1
|
González‐Garrido C, Prado F. Novel insights into the roles of Cdc7 in response to replication stress. FEBS J 2022. [DOI: 10.1111/febs.16456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 03/01/2022] [Accepted: 04/07/2022] [Indexed: 11/26/2022]
Affiliation(s)
- Cristina González‐Garrido
- Centro Andaluz de Biología Molecular y Medicina Regenerativa–CABIMER Consejo Superior de Investigaciones Científicas Universidad de Sevilla Universidad Pablo de Olavide Spain
| | - Félix Prado
- Centro Andaluz de Biología Molecular y Medicina Regenerativa–CABIMER Consejo Superior de Investigaciones Científicas Universidad de Sevilla Universidad Pablo de Olavide Spain
| |
Collapse
|
2
|
Structural Basis for the Activation and Target Site Specificity of CDC7 Kinase. Structure 2020; 28:954-962.e4. [PMID: 32521228 PMCID: PMC7416108 DOI: 10.1016/j.str.2020.05.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 05/11/2020] [Accepted: 05/19/2020] [Indexed: 12/13/2022]
Abstract
CDC7 is an essential Ser/Thr kinase that acts upon the replicative helicase throughout the S phase of the cell cycle and is activated by DBF4. Here, we present crystal structures of a highly active human CDC7-DBF4 construct. The structures reveal a zinc-finger domain at the end of the kinase insert 2 that pins the CDC7 activation loop to motif M of DBF4 and the C lobe of CDC7. These interactions lead to ordering of the substrate-binding platform and full opening of the kinase active site. In a co-crystal structure with a mimic of MCM2 Ser40 phosphorylation target, the invariant CDC7 residues Arg373 and Arg380 engage phospho-Ser41 at substrate P+1 position, explaining the selectivity of the S-phase kinase for Ser/Thr residues followed by a pre-phosphorylated or an acidic residue. Our results clarify the role of DBF4 in activation of CDC7 and elucidate the structural basis for recognition of its preferred substrates. DBF4 activates CDC7 kinase via a two-step mechanism Zinc-finger domain in CDC7 KI2 interacts with DBF4 motif M Invariant CDC7 residues Arg373 and Arg380 engage P+1 substrate site
Collapse
|
3
|
Abstract
The Ran pathway has a well-described function in nucleocytoplasmic transport, where active Ran dissociates importin/karyopherin-bound cargo containing a nuclear localization signal (NLS) in the nucleus. As cells enter mitosis, the nuclear envelope breaks down and a gradient of active Ran forms where levels are highest near chromatin. This gradient plays a crucial role in regulating mitotic spindle assembly, where active Ran binds to and releases importins from NLS-containing spindle assembly factors. An emerging theme is that the Ran gradient also regulates the actomyosin cortex for processes including polar body extrusion during meiosis, and cytokinesis. For these events, active Ran could play an inhibitory role, where importin-binding may help promote or stabilize a conformation or interaction that favours the recruitment and function of cortical regulators. For either spindle assembly or cortical polarity, the gradient of active Ran determines the extent of importin-binding, the effects of which could vary for different proteins.
Collapse
Affiliation(s)
- Imge Ozugergin
- Department of Biology, Concordia University, Montreal, QC, Canada
| | - Alisa Piekny
- Department of Biology, Concordia University, Montreal, QC, Canada
| |
Collapse
|
4
|
Abstract
The conserved serine-threonine kinase, Cdc7, plays a crucial role in initiation of DNA replication by facilitating the assembly of an initiation complex. Cdc7 is expressed at a high level and exhibits significant kinase activity not only during S-phase but also during G2/M-phases. A conserved mitotic kinase, Aurora B, is activated during M-phase by association with INCENP, forming the chromosome passenger complex with Borealin and Survivin. We show that Cdc7 phosphorylates and stimulates Aurora B kinase activity in vitro. We identified threonine-236 as a critical phosphorylation site on Aurora B that could be a target of Cdc7 or could be an autophosphorylation site stimulated by Cdc7-mediated phosphorylation elsewhere. We found that threonines at both 232 (that has been identified as an autophosphorylation site) and 236 are essential for the kinase activity of Aurora B. Cdc7 down regulation or inhibition reduced Aurora B activity in vivo and led to retarded M-phase progression. SAC imposed by paclitaxel was dramatically reversed by Cdc7 inhibition, similar to the effect of Aurora B inhibition under the similar situation. Our data show that Cdc7 contributes to M-phase progression and to spindle assembly checkpoint most likely through Aurora B activation.
Collapse
|
5
|
Wu KZL, Wang GN, Fitzgerald J, Quachthithu H, Rainey MD, Cattaneo A, Bachi A, Santocanale C. DDK dependent regulation of TOP2A at centromeres revealed by a chemical genetics approach. Nucleic Acids Res 2016; 44:8786-8798. [PMID: 27407105 PMCID: PMC5062981 DOI: 10.1093/nar/gkw626] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 07/02/2016] [Indexed: 11/14/2022] Open
Abstract
In eukaryotic cells the CDC7/DBF4 kinase, also known as DBF4-dependent kinase (DDK), is required for the firing of DNA replication origins. CDC7 is also involved in replication stress responses and its depletion sensitises cells to drugs that affect fork progression, including Topoisomerase 2 poisons. Although CDC7 is an important regulator of cell division, relatively few substrates and bona-fide CDC7 phosphorylation sites have been identified to date in human cells. In this study, we have generated an active recombinant CDC7/DBF4 kinase that can utilize bulky ATP analogues. By performing in vitro kinase assays using benzyl-thio-ATP, we have identified TOP2A as a primary CDC7 substrate in nuclear extracts, and serine 1213 and serine 1525 as in vitro phosphorylation sites. We show that CDC7/DBF4 and TOP2A interact in cells, that this interaction mainly occurs early in S-phase, and that it is compromised after treatment with CDC7 inhibitors. We further provide evidence that human DBF4 localises at centromeres, to which TOP2A is progressively recruited during S-phase. Importantly, we found that CDC7/DBF4 down-regulation, as well S1213A/S1525A TOP2A mutations can advance the timing of centromeric TOP2A recruitment in S-phase. Our results indicate that TOP2A is a novel DDK target and have important implications for centromere biology.
Collapse
Affiliation(s)
- Kevin Z L Wu
- Centre for Chromosome Biology, School of Natural Sciences, National University of Ireland Galway, Ireland
| | - Guan-Nan Wang
- Centre for Chromosome Biology, School of Natural Sciences, National University of Ireland Galway, Ireland
| | - Jennifer Fitzgerald
- Centre for Chromosome Biology, School of Natural Sciences, National University of Ireland Galway, Ireland
| | - Huong Quachthithu
- Centre for Chromosome Biology, School of Natural Sciences, National University of Ireland Galway, Ireland
| | - Michael D Rainey
- Centre for Chromosome Biology, School of Natural Sciences, National University of Ireland Galway, Ireland
| | - Angela Cattaneo
- IFOM-FIRC Institute of Molecular Oncology, Milan 20139, Italy
| | - Angela Bachi
- IFOM-FIRC Institute of Molecular Oncology, Milan 20139, Italy
| | - Corrado Santocanale
- Centre for Chromosome Biology, School of Natural Sciences, National University of Ireland Galway, Ireland
| |
Collapse
|
6
|
Knockleby J, Kim BJ, Mehta A, Lee H. Cdk1-mediated phosphorylation of Cdc7 suppresses DNA re-replication. Cell Cycle 2016; 15:1494-505. [PMID: 27105124 PMCID: PMC4934051 DOI: 10.1080/15384101.2016.1176658] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 03/23/2016] [Accepted: 04/06/2016] [Indexed: 12/18/2022] Open
Abstract
To maintain genetic stability, the entire mammalian genome must replicate only once per cell cycle. This is largely achieved by strictly regulating the stepwise formation of the pre-replication complex (pre-RC), followed by the activation of individual origins of DNA replication by Cdc7/Dbf4 kinase. However, the mechanism how Cdc7 itself is regulated in the context of cell cycle progression is poorly understood. Here we report that Cdc7 is phosphorylated by a Cdk1-dependent manner during prometaphase on multiple sites, resulting in its dissociation from origins. In contrast, Dbf4 is not removed from origins in prometaphase, nor is it degraded as cells exit mitosis. Our data thus demonstrates that constitutive phosphorylation of Cdc7 at Cdk1 recognition sites, but not the regulation of Dbf4, prevents the initiation of DNA replication in normally cycling cells and under conditions that promote re-replication in G2/M. As cells exit mitosis, PP1α associates with and dephosphorylates Cdc7. Together, our data support a model where Cdc7 (de)phosphorylation is the molecular switch for the activation and inactivation of DNA replication in mitosis, directly connecting Cdc7 and PP1α/Cdk1 to the regulation of once-per-cell cycle DNA replication in mammalian cells.
Collapse
Affiliation(s)
- James Knockleby
- Tumour Biology Group, Advanced Medical Research Institute of Canada, Health Sciences North, Sudbury, Ontario, Canada
| | - Byung Ju Kim
- Tumour Biology Group, Advanced Medical Research Institute of Canada, Health Sciences North, Sudbury, Ontario, Canada
| | - Avani Mehta
- Tumour Biology Group, Advanced Medical Research Institute of Canada, Health Sciences North, Sudbury, Ontario, Canada
| | - Hoyun Lee
- Tumour Biology Group, Advanced Medical Research Institute of Canada, Health Sciences North, Sudbury, Ontario, Canada
- Departments of Medicine, the Faculty of Medicine, the University of Ottawa, Ottawa, Ontario, Canada
- Northern Ontario School of Medicine, Sudbury, Ontario, Canada
| |
Collapse
|
7
|
Murai S, Katagiri Y, Yamashita S. Maturation-associatedDbf4expression is essential for mouse zygotic DNA replication. Dev Growth Differ 2014; 56:625-39. [DOI: 10.1111/dgd.12180] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Revised: 08/24/2014] [Accepted: 08/27/2014] [Indexed: 11/26/2022]
Affiliation(s)
- Shin Murai
- Department of Biochemistry; Toho University School of Medicine; 5-21-16 Omorinishi Otaku 143-8540 Tokyo Japan
| | - Yukiko Katagiri
- Department of Obstetrics and Gynecology Reproduction Center; Omori Medical Center; Toho University; 6-11-1, Omori-Nishi Ota-ku 143-8541 Tokyo Japan
| | - Shigeru Yamashita
- Department of Biochemistry; Toho University School of Medicine; 5-21-16 Omorinishi Otaku 143-8540 Tokyo Japan
| |
Collapse
|
8
|
Yasuda K, Sugiura K, Takeichi T, Ogawa Y, Muro Y, Akiyama M. Nuclear envelope localization of Ran-binding protein 2 and Ran-GTPase-activating protein 1 in psoriatic epidermal keratinocytes. Exp Dermatol 2014; 23:119-24. [PMID: 24438026 DOI: 10.1111/exd.12324] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/13/2014] [Indexed: 01/01/2023]
Abstract
The nuclear localization signal (NLS)-containing proteins LEDGF and STAT3 localize to the nucleus in both the spinous and basal layers of the epidermis in psoriatic skin, where they function as transcription factors or co-factors to activate epidermal keratinocytes (KCs). However, the mechanism underlying the localization of these proteins remains to be elucidated. We investigated the differential nucleocytoplasmic transport of NLS-containing proteins as a potential pathogenic mechanism for psoriasis vulgaris. Nucleoporins play an important role in the Ran-GTP-dependent nucleocytoplasmic transport of NLS-containing proteins. We showed, using immunohistochemical staining, that the nucleoporins Ran-binding protein 2 (RanBP2) and Ran-GTPase-activating protein 1 (RanGAP1) have greater expression on the nuclear envelope in psoriatic epidermal KCs than in KCs from healthy controls. We then studied the signalling pathways involved in the regulation of these proteins in HaCaT cells. The two major downstream pathways of epidermal growth factor receptor (EGFR) signalling activated in psoriatic KCs are the MAPK/Erk/1/2 and the phosphatidylinositol-3-kinase/Akt pathways. Therefore, we treated HaCaT cells with inhibitors to disrupt the MAP kinase kinase 1 (MEK1), PI3-kinase, or mTOR pathways. RanBP2 and RanGAP1 protein expression levels were significantly greater in the nuclear envelope of HaCaT cells that were not treated with inhibitors than in cells treated with a combination of PI3-kinase and MEK1 inhibitors or mTOR and MEK1 inhibitors. These results suggest that adequate nuclear envelope expression of RanBP2 and RanGAP1 could be a prerequisite for nucleocytoplasmic transport in KCs in psoriatic epidermis.
Collapse
Affiliation(s)
- Kayo Yasuda
- Department of Dermatology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | | | | | | | | | | |
Collapse
|
9
|
Liachko NF, McMillan PJ, Guthrie CR, Bird TD, Leverenz JB, Kraemer BC. CDC7 inhibition blocks pathological TDP-43 phosphorylation and neurodegeneration. Ann Neurol 2013; 74:39-52. [PMID: 23424178 DOI: 10.1002/ana.23870] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Revised: 12/14/2012] [Accepted: 01/25/2013] [Indexed: 12/11/2022]
Abstract
OBJECTIVE Kinase hyperactivity occurs in both neurodegenerative disease and cancer. Lesions containing hyperphosphorylated aggregated TDP-43 characterize amyotrophic lateral sclerosis and frontotemporal lobar degeneration with TDP-43 inclusions. Dual phosphorylation of TDP-43 at serines 409/410 (S409/410) drives neurotoxicity in disease models; therefore, TDP-43-specific kinases are candidate targets for intervention. METHODS To find therapeutic targets for the prevention of TDP-43 phosphorylation, we assembled and screened a comprehensive RNA interference library targeting kinases in TDP-43 transgenic Caenorhabditis elegans. RESULTS We show CDC7 robustly phosphorylates TDP-43 at pathological residues S409/410 in C. elegans, in vitro, and in human cell culture. In frontotemporal lobar degeneration (FTLD)-TDP cases, CDC7 immunostaining overlaps with the phospho-TDP-43 pathology found in frontal cortex. Furthermore, PHA767491, a small molecule inhibitor of CDC7, reduces TDP-43 phosphorylation and prevents TDP-43-dependent neurodegeneration in TDP-43-transgenic animals. INTERPRETATION Taken together, these data support CDC7 as a novel therapeutic target for TDP-43 proteinopathies, including FTLD-TDP and amyotrophic lateral sclerosis.
Collapse
Affiliation(s)
- Nicole F Liachko
- Geriatric Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA; Department of Medicine, University of Washington, Seattle, WA
| | | | | | | | | | | |
Collapse
|
10
|
Kitamura R, Fukatsu R, Kakusho N, Cho YS, Taniyama C, Yamazaki S, Toh GT, Yanagi K, Arai N, Chang HJ, Masai H. Molecular mechanism of activation of human Cdc7 kinase: bipartite interaction with Dbf4/activator of S phase kinase (ASK) activation subunit stimulates ATP binding and substrate recognition. J Biol Chem 2011; 286:23031-43. [PMID: 21536671 DOI: 10.1074/jbc.m111.243311] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cdc7 is a serine/threonine kinase conserved from yeasts to human and is known to play a key role in the regulation of initiation at each replication origin. Its catalytic function is activated via association with the activation subunit Dbf4/activator of S phase kinase (ASK). It is known that two conserved motifs of Dbf4/ASK are involved in binding to Cdc7, and both are required for maximum activation of Cdc7 kinase. Cdc7 kinases possess unique kinase insert sequences (kinase insert I-III) that are inserted at defined locations among the conserved kinase domains. However, precise mechanisms of Cdc7 kinase activation are largely unknown. We have identified two segments on Cdc7, DAM-1 (Dbf4/ASK interacting motif-1; amino acids 448-457 near the N terminus of kinase insert III) and DAM-2 (C-terminal 10-amino acid segment), that interact with motif-M and motif-C of ASK, respectively, and are essential for kinase activation by ASK. The C-terminal 143-amino acid polypeptide (432-574) containing DAM-1 and DAM-2 can interact with Dbf4/ASK. Characterization of the purified ASK-free Cdc7 and Cdc7-ASK complex shows that ATP binding of the Cdc7 catalytic subunit requires Dbf4/ASK. However, the "minimum" Cdc7, lacking the entire kinase insert II and half of kinase insert III, binds to ATP and shows autophosphorylation activity in the absence of ASK. However, ASK is still required for phosphorylation of exogenous substrates by the minimum Cdc7. These results indicate bipartite interaction between Cdc7 and Dbf4/ASK subunits facilitates ATP binding and substrate recognition by the Cdc7 kinase.
Collapse
Affiliation(s)
- Ryo Kitamura
- Genome Dynamics Project, Department of Genome Medicine, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Gal J, Zhang J, Kwinter DM, Zhai J, Jia H, Jia J, Zhu H. Nuclear localization sequence of FUS and induction of stress granules by ALS mutants. Neurobiol Aging 2010; 32:2323.e27-40. [PMID: 20674093 DOI: 10.1016/j.neurobiolaging.2010.06.010] [Citation(s) in RCA: 155] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2010] [Accepted: 06/16/2010] [Indexed: 12/12/2022]
Abstract
Mutations in fused in sarcoma (FUS) have been reported to cause a subset of familial amyotrophic lateral sclerosis (ALS) cases. Wild-type FUS is mostly localized in the nuclei of neurons, but the ALS mutants are partly mislocalized in the cytoplasm and can form inclusions. We demonstrate that the C-terminal 32 amino acid residues of FUS constitute an effective nuclear localization sequence (NLS) as it targeted beta-galactosidase (LacZ, 116 kDa) to the nucleus. Deletion of or the ALS mutations within the NLS caused cytoplasmic mislocalization of FUS. Moreover, we identified the poly-A binding protein (PABP1), a stress granule marker, as an interacting partner of FUS. Large PABP1-positive cytoplasmic foci (i.e. stress granules) colocalized with the mutant FUS inclusions but were absent in wild-type FUS-expressing cells. Processing bodies, which are functionally related to stress granules, were adjacent to but not colocalized with the mutant FUS inclusions. Our results suggest that the ALS mutations in FUS NLS can impair FUS nuclear localization, induce cytoplasmic inclusions and stress granules, and potentially perturb RNA metabolism.
Collapse
Affiliation(s)
- Jozsef Gal
- Department of Molecular and Cellular Biochemistry, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
| | | | | | | | | | | | | |
Collapse
|
12
|
Sawa M, Masai H. Drug design with Cdc7 kinase: a potential novel cancer therapy target. DRUG DESIGN DEVELOPMENT AND THERAPY 2009; 2:255-64. [PMID: 19920912 PMCID: PMC2761190 DOI: 10.2147/dddt.s4303] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Identification of novel molecular targets is critical in development of new and efficient cancer therapies. Kinases are one of the most common drug targets with a potential for cancer therapy. Cell cycle progression is regulated by a number of kinases, some of which are being developed to treat cancer. Cdc7 is a serine-threonine kinase originally discovered in budding yeast, which has been shown to be necessary to initiate the S phase. Inhibition of Cdc7 in cancer cells retards the progression of the S phase, accumulates DNA damage, and induces p53-independent cell death, but the same treatment in normal cells does not significantly affect of less than viability. Low-molecular-weight compounds that inhibit Cdc7 kinase with an IC50 10 nM have been identified, and shown to be effective in the inhibition of tumor growth in animal models. Thus Cdc7 kinase can be recognized as a novel molecular target for cancer therapy.
Collapse
|
13
|
Kosugi S, Hasebe M, Matsumura N, Takashima H, Miyamoto-Sato E, Tomita M, Yanagawa H. Six classes of nuclear localization signals specific to different binding grooves of importin alpha. J Biol Chem 2009; 284:478-485. [PMID: 19001369 DOI: 10.1074/jbc.m807017200] [Citation(s) in RCA: 440] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The importin alpha/beta pathway mediates nuclear import of proteins containing the classical nuclear localization signals (NLSs). Although the consensus sequences of the classical NLSs have been defined, there are still many NLSs that do not match the consensus rule and many nonfunctional sequences that match the consensus. We report here six different NLS classes that specifically bind to distinct binding pockets of importin alpha. By screening of random peptide libraries using an mRNA display, we selected peptides bound by importin alpha and identified six classes of NLSs, including three novel classes. Two noncanonical classes (class 3 and class 4) specifically bound the minor binding pocket of importin alpha, whereas the classical monopartite NLSs (class 1 and class 2) bound to the major binding pocket. Using a newly developed universal green fluorescent protein expression system, we found that these NLS classes, including plant-specific class 5 NLSs and bipartite NLSs, fundamentally require the regions outside the core basic residues for their activity and have specific residues or patterns that confer the activities differently between yeast, plants, and mammals. Furthermore, amino acid replacement analyses revealed that the consensus basic patterns of the classical NLSs are not essential for activity, thereby generating more unconventional patterns, including redox-sensitive NLSs. These results explain the causes of the NLS diversity. The defined consensus patterns and properties of importin alpha-dependent NLSs provide useful information for identifying NLSs.
Collapse
Affiliation(s)
- Shunichi Kosugi
- Institute for Advanced Biosciences, Keio University, Tsuruoka 997-0017, Japan and the Department of Biosciences and Informatics, Faculty of Science and Technology, Keio University, Yokohama 223-8522, Japan; Institute for Advanced Biosciences, Keio University, Tsuruoka 997-0017, Japan and the Department of Biosciences and Informatics, Faculty of Science and Technology, Keio University, Yokohama 223-8522, Japan
| | - Masako Hasebe
- Institute for Advanced Biosciences, Keio University, Tsuruoka 997-0017, Japan and the Department of Biosciences and Informatics, Faculty of Science and Technology, Keio University, Yokohama 223-8522, Japan
| | - Nobutaka Matsumura
- Institute for Advanced Biosciences, Keio University, Tsuruoka 997-0017, Japan and the Department of Biosciences and Informatics, Faculty of Science and Technology, Keio University, Yokohama 223-8522, Japan
| | - Hideaki Takashima
- Institute for Advanced Biosciences, Keio University, Tsuruoka 997-0017, Japan and the Department of Biosciences and Informatics, Faculty of Science and Technology, Keio University, Yokohama 223-8522, Japan
| | - Etsuko Miyamoto-Sato
- Institute for Advanced Biosciences, Keio University, Tsuruoka 997-0017, Japan and the Department of Biosciences and Informatics, Faculty of Science and Technology, Keio University, Yokohama 223-8522, Japan
| | - Masaru Tomita
- Institute for Advanced Biosciences, Keio University, Tsuruoka 997-0017, Japan and the Department of Biosciences and Informatics, Faculty of Science and Technology, Keio University, Yokohama 223-8522, Japan
| | - Hiroshi Yanagawa
- Institute for Advanced Biosciences, Keio University, Tsuruoka 997-0017, Japan and the Department of Biosciences and Informatics, Faculty of Science and Technology, Keio University, Yokohama 223-8522, Japan; Institute for Advanced Biosciences, Keio University, Tsuruoka 997-0017, Japan and the Department of Biosciences and Informatics, Faculty of Science and Technology, Keio University, Yokohama 223-8522, Japan.
| |
Collapse
|
14
|
Lys-110 is essential for targeting PCNA to replication and repair foci, and the K110A mutant activates apoptosis. Biol Cell 2008; 100:675-86. [PMID: 18498247 DOI: 10.1042/bc20070158] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND INFORMATION PCNA (proliferating cell nuclear antigen) is required for a wide range of cellular functions, including DNA replication and damage repair. To be functional, PCNA must associate with the replication and repair foci. In addition, PCNA also mediates targeting of certain replication and repair proteins to these foci. However, the mechanism is not yet known by which PCNA is imported into the nucleus, and then localized to the replication and repair foci. RESULTS We have found that an NLS (nuclear localization sequence) is present within the amino acid 101-120 segment of PCNA. An NLS-deleted PCNA was localized in the cytoplasm and showed 5-fold lower affinity for importin-beta than wild-type, suggesting that PCNA may be imported into the nucleus by importin-beta via its NLS. We previously reported that the functional unit of PCNA is a double trimer (as opposed to single homotrimer), and Lys-110 is essential for the formation of the double trimer complex [Naryzhny, Zhao and Lee (2005) J. Biol. Chem. 280, 13888-13894]. The present study shows that the substitution of Lys-110 within the NLS to an alanine residue did not affect its nuclear localization. However, the double-trimer-defective PCNA(K110A) was not localized at replication or repair foci. In contrast, the double-trimer-intact PCNA(K117A) mutant was targeted normally to replication and repair foci. Interestingly, in cells transfected with PCNA(K110A), but not PCNA(K117A), caspase-3-mediated chromosome fragmentation was activated. CONCLUSIONS The present study suggests that the regulation of PCNA is intimately connected with that of DNA replication, repair and cell death signals, and raises the possibility that defects in the formation of the PCNA double-trimer complex can cause apoptosis.
Collapse
|
15
|
Kim BJ, Lee H. Caspase-mediated cleavage of importin-alpha increases its affinity for MCM and downregulates DNA synthesis by interrupting the binding of MCM to chromatin. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2008; 1783:2287-93. [PMID: 18761040 DOI: 10.1016/j.bbamcr.2008.07.026] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2008] [Revised: 07/15/2008] [Accepted: 07/29/2008] [Indexed: 10/21/2022]
Abstract
Importin-alpha is essential for classical nucleocytoplasmic transport of nuclear proteins. Here, we report that importin-alpha is cleaved by caspases during apoptosis, generating importin-alpha lacking an IBB domain. This truncated importin-alpha binds tightly to the MCM replication licensing factor and, thus, prevents its binding to chromatin and downregulates DNA synthesis. Together, our data reveal for the first time that a dying cell effectively salvages limited supplies of cellular energy to ensure an orderly process of its own demise by simultaneously downregulating nucleocytoplasmic protein transport and DNA synthesis. Strikingly, cells can achieve this multi-task process by simply cleaving-off a key nuclear import protein.
Collapse
Affiliation(s)
- Byung Ju Kim
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, the University of Ottawa, Ottawa, Ontario, Canada K1H 5M8
| | | |
Collapse
|
16
|
Ossovskaya V, Lim ST, Ota N, Schlaepfer DD, Ilic D. FAK nuclear export signal sequences. FEBS Lett 2008; 582:2402-6. [PMID: 18549812 DOI: 10.1016/j.febslet.2008.06.004] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2008] [Revised: 05/28/2008] [Accepted: 06/01/2008] [Indexed: 02/08/2023]
Abstract
Ubiquitously expressed focal adhesion kinase (FAK), a critical component in transducing signals from sites of cell contacts with extracellular matrix, was named after its typical localization in focal adhesions. A nuclear localization of FAK has been also reported and its scaffolding role in nucleus and requirement for p53 ubiquitination were only recently described. Whereas FAK nuclear localization signal (NLS) was found in F2 lobe of FERM domain, nuclear export signal (NES) sequences have not been yet determined. Here we demonstrate that FAK has two NES sequences, NES1 in F1 lobe of FERM domain and NES2 in kinase domain. Although, both NES1 and NES2 are evolutionary conserved, and present as well in FAK-related protein kinase Pyk2, only NES2 demonstrates full biological nuclear export activity.
Collapse
Affiliation(s)
- Valeria Ossovskaya
- Department of Anatomy, University of California San Francisco, San Francisco, CA, USA
| | | | | | | | | |
Collapse
|