1
|
Jean Gregoire M, Sirtori R, Donatelli L, Morgan Potts E, Collins A, Zamor D, Katenka N, Fallini C. Early disruption of the CREB pathway drives dendritic morphological alterations in FTD/ALS cortical neurons. Proc Natl Acad Sci U S A 2024; 121:e2406998121. [PMID: 39589881 PMCID: PMC11626127 DOI: 10.1073/pnas.2406998121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 10/15/2024] [Indexed: 11/28/2024] Open
Abstract
Synaptic loss and dendritic degeneration are common pathologies in several neurodegenerative diseases characterized by progressive cognitive and/or motor decline, such as Alzheimer's disease (AD) and frontotemporal dementia/amyotrophic lateral sclerosis (FTD/ALS). An essential regulator of neuronal health, the cAMP-dependent transcription factor CREB positively regulates synaptic growth, learning, and memory. Phosphorylation of CREB by protein kinase A (PKA) and other cellular kinases promotes neuronal survival and maturation via transcriptional activation of a wide range of downstream target genes. CREB pathway dysfunction has been strongly implicated in AD pathogenesis, and recent data suggest that impaired CREB activation may contribute to disease phenotypes in FTD/ALS as well. However, the mechanisms behind reduced CREB activity in FTD/ALS pathology are not clear. In this study, we found that cortical-like neurons derived from iPSC lines carrying the hexanucleotide repeat expansion in the C9ORF72 gene, a common genetic cause of FTD/ALS, displayed a diminished activation of CREB, resulting in decreased dendritic and synaptic health. Importantly, we determined such impairments to be mechanistically linked to an imbalance in the ratio of regulatory and catalytic subunits of the CREB activator PKA and to be conserved in C9-ALS patient's postmortem tissue. Modulation of cAMP upstream of this impairment allowed for a rescue of CREB activity and an amelioration of dendritic morphology and synaptic protein levels. Our data elucidate the mechanism behind early CREB pathway dysfunction and discern a feasible therapeutic target for the treatment of FTD/ALS and possibly other neurodegenerative diseases.
Collapse
Affiliation(s)
- Michelle Jean Gregoire
- Cell and Molecular Biology Department, University of Rhode Island, Kingston, RI02881
- Interdisciplinary Neuroscience Program, University of Rhode Island, Kingston, RI02881
- George and Anne Ryan Institute for Neuroscience, Kingston, RI02881
| | - Riccardo Sirtori
- Cell and Molecular Biology Department, University of Rhode Island, Kingston, RI02881
- George and Anne Ryan Institute for Neuroscience, Kingston, RI02881
| | - Liviana Donatelli
- Cell and Molecular Biology Department, University of Rhode Island, Kingston, RI02881
- Interdisciplinary Neuroscience Program, University of Rhode Island, Kingston, RI02881
- George and Anne Ryan Institute for Neuroscience, Kingston, RI02881
| | - Emily Morgan Potts
- Cell and Molecular Biology Department, University of Rhode Island, Kingston, RI02881
- Interdisciplinary Neuroscience Program, University of Rhode Island, Kingston, RI02881
- George and Anne Ryan Institute for Neuroscience, Kingston, RI02881
| | - Alicia Collins
- Cell and Molecular Biology Department, University of Rhode Island, Kingston, RI02881
- Interdisciplinary Neuroscience Program, University of Rhode Island, Kingston, RI02881
- George and Anne Ryan Institute for Neuroscience, Kingston, RI02881
| | - Danielo Zamor
- Interdisciplinary Neuroscience Program, University of Rhode Island, Kingston, RI02881
- George and Anne Ryan Institute for Neuroscience, Kingston, RI02881
| | - Natallia Katenka
- Department of Computer Science and Statistics, University of Rhode Island, Kingston, RI02881
| | - Claudia Fallini
- Cell and Molecular Biology Department, University of Rhode Island, Kingston, RI02881
- Interdisciplinary Neuroscience Program, University of Rhode Island, Kingston, RI02881
- George and Anne Ryan Institute for Neuroscience, Kingston, RI02881
| |
Collapse
|
2
|
Ojo OA, Ajeigbe D, Ogunlakin AD, Odesanmi OE, Ayomipo M, Berana G, Ayeni P, Ajayi-Odoko OA, Ayokunle DI, Ojo AB, Ajiboye BO, Ojo OO, Dahunsi SO. Preclinical antidiabetic and antioxidant effects of Erythrophleum africanum (benth.) harms in streptozotocin-induced diabetic nephropathy. JOURNAL OF COMPLEMENTARY & INTEGRATIVE MEDICINE 2024; 0:jcim-2024-0090. [PMID: 38954410 DOI: 10.1515/jcim-2024-0090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 06/16/2024] [Indexed: 07/04/2024]
Abstract
OBJECTIVES This study investigated the antidiabetic effects of the methanolic extract of E. africanum (MEEA) stem bark on streptozotocin (STZ)-induced diabetic nephropathy (DN) in Wistar rats. METHODS The in vitro enzyme (α-amylase) inhibitory activity of MEEA was measured using a standard procedure. Diabetic rats with fasting blood glucose above 250 mg/dL were considered diabetic and were divided into the following groups: control (distilled water-treated), diabetic-control, diabetic metformin (100 mg/kg), diabetes + MEEA (150 mg/kg), and diabetes + MEEA (300 mg/kg) via oral gavage once daily for 14 days. At the end of the experimental period, kidney tissues were collected for biochemical and histological analyses. Kidney apoptosis and marker gene expression were measured by real-time quantitative PCR. RESULTS MEEA exhibited α-amylase inhibitory effects. MEEA significantly (p<0.05) reduced the STZ-induced increases in blood glucose, serum urea, serum creatinine, uric acid, alanine aminotransferase, alkaline phosphatase, and malondialdehyde and increased the STZ-induced decreases in superoxide dismutase, catalase, and reduced glutathione. In addition, MEEA protects against DN by significantly downregulating the mRNA expression of cyclic adenosine monophosphate (cAMP), protein kinase A (PKA), cAMP-response binding protein (CREB), and cFOS and upregulating B-cell lymphoma 2 (Bcl-2), suggesting that the nephroprotective ability of MEEA is due to the modulation of the cAMP/PKA/CREB/cFOS signaling pathway. Furthermore, MEEA treatment protected against histopathological alterations observed in diabetic rats. CONCLUSIONS The data from this study suggest that MEEA modulates glucose homeostasis and inhibits redox imbalance in DN rats.
Collapse
Affiliation(s)
- Oluwafemi A Ojo
- 70671 Good Health and Wellbeing Research Clusters (SDG 03), Bowen University , Iwo, Nigeria
- Biochemistry Programme, 70671 Phytomedicine, Molecular Toxicology, and Computational Biochemistry Research Laboratory (PMTCB-RL), Bowen University , Iwo, Nigeria
| | - David Ajeigbe
- 70671 Good Health and Wellbeing Research Clusters (SDG 03), Bowen University , Iwo, Nigeria
- Biochemistry Programme, 70671 Phytomedicine, Molecular Toxicology, and Computational Biochemistry Research Laboratory (PMTCB-RL), Bowen University , Iwo, Nigeria
| | - Akingbolabo D Ogunlakin
- 70671 Good Health and Wellbeing Research Clusters (SDG 03), Bowen University , Iwo, Nigeria
- Biochemistry Programme, 70671 Phytomedicine, Molecular Toxicology, and Computational Biochemistry Research Laboratory (PMTCB-RL), Bowen University , Iwo, Nigeria
| | | | - Mojisola Ayomipo
- 70671 Good Health and Wellbeing Research Clusters (SDG 03), Bowen University , Iwo, Nigeria
- Biochemistry Programme, 70671 Phytomedicine, Molecular Toxicology, and Computational Biochemistry Research Laboratory (PMTCB-RL), Bowen University , Iwo, Nigeria
| | - Godwin Berana
- 70671 Good Health and Wellbeing Research Clusters (SDG 03), Bowen University , Iwo, Nigeria
- Biochemistry Programme, 70671 Phytomedicine, Molecular Toxicology, and Computational Biochemistry Research Laboratory (PMTCB-RL), Bowen University , Iwo, Nigeria
| | - Peluola Ayeni
- 70671 Good Health and Wellbeing Research Clusters (SDG 03), Bowen University , Iwo, Nigeria
- Biochemistry Programme, 70671 Phytomedicine, Molecular Toxicology, and Computational Biochemistry Research Laboratory (PMTCB-RL), Bowen University , Iwo, Nigeria
| | | | | | - Adebola B Ojo
- Department of Biochemistry, Ekiti State University, Ado-Ekiti, Nigeria
| | - Basiru O Ajiboye
- Department of Biochemistry, Federal University Oye Ekiti, Oye Ekiti, Nigeria
| | - Omolara O Ojo
- Department of Biochemistry, Ekiti State University, Ado-Ekiti, Nigeria
| | | |
Collapse
|
3
|
Ojo OA, Ogunlakin AD, Akintayo CO, Olukiran OS, Adetunji JB, Ajayi-Odoko OA, Ogwa TO, Molehin OR, Ojo OO, Mothana RA, Alanzi AR. Spilanthes filicaulis (Schumach. & Thonn.) C.D. Adams leaves protects against streptozotocin-induced diabetic nephropathy. PLoS One 2024; 19:e0301992. [PMID: 38640098 PMCID: PMC11029641 DOI: 10.1371/journal.pone.0301992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 03/22/2024] [Indexed: 04/21/2024] Open
Abstract
BACKGROUND AND OBJECTIVE Diabetic neuropathy (DN) is a complex type of diabetes. The underlying cause of diabetic nephropathy remains unclear and may be due to a variety of pathological conditions resulting in kidney failure. This study examines the protective effect of the methanolic extract of Spilanthes filicaulis leaves (MESFL) in fructose-fed streptozotocin (STZ)-induced diabetic nephropathy and the associated pathway. METHODS Twenty-five rats were equally divided randomly into five categories: Control (C), diabetic control, diabetic + metformin (100 mg/kg), diabetic + MESFL 150 mg/kg bw, and diabetic + MESFL 300 mg/kg bw. After 15 days, the rats were evaluated for fasting blood glucose (FBG), alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP), urea, uric acid, serum creatinine, reduced glutathione (GSH), superoxide dismutase (SOD), catalase (CAT), and lipid peroxidation (MDA). Gene expression levels of cyclic adenosine monophosphate (cAMP), protein kinase A (PKA), cAMP response element-binding (CREB), cFOS and the antiapoptotic protein Bcl-2 were examined. RESULTS We observed that MESFL at 150 and 300 mg/kg bw significantly downregulated the protein expression of cAMP, PKA, CREB, and cFOS and upregulated the Bcl-2 gene, suggesting that the nephroprotective action of MESFL is due to the suppression of the cAMP/PKA/CREB/cFOS signaling pathway. In addition, MESFL increases SOD and CAT activities and GSH levels, reduces MDA levels, and reduces renal functional indices (ALP, urea, uric acid, and creatinine). CONCLUSION Therefore, our results indicate that MESFL alleviates the development of diabetic nephropathy via suppression of the cAMP/PKA/CREB/cFOS pathways.
Collapse
Affiliation(s)
- Oluwafemi Adeleke Ojo
- Phytomedicine, Molecular Toxicology, and Computational Biochemistry Research Laboratory (PMTCB-RL), Department of Biochemistry, Bowen University, Iwo, Nigeria
| | - Akingbolabo Daniel Ogunlakin
- Phytomedicine, Molecular Toxicology, and Computational Biochemistry Research Laboratory (PMTCB-RL), Department of Biochemistry, Bowen University, Iwo, Nigeria
| | | | | | | | | | - Theophilus Oghenenyoreme Ogwa
- Phytomedicine, Molecular Toxicology, and Computational Biochemistry Research Laboratory (PMTCB-RL), Department of Biochemistry, Bowen University, Iwo, Nigeria
| | | | | | - Ramzi A. Mothana
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi, Arabia
| | - Abdullah R. Alanzi
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi, Arabia
| |
Collapse
|
4
|
Martinez-Yamout MA, Nasir I, Shnitkind S, Ellis JP, Berlow RB, Kroon G, Deniz AA, Dyson HJ, Wright PE. Glutamine-rich regions of the disordered CREB transactivation domain mediate dynamic intra- and intermolecular interactions. Proc Natl Acad Sci U S A 2023; 120:e2313835120. [PMID: 37971402 PMCID: PMC10666024 DOI: 10.1073/pnas.2313835120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 10/10/2023] [Indexed: 11/19/2023] Open
Abstract
The cyclic AMP response element (CRE) binding protein (CREB) is a transcription factor that contains a 280-residue N-terminal transactivation domain and a basic leucine zipper that mediates interaction with DNA. The transactivation domain comprises three subdomains, the glutamine-rich domains Q1 and Q2 and the kinase inducible activation domain (KID). NMR chemical shifts show that the isolated subdomains are intrinsically disordered but have a propensity to populate local elements of secondary structure. The Q1 and Q2 domains exhibit a propensity for formation of short β-hairpin motifs that function as binding sites for glutamine-rich sequences. These motifs mediate intramolecular interactions between the CREB Q1 and Q2 domains as well as intermolecular interactions with the glutamine-rich Q1 domain of the TATA-box binding protein associated factor 4 (TAF4) subunit of transcription factor IID (TFIID). Using small-angle X-ray scattering, NMR, and single-molecule Förster resonance energy transfer, we show that the Q1, Q2, and KID regions remain dynamically disordered in a full-length CREB transactivation domain (CREBTAD) construct. The CREBTAD polypeptide chain is largely extended although some compaction is evident in the KID and Q2 domains. Paramagnetic relaxation enhancement reveals transient long-range contacts both within and between the Q1 and Q2 domains while the intervening KID domain is largely devoid of intramolecular interactions. Phosphorylation results in expansion of the KID domain, presumably making it more accessible for binding the CBP/p300 transcriptional coactivators. Our study reveals the complex nature of the interactions within the intrinsically disordered transactivation domain of CREB and provides molecular-level insights into dynamic and transient interactions mediated by the glutamine-rich domains.
Collapse
Affiliation(s)
- Maria A. Martinez-Yamout
- Department of Integrative Structural and Computational Biology and Skaggs Institute of Chemical Biology, The Scripps Research Institute, La Jolla, CA92037
| | - Irem Nasir
- Department of Integrative Structural and Computational Biology and Skaggs Institute of Chemical Biology, The Scripps Research Institute, La Jolla, CA92037
| | - Sergey Shnitkind
- Department of Integrative Structural and Computational Biology and Skaggs Institute of Chemical Biology, The Scripps Research Institute, La Jolla, CA92037
| | - Jamie P. Ellis
- Department of Integrative Structural and Computational Biology and Skaggs Institute of Chemical Biology, The Scripps Research Institute, La Jolla, CA92037
| | - Rebecca B. Berlow
- Department of Integrative Structural and Computational Biology and Skaggs Institute of Chemical Biology, The Scripps Research Institute, La Jolla, CA92037
| | - Gerard Kroon
- Department of Integrative Structural and Computational Biology and Skaggs Institute of Chemical Biology, The Scripps Research Institute, La Jolla, CA92037
| | - Ashok A. Deniz
- Department of Integrative Structural and Computational Biology and Skaggs Institute of Chemical Biology, The Scripps Research Institute, La Jolla, CA92037
| | - H. Jane Dyson
- Department of Integrative Structural and Computational Biology and Skaggs Institute of Chemical Biology, The Scripps Research Institute, La Jolla, CA92037
| | - Peter E. Wright
- Department of Integrative Structural and Computational Biology and Skaggs Institute of Chemical Biology, The Scripps Research Institute, La Jolla, CA92037
| |
Collapse
|
5
|
Xu L, Shi Z, Li H, He J, Chen B, Tao Z, Tian Y, Chen L, Li G, Tao Z, Gu T, Xu W, Lu L. Genome-wide DNA methylation differences between conservation and breeding populations of Shaoxing ducks. Heliyon 2022; 8:e11644. [DOI: 10.1016/j.heliyon.2022.e11644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 07/28/2022] [Accepted: 11/10/2022] [Indexed: 11/18/2022] Open
|
6
|
Wan MX, Huang XJ, Li X, Suan J, Xu L. Integrating network pharmacology and experimental verification to explore the mechanism of puerarin against oliguria in acute alcoholism. Front Pharmacol 2022; 13:1006660. [DOI: 10.3389/fphar.2022.1006660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
Purpose: This study was designed to evaluate the pharmacological mechanisms of puerarin against oliguria in acute alcoholism via network pharmacology analysis combined with experimental verification.Methods: First, this study established an acute alcoholism rat model, compared the changes in urine volume in each group, and observed the therapeutic effect of puerarin by H&E staining, biochemical, RT-qPCR, and immunohistochemical analyses. Second, puerarin-related targets were searched in TCMS, PubChem, CNKI, Wanfang, PubMed, and GeenMedical Academic databases. Also, potential disease targets were obtained from the GeneCards, MalaCards, and NCBI-gene databases and genes with puerarin target gene intersections were screened out. The interaction network for co-predicted targets was obtained using the STRING database, and the core targets were imported into Cytoscape for visualization using DAVID Bioinformatics Resources 6.8. The essential genes were subjected to the Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) pathway enrichment analyses to predict related biological processes and significant signaling pathways. Finally, molecular docking was used to examine the interaction of puerarin with key targets, and the core targets were validated further by RT-qPCR and Western blotting.Results: Compared to the model group, the urine volume of the rats was significantly increased after puerarin treatment, and the levels of anti-diuretic hormone (ADH) and aquaporin 2 (AQP2) expression were decreased. Searching the intersection of puerarin and acute alcoholism targets yielded 214 potential targets, 837 biological processes, and 185 signaling pathways involved. The molecular docking results indicated a good affinity between puerarin and key targets (cyclic adenosine monophosphate (cAMP), protein kinase A (PKA), cAMP-response element-binding protein (CREB), and c-Fos). RT-qPCR and Western blotting further verified that puerarin could down-regulate the expression of cAMP/PKA/CREB/c-Fos.Conclusion: This study identified the potential targets of puerarin against oliguria in rats with acute alcoholism using network pharmacology and animal experiments. The mechanism may be closely related to the cAMP signaling pathway.
Collapse
|
7
|
Zhou Q, Liu Y, Feng R, Zhang W. NUCB2: roles in physiology and pathology. J Physiol Biochem 2022; 78:603-617. [PMID: 35678998 DOI: 10.1007/s13105-022-00895-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 05/10/2022] [Indexed: 11/30/2022]
Abstract
Nucleobindin2 (NUCB2) is a member of nucleobindin family which was first found in the nucleus of the hypothalamus, and had a relationship in diet and energy homeostasis. Its location in normal tissues such as stomach and islet further confirms that it plays a vital role in the regulation of physiological functions of the body. Besides, NUCB2 participates in tumorigenesis through activating various signal-pathways, more and more studies indicate that NUCB2 might impact tumor progression by promoting or inhibiting proliferation, apoptosis, autophagy, metastasis, and invasion of tumor cells. In this review, we comprehensively stated NUCB2's expression and functions, and introduced the role of NUCB2 in physiology and pathology and its mechanism. What is more, pointed out the potential direction of future research.
Collapse
Affiliation(s)
- Qing Zhou
- Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China.,Department of Laboratory Medicine, Xiangya School of Medicine, Central South University, Changsha, Hunan, People's Republic of China
| | - Ying Liu
- Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China.,Department of Laboratory Medicine, Xiangya School of Medicine, Central South University, Changsha, Hunan, People's Republic of China
| | - Ranran Feng
- Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China.,Department of Laboratory Medicine, Xiangya School of Medicine, Central South University, Changsha, Hunan, People's Republic of China
| | - Wenling Zhang
- Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China. .,Department of Laboratory Medicine, Xiangya School of Medicine, Central South University, Changsha, Hunan, People's Republic of China.
| |
Collapse
|
8
|
Zhao J, Ren J, Liu S, Gong Y, Meng P, Tan H, Chen Y. Repeated exposure to sevoflurane in neonatal rats impairs cognition in adulthood via the PKA-CREB-BDNF signaling pathway. Exp Ther Med 2021; 22:1442. [PMID: 34721684 PMCID: PMC8549089 DOI: 10.3892/etm.2021.10877] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 12/03/2020] [Indexed: 11/25/2022] Open
Abstract
Sevoflurane (Sev) anesthesia is widely used in pediatrics due to its low blood-gas partition coefficient and lack of pungency. However, Sev treatment may lead to cognitive dysfunction in later life. The current study administered Sev to neonatal rats to investigate the effects of Sev treatment on cognitive performance in adulthood. In total, 6-day-old rats received 3% Sev for 2 h daily for 3 consecutive days. The cognitive function of rats in adulthood was evaluated in 56-day-old rats by Morris water maze test. The hippocampal neuron morphology was observed by Nissl staining. Hippocampal brain-derived neurotrophic factor (BDNF) levels were measured by ELISA. The protein expression of protein kinase A (PKA), cAMP response element binding protein (CREB), phosphorylated-CREB (p-CREB) and BDNF in hippocampus were assessed by western blotting. The water maze results demonstrated that neonatal treatment with Sev resulted in a significant impairment of cognition in 56-day-old adult rats. Behavioral analysis revealed that Sev treatment increased latency to first pass the platform and decreased residence in target quadrants and across platform frequency compared with the control group in Morris water maze tests. Furthermore, compared with the control group, neonatal exposure to Sev reduced the number of neurons and the concentration of BDNF in the hippocampus, a brain region important for learning and memory. Additionally, Sev significantly decreased the expression of PKA, p-CREB, BDNF and the p-CREB/CREB ratio. Treatment with bucladesine, a selective PKA agonist, partially reversed the deleterious effects of Sev. In summary, the results indicated that PKA-CREB-BDNF signaling served an important role in the cognitive decline caused by neonatal exposure to Sev.
Collapse
Affiliation(s)
- Jili Zhao
- Department of Anesthesiology, Zhangqiu District Maternal and Child Health Care Hospital, Jinan, Shandong 250200, P.R. China
| | - Jinyu Ren
- Department of Anesthesiology, The Third Hospital of Jinan, Jinan, Shandong 250032, P.R. China
| | - Shuang Liu
- Department of Operating Room, Zhangqiu District Maternal and Child Health Care Hospital, Jinan, Shandong 250200, P.R. China
| | - Yanan Gong
- Department of Cardiovascular Medicine, The People's Hospital of Zhangqiu Area, Jinan, Shandong 250200, P.R. China
| | - Ping Meng
- Department of Burn and Plastic Surgery, The People's Hospital of Zhangqiu Area, Jinan, Shandong 250200, P.R. China
| | - Haitao Tan
- Department of Anesthesiology, Jining No. 1 People's Hospital, Jining, Shandong 272011, P.R. China
| | - Yonggang Chen
- Department of Anesthesiology, People's Hospital of Gaomi, Gaomi, Shandong 261500, P.R. China
| |
Collapse
|
9
|
Chatterjee S, Angelakos CC, Bahl E, Hawk JD, Gaine ME, Poplawski SG, Schneider-Anthony A, Yadav M, Porcari GS, Cassel JC, Giese KP, Michaelson JJ, Lyons LC, Boutillier AL, Abel T. The CBP KIX domain regulates long-term memory and circadian activity. BMC Biol 2020; 18:155. [PMID: 33121486 PMCID: PMC7597000 DOI: 10.1186/s12915-020-00886-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 10/01/2020] [Indexed: 12/23/2022] Open
Abstract
Background CREB-dependent transcription necessary for long-term memory is driven by interactions with CREB-binding protein (CBP), a multi-domain protein that binds numerous transcription factors potentially affecting expression of thousands of genes. Identifying specific domain functions for multi-domain proteins is essential to understand processes such as cognitive function and circadian clocks. We investigated the function of the CBP KIX domain in hippocampal memory and gene expression using CBPKIX/KIX mice with mutations that prevent phospho-CREB (Ser133) binding. Results We found that CBPKIX/KIX mice were impaired in long-term memory, but not learning acquisition or short-term memory for the Morris water maze. Using an unbiased analysis of gene expression in the dorsal hippocampus after training in the Morris water maze or contextual fear conditioning, we discovered dysregulation of CREB, CLOCK, and BMAL1 target genes and downregulation of circadian genes in CBPKIX/KIX mice. Given our finding that the CBP KIX domain was important for transcription of circadian genes, we profiled circadian activity and phase resetting in CBPKIX/KIX mice. CBPKIX/KIX mice exhibited delayed activity peaks after light offset and longer free-running periods in constant dark. Interestingly, CBPKIX/KIX mice displayed phase delays and advances in response to photic stimulation comparable to wildtype littermates. Thus, this work delineates site-specific regulation of the circadian clock by a multi-domain protein. Conclusions These studies provide insight into the significance of the CBP KIX domain by defining targets of CBP transcriptional co-activation in memory and the role of the CBP KIX domain in vivo on circadian rhythms. Graphical abstract ![]()
Collapse
Affiliation(s)
- Snehajyoti Chatterjee
- Laboratoire de Neuroscience Cognitives et Adaptatives (LNCA), Université de Strasbourg, Strasbourg, France.,LNCA, CNRS UMR 7364, Strasbourg, France.,Department of Neuroscience and Pharmacology, Iowa Neuroscience Institute, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Christopher C Angelakos
- Neuroscience Graduate Group, University of Pennsylvania, Philadelphia, USA.,Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Ethan Bahl
- Department of Psychiatry, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA.,Interdisciplinary Graduate Program in Genetics, University of Iowa, Iowa City, Iowa, USA
| | - Joshua D Hawk
- Neuroscience Graduate Group, University of Pennsylvania, Philadelphia, USA.,Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Marie E Gaine
- Department of Neuroscience and Pharmacology, Iowa Neuroscience Institute, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Shane G Poplawski
- Neuroscience Graduate Group, University of Pennsylvania, Philadelphia, USA.,Department of Biology, University of Pennsylvania, Philadelphia, PA, USA.,Pharmacology Graduate Group, University of Pennsylvania, Philadelphia, USA
| | - Anne Schneider-Anthony
- Laboratoire de Neuroscience Cognitives et Adaptatives (LNCA), Université de Strasbourg, Strasbourg, France.,LNCA, CNRS UMR 7364, Strasbourg, France
| | - Manish Yadav
- Department of Neuroscience and Pharmacology, Iowa Neuroscience Institute, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Giulia S Porcari
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Jean-Christophe Cassel
- Laboratoire de Neuroscience Cognitives et Adaptatives (LNCA), Université de Strasbourg, Strasbourg, France
| | - K Peter Giese
- Department of Basic and Clinical Neuroscience, King's College London, London, UK
| | - Jacob J Michaelson
- Department of Psychiatry, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA.,Department of Biomedical Engineering, College of Engineering, University of Iowa, Iowa City, Iowa, USA.,Department of Communication Sciences and Disorders, College of Liberal Arts and Sciences, University of Iowa, Iowa City, Iowa, USA.,Iowa Institute of Human Genetics, University of Iowa, Iowa City, Iowa, USA
| | - Lisa C Lyons
- Department of Neuroscience and Pharmacology, Iowa Neuroscience Institute, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA.,Program in Neuroscience, Department of Biological Science, Florida State University, Tallahassee, FL, USA
| | - Anne-Laurence Boutillier
- Laboratoire de Neuroscience Cognitives et Adaptatives (LNCA), Université de Strasbourg, Strasbourg, France. .,LNCA, CNRS UMR 7364, Strasbourg, France.
| | - Ted Abel
- Department of Neuroscience and Pharmacology, Iowa Neuroscience Institute, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA.
| |
Collapse
|
10
|
Yang ZY, Liu J, Chu HC. Effect of NMDAR-NMNAT1/2 pathway on neuronal cell damage and cognitive impairment of sevoflurane-induced aged rats. Neurol Res 2020; 42:108-117. [PMID: 31941414 DOI: 10.1080/01616412.2019.1710393] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Objective: The possible effect of NMDAR (N-methyl-D-aspartate receptor)-NMNAT1/2 (nicotinamide/nicotinic acid mono-nucleotide adenylyltransferase) signaling pathway on the neuronal cell damage and cognitive impairment of aged rats anesthetized by sevoflurane was explored.Methods: Adult male Wistar rats were selected and divided into Control, Sevo (Sevoflurane), Sevo+DCS (NMDAR agonist D-cycloserine) 30 mg/kg, Sevo+DCS 100 mg/kg, and Sevo+DCS 200 mg/kg groups. Morris water maze and fear conditioning text were used to observe cognitive function changes of rats. The inflammatory cytokines were determined by quantitative real-time polymerase chain reaction (qRT-PCR) and enzyme-linked immunosorbent assay (ELISA) assay, neuronal apoptosis by terminal deoxynucleotidyl transferase (TdT)-mediated dUTP nick-end labelling (TUNEL) staining and MDAR-NMNAT1/2 pathway-related proteins by Western blotting.Results: The longer escape latency, decreased platform crossing times and reduced staying time spent in platform quadrant were found in rats from Sevo group, with decreased percentage of freezing time in contextual test and tone cued test; and meanwhile, these rats had increased inflammatory cytokines (interleukin (IL)-1β, tumor necrosis factor (TNF-α), IL-6, and IL-8) and neuronal apoptosis, but declined expressions of MDAR-NMNAT1/2 pathway-related proteins. However, the above changes were exhibited an opposite tendency in those Sevo rats treated with different concentrations of DCS (including 30, 100, and 200 mg/kg, respectively). Particularly, the improving effect of low-dose DCS on each aspect in aged rats was better than high-dose ones.Conclusion: Activation of NMDAR-NMNAT1/2 signaling pathway could not only reduce neuronal apoptosis, but also alleviate sevoflurane-induced neuronal inflammation and cognitive impairment in aged rats.
Collapse
Affiliation(s)
- Zhan-Yun Yang
- Department of Anesthesiology, Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China.,Department of Anesthesiology, Jining No. 1 People's Hospital, Jining, Shandong Province, China
| | - Jun Liu
- Department of Orthopedics, Jining No. 2 People's Hospital, Jining, Shandong Province, China
| | - Hai-Chen Chu
- Department of Anesthesiology, Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| |
Collapse
|
11
|
Zhu X, Dubey D, Bermudez C, Porter BE. Suppressing cAMP response element-binding protein transcription shortens the duration of status epilepticus and decreases the number of spontaneous seizures in the pilocarpine model of epilepsy. Epilepsia 2015; 56:1870-8. [PMID: 26419901 DOI: 10.1111/epi.13211] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/09/2015] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Current epilepsy therapies directed at altering the function of neurotransmitter receptors or ion channels, or release of synaptic vesicles fail to prevent seizures in approximately 30% of patients. A better understanding of the molecular mechanism underlying epilepsy is needed to provide new therapeutic targets. The activity of cyclic AMP (cAMP) response element-binding protein (CREB), a major transcription factor promoting CRE-mediated transcription, increases following a prolonged seizure called status epilepticus. It is also increased in the seizure focus of patients with medically intractable focal epilepsy. Herein we explored the effect of acute suppression of CREB activity on status epilepticus and spontaneous seizures in a chronic epilepsy model. METHODS Pilocarpine chemoconvulsant was used to induce status epilepticus. To suppress CREB activity, a transgenic mouse line expressing an inducible dominant negative mutant of CREB (CREB(IR) ) with a serine to alanine 133 substitution was used. Status epilepticus and spontaneous seizures of transgenic and wild-type mice were analyzed using video-electroencephalography (EEG) to assess the effect of CREB suppression on seizures. RESULTS Our findings indicate that activation of CREB(IR) shortens the duration of status epilepticus. The frequency of spontaneous seizures decreased in mice with chronic epilepsy during CREB(IR) induction; however, the duration of the spontaneous seizures was unchanged. Of interest, we found significantly reduced levels of phospho-CREB Ser133 upon activation of CREB(IR) , supporting prior work suggesting that binding to the CRE site is important for CREB phosphorylation. SIGNIFICANCE Our results suggest that CRE transcription supports seizure activity both during status epilepticus and in spontaneous seizures. Thus, blocking of CRE transcription is a novel target for the treatment of epilepsy.
Collapse
Affiliation(s)
- Xinjian Zhu
- Department of Pediatrics and Division of Neurology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, U.S.A.,Department of Pharmacology, Medical School of Southeast University, Nanjing, China
| | - Deepti Dubey
- The Department of Neurology, School of Medicine, Stanford University, Stanford, California, U.S.A
| | - Camilo Bermudez
- Department of Pediatrics and Division of Neurology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, U.S.A
| | - Brenda E Porter
- Department of Pediatrics and Division of Neurology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, U.S.A.,The Department of Neurology, School of Medicine, Stanford University, Stanford, California, U.S.A.,The Department of Neurology, The Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, U.S.A
| |
Collapse
|
12
|
Wei T, Gao Y, Wang R, Xu T. A heat shock protein 90 β isoform involved in immune response to bacteria challenge and heat shock from Miichthys miiuy. FISH & SHELLFISH IMMUNOLOGY 2013; 35:429-37. [PMID: 23684810 DOI: 10.1016/j.fsi.2013.04.045] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Revised: 04/08/2013] [Accepted: 04/29/2013] [Indexed: 05/26/2023]
Abstract
Heat shock protein 90 (HSP90) is highly conserved molecular chaperone that plays a critical role in cellular stress response. In this study, we reported the identification and functional analysis of a heat shock protein 90 gene from miiuy croaker (designated Mimi-HSP90). Mimi-HSP90 contained five conserved HSP90 protein family signatures and shared 89.6%-99.5% similarity with other known HSP90 β isoform. Homology analysis and structure comparison further indicated that Mimi-HSP90 should be β isoform member of the HSP90 family. The molecular evolutionary analysis showed that HSP90 was under an overall strong purifying select pressure among fish species. Mimi-HSP90 gene was constitutively expressed in ten examined tissues, and the expression level of liver was higher than in other tissues. The expression level of Mimi-HSP90 gene under bacterial infection and heat shock were analyzed by real-time quantitative RT-PCR, resulted in significant changes in liver, spleen, and kidney tissues. The purified recombinant pET-HSP90 protein was used to produce the polyclonal antibody in mice. The specificity of the antibody was determined by Western blot analysis. All results suggested that Mimi-HSP90 was involved in thermal stress and immune response in miiuy croaker.
Collapse
Affiliation(s)
- Tao Wei
- Laboratory for Marine Living Resources and Molecular Engineering, College of Marine Science, Zhejiang Ocean University, 105 Wenhua Road, Zhoushan 316000, PR China
| | | | | | | |
Collapse
|
13
|
Kitazawa S, Kondo T, Mori K, Yokoyama N, Matsuo M, Kitazawa R. A p.D116G mutation in CREB1 leads to novel multiple malformation syndrome resemblingCrebAknockout mouse. Hum Mutat 2012; 33:651-4. [DOI: 10.1002/humu.22027] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2011] [Accepted: 01/04/2012] [Indexed: 01/08/2023]
|
14
|
De Falco V, Tamburrino A, Ventre S, Castellone MD, Malek M, Manié SN, Santoro M. CD44 proteolysis increases CREB phosphorylation and sustains proliferation of thyroid cancer cells. Cancer Res 2012; 72:1449-58. [PMID: 22271686 DOI: 10.1158/0008-5472.can-11-3320] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
CD44 is a marker of cancer stem-like cells and epithelial-mesenchymal transition that is overexpressed in many cancer types, including thyroid carcinoma. At extracellular and intramembranous domains, CD44 undergoes sequential metalloprotease- and γ-secretase-mediated proteolytic cleavage, releasing the intracellular protein fragment CD44-ICD, which translocates to the nucleus and activates gene transcription. Here, we show that CD44-ICD binds to the transcription factor CREB, increasing S133 phosphorylation and CREB-mediated gene transcription. CD44-ICD enhanced CREB recruitment to the cyclin D1 promoter, promoting cyclin D1 transcription and cell proliferation. Thyroid carcinoma cells harboring activated RET/PTC, RAS, or BRAF oncogenes exhibited CD44 cleavage and CD44-ICD accumulation. Chemical blockade of RET/PTC, BRAF, metalloprotease, or γ-secretase were each sufficient to blunt CD44 processing. Furthermore, thyroid cancer cell proliferation was obstructed by RNA interference-mediated knockdown of CD44 or inhibition of γ-secretase and adoptive CD44-ICD overexpression rescued cell proliferation. Together, these findings reveal a CD44-CREB signaling pathway that is needed to sustain cancer cell proliferation, potentially offering new molecular targets for therapeutic intervention in thyroid carcinoma.
Collapse
Affiliation(s)
- Valentina De Falco
- Dipartimento di Biologia e Patologia Cellulare e Molecolare, L. Califano, Università di Napoli Federico II c/o Istituto di Endocrinologia e Oncologia Sperimentale del CNR, Napoli, Italy
| | | | | | | | | | | | | |
Collapse
|
15
|
Yang F, Liu S, Yu C, Wang SJ, Paganini-Hill A, Fisher MJ. PDE4 regulates tissue plasminogen activator expression of human brain microvascular endothelial cells. Thromb Res 2012; 129:750-3. [PMID: 22245243 DOI: 10.1016/j.thromres.2011.12.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Revised: 11/17/2011] [Accepted: 12/02/2011] [Indexed: 12/01/2022]
Abstract
INTRODUCTION Factors regulating brain tissue plasminogen activator (tPA) are pertinent for stroke. Recent observations have suggested a role for the phosphodiesterase-4 (PDE4) pathway in stroke pathogenesis, via an uncertain mechanism. We studied PDE4 regulation of tPA expression by human brain microvascular endothelial cells in a variety of conditions, including an in vitro model of ischemia. MATERIALS AND METHODS We analyzed tPA antigen and mRNA of human brain microvascular endothelial cells (HBECs) during normoxia and oxygen-glucose deprivation (OGD) following inhibition of PDE4 and PDE4D, using HBEC monocultures and co-cultures with astrocytes and pericytes, and analyzed relevant signal transduction pathways. RESULTS PDE4 inhibitor rolipram enhanced OGD effects on endothelial tPA release in endothelial monocultures and co-cultures with astrocytes; there was a 54±10% (p<0.001) reduction of tPA release in astrocyte-endothelial co-cultures under OGD. PDE4D siRNA reduced endothelial tPA mRNA to 40-55% of control (p<0.05). Use of Epac inducer mimicked, while use of Epac siRNA inhibited, these effects. CONCLUSIONS Inhibition of PDE4 and PDE4D reduced expression of tPA by HBEC via Epac pathway.
Collapse
Affiliation(s)
- Fan Yang
- Department of Anatomy & Neurobiology, University of California, Irvine, USA
| | | | | | | | | | | |
Collapse
|
16
|
Wu L, Wu X, Wang L. Identification and functional characterization of an Rbx1 in an invertebrate Haliotis diversicolor supertexta. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2011; 35:72-80. [PMID: 20801156 DOI: 10.1016/j.dci.2010.08.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2010] [Revised: 08/20/2010] [Accepted: 08/20/2010] [Indexed: 05/29/2023]
Abstract
Rbx1 (RING box1) is an evolutionarily conserved RING-H2 finger protein and belongs to the RING-finger family of Ubiquitin ligase E3, which determines the substrate specificity of ubiquitination and regulates a variety of biological processes. We report here the identification and functional characterization of an Rbx1 homologue in abalone, which we named ab-Rbx1. Ab-Rbx1 contains conserved cysteine/histidine residues which are the characteristics of Rbx proteins. Phylogenetic tree analysis further demonstrated that ab-Rbx1 belongs to the Rbx1 family other than Rbx2 family. Real-time PCR analysis revealed that ab-Rbx1 was ubiquitously expressed in all examined tissues of abalone and the expression level of ab-Rbx1 was significantly induced by mitogenic situation. Immunohistochemical and immunofluorescent staining showed that the ab-Rbx1 was expressed predominantly in epithelial cells and localized both in the cytoplasmic and nuclear compartment. Ubiquitination assay demonstrated that ab-Rbx1 had ubiquitin ligase activity and could auto-ubiquitinated itself. These results suggest that ab-Rbx1 is an Rbx1 homologue and may be indirectly involved in the immune response of abalone through ubiquitination.
Collapse
Affiliation(s)
- Liuji Wu
- College of Agronomy, Henan Agricultural University, 63 Nongye Road, Zhengzhou 450002, PR China
| | | | | |
Collapse
|
17
|
Shimada M, Nakadai T, Fukuda A, Hisatake K. cAMP-response element-binding protein (CREB) controls MSK1-mediated phosphorylation of histone H3 at the c-fos promoter in vitro. J Biol Chem 2010; 285:9390-9401. [PMID: 20089855 DOI: 10.1074/jbc.m109.057745] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The rapid induction of the c-fos gene correlates with phosphorylations of histone H3 and HMGN1 by mitogen- and stress-activated protein kinases. We have used a cell-free system to dissect the mechanism by which MSK1 phosphorylates histone H3 within the c-fos chromatin. Here, we show that the reconstituted c-fos chromatin presents a strong barrier to histone H3 phosphorylation by MSK1; however, the activators (serum response factor, Elk-1, cAMP-response element-binding protein (CREB), and ATF1) bound on their cognate sites recruit MSK1 to phosphorylate histone H3 at Ser-10 within the chromatin. This activator-dependent phosphorylation of histone H3 is enhanced by HMGN1 and occurs preferentially near the promoter region. Among the four activators, CREB plays a predominant role in MSK1-mediated phosphorylation of histone H3, and the phosphorylation of Ser-133 in CREB is essential for this process. Mutational analyses of MSK1 show that its N-terminal inhibition domain is critical for the kinase to phosphorylate chromatin-embedded histone H3 in a CREB-dependent manner, indicating the presence of an intricate regulatory network for MSK1-mediated phosphorylation of histone H3.
Collapse
Affiliation(s)
- Miho Shimada
- Department of Molecular Biology, Faculty of Medicine, Saitama Medical University, Saitama 350-0495
| | - Tomoyoshi Nakadai
- Department of Molecular Biology, Faculty of Medicine, Saitama Medical University, Saitama 350-0495
| | - Aya Fukuda
- Department of Biochemistry, Graduate School of Comprehensive Human Sciences and Institute of Basic Medical Sciences, University of Tsukuba, Ibaraki 305-8575, Japan
| | - Koji Hisatake
- Department of Biochemistry, Graduate School of Comprehensive Human Sciences and Institute of Basic Medical Sciences, University of Tsukuba, Ibaraki 305-8575, Japan.
| |
Collapse
|
18
|
Yao D, Li H, Gou Y, Zhang H, Vlessidis AG, Zhou H, Evmiridis NP, Liu Z. Betulinic acid-mediated inhibitory effect on hepatitis B virus by suppression of manganese superoxide dismutase expression. FEBS J 2009; 276:2599-614. [PMID: 19348625 DOI: 10.1111/j.1742-4658.2009.06988.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The betulinic acid (BetA) purified from Pulsatilla chinensis (PC) has been found to have selective inhibitory effects on hepatitis B virus (HBV). In hepatocytes from HBV-transgenic mice, we showed that BetA substantially inhibited HBV replication by downregulation of manganese superoxide dismutase (SOD2) expression, with subsequent reactive oxygen species generation and mitochondrial dysfunction. Also, the HBV X protein (HBx) is suppressed and translocated into the mitochondria followed by cytochrome c release. Further investigation revealed that SOD2 expression was suppressed by BetA-induced cAMP-response element-binding protein dephosphorylation at Ser133, which subsequently prevented SOD2 transcription through the cAMP-response element-binding protein-binding motif on the SOD2 promoter. SOD2 overexpression abolished the inhibitory effect of BetA on HBV replication, whereas SOD2 knockdown mimicked this effect, indicating that BetA-mediated HBV clearance was due to modulation of the mitochondrial redox balance. This observation was further confirmed in HBV-transgenic mice, where both BetA and PC crude extracts suppressed SOD2 expression, with enhanced reactive oxygen species generation in liver tissues followed by substantial HBV clearance. We conclude that BetA from PC could be a good candidate for anti-HBV drug development.
Collapse
Affiliation(s)
- Dachun Yao
- Internal Medicine of Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Miller M. The importance of being flexible: the case of basic region leucine zipper transcriptional regulators. Curr Protein Pept Sci 2009; 10:244-69. [PMID: 19519454 PMCID: PMC2800128 DOI: 10.2174/138920309788452164] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Large volumes of protein sequence and structure data acquired by proteomic studies led to the development of computational bioinformatic techniques that made possible the functional annotation and structural characterization of proteins based on their primary structure. It has become evident from genome-wide analyses that many proteins in eukaryotic cells are either completely disordered or contain long unstructured regions that are crucial for their biological functions. The content of disorder increases with evolution indicating a possibly important role of disorder in the regulation of cellular systems. Transcription factors are no exception and several proteins of this class have recently been characterized as premolten/molten globules. Yet, mammalian cells rely on these proteins to control expression of their 30,000 or so genes. Basic region:leucine zipper (bZIP) DNA-binding proteins constitute a major class of eukaryotic transcriptional regulators. This review discusses how conformational flexibility "built" into the amino acid sequence allows bZIP proteins to interact with a large number of diverse molecular partners and to accomplish their manifold cellular tasks in a strictly regulated and coordinated manner.
Collapse
Affiliation(s)
- Maria Miller
- Macromolecular Crystallography Laboratory, National Cancer Institute at Frederick, Frederick, MD 21702-1201, USA.
| |
Collapse
|
20
|
Huang J, Fisher RA. Chapter 5 Nuclear Trafficking of Regulator of G Protein Signaling Proteins and Their Roles in the Nucleus. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2009; 86:115-56. [DOI: 10.1016/s1877-1173(09)86005-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
21
|
Poon SL, An BS, So WK, Hammond GL, Leung PCK. Temporal recruitment of transcription factors at the 3',5'-cyclic adenosine 5'-monophosphate-response element of the human GnRH-II promoter. Endocrinology 2008; 149:5162-71. [PMID: 18599546 DOI: 10.1210/en.2008-0481] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
GnRH-II is a potent GnRH subtype involved in modulating OVCAR-3 cell proliferation and the invasive properties of JEG-3 cells, and an atypical cAMP-response element (CRE) in the human GnRH-II promoter influences its activation. We demonstrated that the GnRH-II promoter is activated by 8-bromoadenosine-cAMP in several cell lines including alphaT3, TE671, JEG-3, and OVCAR-3 cells and that cAMP enhances GnRH-II mRNA levels in JEG-3 and OVCAR-3 cells. Moreover, 8-bromoadenosine-cAMP increases cAMP response element-binding protein (CREB) phosphorylation in JEG-3 and OVCAR-3 cells and augments CBP and CCAAT/enhancer-binding protein (C/EBP)-beta coimmunoprecipitation with phosphorylated CREB (p-CREB) in a temporally defined manner from nuclear extracts. When CREB, CBP, and C/EBPbeta levels were knocked down by small interfering RNA, reductions in any of these transcription factors reduced cAMP-enhanced GnRH-II promoter activity and GnRH-II mRNA levels in JEG-3 and OVCAR-3 cells. Importantly, chromatin immunoprecipitation assay showed that p-CREB bound the CRE within the endogenous GnRH-II promoter within 1 h and that p-CREB association with C/EBPbeta occurs within 2 h of cAMP stimulation, coincident with the first appearance of C/EBPbeta at the CRE. By contrast, maximum interactions between p-CREB and CBP do not occur until at least 4 h after cAMP stimulation, and this is reflected in the progressive loading of CBP at the CRE at 2-4 h, as demonstrated by chromatin immunoprecipitation. Taken together, these data suggest that p-CREB, C/EBPbeta, and CBP are recruited to the CRE of the GnRH-II promoter in a temporarily defined manner to enhance its transcription in JEG-3 and OVCAR-3 cells in response to cAMP.
Collapse
Affiliation(s)
- Song Ling Poon
- Department of Obstetrics and Gynaecology, University of British Columbia, Room 2H-30, 4490 Oak Street, Vancouver, British Columbia, Canada V6H 3V5
| | | | | | | | | |
Collapse
|
22
|
Xie Z, Geiger TR, Johnson EN, Nyborg JK, Druey KM. RGS13 acts as a nuclear repressor of CREB. Mol Cell 2008; 31:660-70. [PMID: 18775326 PMCID: PMC2600481 DOI: 10.1016/j.molcel.2008.06.024] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2007] [Revised: 05/01/2008] [Accepted: 06/18/2008] [Indexed: 01/22/2023]
Abstract
Cyclic AMP-induced phosphorylation of the transcription factor CREB elicits expression of genes mediating diverse biological functions. In lymphoid organs, the neurotransmitter norepinephrine stimulates beta(2)-adrenergic receptors on B lymphocytes to promote CREB-dependent expression of genes like the B cell Oct 2 coactivator (OCA-B). Although CREB phosphorylation recruits cofactors such as CBP/p300 to stimulate transcription, bona fide endogenous inhibitors of CREB-coactivator or CREB-DNA interactions have not emerged. Here, we identified RGS13, a member of the Regulator of G protein Signaling (RGS) protein family, as a nuclear factor that suppresses CREB-mediated gene expression. cAMP or Ca(2+) signaling promoted RGS13 accumulation in the nucleus, where it formed a complex with phosphorylated CREB and CBP/p300. RGS13 reduced the apparent affinity of pCREB for both the CRE and CBP. B lymphocytes from Rgs13(-/-) mice had more beta(2)-agonist-induced OCA-B expression. Thus, RGS13 inhibits CREB-dependent transcription of target genes through disruption of complexes formed at the promoter.
Collapse
Affiliation(s)
- Zhihui Xie
- Molecular Signal Transduction Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Timothy R. Geiger
- Department of Biochemistry and Molecular Biology, Campus Box 1870, Colorado State University, Fort Collins, CO 80523-1870
| | - Eric N. Johnson
- Molecular Signal Transduction Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Jennifer K. Nyborg
- Department of Biochemistry and Molecular Biology, Campus Box 1870, Colorado State University, Fort Collins, CO 80523-1870
| | - Kirk M. Druey
- Molecular Signal Transduction Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
23
|
Zhu B, Wu X. Characterization and function of CREB homologue from Crassostrea ariakensis stimulated by rickettsia-like organism. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2008; 32:1572-1581. [PMID: 18606451 DOI: 10.1016/j.dci.2008.05.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2008] [Revised: 05/17/2008] [Accepted: 05/19/2008] [Indexed: 05/26/2023]
Abstract
The cAMP response element-binding protein (CREB) is a transcription factor that plays important roles in cellular growth, proliferation and survival. Here, we report that a homologue of CREB transcription factor, Ca-CREB, was identified and functionally characterized in oyster, Crassostrea ariakensis. The full-length cDNA consists of 1397bp with an ORF encoding a 39.3kDa protein. Amino acid sequence analysis revealed that Ca-CREB shares conserved signature motifs with other CREB proteins. Ca-CREB was ubiquitously and constitutively expressed in oyster, and the expression level in hemocytes was higher than that in other tissues. The expression level of Ca-CREB was not modified after RLO stimulation, while tumor necrosis factor-alpha (TNF-alpha) expression was increased obviously, which was revealed by real-time reverse-transcriptase polymerase chain reaction (RT-PCR). Electrophoretic mobility shift assay (EMSA) and Western blotting showed that recombinant CREB proteins specifically bind the consensus CREB binding site, and DNA-binding activity and phosphorylation of Ca-CREB were induced by RLO. These results suggest that Ca-CREB is a CREB homologue and may be involved in immune responses against RLO.
Collapse
Affiliation(s)
- Baojian Zhu
- Laboratory of Marine Life Science and Technology, College of Animal Sciences, Zhejiang University, 268 Kaixuan Road, Hangzhou 310029, PR China
| | | |
Collapse
|
24
|
Sharma N, Nyborg JK. The coactivators CBP/p300 and the histone chaperone NAP1 promote transcription-independent nucleosome eviction at the HTLV-1 promoter. Proc Natl Acad Sci U S A 2008; 105:7959-63. [PMID: 18523016 PMCID: PMC2430344 DOI: 10.1073/pnas.0800534105] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2008] [Indexed: 01/05/2023] Open
Abstract
The human T cell leukemia virus type 1 (HTLV-1) is the causative agent of adult T cell leukemia/lymphoma. The multifunctional virally encoded oncoprotein Tax is responsible for malignant transformation and potent activation of HTLV-1 transcription. Tax, in complex with phosphorylated cAMP response element binding protein (pCREB), strongly recruits the cellular coactivators CREB binding protein (CBP)/p300 to the viral promoter concomitant with transcriptional activation. Although the mechanism of activator/coactivator-mediated transcriptional activation is poorly understood, the recruitment of CBP/p300 by regulatory factors appears to function, in part, by promoting changes in chromatin architecture that are permissive to transcriptional activation. Here, we show that CBP/p300 recruitment promotes histone acetylation and eviction of the histone octamer from the chromatin-assembled HTLV-1 promoter template in vitro. Nucleosome disassembly is strictly acetyl-CoA dependent and is not linked to ATP utilization. We find that the histone chaperone, nucleosome assembly protein 1 (NAP1), cooperates with CBP/p300 in eviction of the acetylated histones from the chromatin template. These findings reveal a unique mechanism in which the DNA-bound Tax/pCREB complex recruits CBP/p300, and together with NAP1, the coactivators cooperate to dramatically reduce nucleosome occupancy at the viral promoter in an acetylation-dependent and transcription-independent fashion.
Collapse
Affiliation(s)
- Neelam Sharma
- Department of Biochemistry and Molecular Biology, Campus Box 1870, Colorado State University, Fort Collins, CO 80523
| | - Jennifer K. Nyborg
- Department of Biochemistry and Molecular Biology, Campus Box 1870, Colorado State University, Fort Collins, CO 80523
| |
Collapse
|
25
|
Geiger TR, Sharma N, Kim YM, Nyborg JK. The human T-cell leukemia virus type 1 tax protein confers CBP/p300 recruitment and transcriptional activation properties to phosphorylated CREB. Mol Cell Biol 2008; 28:1383-92. [PMID: 18070920 PMCID: PMC2258755 DOI: 10.1128/mcb.01657-07] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2007] [Revised: 10/29/2007] [Accepted: 11/26/2007] [Indexed: 01/23/2023] Open
Abstract
The human T-cell leukemia virus-encoded oncoprotein Tax is a potent activator of viral transcription. Tax function is strictly dependent upon the cellular transcription factor CREB, and together they bind cAMP response elements within the viral promoter and mediate high-level viral transcription. Signal-dependent CREB phosphorylation at Ser(133) (pCREB) correlates with the activation of transcription. This activation has been attributed to recruitment of the coactivators CBP/p300 via physical interaction with the KIX domain. Here we show that the promoter-bound Tax/pCREB complex strongly recruits the recombinant, purified full-length coactivators CBP and p300. Additionally, the promoter-bound Tax/pCREB (but not Tax/CREB) complex recruits native p300 and potently activates transcription from chromatin templates. Unexpectedly, pCREB alone failed to detectably recruit the full-length coactivators, despite strong binding to KIX. These observations are in marked contrast to those in published studies that have characterized the physical interaction between KIX and pCREB and extrapolated these results to the full-length proteins. Consistent with our observation that pCREB is deficient for binding of CBP/p300, pCREB alone failed to support transcriptional activation. These data reveal that phosphorylation of CREB is not sufficient for CBP/p300 recruitment and transcriptional activation. The regulation of transcription by pCREB is therefore more complex than is generally recognized, and coregulators, such as Tax, likely play a critical role in the modulation of pCREB function.
Collapse
Affiliation(s)
- Timothy R Geiger
- Department of Biochemistry and Molecular Biology, Campus Box 1870, Colorado State University, Fort Collins, CO 80523-1870, USA
| | | | | | | |
Collapse
|
26
|
Regulating gene transcription in response to cyclic AMP elevation. Cell Signal 2007; 20:460-6. [PMID: 17993258 DOI: 10.1016/j.cellsig.2007.10.005] [Citation(s) in RCA: 237] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2007] [Accepted: 10/07/2007] [Indexed: 01/19/2023]
Abstract
Many of the effects of prototypical second messenger cyclic adenosine 3',5'-monophosphate (cAMP) on complex processes such as the regulation of fuel metabolism, spermatogenesis and steroidogenesis are mediated via changes in target gene transcription. A large body of research has defined members of the cAMP-response element binding (CREB) protein family as the principal mediators of positive changes in gene expression in response to cAMP following phosphorylation by cAMP-dependent protein kinase (PKA). However, persistent observations of cAMP-mediated induction of specific genes occurring via PKA-independent mechanisms have challenged the generality of the PKA-CREB pathway. In this review, we will discuss in detail both PKA-dependent and -independent mechanisms that have been proposed to explain how cAMP influences the activation status of multiple transcription factors, and how these influence critical biological processes whose defective regulation may lead to disease.
Collapse
|
27
|
Lopez DI, Mick JE, Nyborg JK. Purification of CREB to apparent homogeneity: removal of truncation products and contaminating nucleic acid. Protein Expr Purif 2007; 55:406-18. [PMID: 17703949 PMCID: PMC2066201 DOI: 10.1016/j.pep.2007.06.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2007] [Revised: 06/07/2007] [Accepted: 06/11/2007] [Indexed: 01/19/2023]
Abstract
The cAMP response element binding protein (CREB) is a mammalian transcription factor which regulates the expression of many cellular genes. CREB is commonly expressed in Escherichia coli and purified by heat-extraction followed by affinity chromatography. We have discovered that although this purification yields a reasonably pure product which is active in DNA-binding and functional assays, it contains a large amount of nucleic acid as well as CREB truncation products and other polypeptides. Consequently, this CREB is inadequate for use in biophysical studies including crystallography, and spectroscopic analysis such as analytical ultracentrifugation, FRET, and circular dichroism. We revised the purification protocol to incorporate expression in the Rosetta host strain, nuclease treatment, and denaturing/high salt size-exclusion chromatography. We typically obtain 10mg of CREB per liter of culture media that is 99% homogenous, free of nucleic acid, and amenable to biophysical studies. Comparison of CREB from the original and revised protocols shows similar affinities for the cAMP response element (CRE) but small differences in their secondary structures when assayed by limited proteolysis and circular dichroism.
Collapse
Affiliation(s)
| | | | - Jennifer K. Nyborg
- From the Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523-1870
| |
Collapse
|