1
|
Mapping the Prothrombin Binding Site of Pseutarin C by Site-directed PEGylation. Blood 2022; 139:2972-2982. [PMID: 35148539 PMCID: PMC9101250 DOI: 10.1182/blood.2021014878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 01/26/2022] [Indexed: 11/24/2022] Open
Abstract
Results support our previously published model and reveal the surprising role of the a1-loop in presenting Arg320 for initial cleavage. Using pseutarin C as model prothrombinase, the interaction site for prothrombin was probed by site-directed PEGylation and other mutations.
The prothrombinase complex processes prothrombin to thrombin through sequential cleavage at Arg320 followed by Arg271 when cofactor, factor (f) Va, protease, fXa, and substrate, prothrombin, are all bound to the same membrane surface. In the absence of the membrane or cofactor, cleavage occurs in the opposite order. For the less favorable cleavage site at Arg320 to be cleaved first, it is thought that prothrombin docks on fVa in a way that presents Arg320 and hides Arg271 from the active site of fXa. Based on the crystal structure of the prothrombinase complex from the venom of the Australian eastern brown snake, pseutarin C, we modeled an initial prothrombin docking mode, which involved an interaction with discrete portions of the A1 and A2 domains of fV and the loop connecting the 2 domains, known as the a1-loop. We interrogated the proposed interface by site-directed PEGylation and by swapping the a1-loop in pseutarin C with that of human fV and fVIII and measuring the effect on rate and pathway of thrombin generation. PEGylation of residues within our proposed binding site greatly reduced the rate of thrombin generation, without affecting the pathway, whereas those outside the proposed interface had no effect. PEGylation of residues within the a1-loop also reduced the rate of thrombin generation. The sequence of the a1-loop was found to play a critical role in prothrombin binding and in the presentation of Arg320 for initial cleavage.
Collapse
|
2
|
Kim YS, Lee HJ, Park SH, Kim YC, Ahn J. Expression and purification of soluble and active human enterokinase light chain in Escherichia coli. ACTA ACUST UNITED AC 2021; 30:e00626. [PMID: 34026576 PMCID: PMC8134707 DOI: 10.1016/j.btre.2021.e00626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 04/29/2021] [Accepted: 05/01/2021] [Indexed: 11/30/2022]
Abstract
Recombinant production of soluble, active enterokinase (EK) is challenging. Maltose binding protein-fusion improves EK solubility but reduces activity. GroEL/ES and Erv2/PDI induces correct refolding and improves EK activity. Replacing free cysteine with serine dramatically improves EK activity.
Human enterokinase light chain (hEKL) specifically cleaves the sequence (Asp)4-Lys↓X (D4K), making this a frequently used enzyme for site-specific cleavage of recombinant fusion proteins. However, hEKL production from Escherichia coli is limited due to intramolecular disulphide bonds. Here, we present strategies to obtain soluble and active hEKL from E. coli by expressing the hEKL variant C112S fused with maltose-binding protein (MBP) through D4K and molecular chaperons including GroEL/ES. The fusion protein self-cleaved in vivo, thereby removing the MBP in the E. coli cells. Thus, the self-cleaved hEKL variant was released into the culture medium. One-step purification using HisTrap™ chromatography purified the hEKL variant exhibiting an enzymatic activity of 3.1 × 103 U/mL (9.934 × 105 U/mg). The approaches presented here greatly simplify the purification of hEKL from E. coli without requiring refolding processes.
Collapse
Affiliation(s)
- Young Su Kim
- Department of Chemical and Biomolecular Engineering, KAIST, Daejeon 34141, Republic of Korea.,Biotechnology Process Engineering Center, KRIBB, Cheongju 28116, Republic of Korea
| | - Hye-Jeong Lee
- Biotechnology Process Engineering Center, KRIBB, Cheongju 28116, Republic of Korea
| | - Sang-Hyun Park
- Biotechnology Process Engineering Center, KRIBB, Cheongju 28116, Republic of Korea.,Department of Bioprocess Engineering, KRIBB School of Biotechnology, Korea University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon 34113, Republic of Korea
| | - Yeu-Chun Kim
- Department of Chemical and Biomolecular Engineering, KAIST, Daejeon 34141, Republic of Korea
| | - Jungoh Ahn
- Biotechnology Process Engineering Center, KRIBB, Cheongju 28116, Republic of Korea.,Department of Bioprocess Engineering, KRIBB School of Biotechnology, Korea University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon 34113, Republic of Korea
| |
Collapse
|
3
|
Schreuder M, Reitsma PH, Bos MHA. Blood coagulation factor Va's key interactive residues and regions for prothrombinase assembly and prothrombin binding. J Thromb Haemost 2019; 17:1229-1239. [PMID: 31102425 PMCID: PMC6851895 DOI: 10.1111/jth.14487] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 05/02/2019] [Accepted: 05/07/2019] [Indexed: 11/28/2022]
Abstract
Blood coagulation factor Va serves an indispensable role in hemostasis as cofactor for the serine protease factor Xa. In the presence of an anionic phospholipid membrane and calcium ions, factors Va and Xa assemble into the prothrombinase complex. Following formation of the ternary complex with the macromolecular zymogen substrate prothrombin, the latter is rapidly converted into thrombin, the key regulatory enzyme of coagulation. Over the years, multiple binding sites have been identified in factor Va that play a role in the interaction of the cofactor with factor Xa, prothrombin, or the anionic phospholipid membrane surface. In this review, an overview of the currently available information on these interactive sites in factor Va is provided, and data from biochemical approaches and 3D structural protein complex models are discussed. The structural models have been generated in recent years and provide novel insights into the molecular requirements for assembly of both the prothrombinase and the ternary prothrombinase-prothrombin complexes. Integrated knowledge of functionally important regions in factor Va will allow for a better understanding of factor Va cofactor activity.
Collapse
Affiliation(s)
- Mark Schreuder
- Division of Thrombosis and HemostasisEinthoven Laboratory for Vascular and Regenerative MedicineLeiden University Medical CenterLeidenThe Netherlands
| | - Pieter H. Reitsma
- Division of Thrombosis and HemostasisEinthoven Laboratory for Vascular and Regenerative MedicineLeiden University Medical CenterLeidenThe Netherlands
| | - Mettine H. A. Bos
- Division of Thrombosis and HemostasisEinthoven Laboratory for Vascular and Regenerative MedicineLeiden University Medical CenterLeidenThe Netherlands
| |
Collapse
|
4
|
TFPIα interacts with FVa and FXa to inhibit prothrombinase during the initiation of coagulation. Blood Adv 2017; 1:2692-2702. [PMID: 29291252 DOI: 10.1182/bloodadvances.2017011098] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Tissue factor pathway inhibitor α (TFPIα) inhibits prothrombinase, the thrombin-generating complex of factor Xa (FXa) and factor Va (FVa), during the initiation of coagulation. This inhibition requires binding of a conserved basic region within TFPIα to a conserved acidic region in FXa-activated and platelet-released FVa. In this study, the contribution of interactions between TFPIα and the FXa active site and FVa heavy chain to prothrombinase inhibition were examined to further define the inhibitory biochemistry. Removal of FXa active site binding by mutation or by deletion of the second Kunitz domain (K2) of TFPIα produced 17- or 34-fold weaker prothrombinase inhibition, respectively, establishing that K2 binding to the FXa active site is required for efficient inhibition. Substitution of the TFPIα basic region uncharged residues (Leu252, Ile253, Thr255) with Ala (TFPI-AAKA) produced 5.8-fold decreased inhibition. This finding was confirmed using a basic region peptide (Leu252-Lys261) and Ala substitution peptides, which established that the uncharged residues are required for prothrombinase inhibitory activity but not for binding the FVa acidic region. This suggests that the uncharged residues mediate a secondary interaction with FVa subsequent to acidic region binding. This secondary interaction seems to be with the FVa heavy chain, because the FV Leiden mutation weakened prothrombinase inhibition by TFPIα but did not alter TFPI-AAKA inhibitory activity. Thus, efficient inhibition of prothrombinase by TFPIα requires at least 3 intermolecular interactions: (1) the TFPIα basic region binds the FVa acidic region, (2) K2 binds the FXa active site, and (3) Leu252-Thr255 binds the FVa heavy chain.
Collapse
|
5
|
Chaves R, Dahmane S, Odorico M, Nicolaes G, Pellequer JL. Factor Va alternative conformation reconstruction using atomic force microscopy. Thromb Haemost 2017; 112:1167-73. [DOI: 10.1160/th14-06-0481] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2014] [Accepted: 07/15/2014] [Indexed: 01/15/2023]
Abstract
SummaryProtein conformational variability (or dynamics) for large macromolecules and its implication for their biological function attracts more and more attention. Collective motions of domains increase the ability of a protein to bind to partner molecules. Using atomic force microscopy (AFM) topographic images, it is possible to take snapshots of large multi-component macromolecules at the single molecule level and to reconstruct complete molecular conformations. Here, we report the application of a reconstruction protocol, named AFM-assembly, to characterise the conformational variability of the two C domains of human coagulation factor Va (FVa). Using AFM topographic surfaces obtained in liquid environment, it is shown that the angle between C1 and C2 domains of FVa can vary between 40° and 166°. Such dynamical variation in C1 and C2 domain arrangement may have important implications regarding the binding of FVa to phospholipid membranes.
Collapse
|
6
|
Pezeshkpoor B, Castoldi E, Mahler A, Hanel D, Müller J, Hamedani NS, Biswas A, Oldenburg J, Pavlova A. Identification and functional characterization of a novel F5 mutation (Ala512Val, FVB onn ) associated with activated protein C resistance. J Thromb Haemost 2016; 14:1353-63. [PMID: 27090446 DOI: 10.1111/jth.13339] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Indexed: 11/29/2022]
Abstract
UNLABELLED Essentials Activated protein C (APC) resistance is a prevalent risk factor for venous thrombosis. A novel missense mutation (Ala512Val - FVBonn ) was characterized in vitro and in silico. FVBonn is a new cause of APC resistance and venous thrombosis. FVBonn expresses additionally enhanced procoagulant activity in the absence of APC. SUMMARY Background Activated protein C (APC) resistance is a prevalent risk factor for venous thrombosis. This phenotype is most commonly associated with the factor V Arg506Gln mutation (FV Leiden), which impairs the APC-mediated inactivation of both activated FV (FVa) and activated FVIII (FVIIIa). Objectives Here, we report the identification and characterization of a novel FV mutation (Ala512Val, FVBonn ) in six patients with APC resistance and venous thrombosis or recurrent abortions. Methods FVBonn was expressed in a recombinant system and compared with recombinant wild-type (WT) FV and FV Leiden in several functional assays. Results FVBonn conferred APC resistance to FV-depleted plasma, both in the activated partial thromboplastin time (APTT)-based test (APC sensitivity ratio [APCsr] of 1.98 for FVBonn versus 4.31 for WT FV and 1.59 for FV Leiden) and in the thrombin generation-based test (normalized APCsr of 5.41 for FVBonn versus 1.00 for WT FV and 8.99 for FV Leiden). The APC-mediated inactivation of FVaBonn was slower than that of WT FVa (mainly because of delayed cleavage at Arg506), but was greatly stimulated by protein S. The APC cofactor activity of FVBonn in FVIIIa inactivation was ~ 24% lower than that of WT FV. In line with these findings, an in silico analysis showed that the Ala512Val mutation is located in the same loop as the Arg506 APC cleavage site and might hamper its interaction with APC. Moreover, FVBonn was more procoagulant than WT FV and FV Leiden in the absence of APC, because of an increased activation rate and, possibly, an enhanced interaction with activated FX. Conclusions FVBonn induces hypercoagulability via a combination of increased activation/procoagulant activity, decreased susceptibility to APC-mediated inactivation, and slightly reduced APC cofactor activity.
Collapse
Affiliation(s)
- B Pezeshkpoor
- Institute of Experimental Hematology and Transfusion Medicine, University Clinic Bonn, Bonn, Germany
| | - E Castoldi
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, the Netherlands
| | | | - D Hanel
- Synlab MVZ, Stuttgart, Germany
| | - J Müller
- Institute of Experimental Hematology and Transfusion Medicine, University Clinic Bonn, Bonn, Germany
| | - N S Hamedani
- Institute of Experimental Hematology and Transfusion Medicine, University Clinic Bonn, Bonn, Germany
| | - A Biswas
- Institute of Experimental Hematology and Transfusion Medicine, University Clinic Bonn, Bonn, Germany
| | - J Oldenburg
- Institute of Experimental Hematology and Transfusion Medicine, University Clinic Bonn, Bonn, Germany
| | - A Pavlova
- Institute of Experimental Hematology and Transfusion Medicine, University Clinic Bonn, Bonn, Germany
| |
Collapse
|
7
|
Gale AJ, Bhat V, Pellequer JL, Griffin JH, Mosnier LO, Von Drygalski A. Safety, Stability and Pharmacokinetic Properties of (super)Factor Va, a Novel Engineered Coagulation Factor V for Treatment of Severe Bleeding. Pharm Res 2016; 33:1517-26. [PMID: 26960296 DOI: 10.1007/s11095-016-1895-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 03/01/2016] [Indexed: 11/30/2022]
Abstract
PURPOSE Activated (super)Factor V ((super)FVa) is a novel engineered FV with excellent prohemostatic efficacy. (Super)FVa has three APC cleavage site mutations and an interdomain disulfide bond. Stability, pharmacokinetics, and immunogenic and thrombogenic potential are reported here. METHODS Stability and circulating half-life were determined after incubation in buffer and human plasma, and after injection into FVIII-deficient mice. Immunogenicity potential was assessed by B- and T-cell specific epitope prediction and structural analysis using surface area and atomic depth computation. Thrombogenic potential was determined by quantification of lung fibrin deposition in wild-type mice after intravenous injection of (super)FVa (200 U/kg), recombinant human (rh) Tissue Factor (0.4-16 pmol/kg), rhFVIIa (3 mg/kg) or saline. RESULTS FVa retained full activity over 30 h in buffer, the functional half-life in human plasma was 4.9 h, and circulating half-life in FVIII-deficient mice was ~30 min. Predicted immunogenicity was not increased compared to human FV. While rh Tissue Factor, the positive control, resulted in pronounced lung fibrin depositions (mean 121 μg/mL), (super)FVa did not (6.7 μg/mL), and results were comparable to fibrin depositions with rhFVIIa (7.6 μg/mL) or saline (5.6 μg/mL). CONCLUSION FVa has an appropriate safety and stability profile for further preclinical development as a prohemostatic against severe bleeding.
Collapse
Affiliation(s)
- Andrew J Gale
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, 10550 N Torrey Pines Rd, La Jolla, California, USA. .,Avelas Biosciences, La Jolla, California, USA.
| | - Vikas Bhat
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, 10550 N Torrey Pines Rd, La Jolla, California, USA
| | - Jean-Luc Pellequer
- University Grenoble Alpes, IBS, F-38044, Grenoble, France.,CNRS, IBS, F-38044, Grenoble, France.,Methodology and Electron Microscopy Group, CEA, IBS, F-38044, Grenoble, France
| | - John H Griffin
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, 10550 N Torrey Pines Rd, La Jolla, California, USA.,Department of Medicine, Division of Hematology/Oncology, University California San Diego, San Diego, California, USA
| | - Laurent O Mosnier
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, 10550 N Torrey Pines Rd, La Jolla, California, USA
| | - Annette Von Drygalski
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, 10550 N Torrey Pines Rd, La Jolla, California, USA.,Department of Medicine, Division of Hematology/Oncology, University California San Diego, San Diego, California, USA
| |
Collapse
|
8
|
Guzmán N, Larama G, Ávila A, Salazar LA. Three novel variants in the coagulation factor V gene associated with deep venous thrombosis in Chilean patients with Amerindian ethnic background. Clin Chim Acta 2015; 444:24-8. [DOI: 10.1016/j.cca.2015.02.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Revised: 01/28/2015] [Accepted: 02/03/2015] [Indexed: 12/30/2022]
|
9
|
Chaves RC, Teulon JM, Odorico M, Parot P, Chen SWW, Pellequer JL. Conformational dynamics of individual antibodies using computational docking and AFM. J Mol Recognit 2014; 26:596-604. [PMID: 24089367 DOI: 10.1002/jmr.2310] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Revised: 08/01/2013] [Accepted: 08/15/2013] [Indexed: 12/12/2022]
Abstract
Molecular recognition between a receptor and a ligand requires a certain level of flexibility in macromolecules. In this study, we aimed at analyzing the conformational variability of receptors portrayed by monoclonal antibodies that have been individually imaged using atomic force microscopy (AFM). Individual antibodies were chemically coupled to activated mica surface, and they have been imaged using AFM in ambient conditions. The resulting topographical surface of antibodies was used to assemble the three subunits constituting antibodies: two antigen-binding fragments and one crystallizable fragment using a surface-constrained computational docking approach. Reconstructed structures based on 10 individual topographical surfaces of antibodies are presented for which separation and relative orientation of the subunits were measured. When compared with three X-ray structures of antibodies present in the protein data bank database, results indicate that several arrangements of the reconstructed subunits are comparable with those of known structures. Nevertheless, no reconstructed structure superimposes adequately to any particular X-ray structure consequence of the antibody flexibility. We conclude that high-resolution AFM imaging with appropriate computational reconstruction tools is adapted to study the conformational dynamics of large individual macromolecules deposited on mica.
Collapse
Affiliation(s)
- Rui C Chaves
- CEA, iBEB, Service de Biochimie et Toxicologie Nucléaire, F-30207, Bagnols sur Cèze, France
| | | | | | | | | | | |
Collapse
|
10
|
Liu S, Wei L, Zhang Y, Xu M, Wang C, Zhou J. Procoagulant activity and cellular origin of microparticles in human amniotic fluid. Thromb Res 2014; 133:645-51. [DOI: 10.1016/j.thromres.2013.12.043] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Revised: 12/13/2013] [Accepted: 12/31/2013] [Indexed: 11/30/2022]
|
11
|
Wiencek JR, Na M, Hirbawi J, Kalafatis M. Amino acid region 1000-1008 of factor V is a dynamic regulator for the emergence of procoagulant activity. J Biol Chem 2013; 288:37026-38. [PMID: 24178294 PMCID: PMC3873559 DOI: 10.1074/jbc.m113.462374] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Single chain factor V (fV) circulates as an Mr 330,000 quiescent pro-cofactor. Removal of the B domain and generation of factor Va (fVa) are vital for procoagulant activity. We investigated the role of the basic amino acid region 1000–1008 within the B domain of fV by constructing a recombinant mutant fV molecule with all activation cleavage sites (Arg709/Arg1018/Arg1545) mutated to glutamine (fVQ3), a mutant fV molecule with region 1000–1008 deleted (fVΔB9), and a mutant fV molecule containing the same deletion with activation cleavage sites changed to glutamine (fVΔB9/Q3). The recombinant molecules along with wild type fV (fVWT) were transiently expressed in COS-7L cells, purified, and assessed for their ability to bind factor Xa (fXa) prior to and following incubation with thrombin. The data showed that fVQ3 was severely impaired in its interaction with fXa before and after incubation with thrombin. In contrast, KD(app) values for fVΔB9 (0.9 nm), fVaΔB9 (0.4 nm), and fVΔB9/Q3 (0.7 nm) were similar to the affinity of fVaWT for fXa (0.3 nm). Two-stage clotting assays revealed that although fVQ3 was deficient in its clotting activity, fVΔB9/Q3 had clotting activity comparable with fVaWT. The kcat value of prothrombinase assembled with fVΔB9/Q3 was minimally affected, whereas the Km value of the reaction was increased 57-fold compared with the Km value obtained with prothrombinase assembled with fVaWT. These findings strongly suggest that amino acid region 1000–1008 of fV is a regulatory sequence protecting the organisms from spontaneous binding to fXa and unnecessary prothrombinase complex formation, which in turn results in catastrophic physiological consequences.
Collapse
Affiliation(s)
- Joesph R Wiencek
- From the Department of Chemistry, Cleveland State University, Cleveland, Ohio 44115
| | | | | | | |
Collapse
|
12
|
Chaves RC, Pellequer JL. DockAFM: benchmarking protein structures by docking under AFM topographs. ACTA ACUST UNITED AC 2013; 29:3230-1. [PMID: 24078683 DOI: 10.1093/bioinformatics/btt561] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
UNLABELLED Proteins can adopt a variety of conformations. We present a simple server for scoring the agreement between 3D atomic structures and experimental envelopes obtained by atomic force microscopy. Three different structures of immunoglobulins (IgG) or blood coagulation factor V activated were tested and their agreement with several topographical surfaces was computed. This approach can be used to test structural variability within a family of proteins. AVAILABILITY AND IMPLEMENTATION DockAFM is available at http://biodev.cea.fr/dockafm.
Collapse
Affiliation(s)
- Rui C Chaves
- CEA, iBEB, Service de Biochimie et Toxicologie Nucléaire, F-30207 Bagnols sur Cèze, France
| | | |
Collapse
|
13
|
Bunce MW, Bos MHA, Krishnaswamy S, Camire RM. Restoring the procofactor state of factor Va-like variants by complementation with B-domain peptides. J Biol Chem 2013; 288:30151-30160. [PMID: 24014022 DOI: 10.1074/jbc.m113.506840] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Coagulation factor V (FV) circulates as an inactive procofactor and is activated to FVa by proteolytic removal of a large inhibitory B-domain. Conserved basic and acidic sequences within the B-domain appear to play an important role in keeping FV as an inactive procofactor. Here, we utilized recombinant B-domain fragments to elucidate the mechanism of this FV autoinhibition. We show that a fragment encoding the basic region (BR) of the B-domain binds with high affinity to cofactor-like FV(a) variants that harbor an intact acidic region. Furthermore, the BR inhibits procoagulant function of the variants, thereby restoring the procofactor state. The BR competes with FXa for binding to FV(a), and limited proteolysis of the B-domain, specifically at Arg(1545), ablates BR binding to promote high affinity association between FVa and FXa. These results provide new insight into the mechanism by which the B-domain stabilizes FV as an inactive procofactor and reveal how limited proteolysis of FV progressively destabilizes key regulatory regions of the B-domain to produce an active form of the molecule.
Collapse
Affiliation(s)
- Matthew W Bunce
- From the Division of Hematology, The Children's Hospital of Philadelphia and
| | - Mettine H A Bos
- From the Division of Hematology, The Children's Hospital of Philadelphia and
| | - Sriram Krishnaswamy
- From the Division of Hematology, The Children's Hospital of Philadelphia and; the Department of Pediatrics, Perelman School of Medicine, The University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Rodney M Camire
- From the Division of Hematology, The Children's Hospital of Philadelphia and; the Department of Pediatrics, Perelman School of Medicine, The University of Pennsylvania, Philadelphia, Pennsylvania 19104.
| |
Collapse
|
14
|
Brown MA, Stenberg LM, Stenflo J. Coagulation Factor Xa. HANDBOOK OF PROTEOLYTIC ENZYMES 2013. [PMCID: PMC7149769 DOI: 10.1016/b978-0-12-382219-2.00642-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
The third edition of the Handbook of Proteolytic Enzymes aims to be a comprehensive reference work for the enzymes that cleave proteins and peptides, and contains over 800 chapters. Each chapter is organized into sections describing the name and history, activity and specificity, structural chemistry, preparation, biological aspects, and distinguishing features for a specific peptidase. The subject of Chapter 642 is Coagulation Factor Xa. Keywords Coagulation factor, prothrombin, thrombin, proconvertin, Stuart’s factor, Prower’s factor.
Collapse
|
15
|
|
16
|
Bos MHA, Camire RM. A bipartite autoinhibitory region within the B-domain suppresses function in factor V. J Biol Chem 2012; 287:26342-51. [PMID: 22707727 DOI: 10.1074/jbc.m112.377168] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Activation of blood coagulation factor V (FV) is a key reaction of hemostasis. FV circulates in plasma as an inactive procofactor, and proteolytic removal of a large central B-domain converts it to an active cofactor (FVa) for factor Xa (FXa). Here we show that two short evolutionary conserved segments of the B-domain, together termed the procofactor regulatory region, serve an essential autoinhibitory function. This newly identified motif consists of a basic (963-1008) and an acidic (1493-1537) region and defines the minimal sequence requirements to maintain FV as a procofactor. Our data suggest that dismantling this autoinhibitory region via deletion or proteolysis is the driving force to unveil a high affinity binding site(s) for FXa. These findings document an unexpected sequence-specific role for the B-domain by negatively regulating FV function and preventing activity of the procofactor. These new mechanistic insights point to new ways in which the FV procofactor to cofactor transition could be modulated to alter hemostasis.
Collapse
Affiliation(s)
- Mettine H A Bos
- Division of Hematology, The Children's Hospital of Philadelphia, PA 19104, USA
| | | |
Collapse
|
17
|
Trinh MH, Odorico M, Pique ME, Teulon JM, Roberts VA, Ten Eyck LF, Getzoff ED, Parot P, Chen SWW, Pellequer JL. Computational reconstruction of multidomain proteins using atomic force microscopy data. Structure 2012; 20:113-20. [PMID: 22244760 DOI: 10.1016/j.str.2011.10.023] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2011] [Revised: 10/05/2011] [Accepted: 10/10/2011] [Indexed: 01/10/2023]
Abstract
Classical structural biology techniques face a great challenge to determine the structure at the atomic level of large and flexible macromolecules. We present a novel methodology that combines high-resolution AFM topographic images with atomic coordinates of proteins to assemble very large macromolecules or particles. Our method uses a two-step protocol: atomic coordinates of individual domains are docked beneath the molecular surface of the large macromolecule, and then each domain is assembled using a combinatorial search. The protocol was validated on three test cases: a simulated system of antibody structures; and two experimentally based test cases: Tobacco mosaic virus, a rod-shaped virus; and Aquaporin Z, a bacterial membrane protein. We have shown that AFM-intermediate resolution topography and partial surface data are useful constraints for building macromolecular assemblies. The protocol is applicable to multicomponent structures connected in the polypeptide chain or as disjoint molecules. The approach effectively increases the resolution of AFM beyond topographical information down to atomic-detail structures.
Collapse
Affiliation(s)
- Minh-Hieu Trinh
- CEA, iBEB, Department of Biochemistry and Nuclear Toxicology, F-30207 Bagnols sur Cèze, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Rezaie AR. Regulation of the protein C anticoagulant and antiinflammatory pathways. Curr Med Chem 2010; 17:2059-69. [PMID: 20423310 DOI: 10.2174/092986710791233706] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2010] [Accepted: 04/19/2010] [Indexed: 12/23/2022]
Abstract
Protein C is a vitamin K-dependent anticoagulant serine protease zymogen in plasma which upon activation by the thrombin-thrombomodulin complex down-regulates the coagulation cascade by degrading cofactors Va and VIIIa by limited proteolysis. In addition to its anticoagulant function, activated protein C (APC) also binds to endothelial protein C receptor (EPCR) in lipid-rafts/caveolar compartments to activate protease- activated receptor 1 (PAR-1) thereby eliciting antiinflammatory and cytoprotective signaling responses in endothelial cells. These properties have led to FDA approval of recombinant APC as a therapeutic drug for severe sepsis. The mechanism by which APC selects its substrates in the anticoagulant and antiinflammatory pathways is not well understood. Recent structural and mutagenesis data have indicated that basic residues of three exposed surface loops known as 39-loop (Lys-37, Lys-38, and Lys-39), 60-loop (Lys-62, Lys- 63, and Arg-67), and 70-80-loop (Arg-74, Arg-75, and Lys-78) (chymotrypsin numbering) constitute an anion binding exosite in APC that interacts with the procoagulant cofactors Va and VIIIa in the anticoagulant pathway. Furthermore, two negatively charged residues on the opposite side of the active-site of APC on a helical structure have been demonstrated to determine the specificity of the PAR-1 recognition in the cytoprotective pathway. This article will review the mechanism by which APC exerts its proteolytic function in two physiologically inter-related pathways and how the structure- function insights into determinants of the specificity of APC interaction with its substrates in two pathways can be utilized to tinker with the structure of the molecule to obtain APC derivatives with potentially improved therapeutic profiles.
Collapse
Affiliation(s)
- A R Rezaie
- Department of Biochemistry and Molecular Biology, St. Louis University School of Medicine, 1100 S. Grand Blvd., St. Louis, MO 63104, USA.
| |
Collapse
|
19
|
A phosphatidylserine binding site in factor Va C1 domain regulates both assembly and activity of the prothrombinase complex. Blood 2008; 112:2795-802. [PMID: 18587009 DOI: 10.1182/blood-2008-02-138941] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Tightly associated factor V(a) (FVa) and factor X(a) (FXa) serve as the essential prothrombin-activating complex that assembles on phosphatidylserine (PS)-containing platelet membranes during blood coagulation. We have previously shown that (1) a soluble form of PS (C6PS) triggers assembly of a fully active FVa-FXa complex in solution and (2) that 2 molecules of C6PS bind to FVa light chain with one occupying a site in the C2 domain. We expressed human factor V(a) (rFVa) with mutations in either the C1 domain (Y1956,L1957)A, the C2 domain (W2063,W2064)A, or both C domains (Y1956,L1957,W2063,W2064)A. Mutations in the C1 and C1-C2 domains of rFVa reduced the rate of activation of prothrombin to thrombin by FXa in the presence of 400 muM C6PS by 14 000- to 15 000-fold relative to either wild-type or C2 mutant factor rFVa. The K(d')s of FXa binding with rFVa (wild-type, C2 mutant, C1 mutant, and C1-C2 mutant) were 3, 4, 564, and 624 nM, respectively. Equilibrium dialysis experiments detected binding of 4, 3, and 2 molecules of C6PS to wild-type rFVa, C1-mutated, and C1,C2-mutated rFVa, respectively. Because FVa heavy chain binds 2 molecules of C6PS, we conclude that both C2 and C1 domains bind one C6PS, with binding to the C1 domain regulating prothrombinase complex assembly.
Collapse
|
20
|
Steen M, Tran S, Autin L, Villoutreix BO, Tholander AL, Dahlbäck B. Mapping of the factor Xa binding site on factor Va by site-directed mutagenesis. J Biol Chem 2008; 283:20805-12. [PMID: 18502757 DOI: 10.1074/jbc.m802703200] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Activated coagulation factor V functions as a cofactor to factor Xa in the conversion of prothrombin to thrombin. Based on the introduction of extra carbohydrate side chains in recombinant factor V, we recently proposed several regions in factor Va to be important for factor Xa binding. To further define which residues are important for factor Xa binding, we prepared fifteen recombinant factor V variants in which clusters of charged amino acid residues were mutated, mainly to alanines. The factor V variants were expressed in COS-1 cells, and their functional properties evaluated in a prothrombinase-based assay, as well as in a direct binding test. Four of the factor V variants, 501A/510A/511D, 501A/510A/511D/513A, 513A/577A/578A, and 501A/510A/511D/513A/577A/578A exhibited markedly reduced factor Xa-cofactor activity tested in the prothrombinase assay, and reduced binding affinity as judged by the direct binding assay. These factor Va variants were normally cleaved at Arg-506 by activated protein C, and the interaction between the factor Xa-factor Va complex and prothrombin was unaffected by the introduced mutations. Based on the integration of all available data, we propose a key factor Xa binding surface to be centered on Arg-501, Arg-510, Ala-511, Asp-513, Asp-577, and Asp-578 in the factor Va A2 domain. These residues form an elongated charged factor Xa binding cluster on the factor Va surface.
Collapse
Affiliation(s)
- Mårten Steen
- Department of Laboratory Medicine, Division of Clinical Chemistry, Lund University, The Wallenberg Laboratory, MAS, SE-205 02 Malmö, Sweden
| | | | | | | | | | | |
Collapse
|
21
|
Tran S, Norstrøm E, Dahlbäck B. Effects of Prothrombin on the Individual Activated Protein C-mediated Cleavages of Coagulation Factor Va. J Biol Chem 2008; 283:6648-55. [DOI: 10.1074/jbc.m708036200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|