are believed to be markers for cardiotoxic processes. In addition, NTG treatment reduced the expression of genes described to code for cardioprotective proteins. In sharp contrast, PETN treatment enhanced the expression of cardioprotective genes and reduced the expression of genes believed to perform cardiotoxic effects. In conclusion, our data suggest that NTG treatment results in the induction of cardiotoxic gene expression networks leading to an activation of mechanisms that result in pathological changes in cardiomyocytes. In contrast, PETN treatment seems to activate gene expression networks that result in cardioprotective effects.
Collapse
Affiliation(s)
- Andrea Pautz
- Department of Pharmacology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
The transcription factor NFAT5 is required for cyclin expression and cell cycle progression in cells exposed to hypertonic stress. PLoS One 2009; 4:e5245. [PMID: 19381288 PMCID: PMC2667631 DOI: 10.1371/journal.pone.0005245] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2008] [Accepted: 03/19/2009] [Indexed: 11/20/2022] Open
Abstract
Background Hypertonicity can perturb cellular functions, induce DNA damage-like responses and inhibit proliferation. The transcription factor NFAT5 induces osmoprotective gene products that allow cells to adapt to sustained hypertonic conditions. Although it is known that NFAT5-deficient lymphocytes and renal medullary cells have reduced proliferative capacity and viability under hypertonic stress, less is understood about the contribution of this factor to DNA damage responses and cell cycle regulation. Methodology/Principal Findings We have generated conditional knockout mice to obtain NFAT5−/− T lymphocytes, which we used as a model of proliferating cells to study NFAT5-dependent responses. We show that hypertonicity triggered an early, NFAT5-independent, genotoxic stress-like response with induction of p53, p21 and GADD45, downregulation of cyclins, and cell cycle arrest. This was followed by an NFAT5-dependent adaptive phase in wild-type cells, which induced an osmoprotective gene expression program, downregulated stress markers, resumed cyclin expression and proliferation, and displayed enhanced NFAT5 transcriptional activity in S and G2/M. In contrast, NFAT5−/− cells failed to induce osmoprotective genes and exhibited poorer viability. Although surviving NFAT5−/− cells downregulated genotoxic stress markers, they underwent cell cycle arrest in G1/S and G2/M, which was associated with reduced expression of cyclins E1, A2 and B1. We also show that pathologic hypertonicity levels, as occurring in plasma of patients and animal models of osmoregulatory disorders, inhibited the induction of cyclins and aurora B kinase in response to T cell receptor stimulation in fresh NFAT5−/− lymphocytes. Conclusions/Significance We conclude that NFAT5 facilitates cell proliferation under hypertonic conditions by inducing an osmoadaptive response that enables cells to express fundamental regulators needed for cell cycle progression.
Collapse
|
32
|
Cardiomyocyte death in doxorubicin-induced cardiotoxicity. Arch Immunol Ther Exp (Warsz) 2009; 57:435-45. [PMID: 19866340 PMCID: PMC2809808 DOI: 10.1007/s00005-009-0051-8] [Citation(s) in RCA: 291] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2009] [Accepted: 05/20/2009] [Indexed: 01/07/2023]
Abstract
Doxorubicin (DOX) is one of the most widely used and successful antitumor drugs, but its cumulative and dose-dependent cardiac toxicity has been a major concern of oncologists in cancer therapeutic practice for decades. With the increasing population of cancer survivors, there is a growing need to develop preventive strategies and effective therapies against DOX-induced cardiotoxicity, in particular late-onset cardiomyopathy. Although intensive investigations on DOX-induced cardiotoxicity have continued for decades, the underlying mechanisms responsible for DOX-induced cardiotoxicity have not been completely elucidated. A rapidly expanding body of evidence supports the notion that cardiomyocyte death by apoptosis and necrosis is a primary mechanism of DOX-induced cardiomyopathy and that other types of cell death, such as autophagy and senescence/aging, may participate in this process. This review focuses on the current understanding of the molecular mechanisms underlying DOX-induced cardiomyocyte death, including the major primary mechanism of excess production of reactive oxygen species (ROS) and other recently discovered ROS-independent mechanisms. The different sensitivities to DOX-induced cell death signals between adult and young cardiomyocytes will also be discussed.
Collapse
|
33
|
Ito T, Fujio Y, Schaffer SW, Azuma J. Involvement of transcriptional factor TonEBP in the regulation of the taurine transporter in the cardiomyocyte. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2009; 643:523-32. [PMID: 19239184 DOI: 10.1007/978-0-387-75681-3_54] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Taurine is found in high concentrations in heart where it exerts several actions that could potentially benefit the diseased heart. The taurine transporter (TauT) is crucial for the maintenance of high taurine levels in the heart. Although cardiac taurine content is altered in various pathological conditions, little is known about the regulatory mechanisms governing TauT expression in cardiac myocytes. In the present study, we found that treatment with the antineoplastic drug doxorubicin (DOX), which is also known as a cardiotoxic agent, decreases the expression of the TauT gene in cultured cardiomyocytes isolated from the neonatal rat heart. Based on data obtained using a luciferase assay, DOX significantly reduced transcriptional activity driven by the TauT promoter, while deletion or mutation of a tonicity-response element (TonE) in this promoter eliminated the change of promoter activity. The protein level of the TonE-binding protein (TonEBP) was reduced by DOX treatment. In addition, the reduction in TonEBP protein content was suppressed by proteasome inhibitors. In conclusion, the DOX-enhanced degradation of TonEBP resulting in reduced TauT expression in the cardiomyocyte.
Collapse
Affiliation(s)
- Takashi Ito
- Department of Clinical Pharmacology and Pharmacogenomics, Graduate School of Pharmaceutical Sciences, Osaka University, Japan.
| | | | | | | |
Collapse
|
34
|
Regulation of the stability and transcriptional activity of NFATc4 by ubiquitination. FEBS Lett 2008; 582:4008-14. [PMID: 19026640 DOI: 10.1016/j.febslet.2008.11.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2008] [Revised: 10/20/2008] [Accepted: 11/05/2008] [Indexed: 11/22/2022]
Abstract
Nuclear factor of activated T cells (NFATc4) has been implicated as a critical regulator of the cardiac development and hypertrophy. However, the mechanisms for regulating NFATc4 stability and transactivation remain unclear. We showed that NFATc4 protein was predominantly ubiquitinated through the formation of Lysine 48-linked polyubiquitin chains, and this modification decreased NFATc4 protein levels and its transcriptional activity. Furthermore, activation of GSK3beta markedly enhanced NFATc4 ubiquitination and decreased its transactivation, whereas inhibition of GSK3beta had opposite effects. Importantly, ubiquitination and phosphorylation induced by GSK3beta repressed NFATc4-dependent cardiac-specific gene expression. These results demonstrate that the ubiquitin-proteasome system plays an important role in regulating NFATc4 stability and transactivation.
Collapse
|
35
|
Liu J, Zheng H, Tang M, Ryu YC, Wang X. A therapeutic dose of doxorubicin activates ubiquitin-proteasome system-mediated proteolysis by acting on both the ubiquitination apparatus and proteasome. Am J Physiol Heart Circ Physiol 2008; 295:H2541-50. [PMID: 18978187 DOI: 10.1152/ajpheart.01052.2008] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The ubiquitin proteasome system (UPS) degrades abnormal proteins and most unneeded normal proteins, thereby playing a critical role in protein homeostasis in the cell. Proteasome inhibition is effective in treating certain forms of cancer, while UPS dysfunction is increasingly implicated in the pathogenesis of many severe and yet common diseases. It has been previously shown that doxorubicin (Dox) enhances the degradation of a UPS surrogate substrate in mouse hearts. To address the underlying mechanism, in the present study, we report that 1) Dox not only enhances the degradation of an exogenous UPS reporter (GFPu) but also antagonizes the proteasome inhibitor-induced accumulation of endogenous substrates (e.g., beta-catenin and c-Jun) of the UPS in cultured NIH 3T3 cells and cardiomyocytes; 2) Dox facilitates the in vitro degradation of GFPu and c-Jun by the reconstituted UPS via the enhancement of proteasomal function; 3) Dox at a therapeutically relevant dose directly stimulates the peptidase activities of purified 20S proteasomes; and 4) Dox increases, whereas proteasome inhibition decreases, E3 ligase COOH-terminus of heat shock protein cognate 70 in 3T3 cells via a posttranscriptional mechanism. These new findings suggest that Dox activates the UPS by acting directly on both the ubiquitination apparatus and proteasome.
Collapse
Affiliation(s)
- Jinbao Liu
- Department of Pathophysiology, Guangzhou Medical College, 195 W. Dongfeng Rd., Guangzhou, Guangdong, China.
| | | | | | | | | |
Collapse
|
36
|
Navarro P, Chiong M, Volkwein K, Moraga F, Ocaranza MP, Jalil JE, Lim SW, Kim JA, Kwon HM, Lavandero S. Osmotically-induced genes are controlled by the transcription factor TonEBP in cultured cardiomyocytes. Biochem Biophys Res Commun 2008; 372:326-30. [PMID: 18502201 DOI: 10.1016/j.bbrc.2008.05.067] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2008] [Accepted: 05/12/2008] [Indexed: 11/26/2022]
Abstract
Changes in cardiac osmolarity occur in myocardial infarction. Osmoregulatory mechanisms may, therefore, play a crucial role in cardiomyocyte survival. Tonicity-responsive enhancer binding protein (TonEBP) is a key transcription factor participating in the adaptation of cells to increases in tonicity. However, it is unknown whether cardiac TonEBP is activated by tonicity. Hypertonicity activated transcriptional activity of TonEBP, increased the amounts of both TonEBP mRNA and protein, and induced both the mRNA and protein of TonEBP target genes (aldose reductase and heat shock protein-70). Hypotonicity decreased the amount of TonEBP protein indicating bidirectional osmoregulation of this transcription factor. Adenoviral expression of a dominant negative TonEBP suppressed the hypertonicity-dependent increase of aldose reductase protein. These results indicated that TonEBP controls osmoregulatory mechanisms in cardiomyocytes.
Collapse
Affiliation(s)
- Paola Navarro
- Centro FONDAP de Estudios Moleculares de la Célula, Universidad de Chile, Olivos 1007, Santiago 838-0492, Chile
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Ito T, Kimura Y, Uozumi Y, Takai M, Muraoka S, Matsuda T, Ueki K, Yoshiyama M, Ikawa M, Okabe M, Schaffer SW, Fujio Y, Azuma J. Taurine depletion caused by knocking out the taurine transporter gene leads to cardiomyopathy with cardiac atrophy. J Mol Cell Cardiol 2008; 44:927-37. [DOI: 10.1016/j.yjmcc.2008.03.001] [Citation(s) in RCA: 106] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2007] [Revised: 02/09/2008] [Accepted: 03/01/2008] [Indexed: 10/22/2022]
|
38
|
Ito T, Asakura K, Tougou K, Fukuda T, Kubota R, Nonen S, Fujio Y, Azuma J. Regulation of cytochrome P450 2E1 under hypertonic environment through TonEBP in human hepatocytes. Mol Pharmacol 2007; 72:173-81. [PMID: 17440116 DOI: 10.1124/mol.106.033480] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Whereas the liver as well as the other organs are continually exposed to the change of osmotic status, it has never been investigated whether activities and gene expressions of drug-metabolizing enzymes, including cytochromes P450, are dependent on osmotic change in the liver. In the present study, we determined that CYP2E1 is induced under hypertonic environments at a transcriptional level in human primary hepatocytes, as assessed by cDNA microarray and real time-reverse transcription-polymerase chain reaction analyses. Both a protein level and the catalytic activity of CYP2E1 were consistently increased in response to hypertonic conditions. In promoter-reporter assay, it was demonstrated that -586 to -566 in the CYP2E1 5'-flanking region was necessary for 2E1 promoter activation by hypertonic stimulation. It is noteworthy that tonicity-response element (TonE) consensus sequence was found at -578 to -568 in human CYP2E1 5'-flanking region, and electrophoretic mobility shift assay demonstrated the interaction of TonE binding protein (TonEBP) with TonE motif of CYP2E1 promoter. Furthermore, cotransfection of a CYP2E1 promoter construct with wild-type TonEBP expression vector enhanced promoter activity under both isotonic and hypertonic conditions, whereas dominant-negative TonEBP suppressed an induction of CYP2E1 promoter activity. These results indicate that the level of CYP2E1 is induced by hypertonic condition via TonEBP transactivation. The present study suggests that osmotic status may influence individual responses to the substrate of CYP2E1.
Collapse
Affiliation(s)
- Takashi Ito
- Department of Clinical Pharmacology and Pharmacogenomics, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Jung R, Wendeler MW, Danevad M, Himmelbauer H, Geßner R. Phylogenetic origin of LI-cadherin revealed by protein and gene structure analysis. Cell Mol Life Sci 2004; 61:1157-66. [PMID: 15141301 PMCID: PMC11138757 DOI: 10.1007/s00018-004-3470-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The intestine specific LI-cadherin differs in its overall structure from classical and desmosomal cadherins by the presence of seven instead of five cadherin repeats and a short cytoplasmic domain. Despite the low sequence similarity, a comparative protein structure analysis revealed that LI-cadherin may have originated from a five-repeat predecessor cadherin by a duplication of the first two aminoterminal repeats. To test this hypothesis, we cloned the murine LI-cadherin gene and compared its structure to that of other cadherins. The intron-exon organization, including the intron positions and phases, is perfectly conserved between repeats 3-7 of LI-cadherin and 1-5 of classical cadherins. Moreover, the genomic structure of the repeats 1-2 and 3-4 is identical for LI-cadherin and highly similar to that of the repeats 1-2 of classical cadherins. These findings strengthen our assumption that LI-cadherin originated from an ancestral cadherin with five domains by a partial gene duplication event.
Collapse
Affiliation(s)
- R. Jung
- Institute of Laboratory Medicine and Biochemistry, Virchow-Hospital of Charité Medical School, Humboldt University of Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
- Schering AG, Müllerstr. 178, 13342 Berlin, Germany
| | - M. W. Wendeler
- Institute of Laboratory Medicine and Biochemistry, Virchow-Hospital of Charité Medical School, Humboldt University of Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - M. Danevad
- Institute of Laboratory Medicine and Biochemistry, Virchow-Hospital of Charité Medical School, Humboldt University of Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - H. Himmelbauer
- Max-Planck-Institute of Molecular Genetics, Ihnestr. 73, 14195 Berlin, Germany
| | - R. Geßner
- Institute of Laboratory Medicine and Biochemistry, Virchow-Hospital of Charité Medical School, Humboldt University of Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| |
Collapse
|