1
|
Structural Basis of Tail-Anchored Membrane Protein Biogenesis by the GET Insertase Complex. Mol Cell 2020; 80:72-86.e7. [DOI: 10.1016/j.molcel.2020.08.012] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/24/2020] [Accepted: 08/17/2020] [Indexed: 01/31/2023]
|
2
|
Jauss B, Petriman NA, Drepper F, Franz L, Sachelaru I, Welte T, Steinberg R, Warscheid B, Koch HG. Noncompetitive binding of PpiD and YidC to the SecYEG translocon expands the global view on the SecYEG interactome in Escherichia coli. J Biol Chem 2019; 294:19167-19183. [PMID: 31699901 DOI: 10.1074/jbc.ra119.010686] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 10/25/2019] [Indexed: 12/22/2022] Open
Abstract
The SecYEG translocon constitutes the major protein transport channel in bacteria and transfers an enormous variety of different secretory and inner-membrane proteins. The minimal core of the SecYEG translocon consists of three inner-membrane proteins, SecY, SecE, and SecG, which, together with appropriate targeting factors, are sufficient for protein transport in vitro However, in vivo the SecYEG translocon has been shown to associate with multiple partner proteins, likely allowing the SecYEG translocon to process its diverse substrates. To obtain a global view on SecYEG plasticity in Escherichia coli, here we performed a quantitative interaction proteomic analysis, which identified several known SecYEG-interacting proteins, verified the interaction of SecYEG with quality-control proteins, and revealed several previously unknown putative SecYEG-interacting proteins. Surprisingly, we found that the chaperone complex PpiD/YfgM is the most prominent interaction partner of SecYEG. Detailed analyses of the PpiD-SecY interaction by site-directed cross-linking revealed that PpiD and the established SecY partner protein YidC use almost completely-overlapping binding sites on SecY. Both PpiD and YidC contacted the lateral gate, the plug domain, and the periplasmic cavity of SecY. However, quantitative MS and cross-linking analyses revealed that despite having almost identical binding sites, their binding to SecY is noncompetitive. This observation suggests that the SecYEG translocon forms different substrate-independent subassemblies in which SecYEG either associates with YidC or with the PpiD/YfgM complex. In summary, the results of this study indicate that the PpiD/YfgM chaperone complex is a primary interaction partner of the SecYEG translocon.
Collapse
Affiliation(s)
- Benjamin Jauss
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany
| | - Narcis-Adrian Petriman
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany.,Faculty of Biology, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany
| | - Friedel Drepper
- Faculty of Biology, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany.,Institute of Biology II, Biochemistry and Functional Proteomics, Faculty of Biology, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany.,Signalling Research Centres BIOSS and CIBSS, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany
| | - Lisa Franz
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany
| | - Ilie Sachelaru
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany
| | - Thomas Welte
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany
| | - Ruth Steinberg
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany
| | - Bettina Warscheid
- Faculty of Biology, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany.,Institute of Biology II, Biochemistry and Functional Proteomics, Faculty of Biology, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany.,Signalling Research Centres BIOSS and CIBSS, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany
| | - Hans-Georg Koch
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany
| |
Collapse
|
3
|
Carlson ML, Stacey RG, Young JW, Wason IS, Zhao Z, Rattray DG, Scott N, Kerr CH, Babu M, Foster LJ, Duong Van Hoa F. Profiling the Escherichia coli membrane protein interactome captured in Peptidisc libraries. eLife 2019; 8:46615. [PMID: 31364989 PMCID: PMC6697469 DOI: 10.7554/elife.46615] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 07/30/2019] [Indexed: 12/23/2022] Open
Abstract
Protein-correlation-profiling (PCP), in combination with quantitative proteomics, has emerged as a high-throughput method for the rapid identification of dynamic protein complexes in native conditions. While PCP has been successfully applied to soluble proteomes, characterization of the membrane interactome has lagged, partly due to the necessary use of detergents to maintain protein solubility. Here, we apply the peptidisc, a ‘one-size fits all’ membrane mimetic, for the capture of the Escherichia coli cell envelope proteome and its high-resolution fractionation in the absence of detergent. Analysis of the SILAC-labeled peptidisc library via PCP allows generation of over 4900 possible binary interactions out of >700,000 random associations. Using well-characterized membrane protein systems such as the SecY translocon, the Bam complex and the MetNI transporter, we demonstrate that our dataset is a useful resource for identifying transient and surprisingly novel protein interactions. For example, we discover a trans-periplasmic supercomplex comprising subunits of the Bam and Sec machineries, including membrane-bound chaperones YfgM and PpiD. We identify RcsF and OmpA as bone fide interactors of BamA, and we show that MetQ association with the ABC transporter MetNI depends on its N-terminal lipid anchor. We also discover NlpA as a novel interactor of MetNI complex. Most of these interactions are largely undetected by standard detergent-based purification. Together, the peptidisc workflow applied to the proteomic field is emerging as a promising novel approach to characterize membrane protein interactions under native expression conditions and without genetic manipulation.
Collapse
Affiliation(s)
- Michael Luke Carlson
- Life Sciences Institute, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of British Columbia, Vancouver, Canada
| | - R Greg Stacey
- Michael Smith Laboratory, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of British Columbia, Vancouver, Canada
| | - John William Young
- Life Sciences Institute, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of British Columbia, Vancouver, Canada
| | - Irvinder Singh Wason
- Life Sciences Institute, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of British Columbia, Vancouver, Canada
| | - Zhiyu Zhao
- Life Sciences Institute, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of British Columbia, Vancouver, Canada
| | - David G Rattray
- Michael Smith Laboratory, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of British Columbia, Vancouver, Canada
| | - Nichollas Scott
- Michael Smith Laboratory, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of British Columbia, Vancouver, Canada
| | - Craig H Kerr
- Michael Smith Laboratory, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of British Columbia, Vancouver, Canada
| | - Mohan Babu
- Department of Biochemistry, Faculty of Science, University of Regina, Regina, Canada
| | - Leonard J Foster
- Michael Smith Laboratory, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of British Columbia, Vancouver, Canada
| | - Franck Duong Van Hoa
- Life Sciences Institute, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of British Columbia, Vancouver, Canada
| |
Collapse
|
4
|
Komarudin AG, Driessen AJM. SecA-Mediated Protein Translocation through the SecYEG Channel. Microbiol Spectr 2019; 7:10.1128/microbiolspec.psib-0028-2019. [PMID: 31373268 PMCID: PMC10957188 DOI: 10.1128/microbiolspec.psib-0028-2019] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Indexed: 01/02/2023] Open
Abstract
In bacteria, the Sec translocase mediates the translocation of proteins into and across the cytoplasmic membrane. It consists of a protein conducting channel SecYEG, the ATP-dependent motor SecA, and the accessory SecDF complex. Here we discuss the function and structure of the Sec translocase.
Collapse
Affiliation(s)
- Amalina Ghaisani Komarudin
- Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, and the Zernike Institute of Advanced Materials, University of Groningen, Nijenborgh 7, 9747AG Groningen, The Netherlands
| | - Arnold J M Driessen
- Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, and the Zernike Institute of Advanced Materials, University of Groningen, Nijenborgh 7, 9747AG Groningen, The Netherlands
| |
Collapse
|
5
|
Jin J, Hsieh YH, Chaudhary AS, Cui J, Houghton JE, Sui SF, Wang B, Tai PC. SecA inhibitors as potential antimicrobial agents: differential actions on SecA-only and SecA-SecYEG protein-conducting channels. FEMS Microbiol Lett 2018; 365:5037921. [PMID: 30007321 PMCID: PMC7190897 DOI: 10.1093/femsle/fny145] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 06/13/2018] [Indexed: 12/13/2022] Open
Abstract
Sec-dependent protein translocation is an essential process in bacteria. SecA is a key component of the translocation machinery and has multiple domains that interact with various ligands. SecA acts as an ATPase motor to drive the precursor protein/peptide through the SecYEG protein translocation channels. As SecA is unique to bacteria and there is no mammalian counterpart, it is an ideal target for the development of new antimicrobials. Several reviews detail the assays for ATPase and protein translocation, as well as the search for SecA inhibitors. Recent studies have shown that, in addition to the SecA-SecYEG translocation channels, there are SecA-only channels in the lipid bilayers, which function independently from the SecYEG machinery. This mini-review focuses on recent advances on the newly developed SecA inhibitors that allow the evaluation of their potential as antimicrobial agents, as well as a fundamental understanding of mechanisms of SecA function(s). These SecA inhibitors abrogate the effects of efflux pumps in both Gram-positive and Gram-negative bacteria. We also discuss recent findings that SecA binds to ribosomes and nascent peptides, which suggest other roles of SecA. A model for the multiple roles of SecA is presented.
Collapse
Affiliation(s)
- Jinshan Jin
- Department of Biology, Center for Biotechnology and Drug Design and Georgia State University, Atlanta, GA 30303, USA
| | - Ying-Hsin Hsieh
- Department of Biology, Center for Biotechnology and Drug Design and Georgia State University, Atlanta, GA 30303, USA
| | - Arpana S Chaudhary
- Department of Chemistry, Center for Biotechnology and Drug Design and Georgia State University, P.O. Box 3965, Atlanta, GA 30303, USA
| | - Jianmei Cui
- Department of Chemistry, Center for Biotechnology and Drug Design and Georgia State University, P.O. Box 3965, Atlanta, GA 30303, USA
| | - John E Houghton
- Department of Biology, Center for Biotechnology and Drug Design and Georgia State University, Atlanta, GA 30303, USA
| | - Sen-fang Sui
- State Key Laboratory of Membrane Biology, Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Binghe Wang
- Department of Chemistry, Center for Biotechnology and Drug Design and Georgia State University, P.O. Box 3965, Atlanta, GA 30303, USA
| | - Phang C Tai
- Department of Biology, Center for Biotechnology and Drug Design and Georgia State University, Atlanta, GA 30303, USA
| |
Collapse
|
6
|
Hsieh YH, Zhang H, Jin J, Dai C, Jiang C, Wang B, Tai PC. Biphasic actions of SecA inhibitors on Prl/Sec suppressors: Possible physiological roles of SecA-only channels. Biochem Biophys Res Commun 2017; 482:296-300. [PMID: 27856243 DOI: 10.1016/j.bbrc.2016.11.057] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 11/11/2016] [Indexed: 11/30/2022]
Abstract
SecA is an essential component in the bacterial Sec-dependent protein translocation process. We previously showed that in addition to the ubiquitous, high-affinity SecYEG-SecDF·YajC protein translocation channel, there is a low-affinity SecA-only channel that elicits ion channel activity and promotes protein translocation. The SecA-only channels are less efficient, and like Prl suppressors, lack signal peptide specificity; they function in the absence of signal peptides. The presence of SecYEG-SecDF·YajC alters the sensitivity of ATPase inhibitor Rose Bengal. In this study, we found that the suppressor membranes are much more resistant to inhibition by Rose Bengal. Similar results have been found for a SecA-specific inhibitor. Moreover, biphasic responses of inhibition of ion current and protein translocation activities were observed for many PrlA/SecY and PrlG/SecE suppressor membranes, with a low IC50 value similar to that of the SecA-only channels and a very high IC50. However, the suppressor strains are as sensitive to the inhibitor as the parental strain, suggesting that SecA-only channels have some essential physiological function(s) in the cells that are inhibited by the specific SecA inhibitor.
Collapse
Affiliation(s)
- Ying-Hsin Hsieh
- Department of Biology, Georgia State University, Atlanta, GA 30303, USA
| | - Hao Zhang
- Department of Biology, Georgia State University, Atlanta, GA 30303, USA
| | - Jinshan Jin
- Department of Biology, Georgia State University, Atlanta, GA 30303, USA
| | - Chaofeng Dai
- Department of Chemistry, Georgia State University, Atlanta, GA 30303, USA
| | - Chun Jiang
- Department of Biology, Georgia State University, Atlanta, GA 30303, USA
| | - Binghe Wang
- Department of Chemistry, Georgia State University, Atlanta, GA 30303, USA
| | - Phang C Tai
- Department of Biology, Georgia State University, Atlanta, GA 30303, USA; Center for Biotechnology and Drug Design, Georgia State University, Atlanta, GA 30303, USA.
| |
Collapse
|
7
|
Carlson ML, Bao H, Duong F. Formation of a Chloride-conducting State in the Maltose ATP-binding Cassette (ABC) Transporter. J Biol Chem 2016; 291:12119-25. [PMID: 27059961 DOI: 10.1074/jbc.m115.711622] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2015] [Indexed: 11/06/2022] Open
Abstract
ATP-binding cassette transporters use an alternating access mechanism to move substrates across cellular membranes. This mode of transport ensures the selective passage of molecules while preserving membrane impermeability. The crystal structures of MalFGK2, inward- and outward-facing, show that the transporter is sealed against ions and small molecules. It has yet to be determined whether membrane impermeability is maintained when MalFGK2 cycles between these two conformations. Through the use of a mutant that resides in intermediate conformations close to the transition state, we demonstrate that not only is chloride conductance occurring, but also to a degree large enough to compromise cell viability. Introduction of mutations in the periplasmic gate lead to the formation of a channel that is quasi-permanently open. MalFGK2 must therefore stay away from these ion-conducting conformations to preserve the membrane barrier; otherwise, a few mutations that increase access to the ion-conducting states are enough to convert an ATP-binding cassette transporter into a channel.
Collapse
Affiliation(s)
- Michael L Carlson
- From the Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Huan Bao
- From the Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Franck Duong
- From the Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| |
Collapse
|
8
|
Abstract
Secreted and integral membrane proteins compose up to one-third of the biological proteome. These proteins contain hydrophobic signals that direct their translocation across or insertion into the lipid bilayer by the Sec61 protein-conducting channel. The molecular basis of how hydrophobic signals within a nascent polypeptide trigger channel opening is not understood. Here, we used cryo-electron microscopy to determine the structure of an active Sec61 channel that has been opened by a signal sequence. The signal supplants helix 2 of Sec61α, which triggers a rotation that opens the central pore both axially across the membrane and laterally toward the lipid bilayer. Comparisons with structures of Sec61 in other states suggest a pathway for how hydrophobic signals engage the channel to gain access to the lipid bilayer.
Collapse
Affiliation(s)
- Rebecca M Voorhees
- MRC Laboratory of Molecular Biology, Medical Research Council, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Ramanujan S Hegde
- MRC Laboratory of Molecular Biology, Medical Research Council, Francis Crick Avenue, Cambridge CB2 0QH, UK.
| |
Collapse
|
9
|
Deme JC, Hancock MA, Xia X, Shintre CA, Plesa M, Kim JC, Carpenter EP, Rosenblatt DS, Coulton JW. Purification and interaction analyses of two human lysosomal vitamin B12transporters: LMBD1 and ABCD4. Mol Membr Biol 2014; 31:250-61. [DOI: 10.3109/09687688.2014.990998] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
10
|
Escherichia coli SecG is required for residual export mediated by mutant signal sequences and for SecY-SecE complex stability. J Bacteriol 2014; 197:542-52. [PMID: 25404704 DOI: 10.1128/jb.02136-14] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Protein export to the bacterial periplasm is achieved by SecYEG, an inner membrane heterotrimer. SecY and SecE are encoded by essential genes, while SecG is not essential for growth under standard laboratory conditions. Using a quantitative and sensitive export assay, we show that SecG plays a critical role for the residual export mediated by mutant signal sequences; the magnitude of this effect is not proportional to the strength of the export defect. In contrast, export mediated by wild-type signal sequences is only barely retarded in the absence of SecG. When probed with mutant signal sequences, secG loss of function mutations display a phenotype opposite to that of prlA mutations in secY. The analysis of secG and prlA single and double mutant strains shows that the increased export conferred by several prlA alleles is enhanced in the absence of SecG. Several combinations of prlA alleles with a secG deletion cannot be easily constructed. This synthetic phenotype is conditional, indicating that cells can adapt to the presence of both alleles. The biochemical basis of this phenomenon is linked to the stability of the SecYE dimer in solubilized membranes. With prlA alleles that can be normally introduced in a secG deletion strain, SecG has only a limited effect on the stability of the SecYE dimer. With the other prlA alleles, the SecYE dimer can often be detected only in the presence of SecG. A possible role for the maintenance of SecG during evolution is proposed.
Collapse
|
11
|
Reithinger JH, Yim C, Kim S, Lee H, Kim H. Structural and functional profiling of the lateral gate of the Sec61 translocon. J Biol Chem 2014; 289:15845-55. [PMID: 24753257 PMCID: PMC4140938 DOI: 10.1074/jbc.m113.533794] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Revised: 04/17/2014] [Indexed: 11/06/2022] Open
Abstract
The evolutionarily conserved Sec61 translocon mediates the translocation and membrane insertion of proteins. For the integration of proteins into the membrane, the Sec61 translocon opens laterally to the lipid bilayer. Previous studies suggest that the lateral opening of the channel is mediated by the helices TM2b and TM7 of a pore-forming subunit of the Sec61 translocon. To map key residues in TM2b and TM7 in yeast Sec61 that modulate lateral gating activity, we performed alanine scanning and in vivo site-directed photocross-linking experiments. Alanine scanning identified two groups of critical residues in the lateral gate, one group that leads to defects in the translocation and membrane insertion of proteins and the other group that causes faster translocation and facilitates membrane insertion. Photocross-linking data show that the former group of residues is located at the interface of the lateral gate. Furthermore, different degrees of defects for the membrane insertion of single- and double-spanning membrane proteins were observed depending on whether the mutations were located in TM2b or TM7. These results demonstrate subtle differences in the molecular mechanism of the signal sequence binding/opening of the lateral gate and membrane insertion of a succeeding transmembrane segment in a polytopic membrane protein.
Collapse
Affiliation(s)
- Johannes H Reithinger
- Center for Biomembrane Research, Department of Biochemistry and Biophysics, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Chewon Yim
- From the School of Biological Sciences, Seoul National University, Seoul 151-747, South Korea and
| | - Sungmin Kim
- From the School of Biological Sciences, Seoul National University, Seoul 151-747, South Korea and
| | - Hunsang Lee
- From the School of Biological Sciences, Seoul National University, Seoul 151-747, South Korea and
| | - Hyun Kim
- From the School of Biological Sciences, Seoul National University, Seoul 151-747, South Korea and
| |
Collapse
|
12
|
Denks K, Vogt A, Sachelaru I, Petriman NA, Kudva R, Koch HG. The Sec translocon mediated protein transport in prokaryotes and eukaryotes. Mol Membr Biol 2014; 31:58-84. [DOI: 10.3109/09687688.2014.907455] [Citation(s) in RCA: 123] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
13
|
Abstract
The Sec61 translocon forms a pore to translocate polypeptide sequences across the membrane and offers a lateral gate for membrane integration of hydrophobic (H) segments. A central constriction of six apolar residues has been shown to form a seal, but also to determine the hydrophobicity threshold for membrane integration: Mutation of these residues in yeast Sec61p to glycines, serines, aspartates, or lysines lowered the hydrophobicity required for integration; mutation to alanines increased it. Whereas four leucines distributed in an oligo-alanine H segment were sufficient for 50% integration, we now find four leucines in the N-terminal half of the H segment to produce significantly more integration than in the C-terminal half, suggesting functional asymmetry within the translocon. Scanning a cluster of three leucines through an oligo-alanine H segment showed high integration levels, except around the position matching that of the hydrophobic constriction in the pore where integration was strongly reduced. Both asymmetry and the position effect of H-segment integration disappeared upon mutation of the constriction residues to glycines or serines, demonstrating that hydrophobicity at this position within the translocon is responsible for the phenomenon. Asymmetry was largely retained, however, when constriction residues were replaced by alanines. These results reflect on the integration mechanism of transmembrane domains and show that membrane insertion of H segments strongly depends not only on their intrinsic hydrophobicity but also on the local conditions in the translocon interior. Thus, the contribution of hydrophobic residues in the H segment is not simply additive and displays cooperativeness depending on their relative position.
Collapse
|
14
|
Co-translational targeting and translocation of proteins to the endoplasmic reticulum. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1833:2392-402. [DOI: 10.1016/j.bbamcr.2013.02.021] [Citation(s) in RCA: 141] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Revised: 02/18/2013] [Accepted: 02/19/2013] [Indexed: 12/16/2022]
|
15
|
Kedrov A, Kusters I, Driessen AJM. Single-Molecule Studies of Bacterial Protein Translocation. Biochemistry 2013; 52:6740-54. [DOI: 10.1021/bi400913x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Alexej Kedrov
- Department of Molecular Microbiology, Groningen
Biomolecular Sciences and Biotechnology Institute, and Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 7, 9747
AG Groningen, The Netherlands
| | - Ilja Kusters
- Department of Molecular Microbiology, Groningen
Biomolecular Sciences and Biotechnology Institute, and Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 7, 9747
AG Groningen, The Netherlands
| | - Arnold J. M. Driessen
- Department of Molecular Microbiology, Groningen
Biomolecular Sciences and Biotechnology Institute, and Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 7, 9747
AG Groningen, The Netherlands
| |
Collapse
|
16
|
Zhang H, Hsieh YH, Lin BR, Yu L, Yang H, Jiang C, Sui SF, Tai PC. Specificity of SecYEG for PhoA precursors and SecA homologs on SecA protein-conducting channels. Biochem Biophys Res Commun 2013; 437:212-216. [PMID: 23791875 DOI: 10.1016/j.bbrc.2013.06.039] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Accepted: 06/12/2013] [Indexed: 11/18/2022]
Abstract
Previous studies showed that Escherichia coli membranes depleted of SecYEG are capable of translocating certain precursor proteins, but not other precursors such as pPhoA, indicating a differential requirement for SecYEG. In this study, we examined the role of SecYEG in pPhoA translocation using a purified reconstituted SecA-liposomes system. We found that translocation of pPhoA, in contrast to that of pOmpA, requires the presence of purified SecYEG. A differential specificity of the SecYEG was also revealed in its interaction with SecA: EcSecYEG did not enhance SecA-mediated pOmpA translocation by purified SecA either from Pseudomonas aeruginosa or Bacillus subtilis. Neither was SecYEG required for eliciting ion channel activity, which could be opened by unfolded pPhoA or unfolded PhoA. Addition of the SecYEG complex did restore the specificity of signal peptide recognition in the ion-channel activity. We concluded that SecYEG confers specificity in interacting with protein precursors and SecAs.
Collapse
Affiliation(s)
- Hao Zhang
- Department of Biology and Center of Biotechnology and Drug Design, Georgia State University, Atlanta, GA 30303
| | - Ying-Hsin Hsieh
- Department of Biology and Center of Biotechnology and Drug Design, Georgia State University, Atlanta, GA 30303
| | - Bor-Ruei Lin
- Department of Biology and Center of Biotechnology and Drug Design, Georgia State University, Atlanta, GA 30303
| | - Liyan Yu
- Department of Biology and Center of Biotechnology and Drug Design, Georgia State University, Atlanta, GA 30303
| | - Hsiuchin Yang
- Department of Biology and Center of Biotechnology and Drug Design, Georgia State University, Atlanta, GA 30303
| | - Chun Jiang
- Department of Biology and Center of Biotechnology and Drug Design, Georgia State University, Atlanta, GA 30303
| | - Sen-Fang Sui
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, China 100084
| | - Phang C Tai
- Department of Biology and Center of Biotechnology and Drug Design, Georgia State University, Atlanta, GA 30303
| |
Collapse
|
17
|
Kudva R, Denks K, Kuhn P, Vogt A, Müller M, Koch HG. Protein translocation across the inner membrane of Gram-negative bacteria: the Sec and Tat dependent protein transport pathways. Res Microbiol 2013; 164:505-34. [DOI: 10.1016/j.resmic.2013.03.016] [Citation(s) in RCA: 122] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Accepted: 03/11/2013] [Indexed: 11/28/2022]
|
18
|
Breaking on through to the other side: protein export through the bacterial Sec system. Biochem J 2013; 449:25-37. [PMID: 23216251 DOI: 10.1042/bj20121227] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
More than one-third of cellular proteomes traffic into and across membranes. Bacteria have invented several sophisticated secretion systems that guide various proteins to extracytoplasmic locations and in some cases inject them directly into hosts. Of these, the Sec system is ubiquitous, essential and by far the best understood. Secretory polypeptides are sorted from cytoplasmic ones initially due to characteristic signal peptides. Then they are targeted to the plasma membrane by chaperones/pilots. The translocase, a dynamic nanomachine, lies at the centre of this process and acts as a protein-conducting channel with a unique property; allowing both forward transfer of secretory proteins but also lateral release into the lipid bilayer with high fidelity and efficiency. This process, tightly orchestrated at the expense of energy, ensures fundamental cell processes such as membrane biogenesis, cell division, motility, nutrient uptake and environmental sensing. In the present review, we examine this fascinating process, summarizing current knowledge on the structure, function and mechanics of the Sec pathway.
Collapse
|
19
|
Mandon EC, Trueman SF, Gilmore R. Protein translocation across the rough endoplasmic reticulum. Cold Spring Harb Perspect Biol 2013; 5:cshperspect.a013342. [PMID: 23251026 DOI: 10.1101/cshperspect.a013342] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The rough endoplasmic reticulum is a major site of protein biosynthesis in all eukaryotic cells, serving as the entry point for the secretory pathway and as the initial integration site for the majority of cellular integral membrane proteins. The core components of the protein translocation machinery have been identified, and high-resolution structures of the targeting components and the transport channel have been obtained. Research in this area is now focused on obtaining a better understanding of the molecular mechanism of protein translocation and membrane protein integration.
Collapse
Affiliation(s)
- Elisabet C Mandon
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605-2324, USA
| | | | | |
Collapse
|
20
|
Hsieh YH, Zhang H, Wang H, Yang H, Jiang C, Sui SF, Tai PC. Reconstitution of functionally efficient SecA-dependent protein-conducting channels: transformation of low-affinity SecA-liposome channels to high-affinity SecA-SecYEG-SecDF·YajC channels. Biochem Biophys Res Commun 2013; 431:388-92. [PMID: 23337498 DOI: 10.1016/j.bbrc.2013.01.042] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2012] [Accepted: 01/10/2013] [Indexed: 11/20/2022]
Abstract
Previous work showed that SecA alone can promote protein translocation and ion-channel activity in liposomes, and that SecYEG increases efficiency as well as signal peptide specificity. We now report that SecDF·YajC further increases translocation and ion-channel activity. These activities of reconstituted SecA-SecYEG-SecDF·YajC-liposome are almost the same as those of native membranes, indicating the transformation of reconstituted functional high-affinity protein-conducting channels from the low-affinity SecA-channels.
Collapse
Affiliation(s)
- Ying-hsin Hsieh
- Department of Biology and Center of Biotechnology and Drug Design, Georgia State University, Atlanta, GA 30303, USA
| | | | | | | | | | | | | |
Collapse
|
21
|
Lin BR, Hsieh YH, Jiang C, Tai PC. Escherichia coli Membranes Depleted of SecYEG Elicit SecA-Dependent Ion-Channel Activity but Lose Signal Peptide Specificity. J Membr Biol 2012; 245:747-57. [DOI: 10.1007/s00232-012-9477-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2011] [Accepted: 06/30/2012] [Indexed: 11/29/2022]
|
22
|
Lycklama A Nijeholt JA, Driessen AJM. The bacterial Sec-translocase: structure and mechanism. Philos Trans R Soc Lond B Biol Sci 2012; 367:1016-28. [PMID: 22411975 DOI: 10.1098/rstb.2011.0201] [Citation(s) in RCA: 122] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Most bacterial secretory proteins pass across the cytoplasmic membrane via the translocase, which consists of a protein-conducting channel SecYEG and an ATP-dependent motor protein SecA. The ancillary SecDF membrane protein complex promotes the final stages of translocation. Recent years have seen a major advance in our understanding of the structural and biochemical basis of protein translocation, and this has led to a detailed model of the translocation mechanism.
Collapse
Affiliation(s)
- Jelger A Lycklama A Nijeholt
- Department of Molecular Microbiology, Groningen Biomolecular Science and Biotechnology Institute, University of Groningen, Nijenborgh 7, Groningen 9747 AG, The Netherlands.
| | | |
Collapse
|
23
|
Fröbel J, Rose P, Müller M. Twin-arginine-dependent translocation of folded proteins. Philos Trans R Soc Lond B Biol Sci 2012; 367:1029-46. [PMID: 22411976 PMCID: PMC3297433 DOI: 10.1098/rstb.2011.0202] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Twin-arginine translocation (Tat) denotes a protein transport pathway in bacteria, archaea and plant chloroplasts, which is specific for precursor proteins harbouring a characteristic twin-arginine pair in their signal sequences. Many Tat substrates receive cofactors and fold prior to translocation. For a subset of them, proofreading chaperones coordinate maturation and membrane-targeting. Tat translocases comprise two kinds of membrane proteins, a hexahelical TatC-type protein and one or two members of the single-spanning TatA protein family, called TatA and TatB. TatC- and TatA-type proteins form homo- and hetero-oligomeric complexes. The subunits of TatABC translocases are predominantly recovered from two separate complexes, a TatBC complex that might contain some TatA, and a homomeric TatA complex. TatB and TatC coordinately recognize twin-arginine signal peptides and accommodate them in membrane-embedded binding pockets. Advanced binding of the signal sequence to the Tat translocase requires the proton-motive force (PMF) across the membranes and might involve a first recruitment of TatA. When targeted in this manner, folded twin-arginine precursors induce homo-oligomerization of TatB and TatA. Ultimately, this leads to the formation of a transmembrane protein conduit that possibly consists of a pore-like TatA structure. The translocation step again is dependent on the PMF.
Collapse
Affiliation(s)
- Julia Fröbel
- Institute of Biochemistry and Molecular Biology, ZBMZ, University of Freiburg, Stefan-Meier-Strasse 17, 79104 Freiburg, Germany
- Faculty of Biology, University of Freiburg, Schänzle-Strasse 1, 79104 Freiburg, Germany
| | - Patrick Rose
- Institute of Biochemistry and Molecular Biology, ZBMZ, University of Freiburg, Stefan-Meier-Strasse 17, 79104 Freiburg, Germany
- Faculty of Biology, University of Freiburg, Schänzle-Strasse 1, 79104 Freiburg, Germany
| | - Matthias Müller
- Institute of Biochemistry and Molecular Biology, ZBMZ, University of Freiburg, Stefan-Meier-Strasse 17, 79104 Freiburg, Germany
| |
Collapse
|
24
|
Bonardi F, Nouwen N, Feringa BL, Driessen AJM. Protein conducting channels—mechanisms, structures and applications. MOLECULAR BIOSYSTEMS 2012; 8:709-19. [DOI: 10.1039/c2mb05433g] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
25
|
Lycklama A Nijeholt JA, Wu ZC, Driessen AJM. Conformational dynamics of the plug domain of the SecYEG protein-conducting channel. J Biol Chem 2011; 286:43881-43890. [PMID: 22033919 PMCID: PMC3243504 DOI: 10.1074/jbc.m111.297507] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2011] [Revised: 10/20/2011] [Indexed: 11/06/2022] Open
Abstract
The central pore of the SecYEG preprotein-conducting channel is closed at the periplasmic face of the membrane by a plug domain. To study its conformational dynamics, the plug was labeled site-specifically with an environment-sensitive fluorophore. In the presence of a stable preprotein translocation inter-mediate, the SecY plug showed an enhanced solvent exposure consistent with a displacement from the hydrophobic central pore region. In contrast, binding and insertion of a ribosome-bound nascent membrane protein did not alter the plug conformation. These data indicate different plug dynamics depending on the ligand bound state of the SecYEG channel.
Collapse
Affiliation(s)
- Jelger A Lycklama A Nijeholt
- Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology institute, and the Zernike Institute for Advanced Materials, University of Groningen, 9747 AG Groningen, The Netherlands
| | - Zht Cheng Wu
- Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology institute, and the Zernike Institute for Advanced Materials, University of Groningen, 9747 AG Groningen, The Netherlands
| | - Arnold J M Driessen
- Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology institute, and the Zernike Institute for Advanced Materials, University of Groningen, 9747 AG Groningen, The Netherlands.
| |
Collapse
|
26
|
Abstract
SecA signal peptide interaction is critical for initiating protein translocation in the bacterial Sec-dependent pathway. Here, we have utilized the recent nuclear magnetic resonance (NMR) and Förster resonance energy transfer studies that mapped the location of the SecA signal peptide-binding site to design and isolate signal peptide-binding-defective secA mutants. Biochemical characterization of the mutant SecA proteins showed that Ser226, Val310, Ile789, Glu806, and Phe808 are important for signal peptide binding. A genetic system utilizing alkaline phosphatase secretion driven by different signal peptides was employed to demonstrate that both the PhoA and LamB signal peptides appear to recognize a common set of residues at the SecA signal peptide-binding site. A similar system containing either SecA-dependent or signal recognition particle (SRP)-dependent signal peptides along with the prlA suppressor mutation that is defective in signal peptide proofreading activity were employed to distinguish between SecA residues that are utilized more exclusively for signal peptide recognition or those that also participate in the proofreading and translocation functions of SecA. Collectively, our data allowed us to propose a model for the location of the SecA signal peptide-binding site that is more consistent with recent structural insights into this protein translocation system.
Collapse
|
27
|
Hsieh YH, Zhang H, Lin BR, Cui N, Na B, Yang H, Jiang C, Sui SF, Tai PC. SecA alone can promote protein translocation and ion channel activity: SecYEG increases efficiency and signal peptide specificity. J Biol Chem 2011; 286:44702-9. [PMID: 22033925 DOI: 10.1074/jbc.m111.300111] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
SecA is an essential component of the Sec-dependent protein translocation pathway across cytoplasmic membranes in bacteria. Escherichia coli SecA binds to cytoplasmic membranes at SecYEG high affinity sites and at phospholipid low affinity sites. It has been widely viewed that SecYEG functions as the essential protein-conducting channel through which precursors cross the membranes in bacterial Sec-dependent pathways, and that SecA functions as a motor to hydrolyze ATP in translocating precursors through SecYEG channels. We have now found that SecA alone can promote precursor translocation into phospholiposomes. Moreover, SecA-liposomes elicit ionic currents in Xenopus oocytes. Patch-clamp recordings further show that SecA alone promotes signal peptide- or precursor-dependent single channel activity. These activities were observed with the functional SecA at about 1-2 μM. The results show that SecA alone is sufficient to promote protein translocation into liposomes and to elicit ionic channel activity at the phospholipids low affinity binding sites, thus indicating that SecA is able to form the protein-conducting channels. Even so, such SecA-liposomes are less efficient than those with a full complement of Sec proteins, and lose the signal-peptide proofreading function, resembling the effects of PrlA mutations. Addition of purified SecYEG restores the signal peptide specificity and increases protein translocation and ion channel activities. These data show that SecA can promote protein translocation and ion channel activities both when it is bound to lipids at low affinity sites and when it is bound to SecYEG with high affinity. The latter of the two interactions confers high efficiency and specificity.
Collapse
Affiliation(s)
- Ying-hsin Hsieh
- Department of Biology, Center of Biotechnology and Drug Design, Georgia State University, Atlanta, Georgia 30303, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Dalal K, Duong F. The SecY complex: conducting the orchestra of protein translocation. Trends Cell Biol 2011; 21:506-14. [DOI: 10.1016/j.tcb.2011.04.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2011] [Revised: 04/11/2011] [Accepted: 04/18/2011] [Indexed: 10/18/2022]
|
29
|
SecA, a remarkable nanomachine. Cell Mol Life Sci 2011; 68:2053-66. [PMID: 21479870 PMCID: PMC3101351 DOI: 10.1007/s00018-011-0681-y] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2011] [Revised: 03/22/2011] [Accepted: 03/28/2011] [Indexed: 01/03/2023]
Abstract
Biological cells harbor a variety of molecular machines that carry out mechanical work at the nanoscale. One of these nanomachines is the bacterial motor protein SecA which translocates secretory proteins through the protein-conducting membrane channel SecYEG. SecA converts chemically stored energy in the form of ATP into a mechanical force to drive polypeptide transport through SecYEG and across the cytoplasmic membrane. In order to accommodate a translocating polypeptide chain and to release transmembrane segments of membrane proteins into the lipid bilayer, SecYEG needs to open its central channel and the lateral gate. Recent crystal structures provide a detailed insight into the rearrangements required for channel opening. Here, we review our current understanding of the mode of operation of the SecA motor protein in concert with the dynamic SecYEG channel. We conclude with a new model for SecA-mediated protein translocation that unifies previous conflicting data.
Collapse
|
30
|
Lycklama A Nijeholt JA, Bulacu M, Marrink SJ, Driessen AJM. Immobilization of the plug domain inside the SecY channel allows unrestricted protein translocation. J Biol Chem 2010; 285:23747-54. [PMID: 20489195 DOI: 10.1074/jbc.m110.124636] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The SecYEG complex forms a protein-conducting channel in the inner membrane of Escherichia coli to support the translocation of secretory proteins in their unfolded state. The SecY channel is closed at the periplasmic face of the membrane by a small re-entrance loop that connects transmembrane segment 1 with 2b. This helical domain 2a is termed the plug domain. By the introduction of pairs of cysteines and crosslinkers, the plug domain was immobilized inside the channel and connected to transmembrane segment 10. Translocation was inhibited to various degrees depending on the position and crosslinker spacer length. With one of the crosslinked mutants translocation occurred unrestricted. Biochemical characterization of this mutant as well as molecular dynamics simulations suggest that only a limited movement of the plug domain suffices for translocation.
Collapse
Affiliation(s)
- Jelger A Lycklama A Nijeholt
- Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9751 NN Haren, The Netherlands
| | | | | | | |
Collapse
|
31
|
Junne T, Kocik L, Spiess M. The hydrophobic core of the Sec61 translocon defines the hydrophobicity threshold for membrane integration. Mol Biol Cell 2010; 21:1662-70. [PMID: 20357000 PMCID: PMC2869373 DOI: 10.1091/mbc.e10-01-0060] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Mutation of the apolar constriction of the yeast Sec61 translocon to polar or charged residues, while retaining functionality, affected the integration of potential transmembrane segments into the lipid bilayer. This indicates that the translocon plays an active role in setting the hydrophobicity threshold for membrane integration. The Sec61 translocon mediates the translocation of proteins across the endoplasmic reticulum membrane and the lateral integration of transmembrane segments into the lipid bilayer. The structure of the idle translocon is closed by a lumenal plug domain and a hydrophobic constriction ring. To test the function of the apolar constriction, we have mutated all six ring residues of yeast Sec61p to more hydrophilic, bulky, or even charged amino acids (alanines, glycines, serines, tryptophans, lysines, or aspartates). The translocon was found to be surprisingly tolerant even to the charge mutations in the constriction ring, because growth and translocation efficiency were not drastically affected. Most interestingly, ring mutants were found to affect the integration of hydrophobic sequences into the lipid bilayer, indicating that the translocon does not simply catalyze the partitioning of potential transmembrane segments between an aqueous environment and the lipid bilayer but that it also plays an active role in setting the hydrophobicity threshold for membrane integration.
Collapse
Affiliation(s)
- Tina Junne
- Biozentrum, University of Basel, Basel, Switzerland
| | | | | |
Collapse
|
32
|
Abstract
Special codes are embedded in the primary sequence of newly synthesized proteins to determine their final destination. Protein translocation across biological membranes requires co-operation between the targeting and translocation machineries. A conserved membrane channel, the Sec61/SecY complex, mediates protein translocation across or integration into the endoplasmic reticulum membrane in eukaryotes and the plasma membrane in prokaryotes. A combination of recent biochemical and structural data provides novel insights into the mechanism of how the channel allows polypeptide movement into the exoplasmic space and the lipid bilayer.
Collapse
|
33
|
Mandon EC, Trueman SF, Gilmore R. Translocation of proteins through the Sec61 and SecYEG channels. Curr Opin Cell Biol 2009; 21:501-7. [PMID: 19450960 PMCID: PMC2916700 DOI: 10.1016/j.ceb.2009.04.010] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2009] [Revised: 04/15/2009] [Accepted: 04/16/2009] [Indexed: 10/20/2022]
Abstract
The Sec61 and SecYEG translocation channels mediate the selective transport of proteins across the endoplasmic reticulum and bacterial inner membrane, respectively. These channels are also responsible for the integration of membrane proteins. To accomplish these two critical events in protein expression, the transport channels undergo conformational changes to permit the export of lumenal domains and the integration of transmembrane spans. Novel insight into how these channels open during protein translocation has been provided by a combination of the analysis of new channel structures, biochemical characterization of translocation intermediates, molecular dynamics simulations, and in vivo and in vitro analysis of structure-based Sec61 and SecY mutants.
Collapse
Affiliation(s)
- Elisabet C Mandon
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| | | | | |
Collapse
|
34
|
Lizák B, Csala M, Benedetti A, Bánhegyi G. The translocon and the non-specific transport of small molecules in the endoplasmic reticulum (Review). Mol Membr Biol 2009; 25:95-101. [DOI: 10.1080/09687680701670481] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Beáta Lizák
- Department of Medical Chemistry, Molecular Biology and Pathobiochemistry, Semmelweis University, Budapest, Hungary
- the Pathobiochemistry Research Group of the Hungarian Academy of Sciences, Semmelweis University, Budapest, Hungary
| | - Miklós Csala
- Department of Medical Chemistry, Molecular Biology and Pathobiochemistry, Semmelweis University, Budapest, Hungary
- the Pathobiochemistry Research Group of the Hungarian Academy of Sciences, Semmelweis University, Budapest, Hungary
| | - Angelo Benedetti
- Department of Pathophysiology, Experimental Medicine and Public Health, University of Siena, Siena, Italy
| | - Gábor Bánhegyi
- Department of Medical Chemistry, Molecular Biology and Pathobiochemistry, Semmelweis University, Budapest, Hungary
- the Pathobiochemistry Research Group of the Hungarian Academy of Sciences, Semmelweis University, Budapest, Hungary
- Department of Pathophysiology, Experimental Medicine and Public Health, University of Siena, Siena, Italy
| |
Collapse
|
35
|
Dalal K, Duong F. The SecY complex forms a channel capable of ionic discrimination. EMBO Rep 2009; 10:762-8. [PMID: 19483671 DOI: 10.1038/embor.2009.87] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2008] [Revised: 03/10/2009] [Accepted: 03/23/2009] [Indexed: 11/09/2022] Open
Abstract
Protein translocation across the bacterial membrane occurs at the SecY complex or channel. The resting SecY channel is impermeable to small molecules owing to a plug domain that creates a seal. Here, we report that a channel loosely sealed, or with a plug locked open, does not, however, lead to general membrane permeability. Instead, strong selectivity towards small monovalent anions, especially chloride, is observed. Mutations in the pore ring-structure increase both the translocation activity of the channel and its ionic conductance, however the selectivity is maintained. The same ionic specificity also occurs at the onset of protein translocation and across the archaeal SecY complex. Thus, the ion-conducting characteristic of the channel seems to be conserved as a normal consequence of protein translocation. We propose that the pore ring-structure forms a selectivity filter, allowing cells to tolerate channels with imperfect plugs.
Collapse
Affiliation(s)
- Kush Dalal
- Department of Biochemistry and Molecular Biology, Life Sciences Institute, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | | |
Collapse
|
36
|
Dalal K, Nguyen N, Alami M, Tan J, Moraes TF, Lee WC, Maurus R, Sligar SS, Brayer GD, Duong F. Structure, binding, and activity of Syd, a SecY-interacting protein. J Biol Chem 2009; 284:7897-902. [PMID: 19139097 PMCID: PMC2658082 DOI: 10.1074/jbc.m808305200] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2008] [Revised: 12/19/2008] [Indexed: 01/20/2023] Open
Abstract
The Syd protein has been implicated in the Sec-dependent transport of polypeptides across the bacterial inner membrane. Using Nanodiscs, we here provide direct evidence that Syd binds the SecY complex, and we demonstrate that interaction involves the two electropositive and cytosolic loops of the SecY subunit. We solve the crystal structure of Syd and together with cysteine cross-link analysis, we show that a conserved concave and electronegative groove constitutes the SecY-binding site. At the membrane, Syd decreases the activity of the translocon containing loosely associated SecY-SecE subunits, whereas in detergent solution Syd disrupts the SecYEG heterotrimeric associations. These results support the role of Syd in proofreading the SecY complex biogenesis and point to the electrostatic nature of the Sec channel interaction with its cytosolic partners.
Collapse
Affiliation(s)
- Kush Dalal
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia V6T1Z3, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Boy D, Koch HG. Visualization of distinct entities of the SecYEG translocon during translocation and integration of bacterial proteins. Mol Biol Cell 2009; 20:1804-15. [PMID: 19158385 DOI: 10.1091/mbc.e08-08-0886] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The universally conserved SecYEG/Sec61 translocon constitutes the major protein-conducting channel in the cytoplasmic membrane of bacteria and the endoplasmic reticulum membrane of eukaryotes. It is engaged in both translocating secretory proteins across the membrane as well as in integrating membrane proteins into the lipid phase of the membrane. In the current study we have detected distinct SecYEG translocon complexes in native Escherichia coli membranes. Blue-Native-PAGE revealed the presence of a 200-kDa SecYEG complex in resting membranes. When the SecA-dependent secretory protein pOmpA was trapped inside the SecYEG channel, a smaller SecY-containing complex of approximately 140-kDa was observed, which probably corresponds to a monomeric SecYEG-substrate complex. Trapping the SRP-dependent polytopic membrane protein mannitol permease in the SecYEG translocon, resulted in two complexes of 250 and 600 kDa, each containing both SecY and the translocon-associated membrane protein YidC. The appearance of both complexes was correlated with the number of transmembrane domains that were exposed during targeting of mannitol permease to the membrane. These results suggest that the assembly or the stability of the bacterial SecYEG translocon is influenced by the substrate that needs to be transported.
Collapse
Affiliation(s)
- Diana Boy
- Institut für Biochemie und Molekularbiologie, ZBMZ, Albert-Ludwigs-Universität Freiburg, 79104 Freiburg, Germany
| | | |
Collapse
|
38
|
Robson A, Carr B, Sessions RB, Collinson I. Synthetic peptides identify a second periplasmic site for the plug of the SecYEG protein translocation complex. FEBS Lett 2008; 583:207-12. [PMID: 19084013 DOI: 10.1016/j.febslet.2008.12.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2008] [Revised: 11/28/2008] [Accepted: 12/01/2008] [Indexed: 11/19/2022]
Abstract
A short helix in the centre of the SecY subunit serves as a 'plug' blocking the protein channel. This site must be vacated if the channel is to open and accommodate translocating protein. We have synthesised a peptide mimic of this plug, and show that it binds to E. coli SecYEG, identifying a distinct and peripheral binding site. We propose that during active translocation the plug moves to this second discrete site and chart its position. Deletion of the plug in SecY increases the stoichiometry of the peptide-SecYEG interaction by also exposing the location it occupies in the channel. Binding of the plug peptide to the channel is unaffected by SecA.
Collapse
Affiliation(s)
- Alice Robson
- Department of Biochemistry, University of Bristol, University Walk, Bristol, UK
| | | | | | | |
Collapse
|
39
|
Gumbart J, Schulten K. The roles of pore ring and plug in the SecY protein-conducting channel. ACTA ACUST UNITED AC 2008; 132:709-19. [PMID: 19001142 PMCID: PMC2585858 DOI: 10.1085/jgp.200810062] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The protein-conducting channel, or translocon, is an evolutionarily conserved complex that allows nascent proteins to cross a cellular membrane or integrate into it. The crystal structure of an archaeal translocon, the SecY complex, revealed that two elements contribute to sealing the channel: a small "plug" domain blocking the periplasmic region of the channel, and a pore ring composed of six hydrophobic residues acting as a constriction point at the channel's center. To determine the independent functions of these two elements, we have performed molecular dynamics simulations of the native channel as well as of two recently structurally resolved mutants in which portions of their plugs were deleted. We find that in the mutants, the instability in the plug region leads to a concomitant increase in flexibility of the pore ring. The instability is quantified by the rate of water permeation in each system as well as by the force required for oligopeptide translocation. Through a novel simulation in which the interactions between the plug and water were independently controlled, we find that the role of the plug in stabilizing the pore ring is significantly more important than its role as a purely steric barrier.
Collapse
Affiliation(s)
- James Gumbart
- Department of Physics and Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | | |
Collapse
|
40
|
Abstract
A decisive step in the biosynthesis of many eukaryotic proteins is their partial or complete translocation across the endoplasmic reticulum membrane. A similar process occurs in prokaryotes, except that proteins are transported across or are integrated into the plasma membrane. In both cases, translocation occurs through a protein-conducting channel that is formed from a conserved, heterotrimeric membrane protein complex, the Sec61 or SecY complex. Structural and biochemical data suggest mechanisms that enable the channel to function with different partners, to open across the membrane and to release laterally hydrophobic segments of membrane proteins into lipid.
Collapse
Affiliation(s)
- Tom A Rapoport
- Howard Hughes Medical Institute and Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
41
|
Affiliation(s)
- Stephen H. White
- Department of Physiology and Biophysics, University of California, Irvine, California 92697-4560;
- Center for Biomembrane Systems, University of California, Irvine, California 92697-4560
| | - Gunnar von Heijne
- Department of Biochemistry and Biophysics, Stockholm University, SE-106 91 Stockholm, Sweden;
- Center for Biomembrane Research, Stockholm University, SE-106 91 Stockholm, Sweden
| |
Collapse
|
42
|
Antonoaea R, Fürst M, Nishiyama KI, Müller M. The periplasmic chaperone PpiD interacts with secretory proteins exiting from the SecYEG translocon. Biochemistry 2008; 47:5649-56. [PMID: 18439025 DOI: 10.1021/bi800233w] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The Sec translocon of Escherichia coli mediates the export of numerous secretory and membrane proteins. To dissect the passage of an exported protein across the Sec translocon into consecutive steps, we generated in vitro translocation intermediates of a polypeptide chain, which by its N-terminus is anchored in the membrane and by its C-terminus tethered to the ribosome. We find that in this situation, the motor protein SecA propagates translocation of a peptide loop across SecYEG prior to the removal of ribosomes. Upon SecA-driven exit from the translocon, this loop is brought into the immediate vicinity of the membrane-anchored, periplasmic chaperone PpiD. Consistent with a coupling between translocation across the SecYEG translocon and folding by periplasmic chaperones, a lack of PpiD retards the release of a translocating outer membrane protein into the periplasm.
Collapse
Affiliation(s)
- Raluca Antonoaea
- Institut für Biochemie and Molekularbiologie and Zentrum für Biochemie and Molekulare Zellforschung, Universität Freiburg, Hermann-Herder-Strasse 7, D-79104 Freiburg, Germany
| | | | | | | |
Collapse
|
43
|
Specific transmembrane segments are selectively delayed at the ER translocon during opsin biogenesis. Biochem J 2008; 411:495-506. [PMID: 18248332 DOI: 10.1042/bj20071597] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
A site-specific cross-linking approach was used to study the integration of TM (transmembrane) segments 4-7 of the polytopic membrane protein, opsin, at the ER (endoplasmic reticulum). We found that although TM4 exits the ER translocon rapidly, TM segments 5, 6 and 7 are all retained at the translocon until opsin biosynthesis is terminated. Furthermore, although artificial extension of the nascent chain is not sufficient to release the C-terminal region of opsin from the translocon, substitution of the native TM segment 7 with a more hydrophobic TM segment results in its rapid lateral exit into the lipid bilayer. We conclude that the intrinsic properties of a TM segment determine the timing of its membrane integration rather than its relative location within the polypeptide chain. A pronounced and prolonged association of opsin TM5 with the translocon-associated component PAT-10 was also observed, suggesting that PAT-10 may facilitate the assembly of distinct opsin subdomains during membrane integration. The results of the present study strongly support a model in which the ER translocon co-ordinates the integration of selected TM segments in response to the specific requirements of the precursor being synthesized.
Collapse
|
44
|
Inserting proteins into the bacterial cytoplasmic membrane using the Sec and YidC translocases. Nat Rev Microbiol 2008; 6:234-44. [PMID: 18246081 DOI: 10.1038/nrmicro3595] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
This Review describes the pathways that are used to insert newly synthesized proteins into the cytoplasmic membranes of bacteria, and provides insight into the function of two of the evolutionarily conserved translocases that catalyse this process. These highly sophisticated translocases are responsible for decoding the topogenic sequences within membrane proteins that direct membrane protein insertion and orientation. The role of the Sec and YidC translocases in the folding of bacterial membrane proteins is also highlighted.
Collapse
|
45
|
Rapoport TA. Protein translocation across the eukaryotic endoplasmic reticulum and bacterial plasma membranes. Nature 2008; 450:663-9. [PMID: 18046402 DOI: 10.1038/nature06384] [Citation(s) in RCA: 702] [Impact Index Per Article: 41.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
A decisive step in the biosynthesis of many proteins is their partial or complete translocation across the eukaryotic endoplasmic reticulum membrane or the prokaryotic plasma membrane. Most of these proteins are translocated through a protein-conducting channel that is formed by a conserved, heterotrimeric membrane-protein complex, the Sec61 or SecY complex. Depending on channel binding partners, polypeptides are moved by different mechanisms: the polypeptide chain is transferred directly into the channel by the translating ribosome, a ratcheting mechanism is used by the endoplasmic reticulum chaperone BiP, and a pushing mechanism is used by the bacterial ATPase SecA. Structural, genetic and biochemical data show how the channel opens across the membrane, releases hydrophobic segments of membrane proteins laterally into lipid, and maintains the membrane barrier for small molecules.
Collapse
Affiliation(s)
- Tom A Rapoport
- Howard Hughes Medical Institute and Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, Massachusetts 02115, USA.
| |
Collapse
|
46
|
Robson A, Booth AEG, Gold VAM, Clarke AR, Collinson I. A large conformational change couples the ATP binding site of SecA to the SecY protein channel. J Mol Biol 2007; 374:965-76. [PMID: 17964601 DOI: 10.1016/j.jmb.2007.09.086] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2007] [Revised: 09/26/2007] [Accepted: 09/27/2007] [Indexed: 11/30/2022]
Abstract
In bacteria, the SecYEG protein translocation complex employs the cytosolic ATPase SecA to couple the energy of ATP binding and hydrolysis to the mechanical force required to push polypeptides through the membrane. The molecular basis of this energy transducing reaction is not well understood. A peptide-binding array has been employed to identify sites on SecYEG that interact with SecA. These results along with fluorescence spectroscopy have been exploited to characterise a long-distance conformational change that connects the nucleotide-binding fold of SecA to the transmembrane polypeptide channel in SecY. These movements are driven by binding of non-hydrolysable ATP analogues to a monomer of SecA in association with the SecYEG complex. We also determine that interaction with SecYEG simultaneously decreases the affinity of SecA for ATP and inhibitory magnesium, favouring a previously identified active state of the ATPase. Mutants of SecA capable of binding but not hydrolysing ATP do not elicit this conformationally active state, implicating residues of the Walker B motif in the early chain of events that couple ATP binding to the mobility of the channel.
Collapse
Affiliation(s)
- Alice Robson
- Department of Biochemistry, University of Bristol, University Walk, Bristol, BS8 1TD, UK
| | | | | | | | | |
Collapse
|
47
|
Abstract
Bacteria and archaea possess a protein complex in the plasma membrane that governs protein secretion and membrane protein insertion. Eukaryotes carry homologues in the endoplasmic reticulum (ER) where they direct the same reaction. A combination of experiments conducted on the systems found in all three domains of life has revealed a great deal about protein translocation. The channel provides a route for proteins to pass through the hydrophobic barrier of the membrane, assisted by various partner proteins which maintain an unfolded state of the substrate, target it to the channel and provide the energy and mechanical drive required for transport. In bacteria, the post-translational reaction utilizes an ATPase that couples the free energy of ATP binding and hydrolysis to move the substrate through the protein pore. This review will draw on genetic, biochemical and structural findings in an account of our current understanding of this mechanism.
Collapse
Affiliation(s)
- Vicki A M Gold
- Department of Biochemistry, University of Bristol, Bristol, UK
| | | | | |
Collapse
|
48
|
|
49
|
Junne T, Schwede T, Goder V, Spiess M. Mutations in the Sec61p Channel Affecting Signal Sequence Recognition and Membrane Protein Topology. J Biol Chem 2007; 282:33201-9. [PMID: 17893139 DOI: 10.1074/jbc.m707219200] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The orientation of most single-spanning membrane proteins obeys the "positive-inside rule", i.e. the flanking region of the transmembrane segment that is more positively charged remains in the cytosol. These membrane proteins are integrated by the Sec61/SecY translocon, but how their orientation is achieved is unknown. We have screened for mutations in yeast Sec61p that alter the orientation of single-spanning membrane proteins. We identified a class of mutants that are less efficient in retaining the positively charged flanking region in the cytosol. Surprisingly, these mutations are located at many different sites in the Sec61/SecY molecule, and they do not only involve charged amino acid residues. All these mutants have a prl phenotype that so far have only been seen in bacteria; they allow proteins with defective signal sequences to be translocated, likely because the Sec61p channel opens more easily. A similar correlation between topology defects and prl phenotype was also seen with previously identified yeast Sec61 mutants. Our results suggest a model in which the regulated opening of the translocon is required for the faithful orientation of membrane proteins.
Collapse
Affiliation(s)
- Tina Junne
- Biozentrum, University of Basel, Klingelbergstrasse 70, Basel, Switzerland
| | | | | | | |
Collapse
|
50
|
Bol R, de Wit JG, Driessen AJM. The Active Protein-conducting Channel of Escherichia coli Contains an Apolar Patch. J Biol Chem 2007; 282:29785-93. [PMID: 17699162 DOI: 10.1074/jbc.m702140200] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Protein translocation across the cytoplasmic membrane of Escherichia coli is mediated by translocase, a complex of a protein-conducting channel, SecYEG, and a peripheral motor domain, SecA. SecYEG has been proposed to constitute an aqueous path for proteins to pass the membrane in an unfolded state. To probe the solvation state of the active channel, the polarity sensitive fluorophore N-((2-(iodoacetoxy)ethyl)-N-methyl) amino-7-nitrobenz-2-oxa-1,3-diazole was introduced at specific positions in the C-terminal region of the secretory protein proOmpA. Fluorescence measurements with defined proOmpA-DHFR translocation intermediates indicate mostly a water-exposed environment with a hydrophobic region in the center of the channel.
Collapse
Affiliation(s)
- Redmar Bol
- Department of Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, The Netherlands
| | | | | |
Collapse
|