1
|
Chen N, Wu J, Sun D, Kaplan HJ, Shao H. Mice deficient of G-protein coupled receptor 3 (GPR3) developed severe experimental autoimmune uveitis (EAU) through increased effector T cell activities. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2025:vkaf099. [PMID: 40381994 DOI: 10.1093/jimmun/vkaf099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 03/27/2025] [Indexed: 05/20/2025]
Abstract
We discovered a protective role of G protein-coupled receptor 3 (GPR3) in a mouse model of T cell-mediated autoimmune uveitis. GPR3 is an orphan receptor that maintains Gs-coupling and cyclic AMP production without an exogenous ligand. Consequently, GPR3 deficient (GPR3KO) mice were more susceptible to developing experimental autoimmune uveitis (EAU) induced by immunization with interphotoreceptor retinoid-binding protein (IRBP) or by adoptive transfer of IRBP-specific T cells than their wild type (WT) littermates. T cells isolated from IRBP-immunized GPR3KO mice demonstrated an increase in proliferation and inflammatory cytokine production in response to the specific IRBP antigen and a relatively high resistance to activation-induced T cell death compared to T cells isolated from immunized WT mice. Moreover, a major tight junction protein such as ZO-1 was reduced in GPR3 deficient retina with severe uveitis after IRBP-specific T cells were transferred. Taken together, our findings suggest that constitutively active GPR3 inhibits T cell mediated retinal inflammation.
Collapse
Affiliation(s)
- Nu Chen
- Department of Ophthalmology and Visual Sciences, Kentucky Lions Eye Center, University of Louisville, School of Medicine, Louisville, KY, United States
- Present address: Tianjin Eye Hospital, Tianjin, P. R. China
| | - Jun Wu
- Department of Ophthalmology and Visual Sciences, Kentucky Lions Eye Center, University of Louisville, School of Medicine, Louisville, KY, United States
- Present address: Department of Ophthalmology, Huaian First Hospital, Nanjing Medical University, Huaian, P. R. China
| | - Deming Sun
- Doheny Eye Institute & Department Ophthalmology, David Geffen School of Medicine/UCLA, Los Angeles, CA, United States
| | - Henry J Kaplan
- Department of Ophthalmology and Biochemistry & Molecular Biology, St Louis University School of Medicine, St Louis, MO, United States
| | - Hui Shao
- Department of Ophthalmology and Visual Sciences, Kentucky Lions Eye Center, University of Louisville, School of Medicine, Louisville, KY, United States
| |
Collapse
|
2
|
Swenson K. Beyond the hype: a comprehensive exploration of CBD's biological impacts and mechanisms of action. J Cannabis Res 2025; 7:24. [PMID: 40350443 PMCID: PMC12067965 DOI: 10.1186/s42238-025-00274-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 03/16/2025] [Indexed: 05/14/2025] Open
Abstract
BACKGROUND Cannabidiol (CBD) is the primary non-psychoactive component of cannabis. Consumption of CBD is increasing rapidly as it is federally legal and widely available in the United States, Europe, Mexico, Canada, and Asia. CBD is gaining traction in medical and biochemical research, though a comprehensive classification of CBD receptor interactions is yet to be elucidated. METHODS A comprehensive literature search across PubMed, Web of Science, and Google Scholar identified studies reporting cannabidiol (CBD) interactions with receptors, enzymes, and biological processes. Eligible articles included cell culture, animal model, biochemical, and clinical studies. Findings were thematically synthesized by body system, emphasizing mechanisms and implications for health and disease. RESULTS Herein, I compile the literature to date of known interactions between CBD and various receptors, enzymes, and processes. I discuss the impact of CBD exposure on multiple processes, including endocannabinoid receptors, ion channels, cytochrome 450 enzymes, inflammatory pathways, and sex hormone regulation. I explain the potential effects of CBD on psychiatric disorders, seizure activity, nausea and vomiting, pain sensation, thermal regulation, neuronal signaling, neurodegenerative diseases, reproductive aging, drug metabolism, inflammation, sex hormone regulation, and energy homeostasis. CONCLUSIONS Understanding how CBD functions and how it can interact with other recreational or pharmaceutical medications is necessary for proper clinical management of patients who consume CBD.
Collapse
Affiliation(s)
- Karli Swenson
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, 13123 East 16 Ave B265, Aurora, CO, 80045, USA.
| |
Collapse
|
3
|
Pakkhesal S, Shakouri M, Mosaddeghi-Heris R, Kiani Nasab S, Salehi N, Sharafi A, Ahmadalipour A. Bridging the gap: The endocannabinoid system as a functional fulcrum for benzodiazepines in a novel frontier of anxiety pharmacotherapy. Pharmacol Ther 2025; 267:108799. [PMID: 39862927 DOI: 10.1016/j.pharmthera.2025.108799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 09/27/2024] [Accepted: 01/18/2025] [Indexed: 01/27/2025]
Abstract
While benzodiazepines have been a mainstay of the pharmacotherapy of anxiety disorders, their short-term efficacy and risk of abuse have driven the exploration of alternative treatment approaches. The endocannabinoid (eCB) system has emerged as a key modulator of anxiety-related processes, with evidence suggesting dynamic interactions between the eCB system and the GABAergic system, the primary target of benzodiazepines. According to the existing literature, the activation of the cannabinoid receptors has been shown to exert anxiolytic effects, while their blockade or genetic deletion results in heightened anxiety-like responses. Moreover, studies have provided evidence of interactions between the eCB system and benzodiazepines in anxiety modulation. For instance, the attenuation of benzodiazepine-induced anxiolysis by cannabinoid receptor antagonism or genetic variations in the eCB system components in animal studies, have been associated with variations in benzodiazepine response and susceptibility to anxiety disorders. The combined use of cannabinoid-based medications, such as cannabinoid receptor agonists and benzodiazepine co-administration, has shown promise in augmenting anxiolytic effects and reducing benzodiazepine dosage requirements. This article aims to comprehensively review and discuss the current evidence on the involvement of the eCB system as a key modulator of benzodiazepine-related anxiolytic effects, and further, the possible mechanisms by which the region-specific eCB system-GABAergic connectivity modulates the neuro-endocrine/behavioral stress response, providing an inclusive understanding of the complex interplay between the eCB system and benzodiazepines in the context of anxiety regulation, to inform future research and clinical practice.
Collapse
Affiliation(s)
- Sina Pakkhesal
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Mohammad Shakouri
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Mosaddeghi-Heris
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sepideh Kiani Nasab
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Negin Salehi
- Student Research Committee, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - AmirMohammad Sharafi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Ahmadalipour
- Research Center of Psychiatry and Behavioral Sciences, Tabriz University of Medical Sciences, Tabriz, Iran; Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Biomedical Engineering, The City College of New York, New York, NY, USA.
| |
Collapse
|
4
|
Demin KA, Kolesnikova TO, Galstyan DS, Krotova NA, Ilyin NP, Derzhavina KA, Seredinskaya M, Nerush M, Pushkareva SA, Masharsky A, de Abreu MS, Kalueff AV. The Utility of Prolonged Chronic Unpredictable Stress to Study the Effects of Chronic Fluoxetine, Eicosapentaenoic Acid, and Lipopolysaccharide on Anxiety-Like Behavior and Hippocampal Transcriptomic Responses in Male Rats. J Neurosci Res 2025; 103:e70025. [PMID: 39907099 DOI: 10.1002/jnr.70025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 12/05/2024] [Accepted: 01/16/2025] [Indexed: 02/06/2025]
Abstract
Chronic stress is a common trigger of multiple neuropsychiatric illnesses. Animal models are widely used to study stress-induced brain disorders and their interplay with neuroinflammation and other neuroimmune processes. Here, we apply the prolonged 12-week chronic unpredictable stress (PCUS) model to examine rat behavioral and hippocampal transcriptomic responses to stress and to chronic 4-week treatment with a classical antidepressant fluoxetine, an anti-inflammatory agent eicosapentaenoic acid (EPA), a pro-inflammatory agent lipopolysaccharide and their combinations. Overall, PCUS evoked anxiety-like behavioral phenotype in rats, corrected by chronic fluoxetine (alone or combined with other drugs), and EPA. PCUS also evoked pronounced transcriptomic responses in rat hippocampi, involving > 200 differentially expressed genes. While pharmacological manipulations did not affect hippocampal gene expression markedly, Gpr6, Drd2 and Adora2a were downregulated in stressed rats treated with fluoxetine, EPA and fluoxetine + EPA, suggesting their respective protein products (G protein-coupled receptor 6, dopamine D2 receptor and adenosine A2A receptor) as potential evolutionarily conserved targets under chronic stress. Overall, these findings support the validity of rat PCUS paradigm as a useful model to study stress-related anxiety pathogenesis, and call for further research probing how various conventional and novel drugs may (co)modulate behavioral and neurotranscriptomic biomarkers of chronic stress.
Collapse
Affiliation(s)
- Konstantin A Demin
- Almazov National Medical Research Centre, St. Petersburg, Russia
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
| | - Tatiana O Kolesnikova
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
- Neuroscience Program, Sirius University of Science and Technology, Sochi, Russia
| | - David S Galstyan
- Almazov National Medical Research Centre, St. Petersburg, Russia
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
| | - Natalia A Krotova
- Almazov National Medical Research Centre, St. Petersburg, Russia
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
| | - Nikita P Ilyin
- Almazov National Medical Research Centre, St. Petersburg, Russia
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
| | | | - Maria Seredinskaya
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
| | - Maria Nerush
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
| | - Sofia A Pushkareva
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
| | - Alexey Masharsky
- Core Facility Centre for Molecular and Cell Technologies, St. Petersburg State University, St. Petersburg, Russia
| | - Murilo S de Abreu
- Graduate Program in Health Sciences, Federal University of Health Sciences of Porto Alegre, Porto Alegre, Brazil
- Western Caspian University, Baku, Azerbaijan
| | - Allan V Kalueff
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
- Department of Biosciences and Bioinformatics, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou, China
- Suzhou Municipal Key Laboratory of Neurobiology and Cell Signaling, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou, China
| |
Collapse
|
5
|
Pușcașu C, Andrei C, Olaru OT, Zanfirescu A. Metabolite-Sensing Receptors: Emerging Targets for Modulating Chronic Pain Pathways. Curr Issues Mol Biol 2025; 47:63. [PMID: 39852178 PMCID: PMC11763455 DOI: 10.3390/cimb47010063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 01/15/2025] [Accepted: 01/17/2025] [Indexed: 01/26/2025] Open
Abstract
Chronic pain is a debilitating condition affecting millions worldwide, often resulting from complex interactions between the nervous and immune systems. Recent advances highlight the critical role of metabolite-sensing G protein-coupled receptors (GPCRs) in various chronic pain types. These receptors link metabolic changes with cellular responses, influencing inflammatory and degenerative processes. Receptors such as free fatty acid receptor 1 (FFAR1/GPR40), free fatty acid receptor 4 (FFAR4/GPR120), free fatty acid receptor 2 (FFAR2/GPR43), and Takeda G protein-coupled receptor 5 (TGR5/GPR131/GPBAR1) are key modulators of nociceptive signaling. GPR40, activated by long-chain fatty acids, exhibits strong anti-inflammatory effects by reducing cytokine expression. Butyrate-activated GPR43 inhibits inflammatory mediators like nitric oxide synthase-2 and cyclooxygenase-2, mitigating inflammation. TGR5, activated by bile acids, regulates inflammation and cellular senescence through pathways like NF-κB and p38. These receptors are promising therapeutic targets in chronic pain, addressing the metabolic and inflammatory factors underlying nociceptive sensitization and tissue degeneration. This review explores the molecular mechanisms of metabolite-sensing receptors in chronic pain, their therapeutic potential, and challenges in clinical application. By uncovering these mechanisms, metabolite-sensing receptors could lead to safer, more effective pain management strategies.
Collapse
Affiliation(s)
| | - Corina Andrei
- Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, Traian Vuia 6, 020956 Bucharest, Romania; (C.P.); (O.T.O.); (A.Z.)
| | | | | |
Collapse
|
6
|
Barekatain M, Johansson LC, Lam JH, Chang H, Sadybekov AV, Han GW, Russo J, Bliesath J, Brice N, Carlton MBL, Saikatendu KS, Sun H, Murphy ST, Monenschein H, Schiffer HH, Popov P, Lutomski CA, Robinson CV, Liu ZJ, Hua T, Katritch V, Cherezov V. Structural insights into the high basal activity and inverse agonism of the orphan receptor GPR6 implicated in Parkinson's disease. Sci Signal 2024; 17:eado8741. [PMID: 39626010 PMCID: PMC11850111 DOI: 10.1126/scisignal.ado8741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 11/07/2024] [Indexed: 02/06/2025]
Abstract
GPR6 is an orphan G protein-coupled receptor with high constitutive activity found in D2-type dopamine receptor-expressing medium spiny neurons of the striatopallidal pathway, which is aberrantly hyperactivated in Parkinson's disease. Here, we solved crystal structures of GPR6 without the addition of a ligand (a pseudo-apo state) and in complex with two inverse agonists, including CVN424, which improved motor symptoms in patients with Parkinson's disease in clinical trials. In addition, we obtained a cryo-electron microscopy structure of the signaling complex between GPR6 and its cognate Gs heterotrimer. The pseudo-apo structure revealed a strong density in the orthosteric pocket of GPR6 corresponding to a lipid-like endogenous ligand. A combination of site-directed mutagenesis, native mass spectrometry, and computer modeling suggested potential mechanisms for high constitutive activity and inverse agonism in GPR6 and identified a series of lipids and ions bound to the receptor. The structures and results obtained in this study could guide the rational design of drugs that modulate GPR6 signaling.
Collapse
Affiliation(s)
- Mahta Barekatain
- Bridge Institute, USC Michelson Center for Convergent Biosciences, University of Southern California, Los Angeles, CA 90089, USA
- Department of Chemistry, University of Southern California, Los Angeles, CA 90089, USA
| | - Linda C. Johansson
- Bridge Institute, USC Michelson Center for Convergent Biosciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Jordy H. Lam
- Bridge Institute, USC Michelson Center for Convergent Biosciences, University of Southern California, Los Angeles, CA 90089, USA
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA 90089, USA
| | - Hao Chang
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China
| | - Anastasiia V. Sadybekov
- Bridge Institute, USC Michelson Center for Convergent Biosciences, University of Southern California, Los Angeles, CA 90089, USA
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA 90089, USA
| | - Gye Won Han
- Bridge Institute, USC Michelson Center for Convergent Biosciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Joseph Russo
- Takeda Development Center Americas, Inc, San Diego, CA 92121, USA
| | - Joshua Bliesath
- Takeda Development Center Americas, Inc, San Diego, CA 92121, USA
| | | | | | | | - Hukai Sun
- Takeda Development Center Americas, Inc, San Diego, CA 92121, USA
| | - Sean T. Murphy
- Takeda Development Center Americas, Inc, San Diego, CA 92121, USA
| | | | - Hans H. Schiffer
- Takeda Development Center Americas, Inc, San Diego, CA 92121, USA
| | - Petr Popov
- Bridge Institute, USC Michelson Center for Convergent Biosciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Corinne A. Lutomski
- Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building, University of Oxford, Oxford OX1 3QU, UK
| | - Carol V. Robinson
- Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building, University of Oxford, Oxford OX1 3QU, UK
| | - Zhi-Jie Liu
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China
| | - Tian Hua
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China
| | - Vsevolod Katritch
- Bridge Institute, USC Michelson Center for Convergent Biosciences, University of Southern California, Los Angeles, CA 90089, USA
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA 90089, USA
| | - Vadim Cherezov
- Bridge Institute, USC Michelson Center for Convergent Biosciences, University of Southern California, Los Angeles, CA 90089, USA
- Department of Chemistry, University of Southern California, Los Angeles, CA 90089, USA
| |
Collapse
|
7
|
Brice NL, Carlton M, Margolin DH, Bexon M, Matthews KL, Dawson LA, Ellenbogen AL, Olanow CW, Dubow J, Kieburtz K. CVN424, a GPR6 inverse agonist, for Parkinson's disease and motor fluctuations: a double-blind, randomized, phase 2 trial. EClinicalMedicine 2024; 77:102882. [PMID: 39469536 PMCID: PMC11513664 DOI: 10.1016/j.eclinm.2024.102882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/27/2024] [Accepted: 09/30/2024] [Indexed: 10/30/2024] Open
Abstract
Background CVN424 is a GPR6 inverse agonist that provides selective pharmacological control of the indirect striatopallidal pathway. We assessed the safety and efficacy of CVN424 as an adjunctive treatment to levodopa for reducing OFF-time in individuals with Parkinson's disease (PD) experiencing motor-fluctuations. Methods This was a randomised, double-blind, placebo-controlled study conducted at 21 sites across the United States to evaluate two doses of CVN424 (NCT04191577). Patients with PD (Hoehn and Yahr stages 2-4) who were on a stable dose of levodopa and experiencing ≥2 h of daily OFF-time were randomised (1:1:1) to receive either once-daily CVN424 (50 mg or 150 mg) or placebo for a 28-day treatment period. The primary endpoints were safety and tolerability. The key secondary endpoint was the change from baseline to Day 27 in OFF-time. Findings The study was conducted from December 23, 2019, to October 14, 2021. Out of 198 participants screened, 141 eligible participants were randomised to one of the three treatment groups (n = 47 per group), and 127 participants completed the 28-day treatment period. The most common treatment emergent adverse events (TEAEs) were headache (2% with CVN424 50 mg, 9% with CVN424 150 mg, and 2% with placebo) and nausea (4% with CVN424 50 mg, 6% with CVN424 150 mg and 2% with placebo). No serious treatment-related adverse events were reported. On Day 27, the mean ± standard deviation (SD) change from baseline in daily OFF-time was -1.3 ± 3.0 h in the CVN424 50 mg group, -1.6 ± 2.5 h in the CVN424 150 mg group, and -0.5 ± 2.9 h in the placebo group. The placebo-adjusted LS mean ± standard error (SE) treatment difference was significant for the CVN424 150 mg dose (1.3 ± 0.56 h, [95 CI% -2.41 to -0.19], nominal p = 0.02). Interpretation Treatment with CVN424 was safe and well-tolerated. Despite the short study duration and small sample size, the 150 mg CVN424 dose provided a clinically meaningful reduction in daily OFF-time. This study supports the development of CVN424 for the treatment of PD. Funding Cerevance.
Collapse
Affiliation(s)
- Nicola L. Brice
- Cerevance, 418 Cambridge Science Park, CB4 0PZ, Cambridge, United Kingdom
| | - Mark Carlton
- Cerevance, 418 Cambridge Science Park, CB4 0PZ, Cambridge, United Kingdom
| | - David H. Margolin
- Cerevance, 418 Cambridge Science Park, CB4 0PZ, Cambridge, United Kingdom
| | - Martin Bexon
- Bexon Clinical Consulting LLC, 551 Valley Road #200, Upper Montclair, NJ, 07043, USA
| | - Kim L. Matthews
- Cerevance, 418 Cambridge Science Park, CB4 0PZ, Cambridge, United Kingdom
| | - Lee A. Dawson
- Cerevance, 418 Cambridge Science Park, CB4 0PZ, Cambridge, United Kingdom
| | | | - C. Warren Olanow
- Clintrex Research Corp, Sarasota, FL, USA
- Department of Neurology, Mount Sinai School of Medicine, New York, NY, USA
| | | | | |
Collapse
|
8
|
Liao Y, Muntean BS. KCTD1 regulation of Adenylyl cyclase type 5 adjusts striatal cAMP signaling. Proc Natl Acad Sci U S A 2024; 121:e2406686121. [PMID: 39413138 PMCID: PMC11513970 DOI: 10.1073/pnas.2406686121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 09/19/2024] [Indexed: 10/18/2024] Open
Abstract
Dopamine transfers information to striatal neurons, and disrupted neurotransmission leads to motor deficits observed in movement disorders. Striatal dopamine converges downstream to Adenylyl Cyclase Type 5 (AC5)-mediated synthesis of cAMP, indicating the essential role of signal transduction in motor physiology. However, the relationship between dopamine decoding and AC5 regulation is unknown. Here, we utilized an unbiased global protein stability screen to identify Potassium Channel Tetramerization Domain 1 (KCTD1) as a key regulator of AC5 level that is mechanistically tied to N-linked glycosylation. We then implemented a CRISPR/SaCas9 approach to eliminate KCTD1 in striatal neurons expressing a Förster resonance energy transfer (FRET)-based cAMP biosensor. 2-photon imaging of striatal neurons in intact circuits uncovered that dopaminergic signaling was substantially compromised in the absence of KCTD1. Finally, knockdown of KCTD1 in genetically defined dorsal striatal neurons significantly altered motor behavior in mice. These results reveal that KCTD1 acts as an essential modifier of dopaminergic signaling by stabilizing striatal AC5.
Collapse
Affiliation(s)
- Yini Liao
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA30912
| | - Brian S. Muntean
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA30912
| |
Collapse
|
9
|
Keifi Bajestani A, Alavi MS, Etemad L, Roohbakhsh A. Role of orphan G-protein coupled receptors in tissue ischemia: A comprehensive review. Eur J Pharmacol 2024; 978:176762. [PMID: 38906238 DOI: 10.1016/j.ejphar.2024.176762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 06/12/2024] [Accepted: 06/19/2024] [Indexed: 06/23/2024]
Abstract
Ischemic events lead to many diseases and deaths worldwide. Ischemia/reperfusion (I/R) occurs due to reduced blood circulation in tissues followed by blood reflow. Reoxygenation of ischemic tissues is characterized by oxidative stress, inflammation, energy distress, and endoplasmic reticulum stress. There are still no adequate clinical protocols or pharmacological approaches to address the consequences of I/R damage. G protein-coupled receptors (GPCRs) are important therapeutic targets. They compose a large family of seven transmembrane-spanning proteins that are involved in many biological functions. Orphan GPCRs are a large subgroup of these receptors expressed in different organs. In the present review, we summarized the literature regarding the role of orphan GPCRs in I/R in different organs. We focused on the effect of these receptors on modulating cellular and molecular processes underlying ischemia including apoptosis, inflammation, and autophagy. The study showed that GPR3, GPR4, GPR17, GPR30, GPR31, GPR35, GPR37, GPR39, GPR55, GPR65, GPR68, GPR75, GPR81, and GPR91 are involved in ischemic events, mainly in the brain and heart. These receptors offer new possibilities for treating I/R injuries in the body.
Collapse
Affiliation(s)
- Alireza Keifi Bajestani
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohaddeseh Sadat Alavi
- Department of Pharmacology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Leila Etemad
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Roohbakhsh
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
10
|
Lu Y, Hatzipantelis CJ, Langmead CJ, Stewart GD. Molecular insights into orphan G protein-coupled receptors relevant to schizophrenia. Br J Pharmacol 2024; 181:2095-2113. [PMID: 37605621 DOI: 10.1111/bph.16221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 06/25/2023] [Accepted: 07/23/2023] [Indexed: 08/23/2023] Open
Abstract
Schizophrenia remains a sizable socio-economic burden that continues to be treated with therapeutics based on 70-year old science. All currently approved therapeutics primarily target the dopamine D2 receptor to achieve their efficacy. Whilst dopaminergic dysregulation is a key feature in this disorder, the targeting of dopaminergic machinery has yielded limited efficacy and an appreciable side effect burden. Over the recent decades, numerous drugs that engage non-dopaminergic G protein-coupled receptors (GPCRs) have yielded a promise of efficacy without the deleterious side effect profile, yet none have successfully completed clinical studies and progressed to the market. More recently, there has been increased attention around non-dopaminergic GPCR-targeting drugs, which demonstrated efficacy in some schizophrenia symptom domains. This provides renewed hope that effective schizophrenia treatment may lie outside of the dopaminergic space. Despite the potential for muscarinic receptor- (and other well-characterised GPCR families) targeting drugs to treat schizophrenia, they are often plagued with complications such as lack of receptor subtype selectivity and peripheral on-target side effects. Orphan GPCR studies have opened a new avenue of exploration with many demonstrating schizophrenia-relevant mechanisms and a favourable expression profile, thus offering potential for novel drug development. This review discusses centrally expressed orphan GPCRs: GPR3, GPR6, GPR12, GPR52, GPR85, GPR88 and GPR139 and their relationship to schizophrenia. We review their expression, signalling mechanisms and cellular function, in conjunction with small molecule development and structural insights. We seek to provide a snapshot of the growing evidence and development potential of new classes of schizophrenia therapeutics. LINKED ARTICLES: This article is part of a themed issue Therapeutic Targeting of G Protein-Coupled Receptors: hot topics from the Australasian Society of Clinical and Experimental Pharmacologists and Toxicologists 2021 Virtual Annual Scientific Meeting. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v181.14/issuetoc.
Collapse
Affiliation(s)
- Yao Lu
- Drug Discovery Biology and Neuroscience & Mental Health Therapeutic Program Area, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
- ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
| | | | - Christopher J Langmead
- Drug Discovery Biology and Neuroscience & Mental Health Therapeutic Program Area, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
- ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
- Neuromedicines Discovery Centre, Monash University, Parkville, Australia
- Phrenix Therapeutics, Parkville, Australia
| | - Gregory D Stewart
- Drug Discovery Biology and Neuroscience & Mental Health Therapeutic Program Area, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
- ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
- Neuromedicines Discovery Centre, Monash University, Parkville, Australia
- Phrenix Therapeutics, Parkville, Australia
| |
Collapse
|
11
|
Öz-Arslan D, Yavuz M, Kan B. Exploring orphan GPCRs in neurodegenerative diseases. Front Pharmacol 2024; 15:1394516. [PMID: 38895631 PMCID: PMC11183337 DOI: 10.3389/fphar.2024.1394516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 05/15/2024] [Indexed: 06/21/2024] Open
Abstract
Neurodegenerative disorders represent a significant and growing health burden worldwide. Unfortunately, limited therapeutic options are currently available despite ongoing efforts. Over the past decades, research efforts have increasingly focused on understanding the molecular mechanisms underlying these devastating conditions. Orphan receptors, a class of receptors with no known endogenous ligands, emerge as promising druggable targets for diverse diseases. This review aims to direct attention to a subgroup of orphan GPCRs, in particular class A orphans that have roles in neurodegenerative disorders, including Alzheimer's disease, Parkinson's disease, Huntington's disease, and Multiple sclerosis. We highlight the diverse roles orphan receptors play in regulating critical cellular processes such as synaptic transmission, neuronal survival and neuro-inflammation. Moreover, we discuss the therapeutic potential of targeting orphan receptors for the treatment of neurodegenerative disorders, emphasizing recent advances in drug discovery and preclinical studies. Finally, we outline future directions and challenges in orphan receptor research.
Collapse
Affiliation(s)
- Devrim Öz-Arslan
- Department of Biophysics, Acibadem MAA University, School of Medicine, Istanbul, Türkiye
- Department of Neurosciences, Acibadem MAA University, Institute of Health Sciences, İstanbul, Türkiye
| | - Melis Yavuz
- Department of Neurosciences, Acibadem MAA University, Institute of Health Sciences, İstanbul, Türkiye
- Department of Pharmacology, Acibadem MAA University, School of Pharmacy, Istanbul, Türkiye
| | - Beki Kan
- Department of Biophysics, Acibadem MAA University, School of Medicine, Istanbul, Türkiye
- Department of Neurosciences, Acibadem MAA University, Institute of Health Sciences, İstanbul, Türkiye
| |
Collapse
|
12
|
Xiong Y, Xu Z, Li X, Wang Y, Zhao J, Wang N, Duan Y, Xia R, Han Z, Qian Y, Liang J, Zhang A, Guo C, Inoue A, Xia Y, Chen Z, He Y. Identification of oleic acid as an endogenous ligand of GPR3. Cell Res 2024; 34:232-244. [PMID: 38287117 PMCID: PMC10907358 DOI: 10.1038/s41422-024-00932-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 01/11/2024] [Indexed: 01/31/2024] Open
Abstract
Although GPR3 plays pivotal roles in both the nervous system and metabolic processes, such as cold-induced thermogenesis, its endogenous ligand remains elusive. Here, by combining structural approach (including cryo-electron microscopy), mass spectrometry analysis, and functional studies, we identify oleic acid (OA) as an endogenous ligand of GPR3. Our study reveals a hydrophobic tunnel within GPR3 that connects the extracellular side of the receptor to the middle of plasma membrane, enabling fatty acids to readily engage the receptor. Functional studies demonstrate that OA triggers downstream Gs signaling, whereas lysophospholipids fail to activate the receptor. Moreover, our research reveals that cold stimulation induces the secretion of OA in mice, subsequently activating Gs/cAMP/PKA signaling in brown adipose tissue. Notably, brown adipose tissues from Gpr3 knockout mice do not respond to OA during cold stimulation, reinforcing the significance of GPR3 in this process. Finally, we propose a "born to be activated and cold to enhance" model for GPR3 activation. Our study provides a starting framework for the understanding of GPR3 signaling in cold-stimulated thermogenesis.
Collapse
Affiliation(s)
- Yangjie Xiong
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang, China
| | - Zhenmei Xu
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang, China
| | - Xinzhi Li
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang, China
| | - Yuqin Wang
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang, China
| | - Jing Zhao
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, China
| | - Na Wang
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang, China
| | - Yaning Duan
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang, China
| | - Ruixue Xia
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang, China
| | - Zhengbin Han
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang, China
| | - Yu Qian
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang, China
| | - Jiale Liang
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang, China
| | - Anqi Zhang
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang, China
| | - Changyou Guo
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang, China
| | - Asuka Inoue
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3, Aoba, Aramaki, Aoba-ku, Sendai, Miyagi, Japan
| | - Yu Xia
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, China.
| | - Zheng Chen
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang, China.
- Frontiers Science Center for Matter Behave in Space Environment, Harbin Institute of Technology, Harbin, Heilongjiang, China.
| | - Yuanzheng He
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang, China.
- Frontiers Science Center for Matter Behave in Space Environment, Harbin Institute of Technology, Harbin, Heilongjiang, China.
| |
Collapse
|
13
|
Anversa RG, Maddern XJ, Lawrence AJ, Walker LC. Orphan peptide and G protein-coupled receptor signalling in alcohol use disorder. Br J Pharmacol 2024; 181:595-609. [PMID: 38073127 PMCID: PMC10953447 DOI: 10.1111/bph.16301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 11/22/2023] [Accepted: 11/28/2023] [Indexed: 01/10/2024] Open
Abstract
Neuropeptides and G protein-coupled receptors (GPCRs) have long been, and continue to be, one of the most popular target classes for drug discovery in CNS disorders, including alcohol use disorder (AUD). Yet, orphaned neuropeptide systems and receptors (oGPCR), which have no known cognate receptor or ligand, remain understudied in drug discovery and development. Orphan neuropeptides and oGPCRs are abundantly expressed within the brain and represent an unprecedented opportunity to address brain function and may hold potential as novel treatments for disease. Here, we describe the current literature regarding orphaned neuropeptides and oGPCRs implicated in AUD. Specifically, in this review, we focus on the orphaned neuropeptide cocaine- and amphetamine-regulated transcript (CART), and several oGPCRs that have been directly implicated in AUD (GPR6, GPR26, GPR88, GPR139, GPR158) and discuss their potential and pitfalls as novel treatments, and progress in identifying their cognate receptors or ligands.
Collapse
Affiliation(s)
- Roberta Goncalves Anversa
- Florey Institute of Neuroscience and Mental HealthMelbourneVICAustralia
- Florey Department of Neuroscience and Mental HealthUniversity of MelbourneMelbourneVICAustralia
| | - Xavier J. Maddern
- Florey Institute of Neuroscience and Mental HealthMelbourneVICAustralia
- Florey Department of Neuroscience and Mental HealthUniversity of MelbourneMelbourneVICAustralia
| | - Andrew J. Lawrence
- Florey Institute of Neuroscience and Mental HealthMelbourneVICAustralia
- Florey Department of Neuroscience and Mental HealthUniversity of MelbourneMelbourneVICAustralia
| | - Leigh C. Walker
- Florey Institute of Neuroscience and Mental HealthMelbourneVICAustralia
- Florey Department of Neuroscience and Mental HealthUniversity of MelbourneMelbourneVICAustralia
| |
Collapse
|
14
|
Jobe A, Vijayan R. Orphan G protein-coupled receptors: the ongoing search for a home. Front Pharmacol 2024; 15:1349097. [PMID: 38495099 PMCID: PMC10941346 DOI: 10.3389/fphar.2024.1349097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 02/15/2024] [Indexed: 03/19/2024] Open
Abstract
G protein-coupled receptors (GPCRs) make up the largest receptor superfamily, accounting for 4% of protein-coding genes. Despite the prevalence of such transmembrane receptors, a significant number remain orphans, lacking identified endogenous ligands. Since their conception, the reverse pharmacology approach has been used to characterize such receptors. However, the multifaceted and nuanced nature of GPCR signaling poses a great challenge to their pharmacological elucidation. Considering their therapeutic relevance, the search for native orphan GPCR ligands continues. Despite limited structural input in terms of 3D crystallized structures, with advances in machine-learning approaches, there has been great progress with respect to accurate ligand prediction. Though such an approach proves valuable given that ligand scarcity is the greatest hurdle to orphan GPCR deorphanization, the future pairings of the remaining orphan GPCRs may not necessarily take a one-size-fits-all approach but should be more comprehensive in accounting for numerous nuanced possibilities to cover the full spectrum of GPCR signaling.
Collapse
Affiliation(s)
- Amie Jobe
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Ranjit Vijayan
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
- The Big Data Analytics Center, United Arab Emirates University, Al Ain, United Arab Emirates
- Zayed Bin Sultan Center for Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| |
Collapse
|
15
|
Barnes RC, Banjara S, McHann MC, Almodovar S, Henderson-Redmond AN, Morgan DJ, Castro-Piedras I, Guindon J. Assessing Dose- and Sex-Dependent Antinociceptive Effects of Cannabidiol and Amitriptyline, Alone and in Combination, and Exploring Mechanism of Action Involving Serotonin 1A Receptors. J Pharmacol Exp Ther 2024; 388:655-669. [PMID: 38129125 PMCID: PMC10801786 DOI: 10.1124/jpet.123.001855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 11/08/2023] [Accepted: 11/30/2023] [Indexed: 12/23/2023] Open
Abstract
Inflammatory pain is caused by tissue hypersensitization and is a component of rheumatic diseases, frequently causing chronic pain. Current guidelines use a multimodal approach to pain and sociocultural changes have renewed interest in cannabinoid use, particularly cannabidiol (CBD), for pain. The tricyclic antidepressant amitriptyline (AT) is approved for use in pain-related syndromes, alone and within a multimodal approach. Therefore, we investigated sex- and dose-dependent effects of CBD and AT antinociception in the 2.5% formalin inflammatory pain model. Male and female C57BL/6J mice were pretreated with either vehicle, CBD (0.3-100 mg/kg), or AT (0.1-30 mg/kg) prior to formalin testing. In the acute phase, CBD induced antinociception after administration of 30-100 mg/kg in males and 100 mg/kg in females and in the inflammatory phase at doses of 2.5-100 mg/kg in males and 10-100 mg/kg in females. In the acute phase, AT induced antinociception at 10 mg/kg for all mice, and at 0.3 mg/kg in males and 3 mg/kg in female mice in the inflammatory phase. Combining the calculated median effective doses of CBD and AT produced additive effects for all mice in the acute phase and for males only in the inflammatory phase. Use of selective serotonin 1A receptor antagonist N-[2-[4-(2-methoxyphenyl)-1 piperazinyl]ethyl]-N-2-pyridinylcyclohexanecarboxamide (WAY-100635) maleate (0.1 mg/kg) before co-administration of CBD and AT reversed antinociception in the acute and partially reversed antinociception in the inflammatory phase. Administration of AT was found to enhance cannabinoid receptor type 1mRNA expression only in female mice. These results suggest a role for serotonin and sex in mediating cannabidiol and amitriptyline-induced antinociception in inflammatory pain. SIGNIFICANCE STATEMENT: Inflammatory pain is an important component of both acute and chronic pain. We have found that cannabidiol (CBD) and amitriptyline (AT) show dose-dependent, and that AT additionally shows sex-dependent, antinociceptive effects in an inflammatory pain model. Additionally, the combination of CBD and AT was found to have enhanced antinociceptive effects that is partially reliant of serotonin 1A receptors and supports the use of CBD within a multimodal approach to pain.
Collapse
Affiliation(s)
- Robert C Barnes
- Department of Pharmacology and Neuroscience (R.C.B., S.B., M.C.M., I.C.-P., J.G.), Department of Immunology and Molecular Microbiology (S.A.), and Center of Excellence for Translational Neuroscience and Therapeutics (J.G.), Texas Tech University Health Sciences Center, Lubbock, Texas; and Department of Biomedical Sciences (A.N.H.-R., D.J.M.), Marshall University, Huntington, West Virginia
| | - Satish Banjara
- Department of Pharmacology and Neuroscience (R.C.B., S.B., M.C.M., I.C.-P., J.G.), Department of Immunology and Molecular Microbiology (S.A.), and Center of Excellence for Translational Neuroscience and Therapeutics (J.G.), Texas Tech University Health Sciences Center, Lubbock, Texas; and Department of Biomedical Sciences (A.N.H.-R., D.J.M.), Marshall University, Huntington, West Virginia
| | - Melissa C McHann
- Department of Pharmacology and Neuroscience (R.C.B., S.B., M.C.M., I.C.-P., J.G.), Department of Immunology and Molecular Microbiology (S.A.), and Center of Excellence for Translational Neuroscience and Therapeutics (J.G.), Texas Tech University Health Sciences Center, Lubbock, Texas; and Department of Biomedical Sciences (A.N.H.-R., D.J.M.), Marshall University, Huntington, West Virginia
| | - Sharilyn Almodovar
- Department of Pharmacology and Neuroscience (R.C.B., S.B., M.C.M., I.C.-P., J.G.), Department of Immunology and Molecular Microbiology (S.A.), and Center of Excellence for Translational Neuroscience and Therapeutics (J.G.), Texas Tech University Health Sciences Center, Lubbock, Texas; and Department of Biomedical Sciences (A.N.H.-R., D.J.M.), Marshall University, Huntington, West Virginia
| | - Angela N Henderson-Redmond
- Department of Pharmacology and Neuroscience (R.C.B., S.B., M.C.M., I.C.-P., J.G.), Department of Immunology and Molecular Microbiology (S.A.), and Center of Excellence for Translational Neuroscience and Therapeutics (J.G.), Texas Tech University Health Sciences Center, Lubbock, Texas; and Department of Biomedical Sciences (A.N.H.-R., D.J.M.), Marshall University, Huntington, West Virginia
| | - Daniel J Morgan
- Department of Pharmacology and Neuroscience (R.C.B., S.B., M.C.M., I.C.-P., J.G.), Department of Immunology and Molecular Microbiology (S.A.), and Center of Excellence for Translational Neuroscience and Therapeutics (J.G.), Texas Tech University Health Sciences Center, Lubbock, Texas; and Department of Biomedical Sciences (A.N.H.-R., D.J.M.), Marshall University, Huntington, West Virginia
| | - Isabel Castro-Piedras
- Department of Pharmacology and Neuroscience (R.C.B., S.B., M.C.M., I.C.-P., J.G.), Department of Immunology and Molecular Microbiology (S.A.), and Center of Excellence for Translational Neuroscience and Therapeutics (J.G.), Texas Tech University Health Sciences Center, Lubbock, Texas; and Department of Biomedical Sciences (A.N.H.-R., D.J.M.), Marshall University, Huntington, West Virginia
| | - Josée Guindon
- Department of Pharmacology and Neuroscience (R.C.B., S.B., M.C.M., I.C.-P., J.G.), Department of Immunology and Molecular Microbiology (S.A.), and Center of Excellence for Translational Neuroscience and Therapeutics (J.G.), Texas Tech University Health Sciences Center, Lubbock, Texas; and Department of Biomedical Sciences (A.N.H.-R., D.J.M.), Marshall University, Huntington, West Virginia
| |
Collapse
|
16
|
Bresinsky M, Shahraki A, Kolb P, Pockes S, Schihada H. Development of Fluorescent AF64394 Analogues Enables Real-Time Binding Studies for the Orphan Class A GPCR GPR3. J Med Chem 2023; 66:15025-15041. [PMID: 37907069 PMCID: PMC10641823 DOI: 10.1021/acs.jmedchem.3c01707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/16/2023] [Accepted: 10/18/2023] [Indexed: 11/02/2023]
Abstract
The orphan G protein-coupled receptor (oGPCR) GPR3 represents a potential drug target for the treatment of Alzheimer's disease and metabolic disorders. However, the limited toolbox of pharmacological assays hampers the development of advanced ligands. Here, we developed a signaling pathway-independent readout of compound-GPR3 interaction. Starting from computational binding pose predictions of the most potent GPR3 ligand, we designed a series of fluorescent AF64394 analogues and assessed their suitability for BRET-based binding studies. The most potent ligand, 45 (UR-MB-355), bound to GPR3 and closely related receptors, GPR6 and GPR12, with similar submicromolar affinities. Furthermore, we found that 45 engages GPR3 in a distinct mode compared to AF64394, and coincubation studies with the GPR3 agonist diphenyleneiodonium chloride revealed allosteric modulation of 45 binding. These insights provide new cues for the pharmacological manipulation of GPR3 activity. This novel binding assay will foster the development of future drugs acting through these pharmacologically attractive oGPCRs.
Collapse
Affiliation(s)
- Merlin Bresinsky
- Institute
of Pharmacy, University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany
| | - Aida Shahraki
- Department
of Pharmaceutical Chemistry, University
of Marburg, Marbacher Weg 8, 35032 Marburg, Germany
| | - Peter Kolb
- Department
of Pharmaceutical Chemistry, University
of Marburg, Marbacher Weg 8, 35032 Marburg, Germany
| | - Steffen Pockes
- Institute
of Pharmacy, University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany
- Department
of Medicinal Chemistry, Institute for Therapeutics Discovery and Development, University of Minnesota, Minneapolis, Minnesota 55414, United States
| | - Hannes Schihada
- Department
of Pharmaceutical Chemistry, University
of Marburg, Marbacher Weg 8, 35032 Marburg, Germany
| |
Collapse
|
17
|
Thakur K, Khan H, Grewal AK, Singh TG. Nuclear orphan receptors: A novel therapeutic agent in neuroinflammation. Int Immunopharmacol 2023; 124:110845. [PMID: 37690241 DOI: 10.1016/j.intimp.2023.110845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 08/14/2023] [Accepted: 08/20/2023] [Indexed: 09/12/2023]
Abstract
Orphan receptors constitute a historically varied subsection of a superfamily of nuclear receptors. Nuclear receptors regulate gene expression in response to ligand signals and are particularly alluring therapeutic targets for chronic illnesses. Neuroinflammation and neurodegenerative diseases have been linked to these orphan nuclear receptors. Preclinical and clinical evidence suggests that orphan receptors could serve as future targets in neuroinflammation, such as Parkinson's disease (PD), Alzheimer's Disease (AD), Huntington's Disease (HD), Multiple Sclerosis (MS), and Cerebral Ischemia. Given the therapeutic relevance of certain orphan receptors in a variety of disorders, their potential in neuroinflammation remains unproven. There is substantial evidence that ligand-activated transcription factors have great promise for preventing neurodegenerative and neurological disorders, with certain orphan nuclear receptors i.e., PPARγ, NR4As, and orphan GPCRs holding particularly high potential. Based on previous findings, we attempted to determine the contribution of PPAR, NR4As, and orphan GPCRs-regulated neuroinflammation to the pathogenesis of these disorders and their potential to become novel therapeutic targets.
Collapse
Affiliation(s)
- Kiran Thakur
- Chitkara College of Pharmacy, Chitkara University, 140401 Punjab, India
| | - Heena Khan
- Chitkara College of Pharmacy, Chitkara University, 140401 Punjab, India
| | | | | |
Collapse
|
18
|
Gay EA, Harris DL, Wilson JW, Blough BE. The development of diphenyleneiodonium analogs as GPR3 agonists. Bioorg Med Chem Lett 2023; 94:129427. [PMID: 37541631 PMCID: PMC10631289 DOI: 10.1016/j.bmcl.2023.129427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/20/2023] [Accepted: 07/29/2023] [Indexed: 08/06/2023]
Abstract
G protein-coupled receptor 3 (GPR3) is an orphan receptor potentially involved in many important physiological processes such as drug abuse, neuropathic pain, and anxiety and depression related disorders. Pharmacological studies of GPR3 have been limited due to the restricted number of known agonists and inverse agonists for this constitutively active receptor. In this medicinal chemistry study, we report the discovery of GPR3 agonists based off the diphenyleneiodonium (DPI) scaffold. The most potent full agonist was the 3-trifluoromethoxy analog (32) with an EC50 of 260 nM and 90% efficacy compared to DPI. Investigation of a homology model of GPR3 from multiple sequence alignment resulted in the finding of a binding site rich in potential π-π and π-cation interactions stabilizing DPI-scaffold agonists. MMGBSA free energy analysis showed a good correlation with trends in observed EC50s. DPI analogs retained the same high receptor selectivity for GPR3 over GPR6 and GPR12 as observed with DPI. Collectively, the DPI analog series shows that order of magnitude improvements in potency with the scaffold were attainable; however, attempts to replace the iodonium ion to make the scaffold more druggable failed.
Collapse
Affiliation(s)
- Elaine A Gay
- Center for Drug Discovery, RTI International, Research Triangle Park, NC 27709, USA.
| | - Danni L Harris
- Center for Drug Discovery, RTI International, Research Triangle Park, NC 27709, USA
| | - Joseph W Wilson
- Center for Drug Discovery, RTI International, Research Triangle Park, NC 27709, USA
| | - Bruce E Blough
- Center for Drug Discovery, RTI International, Research Triangle Park, NC 27709, USA
| |
Collapse
|
19
|
Wang P, Lv L, Li H, Wang CY, Zhou J. Opportunities and challenges in drug discovery targeting the orphan receptor GPR12. Drug Discov Today 2023; 28:103698. [PMID: 37422169 DOI: 10.1016/j.drudis.2023.103698] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/26/2023] [Accepted: 07/04/2023] [Indexed: 07/10/2023]
Abstract
G-protein-coupled receptor 12 (GPR12) is a brain-specific expression orphan G-protein-coupled receptor (oGPCR) that regulates various physiological processes. It is an emerging therapeutic target for central nervous system (CNS) disorders, including Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), attention deficit hyperactivity disorder (ADHD), and schizophrenia, as well as other human diseases, such as cancer, obesity, and metabolic disorders. GPR12 remains a less extensively investigated oGPCR, particularly in terms of its biological functions, signaling pathways, and ligand discovery. The discovery of drug-like small-molecule modulators to probe the brain functions of GPR12 or to act as a potential drug candidates, as well as the identification of reliable biomarkers, are vital to elucidate the roles of this receptor in various human diseases and develop novel target-based therapeutics.
Collapse
Affiliation(s)
- Pingyuan Wang
- Key Laboratory of Evolution and Marine Biodiversity Ministry of Education, Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China; School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China.
| | - Ling Lv
- Key Laboratory of Evolution and Marine Biodiversity Ministry of Education, Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China; College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Haoran Li
- Key Laboratory of Evolution and Marine Biodiversity Ministry of Education, Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China; School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Chang-Yun Wang
- Key Laboratory of Evolution and Marine Biodiversity Ministry of Education, Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China; School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China.
| | - Jia Zhou
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX 77555, USA.
| |
Collapse
|
20
|
Li H, Zhang J, Yu Y, Luo F, Wu L, Liu J, Chen N, Liu Z, Hua T. Structural insight into the constitutive activity of human orphan receptor GPR12. Sci Bull (Beijing) 2023; 68:95-104. [PMID: 36593162 DOI: 10.1016/j.scib.2022.12.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 11/22/2022] [Accepted: 12/23/2022] [Indexed: 12/27/2022]
Abstract
G protein-coupled receptor 12 (GPR12) is an orphan G protein-coupled receptor that is highly expressed in the thalamus of the brain and plays a vital role in driving thalamocortical functions in short-term memory. GPR12 performs high constitutive activity and couples with Gs, increasing the intracellular cyclic adenosine monophosphate (cAMP) level when it is expressed. However, exploitation for drug development is limited since it is unclear how GPR12 initiates self-activation and signal transduction, and whether it can be modulated by endogenous or synthetic ligands. Here, we report the cryo-electron microscopy structure of the GPR12-Gs complex in the absence of agonists. Our structure reveals the key determinants for the intrinsically high basal activity of GPR12, including extracellular loop 2 partially occupying the orthosteric binding pocket, a tight-packed TM1 and TM7, and unique activation-related residues in TM6 and TM7. Together with mutagenesis data, this study will improve our understanding of the function and self-activation of the orphan receptor GPR12, enable the identification of endogenous ligands, and guide drug discovery efforts that target GPR12.
Collapse
Affiliation(s)
- Hao Li
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Jinyi Zhang
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Yanan Yu
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Feng Luo
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China
| | - Lijie Wu
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China
| | - Junlin Liu
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China
| | - Na Chen
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China
| | - Zhijie Liu
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China.
| | - Tian Hua
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China.
| |
Collapse
|
21
|
Targeting G Protein-Coupled Receptors in the Treatment of Parkinson's Disease. J Mol Biol 2022:167927. [PMID: 36563742 DOI: 10.1016/j.jmb.2022.167927] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 12/06/2022] [Accepted: 12/13/2022] [Indexed: 12/25/2022]
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disease characterized in part by the deterioration of dopaminergic neurons which leads to motor impairment. Although there is no cure for PD, the motor symptoms can be treated using dopamine replacement therapies including the dopamine precursor L-DOPA, which has been in use since the 1960s. However, neurodegeneration in PD is not limited to dopaminergic neurons, and many patients experience non-motor symptoms including cognitive impairment or neuropsychiatric disturbances, for which there are limited treatment options. Moreover, there are currently no treatments able to alter the progression of neurodegeneration. There are many therapeutic strategies being investigated for PD, including alternatives to L-DOPA for the treatment of motor impairment, symptomatic treatments for non-motor symptoms, and neuroprotective or disease-modifying agents. G protein-coupled receptors (GPCRs), which include the dopamine receptors, are highly druggable cell surface proteins which can regulate numerous intracellular signaling pathways and thereby modulate the function of neuronal circuits affected by PD. This review will describe the treatment strategies being investigated for PD that target GPCRs and their downstream signaling mechanisms. First, we discuss new developments in dopaminergic agents for alleviating PD motor impairment, the role of dopamine receptors in L-DOPA induced dyskinesia, as well as agents targeting non-dopamine GPCRs which could augment or replace traditional dopaminergic treatments. We then discuss GPCRs as prospective treatments for neuropsychiatric and cognitive symptoms in PD. Finally, we discuss the evidence pertaining to ghrelin receptors, β-adrenergic receptors, angiotensin receptors and glucagon-like peptide 1 receptors, which have been proposed as disease modifying targets with potential neuroprotective effects in PD.
Collapse
|
22
|
Masuda S, Tanaka S, Shiraki H, Sotomaru Y, Harada K, Hide I, Kiuchi Y, Sakai N. GPR3 expression in retinal ganglion cells contributes to neuron survival and accelerates axonal regeneration after optic nerve crush in mice. Neurobiol Dis 2022; 172:105811. [PMID: 35809764 DOI: 10.1016/j.nbd.2022.105811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/24/2022] [Accepted: 06/30/2022] [Indexed: 11/17/2022] Open
Abstract
Glaucoma is an optic neuropathy and is currently one of the most common diseases that leads to irreversible blindness. The axonal degeneration that occurs before retinal ganglion neuronal loss is suggested to be involved in the pathogenesis of glaucoma. G protein-coupled receptor 3 (GPR3) belongs to the class A rhodopsin-type GPCR family and is highly expressed in various neurons. GPR3 is unique in its ability to constitutively activate the Gαs protein without a ligand, which elevates the basal intracellular cAMP level. Our earlier reports suggested that GPR3 enhances both neurite outgrowth and neuronal survival. However, the potential role of GPR3 in axonal regeneration after neuronal injury has not been elucidated. Herein, we investigated retinal GPR3 expression and its possible involvement in axonal regeneration after retinal injury in mice. GPR3 was relatively highly expressed in retinal ganglion cells (RGCs). Surprisingly, RGCs in GPR3 knockout mice were vulnerable to neural death during aging without affecting high intraocular pressure (IOP) and under ischemic conditions. Primary cultured neurons from the retina showed that GPR3 expression was correlated with neurite outgrowth and neuronal survival. Evaluation of the effect of GPR3 on axonal regeneration using GPR3 knockout mice revealed that GPR3 in RGCs participates in axonal regeneration after optic nerve crush (ONC) under zymosan stimulation. In addition, regenerating axons were further stimulated when GPR3 was upregulated in RGCs, and the effect was further augmented when combined with zymosan treatment. These results suggest that GPR3 expression in RGCs helps maintain neuronal survival and accelerates axonal regeneration after ONC in mice.
Collapse
Affiliation(s)
- Shun Masuda
- Department of Molecular and Pharmacological Neuroscience, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan; Department of Ophthalmology, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan
| | - Shigeru Tanaka
- Department of Molecular and Pharmacological Neuroscience, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan.
| | - Hiroko Shiraki
- Department of Molecular and Pharmacological Neuroscience, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan
| | - Yusuke Sotomaru
- Natural Science Center for Basic Research and Development, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan
| | - Kana Harada
- Department of Molecular and Pharmacological Neuroscience, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan
| | - Izumi Hide
- Department of Molecular and Pharmacological Neuroscience, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan
| | - Yoshiaki Kiuchi
- Department of Ophthalmology, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan
| | - Norio Sakai
- Department of Molecular and Pharmacological Neuroscience, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan
| |
Collapse
|
23
|
Shiraki H, Tanaka S, Guo Y, Harada K, Hide I, Yasuda T, Sakai N. Potential role of inducible GPR3 expression under stimulated T cell conditions. J Pharmacol Sci 2022; 148:307-314. [PMID: 35177210 DOI: 10.1016/j.jphs.2022.01.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 01/01/2022] [Accepted: 01/11/2022] [Indexed: 02/06/2023] Open
Abstract
G protein-coupled receptor 3 (GPR3) constitutively activates Gαs proteins without any ligands and is predominantly expressed in neurons. Since the expression and physiological role of GPR3 in immune cells is still unknown, we examined the possible role of GPR3 in T lymphocytes. The expression of GPR3 was upregulated 2 h after phorbol 12-myristate 13-acetate (PMA)/ionomycin stimulation and was sustained in Jurkat cells, a human T lymphocyte cell line. In addition, the expression of nuclear receptor 4 group A member 2 (NR4A2) was highly modulated by GPR3 expression. Additionally, GPR3 expression was linked with the transcriptional promoter activity of NR4A in Jurkat cells. In mouse CD4+ T cells, transient GPR3 expression was induced immediately after the antigen receptor stimulation. However, the expression of NR4A2 was not modulated in CD4+ T cells from GPR3-knockout mice after stimulation, and the population of Treg cells in thymocytes and splenocytes was not affected by GPR3 knockout. By contrast, spontaneous effector activation in both CD4+ T cells and CD8+ T cells was observed in GPR3-knockout mice. In summary, GPR3 is immediately induced by T cell stimulation and play an important role in the suppression of effector T cell activation.
Collapse
Affiliation(s)
- Hiroko Shiraki
- Department of Molecular and Pharmacological Neuroscience, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan
| | - Shigeru Tanaka
- Department of Molecular and Pharmacological Neuroscience, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan.
| | - Yun Guo
- Department of Immunology, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan
| | - Kana Harada
- Department of Molecular and Pharmacological Neuroscience, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan
| | - Izumi Hide
- Department of Molecular and Pharmacological Neuroscience, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan
| | - Tomoharu Yasuda
- Department of Immunology, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan
| | - Norio Sakai
- Department of Molecular and Pharmacological Neuroscience, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan
| |
Collapse
|
24
|
GPR3 accelerates neurite outgrowth and neuronal polarity formation via PI3 kinase-mediating signaling pathway in cultured primary neurons. Mol Cell Neurosci 2021; 118:103691. [PMID: 34871769 DOI: 10.1016/j.mcn.2021.103691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 11/24/2021] [Accepted: 11/28/2021] [Indexed: 11/23/2022] Open
Abstract
During neuronal development, immature neurons extend neurites and subsequently polarize to form an axon and dendrites. We have previously reported that G protein-coupled receptor 3 (GPR3) levels increase during neuronal development, and that GPR3 has functions in neurite outgrowth and neuronal differentiation in cerebellar granular neurons. Moreover, GPR3 is transported and concentrated at the tips of neurite, thereby contributing to the local activation of protein kinase A (PKA). However, the signaling pathways for GPR3-mediated neurite outgrowth and its subsequent effects on neuronal polarization have not yet been elucidated. We therefore analyzed the signaling pathways related to GPR3-mediated neurite outgrowth, and also focused on the possible roles of GPR3 in axon polarization. We demonstrated that, in cerebellar granular neurons, GPR3-mediated neurite outgrowth was mediated by multiple signaling pathways, including those of PKA, extracellular signal-regulated kinases (ERKs), and most strongly phosphatidylinositol 3-kinase (PI3K). In addition, the GPR3-mediated activation of neurite outgrowth was associated with G protein-coupled receptor kinase 2 (GRK2)-mediated signaling and phosphorylation of the C-terminus serine/threonine residues of GPR3, which affected downstream protein kinase B (Akt) signaling. We further demonstrated that GPR3 was transiently increased early in the development of rodent hippocampal neurons. It was subsequently concentrated at the tip of the longest neurite, and was thus associated with accelerated polarity formation in a PI3K-dependent manner in rat hippocampal neurons. In addition, GPR3 knockout in mouse hippocampal neurons led to delayed neuronal polarity formation, thereby affecting the dephosphorylation of collapsing response mediator protein 2 (CRMP2), which is downstream of the PI3K signaling pathway. Taken together, these findings suggest that the intrinsic expression of GPR3 in differentiated neurons constitutively activates PI3K-mediated signaling pathway predominantly, thus accelerating neurite outgrowth and further augmenting polarity formation in primary cultured neurons.
Collapse
|
25
|
Complement as a powerful "influencer" in the brain during development, adulthood and neurological disorders. Adv Immunol 2021; 152:157-222. [PMID: 34844709 DOI: 10.1016/bs.ai.2021.09.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The complement system was long considered as only a powerful effector arm of the immune system that, while critically protective, could lead to inflammation and cell death if overactivated, even in the central nervous system (CNS). However, in the past decade it has been recognized as playing critical roles in key physiological processes in the CNS, including neurogenesis and synaptic remodeling in the developing and adult brain. Inherent in these processes are the interactions with cells in the brain, and the cascade of interactions and functional consequences that ensue. As a result, investigations of therapeutic approaches for both suppressing excessive complement driven neurotoxicity and aberrant sculpting of neuronal circuits, require broad (and deep) knowledge of the functional activities of multiple components of this highly evolved and regulated system to avoid unintended negative consequences in the clinic. Advances in basic science are beginning to provide a roadmap for translation to therapeutics, with both small molecule and biologics. Here, we present examples of the critical roles of proper complement function in the development and sculpting of the nervous system, and in enabling rapid protection from infection and clearance of dying cells. Microglia are highlighted as important command centers that integrate signals from the complement system and other innate sensors that are programed to provide support and protection, but that direct detrimental responses to aberrant activation and/or regulation of the system. Finally, we present promising research areas that may lead to effective and precision strategies for complement targeted interventions to promote neurological health.
Collapse
|
26
|
Roy N, Parhar I. Habenula orphan G-protein coupled receptors in the pathophysiology of fear and anxiety. Neurosci Biobehav Rev 2021; 132:870-883. [PMID: 34801259 DOI: 10.1016/j.neubiorev.2021.11.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 11/02/2021] [Accepted: 11/08/2021] [Indexed: 10/19/2022]
Abstract
The phasic emotion, fear, and the tonic emotion, anxiety, have been conventionally inspected in clinical frameworks to epitomize memory acquisition, storage, and retrieval. However, inappropriate expression of learned fear in a safe environment and its resistance to suppression is a cardinal feature of various fear-related disorders. A significant body of literature suggests the involvement of extra-amygdala circuitry in fear disorders. Consistent with this view, the present review underlies incentives for the association between the habenula and fear memory. G protein-coupled receptors (GPCRs) are important to understand the molecular mechanisms central to fear learning due to their neuromodulatory role. The efficacy of a pharmacological strategy aimed at exploiting habenular-GPCR desensitization machinery can serve as a therapeutic target combating the pathophysiology of fear disorders. Originating from this milieu, the conserved nature of orphan GPCRs in the brain, with some having the highest expression in the habenula can lead to recent endeavors in understanding its functionality in fear circuitry.
Collapse
Affiliation(s)
- Nisa Roy
- Brain Research Institute, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Selangor, Malaysia.
| | - Ishwar Parhar
- Brain Research Institute, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Selangor, Malaysia.
| |
Collapse
|
27
|
Murkar A, De Koninck J, Merali Z. Cannabinoids: Revealing their complexity and role in central networks of fear and anxiety. Neurosci Biobehav Rev 2021; 131:30-46. [PMID: 34487746 DOI: 10.1016/j.neubiorev.2021.09.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 08/29/2021] [Accepted: 09/01/2021] [Indexed: 12/11/2022]
Abstract
The first aim of the present review is to provide an in-depth description of the cannabinoids and their known effects at various neuronal receptors. It reveals that cannabinoids are highly diverse, and recent work has highlighted that their effects on the central nervous system (CNS) are surprisingly more complex than previously recognized. Cannabinoid-sensitive receptors are widely distributed throughout the CNS where they act as primary modulators of neurotransmission. Secondly, we examine the role of cannabinoid receptors at key brain sites in the control of fear and anxiety. While our understanding of how cannabinoids specifically modulate these networks is mired by their complex interactions and diversity, a plausible framework(s) for their effects is proposed. Finally, we highlight some important knowledge gaps in our understanding of the mechanism(s) responsible for their effects on fear and anxiety in animal models and their use as therapeutic targets in humans. This is particularly important for our understanding of the phytocannabinoids used as novel clinical interventions.
Collapse
Affiliation(s)
- Anthony Murkar
- University of Ottawa Institute of Mental Health Research (IMHR), Ottawa, ON, Canada; School of Psychology, University of Ottawa, Ottawa, ON, Canada.
| | - Joseph De Koninck
- University of Ottawa Institute of Mental Health Research (IMHR), Ottawa, ON, Canada; School of Psychology, University of Ottawa, Ottawa, ON, Canada
| | - Zul Merali
- School of Psychology, University of Ottawa, Ottawa, ON, Canada; Brain and Mind Institute, Aga Khan University, Nairobi, Kenya; Carleton University, Neuroscience Department, Ottawa, ON, Canada
| |
Collapse
|
28
|
Biringer RG. Endocannabinoid signaling pathways: beyond CB1R and CB2R. J Cell Commun Signal 2021; 15:335-360. [PMID: 33978927 PMCID: PMC8222499 DOI: 10.1007/s12079-021-00622-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 04/27/2021] [Indexed: 12/15/2022] Open
Abstract
The search for cannabinoid receptors other than CB1R and CB2R has been ongoing for over a decade. A number of orphan receptors have been proposed as potential cannabinoid receptors primarily based on phylogenic arguments and reactivity towards known endocannabinoids and phytocannabinoids. Seven putative cannabinoid receptors are described and discussed, and evidence for and against their inclusion in this category are presented.
Collapse
Affiliation(s)
- Roger Gregory Biringer
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL, 34211, USA.
| |
Collapse
|
29
|
Brice NL, Schiffer HH, Monenschein H, Mulligan VJ, Page K, Powell J, Xu X, Cheung T, Burley JR, Sun H, Dickson L, Murphy ST, Kaushal N, Sheardown S, Lawrence J, Chen Y, Bartkowski D, Kanta A, Russo J, Hosea N, Dawson LA, Hitchcock SH, Carlton MB. Development of CVN424: A Selective and Novel GPR6 Inverse Agonist Effective in Models of Parkinson Disease. J Pharmacol Exp Ther 2021; 377:407-416. [PMID: 33795395 DOI: 10.1124/jpet.120.000438] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 03/29/2021] [Indexed: 07/25/2024] Open
Abstract
GPR6 is an orphan G-protein-coupled receptor that has enriched expression in the striatopallidal, indirect pathway and medium spiny neurons of the striatum. This pathway is greatly impacted by the loss of the nigro-striatal dopaminergic neurons in Parkinson disease, and modulating this neurocircuitry can be therapeutically beneficial. In this study, we describe the in vitro and in vivo pharmacological characterization of (R)-1-(2-(4-(2,4-difluorophenoxy)piperidin-1-yl)-3-((tetrahydrofuran-3-yl)amino)-7,8-dihydropyrido[3,4-b]pyrazin-6(5H)-yl)ethan-1-one (CVN424), a highly potent and selective small-molecule inverse agonist for GPR6 that is currently undergoing clinical evaluation. CVN424 is brain-penetrant and shows dose-dependent receptor occupancy that attained brain 50% of receptor occupancy at plasma concentrations of 6.0 and 7.4 ng/ml in mice and rats, respectively. Oral administration of CVN424 dose-dependently increases locomotor activity and reverses haloperidol-induced catalepsy. Furthermore, CVN424 restored mobility in bilateral 6-hydroxydopamine lesion model of Parkinson disease. The presence and localization of GPR6 in medium spiny neurons of striatum postmortem samples from both nondemented control and patients with Parkinson disease were confirmed at the level of both RNA (using Nuclear Enriched Transcript Sort sequencing) and protein. This body of work demonstrates that CVN424 is a potent, orally active, and brain-penetrant GPR6 inverse agonist that is effective in preclinical models and is a potential therapeutic for improving motor function in patients with Parkinson disease. SIGNIFICANCE STATEMENT: CVN424 represents a nondopaminergic novel drug for potential use in patients with Parkinson disease.
Collapse
Affiliation(s)
- Nicola L Brice
- Cerevance Ltd, Cambridge, United Kingdom (N.L.B., V.J.M., K.P., J.P., X.X., T.C., J.R.B., L.D., S.S., J.L., L.A.D., M.B.C.); and Takeda California, San Diego, California (H.H.S., H.M., H.S., S.T.M., N.K., Y.C., D.B., A.K., J.R., N.H., S.H.H.)
| | - Hans H Schiffer
- Cerevance Ltd, Cambridge, United Kingdom (N.L.B., V.J.M., K.P., J.P., X.X., T.C., J.R.B., L.D., S.S., J.L., L.A.D., M.B.C.); and Takeda California, San Diego, California (H.H.S., H.M., H.S., S.T.M., N.K., Y.C., D.B., A.K., J.R., N.H., S.H.H.)
| | - Holger Monenschein
- Cerevance Ltd, Cambridge, United Kingdom (N.L.B., V.J.M., K.P., J.P., X.X., T.C., J.R.B., L.D., S.S., J.L., L.A.D., M.B.C.); and Takeda California, San Diego, California (H.H.S., H.M., H.S., S.T.M., N.K., Y.C., D.B., A.K., J.R., N.H., S.H.H.)
| | - Victoria J Mulligan
- Cerevance Ltd, Cambridge, United Kingdom (N.L.B., V.J.M., K.P., J.P., X.X., T.C., J.R.B., L.D., S.S., J.L., L.A.D., M.B.C.); and Takeda California, San Diego, California (H.H.S., H.M., H.S., S.T.M., N.K., Y.C., D.B., A.K., J.R., N.H., S.H.H.)
| | - Keith Page
- Cerevance Ltd, Cambridge, United Kingdom (N.L.B., V.J.M., K.P., J.P., X.X., T.C., J.R.B., L.D., S.S., J.L., L.A.D., M.B.C.); and Takeda California, San Diego, California (H.H.S., H.M., H.S., S.T.M., N.K., Y.C., D.B., A.K., J.R., N.H., S.H.H.)
| | - Justin Powell
- Cerevance Ltd, Cambridge, United Kingdom (N.L.B., V.J.M., K.P., J.P., X.X., T.C., J.R.B., L.D., S.S., J.L., L.A.D., M.B.C.); and Takeda California, San Diego, California (H.H.S., H.M., H.S., S.T.M., N.K., Y.C., D.B., A.K., J.R., N.H., S.H.H.)
| | - Xiao Xu
- Cerevance Ltd, Cambridge, United Kingdom (N.L.B., V.J.M., K.P., J.P., X.X., T.C., J.R.B., L.D., S.S., J.L., L.A.D., M.B.C.); and Takeda California, San Diego, California (H.H.S., H.M., H.S., S.T.M., N.K., Y.C., D.B., A.K., J.R., N.H., S.H.H.)
| | - Toni Cheung
- Cerevance Ltd, Cambridge, United Kingdom (N.L.B., V.J.M., K.P., J.P., X.X., T.C., J.R.B., L.D., S.S., J.L., L.A.D., M.B.C.); and Takeda California, San Diego, California (H.H.S., H.M., H.S., S.T.M., N.K., Y.C., D.B., A.K., J.R., N.H., S.H.H.)
| | - J Russell Burley
- Cerevance Ltd, Cambridge, United Kingdom (N.L.B., V.J.M., K.P., J.P., X.X., T.C., J.R.B., L.D., S.S., J.L., L.A.D., M.B.C.); and Takeda California, San Diego, California (H.H.S., H.M., H.S., S.T.M., N.K., Y.C., D.B., A.K., J.R., N.H., S.H.H.)
| | - Huikai Sun
- Cerevance Ltd, Cambridge, United Kingdom (N.L.B., V.J.M., K.P., J.P., X.X., T.C., J.R.B., L.D., S.S., J.L., L.A.D., M.B.C.); and Takeda California, San Diego, California (H.H.S., H.M., H.S., S.T.M., N.K., Y.C., D.B., A.K., J.R., N.H., S.H.H.)
| | - Louise Dickson
- Cerevance Ltd, Cambridge, United Kingdom (N.L.B., V.J.M., K.P., J.P., X.X., T.C., J.R.B., L.D., S.S., J.L., L.A.D., M.B.C.); and Takeda California, San Diego, California (H.H.S., H.M., H.S., S.T.M., N.K., Y.C., D.B., A.K., J.R., N.H., S.H.H.)
| | - Sean T Murphy
- Cerevance Ltd, Cambridge, United Kingdom (N.L.B., V.J.M., K.P., J.P., X.X., T.C., J.R.B., L.D., S.S., J.L., L.A.D., M.B.C.); and Takeda California, San Diego, California (H.H.S., H.M., H.S., S.T.M., N.K., Y.C., D.B., A.K., J.R., N.H., S.H.H.)
| | - Nidhi Kaushal
- Cerevance Ltd, Cambridge, United Kingdom (N.L.B., V.J.M., K.P., J.P., X.X., T.C., J.R.B., L.D., S.S., J.L., L.A.D., M.B.C.); and Takeda California, San Diego, California (H.H.S., H.M., H.S., S.T.M., N.K., Y.C., D.B., A.K., J.R., N.H., S.H.H.)
| | - Steve Sheardown
- Cerevance Ltd, Cambridge, United Kingdom (N.L.B., V.J.M., K.P., J.P., X.X., T.C., J.R.B., L.D., S.S., J.L., L.A.D., M.B.C.); and Takeda California, San Diego, California (H.H.S., H.M., H.S., S.T.M., N.K., Y.C., D.B., A.K., J.R., N.H., S.H.H.)
| | - Jason Lawrence
- Cerevance Ltd, Cambridge, United Kingdom (N.L.B., V.J.M., K.P., J.P., X.X., T.C., J.R.B., L.D., S.S., J.L., L.A.D., M.B.C.); and Takeda California, San Diego, California (H.H.S., H.M., H.S., S.T.M., N.K., Y.C., D.B., A.K., J.R., N.H., S.H.H.)
| | - Yun Chen
- Cerevance Ltd, Cambridge, United Kingdom (N.L.B., V.J.M., K.P., J.P., X.X., T.C., J.R.B., L.D., S.S., J.L., L.A.D., M.B.C.); and Takeda California, San Diego, California (H.H.S., H.M., H.S., S.T.M., N.K., Y.C., D.B., A.K., J.R., N.H., S.H.H.)
| | - Darian Bartkowski
- Cerevance Ltd, Cambridge, United Kingdom (N.L.B., V.J.M., K.P., J.P., X.X., T.C., J.R.B., L.D., S.S., J.L., L.A.D., M.B.C.); and Takeda California, San Diego, California (H.H.S., H.M., H.S., S.T.M., N.K., Y.C., D.B., A.K., J.R., N.H., S.H.H.)
| | - Anne Kanta
- Cerevance Ltd, Cambridge, United Kingdom (N.L.B., V.J.M., K.P., J.P., X.X., T.C., J.R.B., L.D., S.S., J.L., L.A.D., M.B.C.); and Takeda California, San Diego, California (H.H.S., H.M., H.S., S.T.M., N.K., Y.C., D.B., A.K., J.R., N.H., S.H.H.)
| | - Joseph Russo
- Cerevance Ltd, Cambridge, United Kingdom (N.L.B., V.J.M., K.P., J.P., X.X., T.C., J.R.B., L.D., S.S., J.L., L.A.D., M.B.C.); and Takeda California, San Diego, California (H.H.S., H.M., H.S., S.T.M., N.K., Y.C., D.B., A.K., J.R., N.H., S.H.H.)
| | - Natalie Hosea
- Cerevance Ltd, Cambridge, United Kingdom (N.L.B., V.J.M., K.P., J.P., X.X., T.C., J.R.B., L.D., S.S., J.L., L.A.D., M.B.C.); and Takeda California, San Diego, California (H.H.S., H.M., H.S., S.T.M., N.K., Y.C., D.B., A.K., J.R., N.H., S.H.H.)
| | - Lee A Dawson
- Cerevance Ltd, Cambridge, United Kingdom (N.L.B., V.J.M., K.P., J.P., X.X., T.C., J.R.B., L.D., S.S., J.L., L.A.D., M.B.C.); and Takeda California, San Diego, California (H.H.S., H.M., H.S., S.T.M., N.K., Y.C., D.B., A.K., J.R., N.H., S.H.H.)
| | - Stephen H Hitchcock
- Cerevance Ltd, Cambridge, United Kingdom (N.L.B., V.J.M., K.P., J.P., X.X., T.C., J.R.B., L.D., S.S., J.L., L.A.D., M.B.C.); and Takeda California, San Diego, California (H.H.S., H.M., H.S., S.T.M., N.K., Y.C., D.B., A.K., J.R., N.H., S.H.H.)
| | - Mark B Carlton
- Cerevance Ltd, Cambridge, United Kingdom (N.L.B., V.J.M., K.P., J.P., X.X., T.C., J.R.B., L.D., S.S., J.L., L.A.D., M.B.C.); and Takeda California, San Diego, California (H.H.S., H.M., H.S., S.T.M., N.K., Y.C., D.B., A.K., J.R., N.H., S.H.H.)
| |
Collapse
|
30
|
Characterization of Four Orphan Receptors (GPR3, GPR6, GPR12 and GPR12L) in Chickens and Ducks and Regulation of GPR12 Expression in Ovarian Granulosa Cells by Progesterone. Genes (Basel) 2021; 12:genes12040489. [PMID: 33801713 PMCID: PMC8065388 DOI: 10.3390/genes12040489] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 03/20/2021] [Accepted: 03/22/2021] [Indexed: 11/29/2022] Open
Abstract
The three structurally related orphan G protein-coupled receptors, GRP3, GPR6, and GPR12, are reported to be constitutively active and likely involved in the regulation of many physiological/pathological processes, such as neuronal outgrowth and oocyte meiotic arrest in mammals. However, the information regarding these orphan receptors in nonmammalian vertebrates is extremely limited. Here, we reported the structure, constitutive activity, and tissue expression of these receptors in two representative avian models: chickens and ducks. The cloned duck GPR3 and duck/chicken GPR6 and GPR12 are intron-less and encode receptors that show high amino acid (a.a.) sequence identities (66–88%) with their respective mammalian orthologs. Interestingly, a novel GPR12-like receptor (named GPR12L) sharing 66% a.a. identity to that in vertebrates was reported in the present study. Using dual-luciferase reporter assay and Western blot, we demonstrated that GPR3, GPR6, GPR12, and GPR12L are constitutively active and capable of stimulating the cAMP/PKA signaling pathway without ligand stimulation in birds (and zebrafish), indicating their conserved signaling property across vertebrates. RNA-seq data/qRT-PCR assays revealed that GPR6 and GPR12L expression is mainly restricted to the chicken brain, while GPR12 is highly expressed in chicken ovarian granulosa cells (GCs) and oocytes of 6 mm growing follicles and its expression in cultured GCs is upregulated by progesterone. Taken together, our data reveal the structure, function, and expression of GPR3, GPR6, GPR12, and GPR12L in birds, thus providing the first piece of evidence that GPR12 expression is upregulated by gonadal steroid (i.e., progesterone) in vertebrates.
Collapse
|
31
|
Dou Z, He X, Xu P, Zhang B, Ding L. Rapid separation and purification of two C25 steroids with bicyclic [4.4.1] A/B rings from the marine fungus Aspergillus sp. LS116 by high-speed counter-current chromatography in stepwise elution mode. Nat Prod Res 2021; 36:3770-3774. [PMID: 33583278 DOI: 10.1080/14786419.2021.1885404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Two C25 steroids with bicyclic [4.4.1] A/B rings were successfully separated from the marine fungus Aspergillus sp. LS116 by a two-step high-speed counter current chromatography (HSCCC). Petroleum ether/ethyl acetate/methanol/water (5.5:11:5:7, v/v) and petroleum ether/ethyl acetate/methanol/water (5:6:5:7, v/v) were selected as two optimum two-phase systems to purify two C25 steroids, neocyclocitrinol B (1) and threo-23-O-methylneocyclocitrinol (2). The purity of two compounds was over 94%. Their structures were determined by comprehensive spectroscopic techniques. This is the first report about rapid separation and identification of C25 steroids with bicyclic [4.4.1] A/B rings by HSCCC.
Collapse
Affiliation(s)
- Zhende Dou
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Ningbo University, Ningbo, China
| | - Xiaoping He
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Ningbo University, Ningbo, China
| | - Peng Xu
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Ningbo University, Ningbo, China
| | - Bin Zhang
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Ningbo University, Ningbo, China
| | - Lijian Ding
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Ningbo University, Ningbo, China
| |
Collapse
|
32
|
Takahashi T, Yoshida T, Harada K, Miyagi T, Hashimoto K, Hide I, Tanaka S, Irifune M, Sakai N. Component of nicotine-induced intracellular calcium elevation mediated through α3- and α5-containing nicotinic acetylcholine receptors are regulated by cyclic AMP in SH-SY 5Y cells. PLoS One 2020; 15:e0242349. [PMID: 33253222 PMCID: PMC7703979 DOI: 10.1371/journal.pone.0242349] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 11/01/2020] [Indexed: 12/03/2022] Open
Abstract
The pathway from the medial habenular nucleus to the interpeduncular nucleus, in which nicotinic acetylcholine receptor (nAChR) including the α3 and α5 subunits (α3 * and α5 * nAChRs) are expressed, is implicated in nicotine dependence. We investigated whether α3 * and α5 * nAChRs are regulated by cAMP using SH-SY5Y cells to clarify the significance of these receptors in nicotine dependence. We analyzed the nicotine-induced elevation of intracellular Ca2+ ([Ca2+]i). Nicotine induces a concentration-dependent increase in [Ca2+]i. The elimination of Ca2+ from extracellular fluid or intracellular stores demonstrated that the nicotine-induced [Ca2+]i elevation was due to extracellular influx and intracellular mobilization. The effects of tubocurarine on nicotine-induced [Ca2+]i elevation and current suggest that intracellular mobilization is caused by plasma membrane-permeating nicotine. The inhibition of α3 *, α5 *, α7 nAChR and voltage-gated Ca2+ channels by using siRNAs and selective antagonists revealed the involvement of these nAChR subunits and channels in nicotine-induced [Ca2+]i elevation. To distinguish and characterize the α3 * and α5 * nAChR-mediated Ca2+ influx, we measured the [Ca2+]i elevation induced by nonmembrane-permeating acetylcholine when muscarinic receptors, α7nAChR and Ca2+ channels were blocked. Under this condition, the [Ca2+]i elevation was significantly inhibited with a 48-h treatment of dibutyryl cAMP, which was accompanied by the downregulation of α3 and β4 mRNA. These findings suggest that α3 * and α5 * nAChR-mediated Ca2+ influx is possibly regulated by cAMP at the transcriptional level.
Collapse
Affiliation(s)
- Tamayo Takahashi
- Department of Molecular and Pharmacological Neuroscience, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
- Department of Dental Anesthesiology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Takayuki Yoshida
- Department of Neurophysiology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Kana Harada
- Department of Molecular and Pharmacological Neuroscience, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Tatsuhiko Miyagi
- Department of Molecular and Pharmacological Neuroscience, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Kouichi Hashimoto
- Department of Neurophysiology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Izumi Hide
- Department of Molecular and Pharmacological Neuroscience, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Shigeru Tanaka
- Department of Molecular and Pharmacological Neuroscience, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Masahiro Irifune
- Department of Dental Anesthesiology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Norio Sakai
- Department of Molecular and Pharmacological Neuroscience, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
- * E-mail:
| |
Collapse
|
33
|
Ikawa F, Tanaka S, Harada K, Hide I, Maruyama H, Sakai N. Detailed neuronal distribution of GPR3 and its co-expression with EF-hand calcium-binding proteins in the mouse central nervous system. Brain Res 2020; 1750:147166. [PMID: 33075309 DOI: 10.1016/j.brainres.2020.147166] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 10/07/2020] [Accepted: 10/12/2020] [Indexed: 12/11/2022]
Abstract
The G-protein coupled receptor 3 (GPR3), a member of the class A rhodopsin-type GPR family, constitutively activates Gαs proteins without any ligands. Although there have been several reports concerning the functions of GPR3 in neurons, the physiological roles of GPR3 have not been fully elucidated. To address this issue, we analyzed GPR3 distribution in detail using fluorescence-based X-gal staining in heterozygous GPR3 knockout/LacZ knock-in mice, and further investigated the types of GPR3-expressing neurons using fluorescent double labeling with various EF-hand Ca2+-binding proteins. In addition to the previously reported GPR3-expressing areas, we identified GPR3 expression in the basal ganglia and in many nuclei of the cranial nerves, in regions related to olfactory, auditory, emotional, and motor functions. In addition, GPR3 was not only observed in excitatory neurons in layer V of the cerebral cortex, the CA2 region of the hippocampus, and the lateral nucleus of the thalamus, but also in γ-aminobutyric acid (GABA)-ergic interneurons in the cortex, hippocampus, thalamus, striatum, and cerebellum. GPR3 was frequently co-expressed with neuronal Ca2+-binding protein 2 (NECAB2) in neurons in various regions of the central nervous system, especially in the hippocampal CA2, medial habenular nucleus, lateral thalamic nucleus, dorsolateral striatum, brainstem, and spinal cord anterior horn. Furthermore, GPR3 also co-localized with NECAB2 at the tips of neurites in differentiated PC12 cells. These results suggest that GPR3 and NECAB2 are highly co-expressed in specific neurons, and that GPR3 may modulate Ca2+ signaling by interacting with NECAB2 in specific areas of the central nervous system.
Collapse
Affiliation(s)
- Fumiaki Ikawa
- Department of Molecular and Pharmacological Neuroscience, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan; Department of Neurology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Shigeru Tanaka
- Department of Molecular and Pharmacological Neuroscience, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan.
| | - Kana Harada
- Department of Molecular and Pharmacological Neuroscience, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Izumi Hide
- Department of Molecular and Pharmacological Neuroscience, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Hirofumi Maruyama
- Department of Neurology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Norio Sakai
- Department of Molecular and Pharmacological Neuroscience, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
34
|
Watkins LR, Orlandi C. Orphan G Protein Coupled Receptors in Affective Disorders. Genes (Basel) 2020; 11:E694. [PMID: 32599826 PMCID: PMC7349732 DOI: 10.3390/genes11060694] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 06/20/2020] [Accepted: 06/21/2020] [Indexed: 12/12/2022] Open
Abstract
G protein coupled receptors (GPCRs) are the main mediators of signal transduction in the central nervous system. Therefore, it is not surprising that many GPCRs have long been investigated for their role in the development of anxiety and mood disorders, as well as in the mechanism of action of antidepressant therapies. Importantly, the endogenous ligands for a large group of GPCRs have not yet been identified and are therefore known as orphan GPCRs (oGPCRs). Nonetheless, growing evidence from animal studies, together with genome wide association studies (GWAS) and post-mortem transcriptomic analysis in patients, pointed at many oGPCRs as potential pharmacological targets. Among these discoveries, we summarize in this review how emotional behaviors are modulated by the following oGPCRs: ADGRB2 (BAI2), ADGRG1 (GPR56), GPR3, GPR26, GPR37, GPR50, GPR52, GPR61, GPR62, GPR88, GPR135, GPR158, and GPRC5B.
Collapse
Affiliation(s)
| | - Cesare Orlandi
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY 14642, USA;
| |
Collapse
|
35
|
Allende G, Chávez-Reyes J, Guerrero-Alba R, Vázquez-León P, Marichal-Cancino BA. Advances in Neurobiology and Pharmacology of GPR12. Front Pharmacol 2020; 11:628. [PMID: 32457622 PMCID: PMC7226366 DOI: 10.3389/fphar.2020.00628] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 04/21/2020] [Indexed: 01/19/2023] Open
Abstract
GPR12 is a G protein-coupled orphan receptor genetically related to type 1 and type 2 cannabinoid receptors (CB1 and CB2) which are ancient proteins expressed all over the body. Both cannabinoid receptors, but especially CB1, are involved in neurodevelopment and cognitive processes such as learning, memory, brain reward, coordination, etc. GPR12 shares with CB1 that both are mainly expressed into the brain. Regrettably, very little is known about physiology of GPR12. Concerning its pharmacology, GPR12 seems to be endogenously activated by the lysophospholipids sphingosine-1-phosphate (S1P) and sphingosyl-phosphorylcholine (SPC). Exogenously, GPR12 is a target for the phytocannabinoid cannabidiol (CBD). Functionally, GPR12 seems to be related to neurogenesis and neural inflammation, but its relationship with cognitive functions remains to be characterized. Although GPR12 was initially suggested to be a cannabinoid receptor, it does not meet the five criteria proposed in 2010 by the International Union of Basic and Clinical Pharmacology (IUPHAR). In this review, we analyze all the direct available information in PubMed database about expression, function, and pharmacology of this receptor in central nervous system (CNS) trying to provide a broad overview of its current and prospective neurophysiology. Moreover, in this mini-review we highlight the need to produce more relevant data about the functions of GPR12 in CNS. Hence, this work should motivate further research in this field.
Collapse
Affiliation(s)
- Gonzalo Allende
- Departamento de Fisiología y Farmacología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Ciudad Universitaria, Aguascalientes, Mexico
| | - Jesús Chávez-Reyes
- Departamento de Fisiología y Farmacología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Ciudad Universitaria, Aguascalientes, Mexico
| | - Raquel Guerrero-Alba
- Departamento de Fisiología y Farmacología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Ciudad Universitaria, Aguascalientes, Mexico
| | - Priscila Vázquez-León
- Departamento de Fisiología y Farmacología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Ciudad Universitaria, Aguascalientes, Mexico
| | - Bruno A Marichal-Cancino
- Departamento de Fisiología y Farmacología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Ciudad Universitaria, Aguascalientes, Mexico
| |
Collapse
|
36
|
Shrader SH, Song ZH. Discovery of endogenous inverse agonists for G protein-coupled receptor 6. Biochem Biophys Res Commun 2019; 522:1041-1045. [PMID: 31818461 DOI: 10.1016/j.bbrc.2019.12.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 12/01/2019] [Indexed: 01/01/2023]
Abstract
The orphan G protein-coupled receptor 6 (GPR6) is highly expressed in the striatum and has been linked to multiple striatal pathologies. The identification of endogenous ligands and their mechanisms of action at GPR6 will help to elucidate the physiological and pathological roles of the receptor. In the current study, we tested the concentration-dependent effects of a variety of endocannabinoid-like N-acylamides on GPR6 signaling. Here, we demonstrate for the first time that N-arachidonoyl dopamine, N-docosahexaenoyl dopamine, N-oleoyl dopamine and N-palmitoyl dopamine exert inverse agonism at GPR6. This effect was concentration-dependent, with potencies in the micromolar range, and functionally selective for β-arrestin2 recruitment. Structure-activity relationship studies demonstrate that both the N-acyl side chain and the dopamine head group are important for these ligands to act on GPR6. Our discovery of these N-acyl dopamines as endogenous inverse agonists for GPR6 moves us one step further in understanding the roles GPR6 play in neurodegenerative and neuropsychiatric disorders related to striatal dysfunction.
Collapse
Affiliation(s)
- Sarah H Shrader
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY, 40292, United States
| | - Zhao-Hui Song
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY, 40292, United States.
| |
Collapse
|
37
|
Role of Sphingosylphosphorylcholine in Tumor and Tumor Microenvironment. Cancers (Basel) 2019; 11:cancers11111696. [PMID: 31683697 PMCID: PMC6896196 DOI: 10.3390/cancers11111696] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 10/25/2019] [Accepted: 10/30/2019] [Indexed: 12/25/2022] Open
Abstract
Sphingosylphosphorylcholine (SPC) is a unique type of lysosphingolipid found in some diseases, and has been studied in cardiovascular, neurological, and inflammatory phenomena. In particular, SPC’s studies on cancer have been conducted mainly in terms of effects on cancer cells, and relatively little consideration has been given to aspects of tumor microenvironment. This review summarizes the effects of SPC on cancer and tumor microenvironment, and presents the results and prospects of modulators that regulate the various actions of SPC.
Collapse
|
38
|
Ayukawa K, Suzuki C, Ogasawara H, Kinoshita T, Furuno M, Suzuki G. Development of a High-Throughput Screening-Compatible Assay for Discovery of GPR3 Inverse Agonists Using a cAMP Biosensor. SLAS DISCOVERY 2019; 25:287-298. [PMID: 31516076 DOI: 10.1177/2472555219875101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
While G-protein-coupled receptors (GPCRs) represent the largest class of cell surface proteins, there are ≥100 orphan GPCRs whose endogenous ligands are unknown. Accordingly, these could prove to be potential therapeutic targets for the pharmaceutical intervention of various diseases. Constitutively active orphan GPCRs are activated without ligands; thus, inverse agonists may be very useful pharmacological tools for inhibiting constitutive activity. However, in general, inverse agonist screening is considered more difficult to perform with high quality than antagonist screening, particularly due to the narrow assay window. We developed a high-throughput screening (HTS)-compatible assay to identify inverse agonists of GPR3. GPR3 is expressed in the central nervous system (CNS) and is known to be related to Alzheimer's disease and other CNS diseases. The GPR3 inducible cell line was established using T-REx 293 cells that stably expressed the tetracycline repressor protein, and the cAMP biosensor, GloSensor, was stably co-expressed. After optimization of the induction level of GPR3 and assay conditions, the GloSensor assay showed an approximately 20-fold signal-to-background ratio and high sensitivity. Using the HTS method, we successfully screened a library of hundreds of thousands of compounds for the inhibition of constitutive activity with good quality and excellent reproducibility. Finally, 35 compounds were identified as GPR3 selective inverse agonists. This inverse agonist screening approach using GloSensor in combination with the inducible expression of orphan GPCR indicates universal applicability to the search for inverse agonists of constitutively active orphan GPCRs.
Collapse
Affiliation(s)
- Kumiko Ayukawa
- Biological/Pharmacological Research Laboratories, Central Pharmaceutical Research Institute, Japan Tobacco Inc., Takatsuki, Osaka, Japan
| | - Chie Suzuki
- Biological/Pharmacological Research Laboratories, Central Pharmaceutical Research Institute, Japan Tobacco Inc., Takatsuki, Osaka, Japan
| | - Hiroyuki Ogasawara
- Pharmaceutical Frontier Research Laboratories, Central Pharmaceutical Research Institute, Japan Tobacco Inc., Kanazawa-ku, Yokohama, Kanagawa, Japan
| | - Tomomi Kinoshita
- Biological/Pharmacological Research Laboratories, Central Pharmaceutical Research Institute, Japan Tobacco Inc., Takatsuki, Osaka, Japan
| | - Masahiro Furuno
- Biological/Pharmacological Research Laboratories, Central Pharmaceutical Research Institute, Japan Tobacco Inc., Takatsuki, Osaka, Japan
| | - Gentaroh Suzuki
- Biological/Pharmacological Research Laboratories, Central Pharmaceutical Research Institute, Japan Tobacco Inc., Takatsuki, Osaka, Japan
| |
Collapse
|
39
|
Laun AS, Shrader SH, Brown KJ, Song ZH. GPR3, GPR6, and GPR12 as novel molecular targets: their biological functions and interaction with cannabidiol. Acta Pharmacol Sin 2019; 40:300-308. [PMID: 29941868 PMCID: PMC6460361 DOI: 10.1038/s41401-018-0031-9] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 04/17/2018] [Indexed: 01/08/2023]
Abstract
The G protein-coupled receptors 3, 6, and 12 (GPR3, GPR6, and GPR12) comprise a family of closely related orphan receptors with no confirmed endogenous ligands. These receptors are constitutively active and capable of signaling through G protein-mediated and non-G protein-mediated mechanisms. These orphan receptors have previously been reported to play important roles in many normal physiological functions and to be involved in a variety of pathological conditions. Although they are orphans, GPR3, GPR6, and GPR12 are phylogenetically most closely related to the cannabinoid receptors. Using β-arrestin2 recruitment and cAMP accumulation assays, we recently found that the nonpsychoactive phytocannabinoid cannabidiol (CBD) is an inverse agonist for GPR3, GPR6, and GPR12. This discovery highlights these orphan receptors as potential new molecular targets for CBD, provides novel mechanisms of action, and suggests new therapeutic uses of CBD for illnesses such as Alzheimer's disease, Parkinson's disease, cancer, and infertility. Furthermore, identification of CBD as a new inverse agonist for GPR3, GPR6, and GPR12 provides the initial chemical scaffolds upon which potent and efficacious agents acting on these receptors can be developed, with the goal of developing chemical tools for studying these orphan receptors and ultimately new therapeutic agents.
Collapse
Affiliation(s)
- Alyssa S Laun
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY, 40292, USA
| | - Sarah H Shrader
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY, 40292, USA
| | - Kevin J Brown
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY, 40292, USA
| | - Zhao-Hui Song
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY, 40292, USA.
| |
Collapse
|
40
|
Ye L, Cao Z, Wang W, Zhou N. New Insights in Cannabinoid Receptor Structure and Signaling. Curr Mol Pharmacol 2019; 12:239-248. [PMID: 30767756 PMCID: PMC6864585 DOI: 10.2174/1874467212666190215112036] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 02/04/2019] [Accepted: 02/06/2019] [Indexed: 12/26/2022]
Abstract
BACKGROUND Cannabinoid has long been used for medicinal purposes. Cannabinoid signaling has been considered the therapeutic target for treating pain, addiction, obesity, inflammation, and other diseases. Recent studies have suggested that in addition to CB1 and CB2, there are non-CB1 and non-CB2 cannabinoid-related orphan GPCRs including GPR18, GPR55, and GPR119. In addition, CB1 and CB2 display allosteric binding and biased signaling, revealing correlations between biased signaling and functional outcomes. Interestingly, new investigations have indicated that CB1 is functionally present within the mitochondria of striated and heart muscles directly regulating intramitochondrial signaling and respiration. CONCLUSION In this review, we summarize the recent progress in cannabinoid-related orphan GPCRs, CB1/CB2 structure, Gi/Gs coupling, allosteric ligands and biased signaling, and mitochondria-localized CB1, and discuss the future promise of this research.
Collapse
Affiliation(s)
- Lingyan Ye
- Institute of Biochemistry and Molecular Biology, College of Life Sciences, Zhejiang University, Zijingang Campus, Hangzhou, Zhejiang, China
| | - Zheng Cao
- Institute of Biochemistry and Molecular Biology, College of Life Sciences, Zhejiang University, Zijingang Campus, Hangzhou, Zhejiang, China
| | - Weiwei Wang
- Institute of Biochemistry and Molecular Biology, College of Life Sciences, Zhejiang University, Zijingang Campus, Hangzhou, Zhejiang, China
| | - Naiming Zhou
- Institute of Biochemistry and Molecular Biology, College of Life Sciences, Zhejiang University, Zijingang Campus, Hangzhou, Zhejiang, China
| |
Collapse
|
41
|
Laun AS, Shrader SH, Song ZH. Novel inverse agonists for the orphan G protein-coupled receptor 6. Heliyon 2018; 4:e00933. [PMID: 30480157 PMCID: PMC6240797 DOI: 10.1016/j.heliyon.2018.e00933] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 09/06/2018] [Accepted: 11/08/2018] [Indexed: 12/11/2022] Open
Abstract
The orphan G protein-coupled receptor 6 (GPR6) displays unique promise as a therapeutic target for the treatment of neuropsychiatric disorders due to its high expression in the striatopallidal neurons of the basal ganglia. GPR6, along with closely related orphan receptors GPR3 and GPR12, are phylogenetically related to CB1 and CB2 cannabinoid receptors. In the current study, we performed concentration-response studies on the effects of three different classes of cannabinoids: endogenous, phyto-, and synthetic, on both GPR6-mediated cAMP accumulation and β-arrestin2 recruitment. In addition, structure-activity relationship studies were conducted on cannabidiol (CBD), a recently discovered inverse agonist for GPR6. We have identified four additional cannabinoids, cannabidavarin (CBDV), WIN55212-2, SR141716A and SR144528, that exert inverse agonism on GPR6. Furthermore, we have discovered that these cannabinoids exhibit functional selectivity toward the β-arrestin2 recruitment pathway. These novel, functionally selective inverse agonists for GPR6 can be used as research tools and potentially developed into therapeutic agents.
Collapse
Affiliation(s)
- Alyssa S Laun
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY, 40292, United States
| | - Sarah H Shrader
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY, 40292, United States
| | - Zhao-Hui Song
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY, 40292, United States
| |
Collapse
|
42
|
Nourbakhsh F, Atabaki R, Roohbakhsh A. The role of orphan G protein-coupled receptors in the modulation of pain: A review. Life Sci 2018; 212:59-69. [PMID: 30236869 DOI: 10.1016/j.lfs.2018.09.028] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 09/04/2018] [Accepted: 09/14/2018] [Indexed: 12/16/2022]
Abstract
G protein-coupled receptors (GPCRs) comprise a large number of receptors. Orphan GPCRs are divided into six families. These groups contain orphan receptors for which the endogenous ligands are unclear. They have various physiological effects in the body and have the potential to be used in the treatment of different diseases. Considering their important role in the central and peripheral nervous system, their role in the treatment of pain has been the subject of some recent studies. At present, there are effective therapeutics for the treatment of pain including opioid medications and non-steroidal anti-inflammatory drugs. However, the side effects of these drugs and the risks of tolerance and dependence remain a major problem. In addition, neuropathic pain is a condition that does not respond to currently available analgesic medications well. In the present review article, we aimed to review the most recent findings regarding the role of orphan GPCRs in the treatment of pain. Accordingly, based on the preclinical findings, the role of GPR3, GPR7, GPR8, GPR18, GPR30, GPR35, GPR40, GPR55, GPR74, and GPR147 in the treatment of pain was discussed. The present study highlights the role of orphan GPCRs in the modulation of pain and implies that these receptors are potential new targets for finding better and more efficient therapeutics for the management of pain particularly neuropathic pain.
Collapse
Affiliation(s)
- Fahimeh Nourbakhsh
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Rabi Atabaki
- Rayan Center for Neuroscience & Behavior, Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Ali Roohbakhsh
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
43
|
Morales P, Isawi I, Reggio PH. Towards a better understanding of the cannabinoid-related orphan receptors GPR3, GPR6, and GPR12. Drug Metab Rev 2018; 50:74-93. [PMID: 29390908 DOI: 10.1080/03602532.2018.1428616] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
GPR3, GPR6, and GPR12 are three orphan receptors that belong to the Class A family of G-protein-coupled receptors (GPCRs). These GPCRs share over 60% of sequence similarity among them. Because of their close phylogenetic relationship, GPR3, GPR6, and GPR12 share a high percentage of homology with other lipid receptors such as the lysophospholipid and the cannabinoid receptors. On the basis of sequence similarities at key structural motifs, these orphan receptors have been related to the cannabinoid family. However, further experimental data are required to confirm this association. GPR3, GPR6, and GPR12 are predominantly expressed in mammalian brain. Their high constitutive activation of adenylyl cyclase triggers increases in cAMP levels similar in amplitude to fully activated GPCRs. This feature defines their physiological role under certain pathological conditions. In this review, we aim to summarize the knowledge attained so far on the understanding of these receptors. Expression patterns, pharmacology, physiopathological relevance, and molecules targeting GPR3, GPR6, and GPR12 will be analyzed herein. Interestingly, certain cannabinoid ligands have been reported to modulate these orphan receptors. The current debate about sphingolipids as putative endogenous ligands will also be addressed. A special focus will be on their potential role in the brain, particularly under neurological conditions such as Parkinson or Alzheimer's disease. Reported physiological roles outside the central nervous system will also be covered. This critical overview may contribute to a further comprehension of the physiopathological role of these orphan GPCRs, hopefully attracting more research towards a future therapeutic exploitation of these promising targets.
Collapse
Affiliation(s)
- Paula Morales
- a Department of Chemistry and Biochemistry , University of North Carolina at Greensboro , Greensboro , NC , USA
| | - Israa Isawi
- a Department of Chemistry and Biochemistry , University of North Carolina at Greensboro , Greensboro , NC , USA
| | - Patricia H Reggio
- a Department of Chemistry and Biochemistry , University of North Carolina at Greensboro , Greensboro , NC , USA
| |
Collapse
|
44
|
Tanaka S. [Signaling and functions of G-protein-coupled receptor 3 in cerebellar granular neurons]. Nihon Yakurigaku Zasshi 2018; 152:78-83. [PMID: 30101864 DOI: 10.1254/fpj.152.78] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
G-protein-coupled receptor 3 (GPR3) is a member of the class A rhodopsin-type GPCR family and is highly expressed in various neurons. A unique feature of GPR3 is its ability to constitutively activate the Gαs protein without the addition of ligands, which results in the elevation of the basal level of intracellular cAMP. During the development of the cerebellum, GPR3 expression is upregulated in cerebellar granular neurons (CGNs) and maintained thereafter. In our previous studies, we showed that the intrinsic expression of GPR3 in CGNs is highly associated with neurite outgrowth, neurite differentiation, and neuronal survival. Recently, we have focused on the possible signaling pathways associated with GPR3-mediated neurite outgrowth in CGNs. Interestingly, GPR3-mediated neurite outgrowth is mediated by not only PKA-dependent signaling pathways but also PI3K-mediated signaling pathways. Moreover, the Gβγ-mediated signaling pathway is involved in GPR3-mediated neurite outgrowth. These results suggested that neural expression of GPR3 stimulates multiple downstream signaling pathways, contributing to the maintenance of homeostasis in neurons. Further precise analyses of constitutively active GPCRs may help in unveiling novel neuronal functions.
Collapse
Affiliation(s)
- Shigeru Tanaka
- Department of Molecular and Pharmacological Neuroscience, Graduate school of Biomedical & Health Sciences, Hiroshima University
| |
Collapse
|
45
|
Alavi MS, Shamsizadeh A, Azhdari-Zarmehri H, Roohbakhsh A. Orphan G protein-coupled receptors: The role in CNS disorders. Biomed Pharmacother 2017; 98:222-232. [PMID: 29268243 DOI: 10.1016/j.biopha.2017.12.056] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Revised: 12/12/2017] [Accepted: 12/14/2017] [Indexed: 12/20/2022] Open
Abstract
There are various types of receptors in the central nervous system (CNS). G protein-coupled receptors (GPCRs) have the highest expression with a wide range of physiological functions. A newer sub group of these receptors namely orphan GPCRs have been discovered. GPR3, GPR6, GPR17, GPR26, GPR37, GPR39, GPR40, GPR50, GPR52, GPR54, GPR55, GPR85, GPR88, GPR103, and GPR139 are the selected orphan GPCRs for this article. Their roles in the central nervous system have not been understood well so far. However, recent studies show that they may have very important functions in the CNS. Hence, in the present study, we reviewed most recent findings regarding the physiological roles of the selected orphan GPCRs in the CNS. After a brief presentation of each receptor, considering the results from genetic and pharmacological manipulation of the receptors, their roles in the pathophysiology of different diseases and disorders including anxiety, depression, schizophrenia, epilepsy, Alzheimer's disease, Parkinson's disease, and substance abuse will be discussed. At present, our knowledge regarding the role of GPCRs in the brain is very limited. However, previous limited studies show that orphan GPCRs have an important place in psychopharmacology and these receptors are potential new targets for the treatment of major CNS diseases.
Collapse
Affiliation(s)
- Mohaddeseh Sadat Alavi
- Division of Neurocognitive Sciences, Psychiatry and Behavioral Sciences Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Shamsizadeh
- Physiology-Pharmacology Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Hassan Azhdari-Zarmehri
- Department of Basic Medical Sciences and Neuroscience Research Center, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| | - Ali Roohbakhsh
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
46
|
Morales P, Reggio PH. An Update on Non-CB 1, Non-CB 2 Cannabinoid Related G-Protein-Coupled Receptors. Cannabis Cannabinoid Res 2017; 2:265-273. [PMID: 29098189 PMCID: PMC5665501 DOI: 10.1089/can.2017.0036] [Citation(s) in RCA: 131] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The endocannabinoid system (ECS) has been shown to be of great importance in the regulation of numerous physiological and pathological processes. To date, two Class A G-protein-coupled receptors (GPCRs) have been discovered and validated as the main therapeutic targets of this system: the cannabinoid receptor type 1 (CB1), which is the most abundant neuromodulatory receptor in the brain, and the cannabinoid receptor type 2 (CB2), predominantly found in the immune system among other organs and tissues. Endogenous cannabinoid receptor ligands (endocannabinoids) and the enzymes involved in their synthesis, cell uptake, and degradation have also been identified as part of the ECS. However, its complex pharmacology suggests that other GPCRs may also play physiologically relevant roles in this therapeutically promising system. In the last years, GPCRs such as GPR18 and GPR55 have emerged as possible missing members of the cannabinoid family. This categorization still stimulates strong debate due to the lack of pharmacological tools to validate it. Because of their close phylogenetic relationship, the Class A orphan GPCRs, GPR3, GPR6, and GPR12, have also been associated with the cannabinoids. Moreover, certain endo-, phyto-, and synthetic cannabinoid ligands have displayed activity at other well-established GPCRs, including the opioid, adenosine, serotonin, and dopamine receptor families. In addition, the cannabinoid receptors have also been shown to form dimers with other GPCRs triggering cross-talk signaling under specific conditions. In this mini review, we aim to provide insight into the non-CB1, non-CB2 cannabinoid-related GPCRs that have been reported thus far. We consider the physiological relevance of these molecular targets in modulating the ECS.
Collapse
Affiliation(s)
- Paula Morales
- Chemistry and Biochemistry Department, UNC Greensboro, Greensboro, North Carolina
| | - Patricia H. Reggio
- Chemistry and Biochemistry Department, UNC Greensboro, Greensboro, North Carolina
| |
Collapse
|
47
|
Brown KJ, Laun AS, Song ZH. Cannabidiol, a novel inverse agonist for GPR12. Biochem Biophys Res Commun 2017; 493:451-454. [PMID: 28888984 DOI: 10.1016/j.bbrc.2017.09.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 09/01/2017] [Indexed: 10/18/2022]
Abstract
GPR12 is a constitutively active, Gs protein-coupled receptor that currently has no confirmed endogenous ligands. GPR12 may be involved in physiological processes such as maintenance of oocyte meiotic arrest and brain development, as well as pathological conditions such as metastatic cancer. In this study, the potential effects of various classes of cannabinoids on GPR12 were tested using a cAMP accumulation assay. Our data demonstrate that cannabidiol (CBD), a major non-psychoactive phytocannabinoid, acted as an inverse agonist to inhibit cAMP accumulation stimulated by the constitutively active GPR12. Thus, GPR12 is a novel molecular target for CBD. The structure-activity relationship studies of CBD indicate that both the free hydroxyl and the pentyl side chain are crucial for the effects of CBD on GPR12. Furthermore, studies using cholera toxin, which blocks Gs protein and pertussis toxin, which blocks Gi protein, revealed that Gs, but not Gi is involved in the inverse agonism of CBD on GPR12. CBD is a promising novel therapeutic agent for cancer, and GPR12 has been shown to alter viscoelasticity of metastatic cancer cells. Since we have demonstrated that CBD is an inverse agonist for GPR12, this provides novel mechanism of action for CBD, and an initial chemical scaffold upon which highly potent and efficacious agents acting on GPR12 may be developed with the ultimate goal of blocking cancer metastasis.
Collapse
Affiliation(s)
- Kevin J Brown
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40292, United States
| | - Alyssa S Laun
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40292, United States
| | - Zhao-Hui Song
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40292, United States.
| |
Collapse
|
48
|
Abstract
The Reggio group has constructed computer models of the inactive and G-protein-activated states of the cannabinoid CB1 and CB2 receptors, as well as, several orphan receptors that recognize a subset of cannabinoid compounds, including GPR55 and GPR18. These models have been used to design ligands, mutations, and covalent labeling studies. The resultant second-generation models have been used to design ligands with improved affinity, efficacy, and subtype selectivity. Herein, we provide a guide for the development of GPCR models using the most recent orphan receptor studied in our lab, GPR3. GPR3 is an orphan receptor that belongs to the Class A family of G-protein-coupled receptors. It shares high sequence similarity with GPR6, GPR12, the lysophospholipid receptors, and the cannabinoid receptors. GPR3 is predominantly expressed in mammalian brain and oocytes and it is known as a Gαs-coupled receptor activated constitutively in cells. GPR3 represents a possible target for the treatment of different pathological conditions such as Alzheimer's disease, oocyte maturation, or neuropathic pain. However, the lack of potent and selective GPR3 ligands is delaying the exploitation of this promising therapeutic target. In this context, we aim to develop a homology model that helps us to elucidate the structural determinants governing ligand-receptor interactions at GPR3. In this chapter, we detail the methods and rationale behind the construction of the GPR3 active-and inactive-state models. These homology models will enable the rational design of novel ligands, which may serve as research tools for further understanding of the biological role of GPR3.
Collapse
Affiliation(s)
- Paula Morales
- University of North Carolina at Greensboro, Greensboro, NC, United States.
| | - Dow P Hurst
- University of North Carolina at Greensboro, Greensboro, NC, United States
| | - Patricia H Reggio
- University of North Carolina at Greensboro, Greensboro, NC, United States
| |
Collapse
|
49
|
Laun AS, Song ZH. GPR3 and GPR6, novel molecular targets for cannabidiol. Biochem Biophys Res Commun 2017; 490:17-21. [PMID: 28571738 DOI: 10.1016/j.bbrc.2017.05.165] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 05/28/2017] [Indexed: 10/19/2022]
Abstract
GPR3 and GPR6 are members of a family of constitutively active, Gs protein-coupled receptors. Previously, it has been reported that GPR3 is involved in Alzheimer's disease whereas GPR6 plays potential roles in Parkinson's disease. GPR3 and GPR6 are considered orphan receptors because there are no confirmed endogenous agonists for them. However, GPR3 and GPR6 are phylogenetically related to the cannabinoid receptors. In this study, the activities of endocannabinoids and phytocannabinoids were tested on GPR3 and GPR6 using a β-arrestin2 recruitment assay. Among the variety of cannabinoids tested, cannabidiol (CBD), the major non-psychoactive component of marijuana, significantly reduced β-arrestin2 recruitment to both GPR3 and GPR6. In addition, the inhibitory effects of CBD on β-arrestin2 recruitment were concentration-dependent for both GPR3 and GPR6, with a higher potency for GPR6. These data show that CBD acts as an inverse agonist at both GPR3 and GPR6 receptors. These results demonstrate for the first time that both GPR3 and GPR6 are novel molecular targets for CBD. Our discovery that CBD acts as a novel inverse agonist on both GPR3 and GPR6 indicates that some of the potential therapeutic effects of CBD (e.g. treatment of Alzheimer's disease and Parkinson's disease) may be mediated through these important receptors.
Collapse
Affiliation(s)
- Alyssa S Laun
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40292, United States
| | - Zhao-Hui Song
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40292, United States.
| |
Collapse
|
50
|
Khan MZ, He L. Neuro-psychopharmacological perspective of Orphan receptors of Rhodopsin (class A) family of G protein-coupled receptors. Psychopharmacology (Berl) 2017; 234:1181-1207. [PMID: 28289782 DOI: 10.1007/s00213-017-4586-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 02/27/2017] [Indexed: 12/28/2022]
Abstract
BACKGROUND In the central nervous system (CNS), G protein-coupled receptors (GPCRs) are the most fruitful targets for neuropsychopharmacological drug development. Rhodopsin (class A) is the most studied class of GPCR and includes orphan receptors for which the endogenous ligand is not known or is unclear. Characterization of orphan GPCRs has proven to be challenging, and the production pace of GPCR-based drugs has been incredibly slow. OBJECTIVE Determination of the functions of these receptors may provide unexpected insight into physiological and neuropathological processes. Advances in various methods and techniques to investigate orphan receptors including in situ hybridization and knockdown/knockout (KD/KO) showed extensive expression of these receptors in the mammalian brain and unmasked their physiological and neuropathological roles. Due to these rapid progress and development, orphan GPCRs are rising as a new and promising class of drug targets for neurodegenerative diseases and psychiatric disorders. CONCLUSION This review presents a neuropsychopharmacological perspective of 26 orphan receptors of rhodopsin (class A) family, namely GPR3, GPR6, GPR12, GPR17, GPR26, GPR35, GPR39, GPR48, GPR49, GPR50, GPR52, GPR55, GPR61, GPR62, GPR63, GPR68, GPR75, GPR78, GPR83, GPR84, GPR85, GPR88, GPR153, GPR162, GPR171, and TAAR6. We discussed the expression of these receptors in mammalian brain and their physiological roles. Furthermore, we have briefly highlighted their roles in neurodegenerative diseases and psychiatric disorders including Alzheimer's disease, Parkinson's disease, neuroinflammation, inflammatory pain, bipolar and schizophrenic disorders, epilepsy, anxiety, and depression.
Collapse
Affiliation(s)
- Muhammad Zahid Khan
- Department of Pharmacology, China Pharmaceutical University, No. 24 Tong Jia Xiang, Nanjing, Jiangsu Province, 210009, China.
| | - Ling He
- Department of Pharmacology, China Pharmaceutical University, No. 24 Tong Jia Xiang, Nanjing, Jiangsu Province, 210009, China
| |
Collapse
|