1
|
Silva PJ, Cheng Q. An Alternative Proposal for the Reaction Mechanism of Light-Dependent Protochlorophyllide Oxidoreductase. ACS Catal 2022; 12:2589-2605. [PMID: 36568346 PMCID: PMC9778109 DOI: 10.1021/acscatal.1c05351] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Light-dependent protochlorophyllide oxidoreductase is one of the few known enzymes that require a quantum of light to start their catalytic cycle. Upon excitation, it uses NADPH to reduce the C17-C18 in its substrate (protochlorophyllide) through a complex mechanism that has heretofore eluded precise determination. Isotopic labeling experiments have shown that the hydride-transfer step is very fast, with a small barrier close to 9 kcal mol-1, and is followed by a proton-transfer step, which has been postulated to be the protonation of the product by the strictly conserved Tyr189 residue. Since the structure of the enzyme-substrate complex has not yet been experimentally determined, we first used modeling techniques to discover the actual substrate binding mode. Two possible binding modes were found, both yielding stable binding (as ascertained through molecular dynamics simulations) but only one of which placed the critical C17=C18 bond consistently close to the NADPH pro-S hydrogen and to Tyr189. This binding pose was then used as a starting point for the testing of previous mechanistic proposals using time-dependent density functional theory. The quantum-chemical computations clearly showed that such mechanisms have prohibitively high activation energies. Instead, these computations showed the feasibility of an alternative mechanism initiated by excited-state electron transfer from the key Tyr189 to the substrate. This mechanism appears to agree with the extant experimental data and reinterprets the final protonation step as a proton transfer to the active site itself rather than to the product, aiming at regenerating it for another round of catalysis.
Collapse
Affiliation(s)
- Pedro J. Silva
- FP-I3ID/Fac.
de Ciências da Saúde, Universidade
Fernando Pessoa, 4200-150 Porto, Portugal,UCIBIO@REQUIMTE,
BioSIM, Departamento de Biomedicina, Faculdade de Medicina, Universidade do Porto, 4200-319 Porto, Portugal,
| | - Qi Cheng
- Department
of Biochemistry, College of Life Sciences, Hebei Agricultural University, Baoding, Hebei 071000, China,State
Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, Hebei 071000, China,
| |
Collapse
|
2
|
Heyes DJ, Zhang S, Taylor A, Johannissen LO, Hardman SJO, Hay S, Scrutton NS. Photocatalysis as the 'master switch' of photomorphogenesis in early plant development. NATURE PLANTS 2021; 7:268-276. [PMID: 33686224 DOI: 10.1038/s41477-021-00866-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 01/29/2021] [Indexed: 06/12/2023]
Abstract
Enzymatic photocatalysis is seldom used in biology. Photocatalysis by light-dependent protochlorophyllide oxidoreductase (LPOR)-one of only a few natural light-dependent enzymes-is an exception, and is responsible for the conversion of protochlorophyllide to chlorophyllide in chlorophyll biosynthesis. Photocatalysis by LPOR not only regulates the biosynthesis of the most abundant pigment on Earth but it is also a 'master switch' in photomorphogenesis in early plant development. Following illumination, LPOR promotes chlorophyll production, plastid membranes are transformed and the photosynthetic apparatus is established. Given these remarkable, light-induced pigment and morphological changes, the LPOR-catalysed reaction has been extensively studied from catalytic, physiological and plant development perspectives, highlighting vital, and multiple, cellular roles of this intriguing enzyme. Here, we offer a perspective in which the link between LPOR photocatalysis and plant photomorphogenesis is explored. Notable breakthroughs in LPOR structural biology have uncovered the structural-mechanistic basis of photocatalysis. These studies have clarified how photon absorption by the pigment protochlorophyllide-bound in a ternary LPOR-protochlorophyllide-NADPH complex-triggers photocatalysis and a cascade of complex molecular and cellular events that lead to plant morphological changes. Photocatalysis is therefore the master switch responsible for early-stage plant development and ultimately life on Earth.
Collapse
Affiliation(s)
- Derren J Heyes
- Manchester Institute of Biotechnology, Department of Chemistry, School of Natural Sciences, The University of Manchester, Manchester, UK.
| | - Shaowei Zhang
- Manchester Institute of Biotechnology, Department of Chemistry, School of Natural Sciences, The University of Manchester, Manchester, UK
| | - Aoife Taylor
- Manchester Institute of Biotechnology, Department of Chemistry, School of Natural Sciences, The University of Manchester, Manchester, UK
| | - Linus O Johannissen
- Manchester Institute of Biotechnology, Department of Chemistry, School of Natural Sciences, The University of Manchester, Manchester, UK
| | - Samantha J O Hardman
- Manchester Institute of Biotechnology, Department of Chemistry, School of Natural Sciences, The University of Manchester, Manchester, UK
| | - Sam Hay
- Manchester Institute of Biotechnology, Department of Chemistry, School of Natural Sciences, The University of Manchester, Manchester, UK
| | - Nigel S Scrutton
- Manchester Institute of Biotechnology, Department of Chemistry, School of Natural Sciences, The University of Manchester, Manchester, UK.
| |
Collapse
|
3
|
Buhr F, Lahroussi A, Springer A, Rustgi S, von Wettstein D, Reinbothe C, Reinbothe S. NADPH:protochlorophyllide oxidoreductase B (PORB) action in Arabidopsis thaliana revisited through transgenic expression of engineered barley PORB mutant proteins. PLANT MOLECULAR BIOLOGY 2017; 94:45-59. [PMID: 28260138 DOI: 10.1007/s11103-017-0592-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 02/09/2017] [Indexed: 06/06/2023]
Abstract
NADPH:protochlorophyllide oxidoreductase (POR) is a key enzyme for the light-induced greening of etiolated angiosperm plants. It belongs to the 'RED' family of reductases, epimerases and dehydrogenases. All POR proteins characterized so far contain evolutionarily conserved cysteine residues implicated in protochlorophyllide (Pchlide)-binding and catalysis. cDNAs were constructed by site-directed mutagenesis that encode PORB mutant proteins with defined Cys→Ala exchanges. These cDNAs were expressed in transgenic plants of a PORB-deficient knock-out mutant (porB) of Arabidopsis thaliana. Results show that porB plants expressing PORB mutant proteins with Ala substitutions of Cys276 or Cys303 are hypersensitive to high-light conditions during greening. Hereby, failure to assemble higher molecular weight complexes of PORB with its twin isoenzyme, PORA, as encountered with (Cys303→Ala)-PORB plants, caused more severe effects than replacing Cys276 by an Ala residue in the active site of the enzyme, as encountered in (Cys276→Ala)-PORB plants. Our results are consistent with the presence of two distinct pigment binding sites in PORB, with Cys276 establishing the active site of the enzyme and Cys303 providing a second, low affinity pigment binding site that is essential for the assembly of higher molecular mass light-harvesting PORB::PORA complexes and photoprotection of etiolated seedlings. Failure to assemble such complexes provoked photodynamic damage through the generation of singlet oxygen. Together, our data highlight the importance of PORB for Pchlide homoeostasis and greening in Arabidopsis.
Collapse
Affiliation(s)
- Frank Buhr
- Biologie Environnementale et Systémique (BEeSy), Université Grenoble-Alpes, LBFA, BP53F, 38041, Grenoble cedex 9, France
| | - Abderrahim Lahroussi
- Biologie Environnementale et Systémique (BEeSy), Université Grenoble-Alpes, LBFA, BP53F, 38041, Grenoble cedex 9, France
| | - Armin Springer
- Biologie Environnementale et Systémique (BEeSy), Université Grenoble-Alpes, LBFA, BP53F, 38041, Grenoble cedex 9, France
- Medical Biology and Electron Microscopy Centre, University Medical Center Rostock, Strempelstraße 14, 18057, Rostock, Germany
| | - Sachin Rustgi
- Department of Plant and Environmental Sciences, Clemson University Pee Dee Research and Education Center, Florence, SC, 29506, USA
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, 99164-6420, USA
| | - Diter von Wettstein
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, 99164-6420, USA
| | - Christiane Reinbothe
- Biologie Environnementale et Systémique (BEeSy), Université Grenoble-Alpes, LBFA, BP53F, 38041, Grenoble cedex 9, France
| | - Steffen Reinbothe
- Biologie Environnementale et Systémique (BEeSy), Université Grenoble-Alpes, LBFA, BP53F, 38041, Grenoble cedex 9, France.
| |
Collapse
|
4
|
Menon BRK, Hardman SJO, Scrutton NS, Heyes DJ. Multiple active site residues are important for photochemical efficiency in the light-activated enzyme protochlorophyllide oxidoreductase (POR). JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2016; 161:236-43. [PMID: 27285815 PMCID: PMC4970445 DOI: 10.1016/j.jphotobiol.2016.05.029] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 05/17/2016] [Accepted: 05/30/2016] [Indexed: 11/22/2022]
Abstract
Protochlorophyllide oxidoreductase (POR) catalyzes the light-driven reduction of protochlorophyllide (Pchlide), an essential, regulatory step in chlorophyll biosynthesis. The unique requirement of the enzyme for light has provided the opportunity to investigate how light energy can be harnessed to power biological catalysis and enzyme dynamics. Excited state interactions between the Pchlide molecule and the protein are known to drive the subsequent reaction chemistry. However, the structural features of POR and active site residues that are important for photochemistry and catalysis are currently unknown, because there is no crystal structure for POR. Here, we have used static and time-resolved spectroscopic measurements of a number of active site variants to study the role of a number of residues, which are located in the proposed NADPH/Pchlide binding site based on previous homology models, in the reaction mechanism of POR. Our findings, which are interpreted in the context of a new improved structural model, have identified several residues that are predicted to interact with the coenzyme or substrate. Several of the POR variants have a profound effect on the photochemistry, suggesting that multiple residues are important in stabilizing the excited state required for catalysis. Our work offers insight into how the POR active site geometry is finely tuned by multiple active site residues to support enzyme-mediated photochemistry and reduction of Pchlide, both of which are crucial to the existence of life on Earth. Identified several active site residues that can interact with coenzyme/substrate Multiple residues are important in excited state POR–protochlorophyllide interactions. New structural model for T. elongatus POR to rationalize mutagenesis outcomes POR active site geometry is finely-tuned to support photochemistry.
Collapse
Affiliation(s)
- Binuraj R K Menon
- Centre for Synthetic Biology of Fine and Speciality Chemicals, Manchester Institute of Biotechnology, School of Chemistry, The University of Manchester, Manchester, M1 7DN, UK
| | - Samantha J O Hardman
- Centre for Synthetic Biology of Fine and Speciality Chemicals, Manchester Institute of Biotechnology, School of Chemistry, The University of Manchester, Manchester, M1 7DN, UK
| | - Nigel S Scrutton
- Centre for Synthetic Biology of Fine and Speciality Chemicals, Manchester Institute of Biotechnology, School of Chemistry, The University of Manchester, Manchester, M1 7DN, UK.
| | - Derren J Heyes
- Centre for Synthetic Biology of Fine and Speciality Chemicals, Manchester Institute of Biotechnology, School of Chemistry, The University of Manchester, Manchester, M1 7DN, UK.
| |
Collapse
|
5
|
Hoeven R, Hardman SJO, Heyes DJ, Scrutton NS. Cross-Species Analysis of Protein Dynamics Associated with Hydride and Proton Transfer in the Catalytic Cycle of the Light-Driven Enzyme Protochlorophyllide Oxidoreductase. Biochemistry 2016; 55:903-13. [DOI: 10.1021/acs.biochem.5b01355] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Robin Hoeven
- Centre for Synthetic Biology
of Fine and Speciality Chemicals, Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, U.K
| | - Samantha J. O. Hardman
- Centre for Synthetic Biology
of Fine and Speciality Chemicals, Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, U.K
| | - Derren J. Heyes
- Centre for Synthetic Biology
of Fine and Speciality Chemicals, Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, U.K
| | - Nigel S. Scrutton
- Centre for Synthetic Biology
of Fine and Speciality Chemicals, Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, U.K
| |
Collapse
|
6
|
Hermann G, Schmitt M, Dietzek B, Popp J. Response to the Comments by L. O. Björn on our Paper “Catalytic Efficiency of a Photoenzyme-An Adaptation to Natural Light Conditions”. Chemphyschem 2013; 14:2598-600. [DOI: 10.1002/cphc.201300374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Indexed: 11/11/2022]
|
7
|
Heyes DJ, Khara B, Sakuma M, Hardman SJO, O'Cualain R, Rigby SEJ, Scrutton NS. Ultrafast red light activation of Synechocystis phytochrome Cph1 triggers major structural change to form the Pfr signalling-competent state. PLoS One 2012; 7:e52418. [PMID: 23300666 PMCID: PMC3530517 DOI: 10.1371/journal.pone.0052418] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Accepted: 11/15/2012] [Indexed: 11/29/2022] Open
Abstract
Phytochromes are dimeric photoreceptors that regulate a range of responses in plants and microorganisms through interconversion of red light-absorbing (Pr) and far-red light-absorbing (Pfr) states. Photoconversion between these states is initiated by light-driven isomerization of a bilin cofactor, which triggers protein structural change. The extent of this change, and how light-driven structural changes in the N-terminal photosensory region are transmitted to the C-terminal regulatory domain to initiate the signalling cascade, is unknown. We have used pulsed electron-electron double resonance (PELDOR) spectroscopy to identify multiple structural transitions in a phytochrome from Synechocystis sp. PCC6803 (Cph1) by measuring distances between nitroxide labels introduced into the protein. We show that monomers in the Cph1 dimer are aligned in a parallel ‘head-to-head’ arrangement and that photoconversion between the Pr and Pfr forms involves conformational change in both the N- and C-terminal domains of the protein. Cryo-trapping and kinetic measurements were used to probe the extent and temporal properties of protein motions for individual steps during photoconversion of Cph1. Formation of the primary photoproduct Lumi-R is not affected by changes in solvent viscosity and dielectric constant. Lumi-R formation occurs at cryogenic temperatures, consistent with their being no major structural reorganization of Cph1 during primary photoproduct formation. All remaining steps in the formation of the Pfr state are affected by solvent viscosity and dielectric constant and occur only at elevated temperatures, implying involvement of a series of long-range solvent-coupled conformational changes in Cph1. We show that signalling is achieved through ultrafast photoisomerization where localized structural change in the GAF domain is transmitted and amplified to cause larger-scale and slower conformational change in the PHY and histidine kinase domains. This hierarchy of timescales and extent of structural change orientates the histidine kinase domain to elicit the desired light-activated biological response.
Collapse
Affiliation(s)
- Derren J Heyes
- Manchester Institute of Biotechnology and Photon Science Institute, Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom.
| | | | | | | | | | | | | |
Collapse
|
8
|
Heyes DJ, Hardman SJO, Mansell D, Gardiner JM, Scrutton NS. Mechanistic reappraisal of early stage photochemistry in the light-driven enzyme protochlorophyllide oxidoreductase. PLoS One 2012; 7:e45642. [PMID: 23049830 PMCID: PMC3458894 DOI: 10.1371/journal.pone.0045642] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Accepted: 08/22/2012] [Indexed: 11/30/2022] Open
Abstract
The light-driven enzyme protochlorophyllide oxidoreductase (POR) catalyzes the reduction of protochlorophyllide (Pchlide) to chlorophyllide (Chlide). This reaction is a key step in the biosynthesis of chlorophyll. Ultrafast photochemical processes within the Pchlide molecule are required for catalysis and previous studies have suggested that a short-lived excited-state species, known as I675*, is the first catalytic intermediate in the reaction and is essential for capturing excitation energy to drive subsequent hydride and proton transfers. The chemical nature of the I675* excited state species and its role in catalysis are not known. Here, we report time-resolved pump-probe spectroscopy measurements to study the involvement of the I675* intermediate in POR photochemistry. We show that I675* is not unique to the POR-catalyzed photoreduction of Pchlide as it is also formed in the absence of the POR enzyme. The I675* species is only produced in samples that contain both Pchlide substrate and Chlide product and its formation is dependent on the pump excitation wavelength. The rate of formation and the quantum yield is maximized in 50∶50 mixtures of the two pigments (Pchlide and Chlide) and is caused by direct energy transfer between Pchlide and neighboring Chlide molecules, which is inhibited in the polar solvent methanol. Consequently, we have re-evaluated the mechanism for early stage photochemistry in the light-driven reduction of Pchlide and propose that I675* represents an excited state species formed in Pchlide-Chlide dimers, possibly an excimer. Contrary to previous reports, we conclude that this excited state species has no direct mechanistic relevance to the POR-catalyzed reduction of Pchlide.
Collapse
Affiliation(s)
- Derren J. Heyes
- Manchester Institute of Biotechnology and Photon Science Institute, University of Manchester, Manchester, United Kingdom
- * E-mail: (NSS); (DJH)
| | - Samantha J. O. Hardman
- Manchester Institute of Biotechnology and Photon Science Institute, University of Manchester, Manchester, United Kingdom
| | - David Mansell
- Manchester Institute of Biotechnology and Photon Science Institute, University of Manchester, Manchester, United Kingdom
| | - John M. Gardiner
- Manchester Institute of Biotechnology and Photon Science Institute, University of Manchester, Manchester, United Kingdom
| | - Nigel S. Scrutton
- Manchester Institute of Biotechnology and Photon Science Institute, University of Manchester, Manchester, United Kingdom
- * E-mail: (NSS); (DJH)
| |
Collapse
|
9
|
Scrutton NS, Louise Groot M, Heyes DJ. Excited state dynamics and catalytic mechanism of the light-driven enzyme protochlorophyllide oxidoreductase. Phys Chem Chem Phys 2012; 14:8818-24. [DOI: 10.1039/c2cp23789j] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
10
|
Heyes DJ, Levy C, Sakuma M, Robertson DL, Scrutton NS. A twin-track approach has optimized proton and hydride transfer by dynamically coupled tunneling during the evolution of protochlorophyllide oxidoreductase. J Biol Chem 2011; 286:11849-54. [PMID: 21317291 DOI: 10.1074/jbc.m111.219626] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Protein dynamics are crucial for realizing the catalytic power of enzymes, but how enzymes have evolved to achieve catalysis is unknown. The light-activated enzyme protochlorophyllide oxidoreductase (POR) catalyzes sequential hydride and proton transfers in the photoexcited and ground states, respectively, and is an excellent system for relating the effects of motions to catalysis. Here, we have used the temperature dependence of isotope effects and solvent viscosity measurements to analyze the dynamics coupled to the hydride and proton transfer steps in three cyanobacterial PORs and a related plant enzyme. We have related the dynamic profiles of each enzyme to their evolutionary origin. Motions coupled to light-driven hydride transfer are conserved across all POR enzymes, but those linked to thermally activated proton transfer are variable. Cyanobacterial PORs require complex and solvent-coupled dynamic networks to optimize the proton donor-acceptor distance, but evolutionary pressures appear to have minimized such networks in plant PORs. POR from Gloeobacter violaceus has features of both the cyanobacterial and plant enzymes, suggesting that the dynamic properties have been optimized during the evolution of POR. We infer that the differing trajectories in optimizing a catalytic structure are related to the stringency of the chemistry catalyzed and define a functional adaptation in which active site chemistry is protected from the dynamic effects of distal mutations that might otherwise impact negatively on enzyme catalysis.
Collapse
Affiliation(s)
- Derren J Heyes
- Faculty of Life Sciences, Manchester Interdisciplinary Biocentre, University of Manchester, Manchester, United Kingdom.
| | | | | | | | | |
Collapse
|
11
|
Sytina OA, Alexandre MT, Heyes DJ, Hunter CN, Robert B, van Grondelle R, Groot ML. Enzyme activation and catalysis: characterisation of the vibrational modes of substrate and product in protochlorophyllide oxidoreductase. Phys Chem Chem Phys 2010; 13:2307-13. [PMID: 21103538 DOI: 10.1039/c0cp01686a] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The light-dependent reduction of protochlorophyllide, a key step in the synthesis of chlorophyll, is catalyzed by the enzyme protochlorophyllide oxidoreductase (POR) and requires two photons (O. A. Sytina et al., Nature, 2008, 456, 1001-1008). The first photon activates the enzyme-substrate complex, a subsequent second photon initiates the photochemistry by triggering the formation of a catalytic intermediate. These two events are characterized by different spectral changes in the infra-red spectral region. Here, we investigate the vibrational frequencies of the POR-bound and unbound substrate, and product, and thus provide a detailed assignment of the spectral changes in the 1800-1250 cm(-1) region associated with the catalytic conversion of PChlide:NADPH:TyrOH into Chlide:NADP(+):TyrO(-). Fluorescence line narrowed spectra of the POR-bound Pchlide reveal a C=O keto group downshifted by more than 20 cm(-1) to a relatively low vibrational frequency of 1653 cm(-1), as compared to the unbound Pchlide, indicating that binding of the chromophore to the protein occurs via strong hydrogen bond(s). The frequencies of the C=C vibrational modes are consistent with a six-coordinated state of the POR-bound Pchlide, suggesting that there are two coordination interactions between the central Mg atom of the chromophore and protein residues, and/or a water molecule. The frequencies of the C=C vibrational modes of Chlide are consistent with a five-coordinated state, indicating a single interaction between the central Mg atom of the chromophore and a water molecule. Rapid-scan FTIR measurements on the Pchlide:POR:NADPH complex at 4 cm(-1) spectral resolution reveal a new band in the 1670 cm(-1) region. The FTIR spectra of the enzyme activation phase indicate involvement of a nucleotide-binding structural motif, and an increased exposure of the protein to solvent after activation.
Collapse
Affiliation(s)
- Olga A Sytina
- Department of Physics and Astronomy, Faculty of Sciences, Vrije Universiteit, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
12
|
Reinbothe C, El Bakkouri M, Buhr F, Muraki N, Nomata J, Kurisu G, Fujita Y, Reinbothe S. Chlorophyll biosynthesis: spotlight on protochlorophyllide reduction. TRENDS IN PLANT SCIENCE 2010; 15:614-24. [PMID: 20801074 DOI: 10.1016/j.tplants.2010.07.002] [Citation(s) in RCA: 145] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2010] [Revised: 07/14/2010] [Accepted: 07/22/2010] [Indexed: 05/21/2023]
Abstract
Photosynthetic organisms require chlorophyll or bacteriochlorophyll for their light trapping and energy transduction activities. The biosynthetic pathways of chlorophyll and bacteriochlorophyll are similar in most of their early steps, except for the reduction of protochlorophyllide (Pchlide) to chlorophyllide. Whereas angiosperms make use of a light-dependent enzyme, cyanobacteria, algae, bryophytes, pteridophytes and gymnosperms contain an additional, light-independent enzyme dubbed dark-operative Pchlide oxidoreductase (DPOR). Anoxygenic photosynthetic bacteria such as Rhodobacter capsulatus and Rhodobacter sphaeroides rely solely on DPOR. Recent atomic resolution of reductase and catalytic components of DPOR from R. sphaeroides and R. capsulatus, respectively, have revealed their similarity to nitrogenase components. In this review, we discuss the two fundamentally different mechanisms of Pchlide reduction in photosynthetic organisms.
Collapse
Affiliation(s)
- Christiane Reinbothe
- Lehrstuhl für Pflanzenphysiologie, Universität Bayreuth, Universitätsstrasse 30, D-95447 Bayreuth, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Wi SJ, Jang SJ, Park KY. Inhibition of biphasic ethylene production enhances tolerance to abiotic stress by reducing the accumulation of reactive oxygen species in Nicotiana tabacum. Mol Cells 2010; 30:37-49. [PMID: 20652494 DOI: 10.1007/s10059-010-0086-z] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2010] [Revised: 03/30/2010] [Accepted: 03/31/2010] [Indexed: 01/03/2023] Open
Abstract
Reactive oxygen species (ROS), such as H(2)O(2), are important plant cell signaling molecules involved in responses to biotic and abiotic stresses and in developmental and physiological processes. Despite the well-known physiological functions of ethylene production and stress signaling via ROS during stresses, whether ethylene acts alone or in conjunction with ROS has not yet been fully elucidated. Therefore, we investigated the relationship between ethylene production and ROS accumulation during the response to abiotic stress. We used three independent transgenic tobacco lines, CAS-AS-2, -3 and -4, in which an antisense transcript of the senescence-related ACC synthase (ACS) gene from carnation flower (CARACC, Gen-Bank accession No. M66619) was expressed heterologously. Biphasic ethylene biosynthesis was reduced significantly in these transgenic plants, with or without H(2)O(2) treatment. These plants exhibited significantly reduced H(2)O(2)-induced gene-specific expression of ACS members, which were regulated in a time-dependent manner. The higher levels of NtACS1 expression in wild-type plants led to a second peak in ethylene production, which resulted in a more severe level of necrosis and cell death, as determined by trypan blue staining. In the transgenic lines, upregulated transcription of CAB, POR1 and RbcS resulted in increased photosynthetic performance following salt stress. This stress tolerance of H(2)O(2)-treated transgenic plants resulted from reduced ethylene biosynthesis, which decreased ROS accumulation via increased gene expression and activity of ROS-detoxifying enzymes, including MnSOD, CuZnSOD, and catalase. Therefore, it is suggested that ethylene plays a potentially critical role as an amplifier for ROS accumulation, implying a synergistic effect between biosynthesis of ROS and ethylene.
Collapse
Affiliation(s)
- Soo Jin Wi
- Korea Basic Science Institute, Sunchon Branch, Sunchon National University, Sunchon 540-742, Korea
| | | | | |
Collapse
|
14
|
Belyaeva OB, Litvin FF. Pathways of formation of pigment forms at the terminal photobiochemical stage of chlorophyll biosynthesis. BIOCHEMISTRY (MOSCOW) 2010; 74:1535-44. [DOI: 10.1134/s0006297909130070] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
15
|
Menon BRK, Davison PA, Hunter CN, Scrutton NS, Heyes DJ. Mutagenesis alters the catalytic mechanism of the light-driven enzyme protochlorophyllide oxidoreductase. J Biol Chem 2009; 285:2113-9. [PMID: 19850924 DOI: 10.1074/jbc.m109.071522] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The light-activated enzyme protochlorophyllide oxidoreductase (POR) catalyzes an essential step in the synthesis of the most abundant pigment on Earth, chlorophyll. This unique reaction involves the sequential addition of a hydride and proton across the C17=C18 double bond of protochlorophyllide (Pchlide) by dynamically coupled quantum tunneling and is an important model system for studying the mechanism of hydrogen transfer reactions. In the present work, we have combined site-directed mutagenesis studies with a variety of sensitive spectroscopic and kinetic measurements to provide new insights into the mechanistic role of three universally conserved Cys residues in POR. We show that mutation of Cys-226 dramatically alters the catalytic mechanism of the enzyme. In contrast to wild-type POR, the characteristic charge-transfer intermediate, formed upon hydride transfer from NADPH to the C17 position of Pchlide, is absent in C226S variant enzymes. This suggests a concerted hydrogen transfer mechanism where proton transfer only is rate-limiting. Moreover, Pchlide reduction does not require the network of solvent-coupled conformational changes that play a key role in the proton transfer step of wild-type POR. We conclude that this globally important enzyme is finely tuned to facilitate efficient photochemistry, and the removal of a key interaction with Pchlide in the C226S variants significantly affects the local active site structure in POR, resulting in a shorter donor-acceptor distance for proton transfer.
Collapse
Affiliation(s)
- Binuraj R K Menon
- Manchester Interdisciplinary Biocentre, Faculty of Life Sciences, University of Manchester, Manchester M17DN
| | | | | | | | | |
Collapse
|
16
|
Menon BRK, Waltho JP, Scrutton NS, Heyes DJ. Cryogenic and laser photoexcitation studies identify multiple roles for active site residues in the light-driven enzyme protochlorophyllide oxidoreductase. J Biol Chem 2009; 284:18160-6. [PMID: 19439417 PMCID: PMC2709359 DOI: 10.1074/jbc.m109.020719] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2009] [Revised: 05/13/2009] [Indexed: 11/06/2022] Open
Abstract
The light-activated enzyme NADPH-protochlorophyllide oxidoreductase (POR) catalyzes the trans addition of hydrogen across the C-17-C-18 double bond of protochlorophyllide (Pchlide), a key step in chlorophyll biosynthesis. Similar to other members of the short chain alcohol dehydrogenase/reductase family of enzymes, POR contains a conserved Tyr and Lys residue in the enzyme active site, which are implicated in a proposed reaction mechanism involving proton transfer from the Tyr hydoxyl group to Pchlide. We have analyzed a number of POR variant enzymes altered in these conserved residues using a combination of steady-state turnover, laser photoexcitation studies, and low temperature fluorescence spectroscopy. None of the mutations completely abolished catalytic activity. We demonstrate their importance to catalysis by defining multiple roles in the overall reaction pathway. Mutation of either residue impairs formation of the ground state ternary enzyme-substrate complex, pointing to a key role in substrate binding. By analyzing the most active variant (Y193F), we show that Tyr-193 participates in proton transfer to Pchlide and stabilizes the Pchlide excited state, enabling hydride transfer from NADPH to Pchilde. Thus, in addition to confirming the probable identity of the proton donor in Pchlide reduction, our work defines additional roles for these residues in facilitating hydride transfer through stabilization of the ground and excited states of the ternary enzyme complex.
Collapse
Affiliation(s)
- Binuraj R. K. Menon
- From the Faculty of Life Sciences, Manchester Interdisciplinary Biocentre, University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Jonathan P. Waltho
- From the Faculty of Life Sciences, Manchester Interdisciplinary Biocentre, University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Nigel S. Scrutton
- From the Faculty of Life Sciences, Manchester Interdisciplinary Biocentre, University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Derren J. Heyes
- From the Faculty of Life Sciences, Manchester Interdisciplinary Biocentre, University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| |
Collapse
|
17
|
Heyes DJ, Sakuma M, Scrutton NS. Solvent-slaved protein motions accompany proton but not hydride tunneling in light-activated protochlorophyllide oxidoreductase. Angew Chem Int Ed Engl 2009; 48:3850-3. [PMID: 19373814 DOI: 10.1002/anie.200900086] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
H(+) but not H(-): The reduction reaction of protochlorophyllide catalyzed by protochlorophyllide oxidoreductase features solvent-slaved motions that control the proton- but not the hydride-tunneling mechanism. These motions imply a long-range dynamic network from the solvent to the enzyme active site that facilitate proton transfer (see picture, left). Motions for hydride transfer are more localized and are not slaved by the solvent (see picture, right).
Collapse
Affiliation(s)
- Derren J Heyes
- Manchester Interdisciplinary Biocentre, Faculty of Life Sciences, University of Manchester, 131 Princess Street, Manchester M1 7DN, UK.
| | | | | |
Collapse
|
18
|
Durin G, Delaunay A, Darnault C, Heyes DJ, Royant A, Vernede X, Hunter CN, Weik M, Bourgeois D. Simultaneous measurements of solvent dynamics and functional kinetics in a light-activated enzyme. Biophys J 2009; 96:1902-10. [PMID: 19254549 DOI: 10.1016/j.bpj.2008.10.065] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2008] [Accepted: 10/31/2008] [Indexed: 10/21/2022] Open
Abstract
Solvent fluctuations play a key role in controlling protein motions and biological function. Here, we have studied how individual steps of the reaction catalyzed by the light-activated enzyme protochlorophyllide oxidoreductase (POR) couple with solvent dynamics. To simultaneously monitor the catalytic cycle of the enzyme and the dynamical behavior of the solvent, we designed temperature-dependent UV-visible microspectrophotometry experiments, using flash-cooled nanodroplets of POR to which an exogenous soluble fluorophore was added. The formation and decay of the first two intermediates in the POR-catalyzed reaction were measured, together with the solvent glass transition and the buildup of crystalline ice at cryogenic temperatures. We find that formation of the first intermediate occurs below the glass transition temperature (T(g)), and is not affected by changes in solvent dynamics induced by modifying the glycerol content. In contrast, formation of the second intermediate occurs above T(g) and is influenced by changes in glycerol concentration in a manner remarkably similar to the buildup of crystalline ice. These results suggest that internal, nonslaved protein motions drive the first step of the POR-catalyzed reaction whereas solvent-slaved motions control the second step. We propose that the concept of solvent slaving applies to complex enzymes such as POR.
Collapse
Affiliation(s)
- Guillaume Durin
- Institut de Biologie Structurale Jean-Pierre Ebel, Centre d'Etudes Atomiques, Centre National de la Recherche Scientifique, Université Joseph Fourier, Grenoble, France
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Heyes D, Sakuma M, Scrutton N. Solvent-Slaved Protein Motions Accompany Proton but Not Hydride Tunneling in Light-Activated Protochlorophyllide Oxidoreductase. Angew Chem Int Ed Engl 2009. [DOI: 10.1002/ange.200900086] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
20
|
Ultrafast catalytic processes and conformational changes in the light-driven enzyme protochlorophyllide oxidoreductase (POR). Biochem Soc Trans 2009; 37:387-91. [DOI: 10.1042/bst0370387] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The enzyme POR (protochlorophyllide oxidoreductase), from the family of alcohol dehydrogenases, reduces protochlorophyllide into chlorophyllide on the absorption of light. The reduction involves the transfer of two protons and two electrons and is an important regulatory step in the biosynthesis of chlorophyll. In recent years, due to the availability of large quantities of the pure enzyme, much of the catalytic reaction has been unravelled by using a variety of spectroscopic methods, including ultrafast initial events in catalysis. In addition, it has been demonstrated that a light-activated conformational change of the protein is necessary to activate catalysis. This makes POR a very important model system to study the relationship between structural changes of enzymes and functionality.
Collapse
|
21
|
Conformational changes in the catalytic cycle of protochlorophyllide oxidoreductase: what lessons can be learnt from dihydrofolate reductase? Biochem Soc Trans 2009; 37:354-7. [DOI: 10.1042/bst0370354] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In chlorophyll biosynthesis, the light-activated enzyme, POR (protochlorophyllide oxidoreductase), has been shown to be an excellent model system for studying the role of protein motions during catalysis. The catalytic cycle of POR is understood in detail and comprises an initial photochemical reaction, which is followed by a number of ‘dark’ steps. The latter steps in the reaction cycle have been shown to involve a series of ordered product release and substrate rebinding events and are known to require conformational changes in the protein in order to proceed. However, owing to the current lack of any structural information on the enzyme, the nature of these conformational rearrangements remains poorly understood. By contrast, there is a wealth of structural and kinetic information available on the closely related enzyme dihydrofolate reductase, which is known to have a similar catalytic mechanism to POR. Dihydrofolate reductase is able to adopt an ‘occluded’ and a ‘closed’ structure, depending on which ligand is bound in the active site, and as a result, the catalytic cycle is controlled by a ‘switching’ between these two conformations. By analogy, we suggest that a similar cycling between different conformations may be operating in POR.
Collapse
|
22
|
Heyes DJ, Menon BRK, Sakuma M, Scrutton NS. Conformational events during ternary enzyme-substrate complex formation are rate limiting in the catalytic cycle of the light-driven enzyme protochlorophyllide oxidoreductase. Biochemistry 2008; 47:10991-8. [PMID: 18798649 DOI: 10.1021/bi801521c] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The light-driven enzyme, protochlorophyllide oxidoreductase (POR), has proven to be an excellent model system for studying the role of protein motions during catalysis. POR catalyzes the trans addition of hydrogen across the C17-C18 double bond of protochlorophyllide (Pchlide), which is a key step in chlorophyll biosynthesis. While we currently have a detailed understanding of the initial photochemical events and the subsequent hydrogen transfer reactions, there remains a lack of information about the slower substrate binding events leading to the formation of the catalytically active ternary complex. As POR is light-activated, it is relatively straightforward to isolate the ternary enzyme-substrate complex in the dark prior to catalysis, which has facilitated the use of a variety of spectroscopic and kinetic probes to study the binding of both substrates. Herein, we provide a detailed kinetic and thermodynamic description of these processes and show that the binding events are complex, involving multiple conformational states en route to the formation of a ternary complex that is primed for photoactivation. The initial binding of NADPH involves three distinct steps, which appear to be necessary for the optimal alignment of the cofactor in the enzyme active site. This is followed by the binding of the Pchlide substrate and subsequent substrate-induced conformational changes within the enzyme that occur prior to the formation of the final "poised" conformational state. These studies, which provide important information on the formation of the reactive conformation, reveal that ternary complex formation is the rate-limiting step in the overall reaction and is controlled by slow conformational changes in the protein.
Collapse
Affiliation(s)
- Derren J Heyes
- Manchester Interdisciplinary Biocentre, Faculty of Life Sciences, University of Manchester, 131 Princess Street, Manchester M1 7DN, UK.
| | | | | | | |
Collapse
|