1
|
de Carvalho OV, Rebouças Santos M, Lopes Rangel Fietto J, Pires Moraes M, de Almeida MR, Costa Bressan G, José Pena L, Silva-Júnior A. Multi-targeted gene silencing strategies inhibit replication of Canine morbillivirus. BMC Vet Res 2020; 16:448. [PMID: 33213424 PMCID: PMC7676405 DOI: 10.1186/s12917-020-02671-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 11/06/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Canine morbilivirus (canine distemper virus, CDV) is a highly contagious pathogen associated with high morbidity and mortality in susceptible carnivores. Although there are CDV vaccines available, the disease poses a huge threat to dogs and wildlife hosts due to vaccine failures and lack of effective treatment. Thus, the development of therapeutics is an urgent need to achieve rapid outbreak control and reduce mortality in target species. Gene silencing by RNA interference has emerged as a promising therapeutic approach against different human and animal viruses. In this study, plasmid-based short hairpin RNAs (shRNAs) against three different regions in either CDV nucleoprotein (N), or large polymerase (L) genes and recombinant adenovirus-expressing N-specific multi-shRNAs were generated. Viral cytopathic effect, virus titration, plaque-forming unit reduction, and real-time quantitative RT-PCR analysis were used to check the efficiency of constructs against CDV. RESULTS In CDV-infected VerodogSLAM cells, shRNA-expressing plasmids targeting the N gene markedly inhibited the CDV replication in a dose-dependent manner, with viral genomes and titers being decreased by over 99%. Transfection of plasmid-based shRNAs against the L gene displayed weaker inhibition of viral RNA level and virus yield as compared to CDV N shRNAs. A combination of shRNAs targeting three sites in the N gene considerably reduced CDV RNA and viral titers, but their effect was not synergistic. Recombinant adenovirus-expressing multiple shRNAs against CDV N gene achieved a highly efficient knockdown of CDV N mRNAs and successful inhibition of CDV replication. CONCLUSIONS We found that this strategy had strong silencing effects on CDV replication in vitro. Our findings indicate that the delivery of shRNAs using plasmid or adenovirus vectors potently inhibits CDV replication and provides a basis for the development of therapeutic strategies for clinical trials.
Collapse
Affiliation(s)
- Otávio Valério de Carvalho
- Laboratory of Immunobiological and Animal Virology, Department of Veterinary Medicine, Federal University of Viçosa, Av. Peter Henry Rolfs, s/n, Viçosa, MG, 36570-000, Brazil
- Department of Virology and Experimental Therapy, Oswaldo Cruz Foundation (FIOCRUZ), Aggeu Magalhães Research Center, Av. Moraes Rego, s/n, Campus UFPE, Cidade Universitária, Recife, PE, 50670-420, Brazil
| | - Marcus Rebouças Santos
- Laboratory of Immunobiological and Animal Virology, Department of Veterinary Medicine, Federal University of Viçosa, Av. Peter Henry Rolfs, s/n, Viçosa, MG, 36570-000, Brazil
| | - Juliana Lopes Rangel Fietto
- Department of Biochemistry and Molecular Biology, Federal University of Viçosa, Av. Peter Henry Rolfs, s/n, Viçosa, MG, 36570-000, Brazil
| | - Mauro Pires Moraes
- Laboratory of Immunobiological and Animal Virology, Department of Veterinary Medicine, Federal University of Viçosa, Av. Peter Henry Rolfs, s/n, Viçosa, MG, 36570-000, Brazil
| | - Márcia Rogéria de Almeida
- Department of Biochemistry and Molecular Biology, Federal University of Viçosa, Av. Peter Henry Rolfs, s/n, Viçosa, MG, 36570-000, Brazil
| | - Gustavo Costa Bressan
- Department of Biochemistry and Molecular Biology, Federal University of Viçosa, Av. Peter Henry Rolfs, s/n, Viçosa, MG, 36570-000, Brazil
| | - Lindomar José Pena
- Department of Virology and Experimental Therapy, Oswaldo Cruz Foundation (FIOCRUZ), Aggeu Magalhães Research Center, Av. Moraes Rego, s/n, Campus UFPE, Cidade Universitária, Recife, PE, 50670-420, Brazil.
| | - Abelardo Silva-Júnior
- Department of Virology and Experimental Therapy, Oswaldo Cruz Foundation (FIOCRUZ), Aggeu Magalhães Research Center, Av. Moraes Rego, s/n, Campus UFPE, Cidade Universitária, Recife, PE, 50670-420, Brazil.
| |
Collapse
|
2
|
Yan G, Wang X, Sun C, Zheng X, Wei H, Tian Z, Sun R. Chronic Alcohol Consumption Promotes Diethylnitrosamine-Induced Hepatocarcinogenesis via Immune Disturbances. Sci Rep 2017; 7:2567. [PMID: 28566719 PMCID: PMC5451469 DOI: 10.1038/s41598-017-02887-7] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 04/19/2017] [Indexed: 12/13/2022] Open
Abstract
Chronic alcohol consumption increases the risk of hepatocellular carcinoma (HCC). However, little is known about the potential immunological mechanisms by which ethanol affects tumor progression. Here, adult male mice were administered multiple doses of diethylnitrosamine (DEN). Four and a half months later, the DEN-treated mice were placed on a liquid Lieber-DeCarli control diet or diet containing 5% ethanol for 2.5 months. At the end of the study, liver tissue samples were obtained to analyze pathology, gene expression, and hepatic mononuclear cells (MNCs). Results showed that ethanol feeding exacerbates the progression of hepatic tumors (characterized by the ratio of liver weight to body weight, and the tumor volume and diameter) in DEN-treated mice. Mechanistically, chronic alcohol consumption decreased the number of antitumor CD8+ T cells but increased the number of tumor-associated macrophages (TAMs) in the liver in DEN-initiated tumorigenesis. Besides, TAMs were prone to be M2 phenotype after alcohol consumption. Moreover, chronic alcohol consumption aggravated inflammation, fibrosis, and epithelial-mesenchymal transition (EMT) in the pathological process of HCC. These data demonstrate that chronic alcohol consumption exacerbates DEN-induced hepatocarcinogenesis by enhancing protumor immunity, impairing antitumor immunity and aggravating hepatic pathological injury. Targeting the immune system is a potential therapeutic regimen for alcohol-promoted HCC.
Collapse
Affiliation(s)
- Guoxiu Yan
- Institute of Immunology and CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Xuefu Wang
- Institute of Immunology and CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, Anhui, 230027, China.
| | - Cheng Sun
- Institute of Immunology and CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Xiaodong Zheng
- Institute of Immunology and CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Haiming Wei
- Institute of Immunology and CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, Anhui, 230027, China.,Hefei National Laboratory for Physical Sciences at Microscale, Hefei, Anhui, 230027, China
| | - Zhigang Tian
- Institute of Immunology and CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, Anhui, 230027, China.,Hefei National Laboratory for Physical Sciences at Microscale, Hefei, Anhui, 230027, China
| | - Rui Sun
- Institute of Immunology and CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, Anhui, 230027, China. .,Hefei National Laboratory for Physical Sciences at Microscale, Hefei, Anhui, 230027, China.
| |
Collapse
|
3
|
Gene targets of mouse miR-709: regulation of distinct pools. Sci Rep 2016; 6:18958. [PMID: 26743462 PMCID: PMC4705522 DOI: 10.1038/srep18958] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 12/01/2015] [Indexed: 12/03/2022] Open
Abstract
MicroRNA (miRNA) are short non-coding RNA molecules that regulate multiple cellular processes, including development, cell differentiation, proliferation and death. Nevertheless, little is known on whether miRNA control the same gene networks in different tissues. miR-709 is an abundant miRNA expressed ubiquitously. Through transcriptome analysis, we have identified targets of miR-709 in hepatocytes. miR-709 represses genes implicated in cytoskeleton organization, extracellular matrix attachment, and fatty acid metabolism. Remarkably, none of the previously identified targets in non-hepatic tissues are silenced by miR-709 in hepatocytes, even though several of these genes are abundantly expressed in liver. In addition, miR-709 is upregulated in hepatocellular carcinoma, suggesting it participates in the genetic reprogramming that takes place during cell division, when cytoskeleton remodeling requires substantial changes in gene expression. In summary, the present study shows that miR-709 does not repress the same pool of genes in separate cell types. These results underscore the need for validating gene targets in every tissue a miRNA is expressed.
Collapse
|
4
|
Abstract
Hepatitis C virus (HCV) is a leading cause of chronic hepatitis and infects approximately three to four million people per year, about 170 million infected people in total, making it one of the major global health problems. In a minority of cases HCV is cleared spontaneously, but in most of the infected individuals infection progresses to a chronic state associated with high risk to develop liver cirrhosis, hepatocellular cancer, or liver failure. The treatment of HCV infection has evolved over the years. Interferon (IFN)-α in combination with ribavirin has been used for decades as standard therapy. More recently, a new standard-of-care treatment has been approved based on a triple combination with either HCV protease inhibitor telaprevir or boceprevir. In addition, various options for all-oral, IFN-free regimens are currently being evaluated. Despite substantial improvement of sustained virological response rates, some intrinsic limitations of these new direct-acting antivirals, including serious side effects, the risk of resistance development and high cost, urge the development of alternative or additional therapeutic strategies. Gene therapy represents a feasible alternative treatment. Small RNA technology, including RNA interference (RNAi) techniques and antisense approaches, is one of the potentially promising ways to investigate viral and host cell factors that are involved in HCV infection and replication. With this, newly developed gene therapy regimens will be provided to treat HCV. In this chapter, a comprehensive overview guides you through the current developments and applications of RNAi and microRNA-based gene therapy strategies in HCV treatment.
Collapse
|
5
|
Geng J, Wei H, Sun R, Tian Z. Construction and application of a novel hepatocyte-directed vector to simultaneous knockdown and overexpression of multiple genes. Liver Int 2014; 34:e246-56. [PMID: 24125589 DOI: 10.1111/liv.12336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2013] [Accepted: 09/15/2013] [Indexed: 02/13/2023]
Abstract
BACKGROUND & AIMS Liver disease, such as malignancy and hepatitis, often correlates with several genetic disorders. We aimed to construct a hepatocyte-specific vector that could manipulate multiple genes simultaneously. METHODS We selected a highly efficient hepatocyte-specific α-foetoprotein (AFP) enhancer/albumin promoter (an RNA polymerase II promoter) to express our gene of interest and transcribe microRNA-based shRNAs (shRNAmir). Multiple shRNAmirs were assembled together in tandem to enhance the gene-silencing effect. By employing the AFP enhancer/albumin promoter and inserting an internal ribosome entry site (IRES), a hepatocyte-specific, multi-reporter vector that overexpressed both β-galactosidase (LacZ) and DsRed2 while simultaneously knocking down both EGFP and luciferase expression was successfully constructed and functionally tested in vitro. RESULTS The reporter genes in the multireporter vector were easily replaced by immune-related genes to construct the Multi-Vector, which overexpressed human interleukin 10 and silenced both CCL5 and CX3CL1 (FKN) simultaneously in vivo; visualization of DsRed2 coexpressed to monitor vector function in vivo confirmed that the Multi-Vector was successfully introduced into the host. Simultaneous manipulation of these multiple genes by the Multi-Vector synergistically inhibited acute liver injury induced by Poly I:C/D-GalN injection in mice. The multifunctional cassette was also packaged in and successfully delivered by an adenoviral vector. CONCLUSIONS We successfully engineered a vector that can simultaneously regulate multiple genes from a single multigene-containing vector in a hepatocyte-specific manner, suggesting the possibility that this method could be extensively and practically utilized in liver gene therapy.
Collapse
Affiliation(s)
- Jianlin Geng
- Department of Immunology, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China; Hefei National Laboratory for Physical Sciences at Microscale, Hefei, Anhui, China
| | | | | | | |
Collapse
|
6
|
Transcription factor ZBED6 mediates IGF2 gene expression by regulating promoter activity and DNA methylation in myoblasts. Sci Rep 2014; 4:4570. [PMID: 24691566 PMCID: PMC3972505 DOI: 10.1038/srep04570] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Accepted: 03/18/2014] [Indexed: 01/05/2023] Open
Abstract
Zinc finger, BED-type containing 6 (ZBED6) is an important transcription factor in placental mammals, affecting development, cell proliferation and growth. In this study, we found that the expression of the ZBED6 and IGF2 were upregulated during C2C12 differentiation. The IGF2 expression levels were negatively associated with the methylation status in beef cattle (P < 0.05). A luciferase assay for the IGF2 intron 3 and P3 promoter showed that the mutant-type 439 A-SNP-pGL3 in driving reporter gene transcription is significantly higher than that of the wild-type 439 G-SNP-pGL3 construct (P < 0.05). An over-expression assay revealed that ZBED6 regulate IGF2 expression and promote myoblast differentiation. Furthermore, knockdown of ZBED6 led to IGF2 expression change in vitro. Taken together, these results suggest that ZBED6 inhibits IGF2 activity and expression via a G to A transition disrupts the interaction. Thus, we propose that ZBED6 plays a critical role in myogenic differentiation.
Collapse
|
7
|
Sun CP, Wu TH, Chen CC, Wu PY, Shih YM, Tsuneyama K, Tao MH. Studies of efficacy and liver toxicity related to adeno-associated virus-mediated RNA interference. Hum Gene Ther 2014; 24:739-50. [PMID: 23829557 DOI: 10.1089/hum.2012.239] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Adeno-associated virus (AAV)-mediated RNA interference shows promise as a therapy for chronic hepatitis B virus (HBV) infection, but its low efficacy and hepatotoxicity pose major challenges. We have generated AAV vectors containing different promoters and a panel of HBV-specific short hairpin RNAs (shRNAs) to investigate factors that contribute to the efficacy and pathogenesis of AAV-mediated RNA interference. HBV transgenic mice injected with high doses of AAV vectors containing the U6 promoter produced abundant shRNAs, transiently inhibited HBV, but induced severe hepatotoxicity. Sustained HBV suppression without liver toxicity can be achieved by lowering the dose of AAV-U6 vectors. AAVs containing the weaker H1 promoter did not cause liver injury, but their therapeutic efficacy was highly dependent on the sequence of the shRNA. Mice treated with the toxic U6-promoter-driven shRNA showed little change in hepatic microRNA levels, but a dramatic increase in hepatic leukocytes and inflammatory cytokines and chemokines. Hepatotoxicity was completely absent in immunodeficient mice and significantly alleviated in wild-type mice depleted of macrophages and granulocytes, suggesting that host inflammatory responses are the major cause of liver injury induced by the overexpressed shRNAs from AAV-U6 vectors. Our results demonstrate that selection of a highly potent shRNA and control its expression level is critical to achieve sustained HBV suppression without inducing inflammatory side effects.
Collapse
Affiliation(s)
- Cheng-Pu Sun
- Molecular Medicine Program, Taiwan International Graduate Program, Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan
| | | | | | | | | | | | | |
Collapse
|
8
|
Therapeutic expression of hairpins targeting apolipoprotein B100 induces phenotypic and transcriptome changes in murine liver. Gene Ther 2013; 21:60-70. [PMID: 24152580 PMCID: PMC3881031 DOI: 10.1038/gt.2013.58] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Revised: 08/13/2013] [Accepted: 09/16/2013] [Indexed: 12/23/2022]
Abstract
Constitutive expression of short hairpin RNAs (shRNAs) may cause cellular toxicity in vivo and using microRNA (miRNA) scaffolds can circumvent this problem. Previously, we have shown that embedding small interfering RNA sequences targeting apolipoprotein B100 (ApoB) in shRNA (shApoB) or miRNA (miApoB) scaffolds resulted in differential processing and long-term efficacy in vivo. Here we show that adeno-associated virus (AAV)-shApoB- or AAV-miApoB-mediated ApoB knockdown induced differential liver morphology and transcriptome expression changes. Our analyses indicate that ApoB knockdown with both shApoB and miApoB resulted in alterations of genes involved in lipid metabolism. In addition, in AAV-shApoB-injected animals, genes involved in immune system activation or cell growth and death were affected, which was associated with increased hepatocyte proliferation. Subsequently, in AAV-miApoB-injected animals, changes of genes involved in oxidoreductase activity, oxidative phosphorylation and nucleic bases biosynthetic processes were observed. Our results demonstrate that long-term knockdown of ApoB in vivo by shApoB or miApoB induces several transcriptome changes in murine liver. The increased hepatocyte profileration by AAV-shRNA may have severe long-term effects indicating that AAV-mediated RNA interference therapy using artificial miRNA may be a safer approach for familial hypercholesterolemia therapy.
Collapse
|
9
|
Geng J, Wang X, Wei H, Sun R, Tian Z. Efficient attenuation of NK cell-mediated liver injury through genetically manipulating multiple immunogenes by using a liver-directed vector. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2013; 190:4821-4829. [PMID: 23554312 DOI: 10.4049/jimmunol.1203129] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Adenovirus or adenoviral vectors were reported to induce serious liver inflammation in an NK cell-dependent manner, which limits its clinical applicability for liver gene therapy. We tried to develop an efficient liver-directed therapeutic approach to control hepatic NK cell function via simultaneously manipulating multiple immune genes. Based on our previous study, we found that CCL5 knockdown synergistically enhanced the attenuating effect of silencing CX3CL1 (fractalkine [FKN]) in adenovirus-induced acute liver injury. In addition, the combined treatment of human IL-10 expression with FKN knockdown would further strengthen the protective effect of silencing FKN. We used a hepatocyte-specific promoter to construct a hepatocyte-specific multiple function vector, which could simultaneously overexpress human IL-10 and knock down CCL5 and FKN expression. This vector could attenuate adenovirus-induced acute hepatitis highly efficiently by reducing liver NK cell recruitment and serum IFN-γ and TNF-α. The multiple function vectors could be delivered by nonviral (hydrodynamic injection) and viral (adenovirus) approaches, and maintained long-term function (more than 1 month in mice). Our results suggest a possible strategy to ameliorate the acute liver injury induced by adenovirus by modulating multiple immune genes. The novel multifunction vector has an extensive and practical use for polygenic and complex liver diseases such as malignancies and hepatitis, which correlate with multiple gene disorders.
Collapse
Affiliation(s)
- Jianlin Geng
- Department of Immunology, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China
| | | | | | | | | |
Collapse
|
10
|
Ahn M, Gamble A, Witting SR, Magrisso J, Surendran S, Obici S, Morral N. Vector and helper genome rearrangements occur during production of helper-dependent adenoviral vectors. Hum Gene Ther Methods 2013; 24:1-10. [PMID: 23249343 PMCID: PMC4015077 DOI: 10.1089/hgtb.2012.198] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Helper-dependent adenoviral vectors (HD Ad) hold extreme promise for gene therapy of human diseases. All viral genes are deleted in HD Ad vectors, and therefore, the presence of a helper virus is required for their production. Current methods to minimize helper contamination in large-scale preparations rely on the use of the Cre/loxP system. The inclusion of loxP sites flanking the packaging signal results in its excision in the presence of Cre recombinase, preventing helper genome encapsidation. It is well established that the level of Cre recombinase activity is important in determining the degree of helper contamination. However, there is little information on other mechanisms that could also play an important role. We have generated several HD Ad vectors containing a rapalog-inducible system to regulate transgene expression, or LacZ under the control of the elongation factor 1 α promoter. Large-scale production of these vectors resulted in abundant helper contamination. Viral DNA analysis revealed the presence of rearrangements between vector and helper genomes. The rearrangements involved a helper DNA molecule with a fragment of the left arm of the HD Ad vector, including its ITR, packaging signal, and some stuffer sequence. Overall, our data suggest that helper DNA molecules that accumulate after Cre recombinase activity are prone to rearrangements, resulting in helper genomes that have incorporated a packaging signal from the vector. Helper particles with rearranged genomes have a growth advantage. This study identifies a novel mechanism leading to helper contamination during helper-dependent adenoviral vector production.
Collapse
Affiliation(s)
- Miwon Ahn
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202
| | - Aisha Gamble
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202
| | - Scott R. Witting
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202
| | - Jack Magrisso
- Obesity Research Center, Metabolic Diseases Institute, University of Cincinnati, Cincinnati, OH 45237
| | - Sneha Surendran
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202
| | - Silvana Obici
- Obesity Research Center, Metabolic Diseases Institute, University of Cincinnati, Cincinnati, OH 45237
| | - Núria Morral
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202.,Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202
| |
Collapse
|
11
|
Abstract
RNA interference (RNAi) is a cellular mechanism to inhibit the expression of gene products in a highly specific manner. In recent years, RNAi has become the cornerstone of gene function studies, shortening the otherwise long process of target identification and validation. In addition, small interfering RNA (siRNA) and short-hairpin RNA (shRNA) therapies are being developed for the treatment of a variety of human diseases. Despite its huge potential for gene silencing, a hurdle to safe and effective RNAi is the activation of innate immune responses. Induction of innate immunity is dose- and sequence-dependent, and is also influenced by target tissue and delivery vehicle. Research on the molecular mechanisms mediating this response is helping to improve the design of the RNAi molecules. Nevertheless, appropriate testing for the presence of this undesired effect is needed prior to making conclusions on the outcome of the silencing treatment.
Collapse
Affiliation(s)
- Núria Morral
- Department of Medical and Molecular Genetics, and Center for Diabetes Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| | | |
Collapse
|
12
|
Ahn M, Witting SR, Ruiz R, Saxena R, Morral N. Constitutive expression of short hairpin RNA in vivo triggers buildup of mature hairpin molecules. Hum Gene Ther 2011; 22:1483-97. [PMID: 21780944 DOI: 10.1089/hum.2010.234] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
RNA interference (RNAi) has become the cornerstone technology for studying gene function in mammalian cells. In addition, it is a promising therapeutic treatment for multiple human diseases. Virus-mediated constitutive expression of short hairpin RNA (shRNA) has the potential to provide a permanent source of silencing molecules to tissues, and it is being devised as a strategy for the treatment of liver conditions such as hepatitis B and hepatitis C virus infection. Unintended interaction between silencing molecules and cellular components, leading to toxic effects, has been described in vitro. Despite the enormous interest in using the RNAi technology for in vivo applications, little is known about the safety of constitutively expressing shRNA for multiple weeks. Here we report the effects of in vivo shRNA expression, using helper-dependent adenoviral vectors. We show that gene-specific knockdown is maintained for at least 6 weeks after injection of 1 × 10(11) viral particles. Nonetheless, accumulation of mature shRNA molecules was observed up to weeks 3 and 4, and then declined gradually, suggesting the buildup of mature shRNA molecules induced cell death with concomitant loss of viral DNA and shRNA expression. No evidence of well-characterized innate immunity activation (such as interferon production) or saturation of the exportin-5 pathway was observed. Overall, our data suggest constitutive expression of shRNA results in accumulation of mature shRNA molecules, inducing cellular toxicity at late time points, despite the presence of gene silencing.
Collapse
Affiliation(s)
- M Ahn
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | | | | | | | | |
Collapse
|
13
|
Adenovirus and miRNAs. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2011; 1809:660-7. [PMID: 21621026 PMCID: PMC7102710 DOI: 10.1016/j.bbagrm.2011.05.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2011] [Revised: 05/05/2011] [Accepted: 05/09/2011] [Indexed: 01/15/2023]
Abstract
Adenovirus infection has a tremendous
impact on the cellular silencing machinery. Adenoviruses express high
amounts of non-coding virus associated (VA) RNAs able to saturate key
factors of the RNA interference (RNAi) processing pathway, such as
Exportin 5 and Dicer. Furthermore, a proportion of VA RNAs is cleaved by
Dicer into viral microRNAs (mivaRNAs) that can saturate Argonaute, an
essential protein for miRNA function. Thus, processing and function of
cellular miRNAs is blocked in adenoviral-infected cells. However, viral
miRNAs actively target the expression of cellular genes involved in
relevant functions such as cell proliferation, DNA repair or RNA
regulation. Interestingly, the cellular silencing machinery is active at
early times post-infection and can be used to control the adenovirus cell
cycle. This is relevant for therapeutic purposes against adenoviral
infections or when recombinant adenoviruses are used as vectors for gene
therapy. Manipulation of the viral genome allows the use of adenoviral
vectors to express therapeutic miRNAs or to be silenced by the RNAi
machinery leading to safer vectors with a specific tropism. This article
is part of a "Special Issue entitled:MicroRNAs in viral gene
regulation".
Collapse
|
14
|
Arbuthnot P. MicroRNA-like antivirals. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2011; 1809:746-55. [PMID: 21616187 DOI: 10.1016/j.bbagrm.2011.05.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Revised: 04/28/2011] [Accepted: 05/09/2011] [Indexed: 12/26/2022]
Abstract
Employing engineered DNA templates to express antiviral microRNA (miRNA) sequences has considerable therapeutic potential. The durable silencing that may be achieved with these RNAi activators is valuable to counter chronic viral infections, such as those caused by HIV-1, hepatitis B, hepatitis C and dengue viruses. Early use of expressed antiviral miRNAs entailed generation of cassettes containing Pol III promoters (e.g. U6 and H1) that transcribe virus-targeting short hairpin RNA mimics of precursor miRNAs. Virus escape from single gene silencing elements prompted later development of combinatorial antiviral miRNA expression cassettes that form multitargeting siRNAs from transcribed long hairpin RNA and polycistronic primary miRNA sequences. Weaker Pol III and Pol II promoters have also been employed to control production of antiviral miRNA mimics, improve dose regulation and address concerns about toxicity caused by saturation of the endogenous miRNA pathway. Efficient delivery of expressed antiviral sequences remains challenging and utilizing viral vectors, which include recombinant adenoviruses, adeno-associated viruses and lentiviruses, has been favored. Investigations using recombinant lentiviruses to transduce CD34+ hematological precursor cells with expressed HIV-1 gene silencers are at advanced stages and show promise in preclinical and clinical trials. Although the use of expressed antiviral miRNA sequences to treat viral infections is encouraging, eventual therapeutic application will be dependent on rigorously proving their safety, efficient delivery to target tissues and uncomplicated large scale preparation of vector formulations. This article is part of a special issue entitled: MicroRNAs in viral gene regulation.
Collapse
|
15
|
Park JS, Surendran S, Kamendulis LM, Morral N. Comparative nucleic acid transfection efficacy in primary hepatocytes for gene silencing and functional studies. BMC Res Notes 2011; 4:8. [PMID: 21244687 PMCID: PMC3033823 DOI: 10.1186/1756-0500-4-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2010] [Accepted: 01/18/2011] [Indexed: 01/18/2023] Open
Abstract
Background Primary hepatocytes are the best resource for in vitro studies directed at understanding hepatic processes at the cellular and molecular levels, necessary for novel drug development to treat highly prevalent diseases such as non-alcoholic steatohepatitis, cardiovascular disease and type 2 diabetes. There is a need to identify simple methods to genetically manipulate primary hepatocytes and conduct functional studies with plasmids, small interfering RNA (siRNA) or microRNA (miRNA). New lipofection reagents are available that have the potential to yield higher levels of transfection with reduced toxicity. Findings We have tested several liposome-based transfection reagents used in molecular biology research. We show that transfection efficiency with one of the most recently developed formulations, Metafectene Pro, is high with plasmid DNA (>45% cells) as well as double stranded RNA (>90% with siRNA or microRNA). In addition, negligible cytotoxicity was present with all of these nucleic acids, even if cells were incubated with the DNA:lipid complex for 16 hours. To provide the proof of concept that these conditions can be used not only for overexpression of a gene of interest, but also in RNA interference applications, we targeted two liver expressed genes, Sterol Regulatory Element-Binding Protein-1 and Fatty Acid Binding Protein 5 using plasmid-mediated short hairpin RNA expression. In addition, similar transfection conditions were used to optimally deliver siRNA and microRNA. Conclusions We have identified a lipid-based reagent for primary hepatocyte transfection of nucleic acids currently used in molecular biology laboratories. The conditions described here can be used to expedite a large variety of research applications, from gene function studies to microRNA target identification.
Collapse
Affiliation(s)
- Jae-Seung Park
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, 975 West Walnut St, IB130, Indianapolis, Indiana 46202, USA.
| | | | | | | |
Collapse
|
16
|
Abstract
Helper-dependent adenoviral vectors are devoid of all viral coding sequences, possess a large cloning capacity, and can efficiently transduce a wide variety of cell types from various species independent of the cell cycle to mediate long-term transgene expression without chronic toxicity. These non-integrating vectors hold tremendous potential for a variety of gene transfer and gene therapy applications. Here, we review the production technologies, applications, obstacles to clinical translation and their potential resolutions, and the future challenges and unanswered questions regarding this promising gene transfer technology.
Collapse
Affiliation(s)
- Amanda Rosewell
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030 USA
| | - Francesco Vetrini
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030 USA
| | - Philip Ng
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030 USA
| |
Collapse
|
17
|
Mowa MB, Crowther C, Arbuthnot P. Therapeutic potential of adenoviral vectors for delivery of expressed RNAi activators. Expert Opin Drug Deliv 2010; 7:1373-85. [PMID: 21073358 DOI: 10.1517/17425247.2010.533655] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
IMPORTANCE OF THE FIELD Harnessing RNA interference (RNAi) to silence pathology-causing genes has shown promise as a mode of therapy. The sustained gene inhibition that may be achieved with expressed sequences is potentially useful for treatment of chronic viral infections, but efficient and safe delivery of these sequences remains a challenge. It is generally recognized that there is no ideal vector for all therapeutic RNAi applications, but recombinant adenovirus vectors are well suited to hepatic delivery of expressed RNAi activators. AREAS COVERED IN THIS REVIEW Adenoviruses are hepatotropic after systemic administration, and this is useful for delivering expressed RNAi activators that silence pathology-causing genes in the liver. However, drawbacks of adenoviruses are toxicity and diminished efficacy, which result from induction of innate and adaptive immune responses. In this review, the advantages and hurdles facing therapeutic application of adenoviral vectors for liver delivery of RNAi effectors are covered. WHAT THE READER WILL GAIN Insights into adenovirus vectorology and the methods that have been used to make these vectors safer for advancing clinical application of RNAi-based therapy. TAKE HOME MESSAGE Adenoviruses are very powerful hepatotropic vectors. To make adenoviruses more effective for clinical use, polymer conjugation and deletion of viral vector sequences have been used successfully. However, further modifications to attenuate immunostimulation as well as improvements in large-scale production are necessary before the therapeutic potential of adenovirus-mediated delivery of RNAi activators is realized.
Collapse
Affiliation(s)
- Mohube Betty Mowa
- University of the Witwatersrand, School of Pathology, Antiviral Gene Therapy Research Unit, Health Sciences Faculty, Private Bag 3, WITS 2050, South Africa
| | | | | |
Collapse
|
18
|
Vetrini F, Ng P. Gene therapy with helper-dependent adenoviral vectors: current advances and future perspectives. Viruses 2010; 2:1886-1917. [PMID: 21994713 PMCID: PMC3186006 DOI: 10.3390/v2091886] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2010] [Revised: 08/26/2010] [Accepted: 08/30/2010] [Indexed: 11/21/2022] Open
Abstract
Recombinant Adenoviral vectors represent one of the best gene transfer platforms due to their ability to efficiently transduce a wide range of quiescent and proliferating cell types from various tissues and species. The activation of an adaptive immune response against the transduced cells is one of the major drawbacks of first generation Adenovirus vectors and has been overcome by the latest generation of recombinant Adenovirus, the Helper-Dependent Adenoviral (HDAd) vectors. HDAds have innovative features including the complete absence of viral coding sequences and the ability to mediate high level transgene expression with negligible chronic toxicity. This review summarizes the many aspects of HDAd biology and structure with a major focus on in vivo gene therapy application and with an emphasis on the unsolved issues that these vectors still presents toward clinical application.
Collapse
Affiliation(s)
| | - Philip Ng
- Author to whom correspondence should be addressed; Tel.: +1 7137984158; E-Mail:
| |
Collapse
|
19
|
Ruiz R, Witting SR, Saxena R, Morral N. Robust hepatic gene silencing for functional studies using helper-dependent adenoviral vectors. Hum Gene Ther 2010; 20:87-94. [PMID: 18828727 DOI: 10.1089/hum.2008.081] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
RNA interference is currently envisioned as the basis of gene function and drug target validation studies. This novel technology has the advantage of providing a remarkably faster tool for gene silencing than traditional transgenic animal methodologies. In vivo administration of short interfering RNA (siRNA) typically results in reduced target gene expression for approximately 1 week. Viral vectors offer the possibility to express constitutive levels of short hairpin RNA (shRNA) so that the effects of knocking down the target gene can be studied for a few weeks, rather than a few days. Helper-dependent vectors have a significant advantage over previous generations of adenoviral vectors because of their much higher cloning capacity, potential for long-term transgene expression, and enhanced safety profiles on administration in vivo. Therefore, this advanced type of vector is an excellent tool to carry out in vivo studies directed at constitutive expression of shRNA. Here we show it is possible to obtain more than 90% target gene knockdown in an animal model of type 2 diabetes for several weeks, thereby consolidating this technology as an alternative to generating liver-specific knockout animals.
Collapse
Affiliation(s)
- Rafaela Ruiz
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | | | | | | |
Collapse
|
20
|
Inhibition of Hepatitis E virus replication using short hairpin RNA (shRNA). Antiviral Res 2010; 85:541-50. [PMID: 20105445 DOI: 10.1016/j.antiviral.2010.01.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2009] [Revised: 01/04/2010] [Accepted: 01/20/2010] [Indexed: 02/07/2023]
Abstract
Hepatitis E virus (HEV) is a non-enveloped, single-stranded, positive sense RNA virus, which is a major cause of water-borne hepatitis. RNA interference (RNAi) is a sequence-specific cellular antiviral defence mechanism, induced by double-stranded RNA, which we used to investigate knockdown of several genes and the 3' cis-acting element (CAE) of HEV. In the present report, shRNAs were developed against the putative helicase and replicase domains and the 3'CAE region of HEV. Production of siRNA was confirmed by northern hybridization. The possible innate response induction due to shRNA expressions was verified by transcript analysis for interferon-beta and 2',5'-oligoadenylate synthetase genes and was found to be absent. Initially, the selected shRNAs were tested for their efficiency against the respective genes/3'CAE using inhibition of fused viral subgenomic target domain-renilla luciferase reporter constructs. The effective shRNAs were studied for their inhibitory effects on HEV replication in HepG2 cells using HEV replicon and reporter replicon. RNAi mediated silencing was demonstrated by reduction of luciferase activity in subgenomic target-reporter constructs and reporter replicon. The real time PCR was used to demonstrate inhibition of native replicon replication in transfected cells. Designed shRNAs were found to be effective in inhibiting virus replication to a variable extent (45-93%).
Collapse
|
21
|
Pager CT, Wehner KA, Fuchs G, Sarnow P. MicroRNA-mediated gene silencing. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2009; 90:187-210. [PMID: 20374742 DOI: 10.1016/s1877-1173(09)90005-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
MicroRNAs are 20-21 nucleotides-long noncoding RNAs that function as posttranscriptional regulators of gene expression in a variety of organisms ranging from plants to mammalian cells. These regulators are encoded by approximately 800 genes in the mammalian genome and target half of the mRNAs in mammalian cells. While the biogenesis of microRNAs is fairly well understood, the mechanism by which target genes are regulated remains controversial. The recent discoveries that viruses encode microRNAs or subvert host cell microRNAs has enhanced our knowledge about biological functions of microRNAs during disease and has suggested that microRNAs could be used as targets in antiviral gene therapy. This review will provide a brief history of microRNA research, discuss the biogenesis and mechanisms of microRNAs, and summarize findings that have employed inhibitors of microRNA miR-122 to treat hepatitis C virus-induced liver disease.
Collapse
Affiliation(s)
- Cara T Pager
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California 94305, USA
| | | | | | | |
Collapse
|
22
|
Olejniczak M, Galka P, Krzyzosiak WJ. Sequence-non-specific effects of RNA interference triggers and microRNA regulators. Nucleic Acids Res 2009; 38:1-16. [PMID: 19843612 PMCID: PMC2800214 DOI: 10.1093/nar/gkp829] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
RNA reagents of diverse lengths and structures, unmodified or containing various chemical modifications are powerful tools of RNA interference and microRNA technologies. These reagents which are either delivered to cells using appropriate carriers or are expressed in cells from suitable vectors often cause unintended sequence-non-specific immune responses besides triggering intended sequence-specific silencing effects. This article reviews the present state of knowledge regarding the cellular sensors of foreign RNA, the signaling pathways these sensors mobilize and shows which specific features of the RNA reagents set the responsive systems on alert. The representative examples of toxic effects caused in the investigated cell lines and tissues by the RNAs of specific types and structures are collected and may be instructive for further studies of sequence-non-specific responses to foreign RNA in human cells.
Collapse
Affiliation(s)
- Marta Olejniczak
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | | | | |
Collapse
|
23
|
Singh SK, Hajeri PB. siRNAs: their potential as therapeutic agents – Part II. Methods of delivery. Drug Discov Today 2009; 14:859-65. [DOI: 10.1016/j.drudis.2009.06.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2009] [Accepted: 06/08/2009] [Indexed: 12/11/2022]
|
24
|
Walkiewicz MP, Morral N, Engel DA. Accurate single-day titration of adenovirus vectors based on equivalence of protein VII nuclear dots and infectious particles. J Virol Methods 2009; 159:251-8. [PMID: 19406166 PMCID: PMC2774845 DOI: 10.1016/j.jviromet.2009.04.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2008] [Revised: 04/07/2009] [Accepted: 04/20/2009] [Indexed: 12/30/2022]
Abstract
Protein VII is an abundant component of adenovirus particles and is tightly associated with the viral DNA. It enters the nucleus along with the infecting viral genome and remains bound throughout early phase. Protein VII can be visualized by immunofluorescent staining as discrete dots in the infected cell nucleus. Comparison between protein VII staining and expression of the 72kDa DNA-binding protein revealed a one-to-one correspondence between protein VII dots and infectious viral genomes. A similar relationship was observed for a helper-dependent adenovirus vector expressing green fluorescent protein. This relationship allowed accurate titration of adenovirus preparations, including wild-type and helper-dependent vectors, using a 1-day immunofluorescence method. The method can be applied to any adenovirus vector and gives results equivalent to the standard plaque assay.
Collapse
Affiliation(s)
- Marcin P Walkiewicz
- Department of Microbiology, University of Virginia Health System, P.O. Box 800734, Charlottesville, VA 22908-0734, USA.
| | | | | |
Collapse
|
25
|
Pan Q, Tilanus HW, Janssen HLA, van der Laan LJW. Prospects of RNAi and microRNA-based therapies for hepatitis C. Expert Opin Biol Ther 2009; 9:713-24. [DOI: 10.1517/14712590902989970] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
26
|
Mende M, Christophorou NAD, Streit A. Specific and effective gene knock-down in early chick embryos using morpholinos but not pRFPRNAi vectors. Mech Dev 2008; 125:947-62. [PMID: 18801428 DOI: 10.1016/j.mod.2008.08.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2008] [Revised: 08/21/2008] [Accepted: 08/25/2008] [Indexed: 11/24/2022]
Abstract
In the chick embryo, two methods are now used for studying the developmental role of genes by loss-of-function approaches: vector-based shRNA and morpholino oligonucleotides. Both have the advantage that loss-of-function can be conducted in a spatially and temporally controlled way by focal electroporation. Here, we compare these two methods. We find that the shRNA expressing vectors pRFPRNAi, even when targeting a non-expressed protein like GFP, cause morphological phenotypes, mis-regulation of non-targeted genes and activation of the p53 pathway. These effects are highly reproducible, appear to be independent of the targeting sequence and are particularly severe at primitive streak and early somite stages. By contrast, morpholinos do not cause these effects. We propose that pRFPRNAi should only be used with considerable caution and that morpholinos are a preferable approach for gene knock-down during early chick development.
Collapse
Affiliation(s)
- Michael Mende
- Department of Craniofacial Development, King's College London, Guy's Campus, Guy's Tower Floor 27, London SE1 9RT, UK
| | | | | |
Collapse
|
27
|
Girard M, Jacquemin E, Munnich A, Lyonnet S, Henrion-Caude A. miR-122, a paradigm for the role of microRNAs in the liver. J Hepatol 2008; 48:648-56. [PMID: 18291553 DOI: 10.1016/j.jhep.2008.01.019] [Citation(s) in RCA: 292] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Recent studies have uncovered profound and unexpected roles for a family of tiny regulatory RNAs, known as microRNAs (miRNAs), in the control of diverse aspects of hepatic function and dysfunction, including hepatocyte growth, stress response, metabolism, viral infection and proliferation, gene expression, and maintenance of hepatic phenotype. In liver cancer, misexpression of specific miRNAs suggests diagnostic and prognostic significance. Here, we review the biology of the most abundant miRNA in human liver, miR-122, and consider the diversity of its roles in the liver. We provide a compilation of all miRNAs expressed in the liver, and consider some possible therapeutic opportunities for exploiting miRNAs in the different settings of liver diseases.
Collapse
|