1
|
Ishida YI, Miyao S, Saito M, Hiraishi N, Nagahama M. Interactome analysis of the Tudor domain-containing protein SPF30 which associates with the MTR4-exosome RNA-decay machinery under the regulation of AAA-ATPase NVL2. Int J Biochem Cell Biol 2021; 132:105919. [PMID: 33422691 DOI: 10.1016/j.biocel.2021.105919] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 12/23/2020] [Accepted: 12/28/2020] [Indexed: 12/24/2022]
Abstract
The AAA-ATPase NVL2 associates with an RNA helicase MTR4 and the nuclear RNA exosome in the course of ribosome biogenesis. In our proteomic screen, we had identified a ribosome biogenesis factor WDR74 as a MTR4-interacting partner, whose dissociation is stimulated by the ATP hydrolysis of NVL2. In this study, we report the identification of splicing factor 30 (SPF30), another MTR4-interacting protein with a similar regulatory mechanism. SPF30 is a pre-mRNA splicing factor harboring a Tudor domain in its central region, which regulates various cellular events by binding to dimethylarginine-modified proteins. The interaction between SPF30 and the exosome core is mediated by MTR4 and RRP6, a catalytic component of the nuclear exosome. The N- and C-terminal regions, but not the Tudor domain, of SPF30 are involved in the association with MTR4 and the exosome. The knockdown of SPF30 caused subtle delay in the 12S pre-rRNA processing to mature 5.8S rRNA, even though no obvious effect was observed on the ribosome subunit profile in the cells. Shotgun proteomic analysis to search for SPF30-interacting proteins indicated its role in ribosome biogenesis, pre-mRNA splicing, and box C/D snoRNA biogenesis. These results suggest that SPF30 collaborates with the MTR4-exosome machinery to play a functional role in multiple RNA metabolic pathways, some of which may be regulated by the ATP hydrolysis of NVL2.
Collapse
Affiliation(s)
- Yo-Ichi Ishida
- Laboratory of Molecular and Cellular Biochemistry, Meiji Pharmaceutical University, Kiyose, Tokyo 204-8588, Japan
| | - Sotaro Miyao
- Laboratory of Molecular and Cellular Biochemistry, Meiji Pharmaceutical University, Kiyose, Tokyo 204-8588, Japan
| | - Mitsuaki Saito
- Laboratory of Molecular and Cellular Biochemistry, Meiji Pharmaceutical University, Kiyose, Tokyo 204-8588, Japan
| | - Nobuhiro Hiraishi
- Laboratory of Molecular and Cellular Biochemistry, Meiji Pharmaceutical University, Kiyose, Tokyo 204-8588, Japan
| | - Masami Nagahama
- Laboratory of Molecular and Cellular Biochemistry, Meiji Pharmaceutical University, Kiyose, Tokyo 204-8588, Japan.
| |
Collapse
|
2
|
Zhang D, Yang JF, Gao B, Liu TY, Hao GF, Yang GF, Fu LJ, Chen MX, Zhang J. Identification, evolution and alternative splicing profile analysis of the splicing factor 30 (SPF30) in plant species. PLANTA 2019; 249:1997-2014. [PMID: 30904945 DOI: 10.1007/s00425-019-03146-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 03/19/2019] [Indexed: 06/09/2023]
Abstract
The work offers a comprehensive evaluation on the phylogenetics and conservation of splicing patterns of the plant SPF30 splicing factor gene family. In eukaryotes, one pre-mRNA can generate multiple mRNA transcripts by alternative splicing (AS), which expands transcriptome and proteome diversity. Splicing factor 30 (SPF30), also known as survival motor neuron domain containing protein 1 (SMNDC1), is a spliceosomal protein that plays an essential role in spliceosomal assembly. Although SPF30 genes have been well characterised in human and yeast, little is known about their homologues in plants. Here, we report the genome-wide identification and phylogenetic analysis of SPF30 genes in the plant kingdom. In total, 82 SPF30 genes were found in 64 plant species from algae to land plants. Alternative transcripts were found in many SPF30 genes and splicing profile analysis revealed that the second intron in SPF30 genome is frequently associated with AS events and contributed to the birth of novel exons in a few SPF30 members. In addition, different conserved sequences were observed at these putative splice sites among moss, monocots and dicots, respectively. Our findings will facilitate further functional characterization of plant SPF30 genes as putative splicing factors.
Collapse
Affiliation(s)
- Di Zhang
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| | - Jing-Fang Yang
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, 430079, China
| | - Bei Gao
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Tie-Yuan Liu
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Ge-Fei Hao
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, 430079, China
| | - Guang-Fu Yang
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, 430079, China
| | - Li-Jun Fu
- Fujian Provincial Key Laboratory of Ecology-Toxicological Effects & Control for Emerging Contaminants, Putian University, Putian, 351100, Fujian, People's Republic of China
| | - Mo-Xian Chen
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong.
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China.
| | - Jianhua Zhang
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China.
- Department of Biology, Hong Kong Baptist University and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong.
| |
Collapse
|
3
|
McAninch DS, Heinaman AM, Lang CN, Moss KR, Bassell GJ, Rita Mihailescu M, Evans TL. Fragile X mental retardation protein recognizes a G quadruplex structure within the survival motor neuron domain containing 1 mRNA 5'-UTR. MOLECULAR BIOSYSTEMS 2017; 13:1448-1457. [PMID: 28612854 PMCID: PMC5544254 DOI: 10.1039/c7mb00070g] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
G quadruplex structures have been predicted by bioinformatics to form in the 5'- and 3'-untranslated regions (UTRs) of several thousand mature mRNAs and are believed to play a role in translation regulation. Elucidation of these roles has primarily been focused on the 3'-UTR, with limited focus on characterizing the G quadruplex structures and functions in the 5'-UTR. Investigation of the affinity and specificity of RNA binding proteins for 5'-UTR G quadruplexes and the resulting regulatory effects have also been limited. Among the mRNAs predicted to form a G quadruplex structure within the 5'-UTR is the survival motor neuron domain containing 1 (SMNDC1) mRNA, encoding a protein that is critical to the spliceosome. Additionally, this mRNA has been identified as a potential target of the fragile X mental retardation protein (FMRP), whose loss of expression leads to fragile X syndrome. FMRP is an RNA binding protein involved in translation regulation that has been shown to bind mRNA targets that form G quadruplex structures. In this study we have used biophysical methods to investigate G quadruplex formation in the 5'-UTR of SMNDC1 mRNA and analyzed its interactions with FMRP. Our results show that SMNDC1 mRNA 5'-UTR forms an intramolecular, parallel G quadruplex structure comprised of three G quartet planes, which is bound specifically by FMRP both in vitro and in mouse brain lysates. These findings suggest a model by which FMRP might regulate the translation of a subset of its mRNA targets by recognizing the G quadruplex structure present in their 5'-UTR, and affecting their accessibility by the protein synthesis machinery.
Collapse
Affiliation(s)
- Damian S McAninch
- Department of Chemistry and Biochemistry, Duquesne University, 600 Forbes Avenue, Pittsburgh, Pennsylvania 15282, USA.
| | - Ashley M Heinaman
- Department of Chemistry, University of Pittsburgh at Johnstown, Johnstown, Pennsylvania 15904, USA
| | - Cara N Lang
- Department of Chemistry, University of Pittsburgh at Johnstown, Johnstown, Pennsylvania 15904, USA
| | - Kathryn R Moss
- Department of Cell Biology, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | - Gary J Bassell
- Department of Cell Biology, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | - Mihaela Rita Mihailescu
- Department of Chemistry and Biochemistry, Duquesne University, 600 Forbes Avenue, Pittsburgh, Pennsylvania 15282, USA.
| | - Timothy L Evans
- Department of Chemistry and Biochemistry, Duquesne University, 600 Forbes Avenue, Pittsburgh, Pennsylvania 15282, USA. and Department of Chemistry, University of Pittsburgh at Johnstown, Johnstown, Pennsylvania 15904, USA
| |
Collapse
|
4
|
Yang SK, Hong M, Zhao W, Jung Y, Baek J, Tayebi N, Kim KM, Ye BD, Kim KJ, Park SH, Lee I, Lee EJ, Kim WH, Cheon JH, Kim YH, Jang BI, Kim HS, Choi JH, Koo JS, Lee JH, Jung SA, Lee YJ, Jang JY, Shin HD, Kang D, Youn HS, Liu J, Song K. Genome-wide association study of Crohn's disease in Koreans revealed three new susceptibility loci and common attributes of genetic susceptibility across ethnic populations. Gut 2014; 63:80-7. [PMID: 23850713 DOI: 10.1136/gutjnl-2013-305193] [Citation(s) in RCA: 139] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Crohn's disease (CD) is an intractable inflammatory bowel disease (IBD) of unknown cause. Recent meta-analysis of the genome-wide association studies (GWAS) and Immunochip data identified 163 susceptibility loci to IBD in Caucasians, however there are limited studies in other populations. METHODS We performed a GWAS and two validation studies in the Korean population comprising a total of 2311 patients with CD and 2442 controls. RESULTS We confirmed four previously reported loci: TNFSF15, IL23R, the major histocompatibility complex region, and the RNASET2-FGFR1OP-CCR6 region. We identified three new susceptibility loci at genome-wide significance: rs6856616 at 4p14 (OR=1.43, combined p=3.60×10(-14)), rs11195128 at 10q25 (OR=1.42, combined p=1.55×10(-10)) and rs11235667 at 11q13 (OR=1.46, combined p=7.15×10(-9)), implicating ATG16L2 and/or FCHSD2 as novel susceptibility genes for CD. Further analysis of the 11q13 locus revealed a non-synonymous single nucleotide polymorphism (SNP) (R220W/rs11235604) in the evolutionarily conserved region of ATG16L2 with stronger association (OR=1.61, combined p=2.44×10(-12)) than rs11235667, suggesting ATG16L2 as a novel susceptibility gene for CD and rs11235604 to be a potential causal variant of the association. Two of the three SNPs (rs6856616 (p=0.00024) and rs11195128 (p=5.32×10(-5))) showed consistent patterns of association in the International IBD Genetics Consortium dataset. Together, the novel and replicated loci accounted for 5.31% of the total genetic variance for CD risk in Koreans. CONCLUSIONS Our study provides new biological insight to CD and supports the complementary value of genetic studies in different populations.
Collapse
Affiliation(s)
- Suk-Kyun Yang
- Department of Gastroenterology, Asan Medical Center, University of Ulsan College of Medicine, , Seoul, Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Molecular evolution of the moonlighting protein SMN in metazoans. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2013; 8:220-30. [PMID: 23831553 DOI: 10.1016/j.cbd.2013.06.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Revised: 06/06/2013] [Accepted: 06/08/2013] [Indexed: 11/20/2022]
Abstract
The spinal muscular atrophy (SMA) associated protein survival of motor neuron (SMN) is known to be a moonlighting protein: having one primary, ancestral function (presumed to be involvement in U snRNP assembly) along with one or more secondary functions. One hypothesis for the evolution of moonlighting proteins is that regions of a structure under relatively weak negative selection could gain new functions without interfering with the primary function. To test this hypothesis, we investigated sequence conservation and dN/dS, which reflects the selection acting on a coding sequence, in SMN and a related protein, splicing factor 30 (SPF30), which is not currently known to be multifunctional. We found very different patterns of evolution in the two genes, with SPF30 characterized by strong sequence conservation and negative selection in most animal taxa investigated, and SMN with much lower sequence conservation, and much weaker negative selection at many sites. Evidence was found of positive selection acting on some sites in primate genes for SMN. SMN was also found to have been duplicated in a number of species, and with patterns that indicate reduced negative selection following some of these duplications. There were also several animal species lacking an SMN gene.
Collapse
|
6
|
Abstract
Accumulation of excess lipid in nonadipose tissues is associated with oxidative stress and organ dysfunction and plays an important role in diabetic complications. To elucidate molecular events critical for lipotoxicity, we used retroviral promoter trap mutagenesis to generate mutant Chinese hamster ovary cell lines resistant to lipotoxic and oxidative stress. A previous report of a mutant from this screen demonstrated that under lipotoxic conditions, small nucleolar RNAs (snoRNAs) in the rpL13a gene accumulate in the cytosol and serve as critical mediators of lipotoxic cell death. We now report a novel, independent mutant in which a single provirus disrupted one allele of the gene encoding the spliceosomal protein SmD3, creating a model of haploinsufficiency. We show that snoRNA expression and the abundance of snoRNA-containing intron lariats are decreased in SmD3 mutant cells, even though haploinsufficiency of SmD3 supports pre-mRNA splicing. The mechanism through which SmD3 regulates the expression of intronic snoRNAs likely involves effects of SmD3 on the levels of small nuclear RNAs (snRNAs) U4 and U5. Our data implicate SmD3 as a critical determinant in the processing of intronic noncoding RNAs in general and as an upstream mediator of metabolic stress response pathways through the regulation of snoRNA expression.
Collapse
|
7
|
|
8
|
Mier P, Pérez-Pulido AJ. Fungal Smn and Spf30 homologues are mainly present in filamentous fungi and genomes with many introns: implications for spinal muscular atrophy. Gene 2011; 491:135-41. [PMID: 22020225 DOI: 10.1016/j.gene.2011.10.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2011] [Revised: 09/24/2011] [Accepted: 10/02/2011] [Indexed: 10/16/2022]
Abstract
Spinal muscular atrophy is an important rare genetic disease characterized by the loss of motor neurons, where the main gene responsible is smn1. Orthologous genes have only been characterized in a single fungal genome: Schizosaccharomyces pombe. We have searched for putative SMN orthologues in publically available fungal genomes, finding that they are predominately present in filamentous fungi. SMN binding partners and the SPF30 SMN paralogue, which are all involved in mRNA splicing, were found to be present in a similar but non-identical subset of fungal genomes. The Saccharomycces cerevisiae yeast genome contains neither smn1 orthologues nor paralogues and it has been suggested that this might be related to the low number of introns in this yeast. Here we have tested this hypothesis by looking at other fungal genomes. Significantly, we find that fungal genomes with high numbers of introns also possess an SMN orthologue or at least its paralogue, SPF30.
Collapse
Affiliation(s)
- Pablo Mier
- Centro Andaluz de Biología del Desarrollo, CSIC-UPO, Facultad de Ciencias Experimentales (Área de Genética), Universidad Pablo de Olavide, 41013 Sevilla, Spain
| | | |
Collapse
|
9
|
Temporal and tissue specific regulation of RP-associated splicing factor genes PRPF3, PRPF31 and PRPC8--implications in the pathogenesis of RP. PLoS One 2011; 6:e15860. [PMID: 21283520 PMCID: PMC3023711 DOI: 10.1371/journal.pone.0015860] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2010] [Accepted: 11/26/2010] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Genetic mutations in several ubiquitously expressed RNA splicing genes such as PRPF3, PRP31 and PRPC8, have been found to cause retina-specific diseases in humans. To understand this intriguing phenomenon, most studies have been focused on testing two major hypotheses. One hypothesis assumes that these mutations interrupt retina-specific interactions that are important for RNA splicing, implying that there are specific components in the retina interacting with these splicing factors. The second hypothesis suggests that these mutations have only a mild effect on the protein function and thus affect only the metabolically highly active cells such as retinal photoreceptors. METHODOLOGY/PRINCIPAL FINDINGS We examined the second hypothesis using the PRPF3 gene as an example. We analyzed the spatial and temporal expression of the PRPF3 gene in mice and found that it is highly expressed in retinal cells relative to other tissues and its expression is developmentally regulated. In addition, we also found that PRP31 and PRPC8 as well as snRNAs are highly expressed in retinal cells. CONCLUSIONS/SIGNIFICANCE Our data suggest that the retina requires a relatively high level of RNA splicing activity for optimal tissue-specific physiological function. Because the RP18 mutation has neither a debilitating nor acute effect on protein function, we suggest that retinal degeneration is the accumulative effect of decades of suboptimal RNA splicing due to the mildly impaired protein.
Collapse
|
10
|
Nassa G, Tarallo R, Guzzi PH, Ferraro L, Cirillo F, Ravo M, Nola E, Baumann M, Nyman TA, Cannataro M, Ambrosino C, Weisz A. Comparative analysis of nuclear estrogen receptor alpha and beta interactomes in breast cancer cells. ACTA ACUST UNITED AC 2011; 7:667-76. [DOI: 10.1039/c0mb00145g] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
11
|
Splicing factor Spf30 assists exosome-mediated gene silencing in fission yeast. Mol Cell Biol 2009; 30:1145-57. [PMID: 20028739 DOI: 10.1128/mcb.01317-09] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Heterochromatin assembly in fission yeast relies on the processing of cognate noncoding RNAs by both the RNA interference and the exosome degradation pathways. Recent evidence indicates that splicing factors facilitate the cotranscriptional processing of centromeric transcripts into small interfering RNAs (siRNAs). In contrast, how the exosome contributes to heterochromatin assembly and whether it also relies upon splicing factors were unknown. We provide here evidence that fission yeast Spf30 is a splicing factor involved in the exosome pathway of heterochromatin silencing. Spf30 and Dis3, the main exosome RNase, colocalize at centromeric heterochromatin and euchromatic genes. At the centromeres, Dis3 helps recruiting Spf30, whose deficiency phenocopies the dis3-54 mutant: heterochromatin is impaired, as evidenced by reduced silencing and the accumulation of polyadenylated centromeric transcripts, but the production of siRNAs appears to be unaffected. Consistent with a direct role, Spf30 binds centromeric transcripts and locates at the centromeres in an RNA-dependent manner. We propose that Spf30, bound to nascent centromeric transcripts, perhaps with other splicing factors, assists their processing by the exosome. Splicing factor intercession may thus be a common feature of gene silencing pathways.
Collapse
|
12
|
Abu-Farha M, Elisma F, Zhou H, Tian R, Zhou H, Asmer MS, Figeys D. Proteomics: From Technology Developments to Biological Applications. Anal Chem 2009; 81:4585-99. [PMID: 19371061 DOI: 10.1021/ac900735j] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Mohamed Abu-Farha
- Ottawa Institute of Systems Biology (OISB), University of Ottawa, Ottawa, Ontario, Canada, and Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Fred Elisma
- Ottawa Institute of Systems Biology (OISB), University of Ottawa, Ottawa, Ontario, Canada, and Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Houjiang Zhou
- Ottawa Institute of Systems Biology (OISB), University of Ottawa, Ottawa, Ontario, Canada, and Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Ruijun Tian
- Ottawa Institute of Systems Biology (OISB), University of Ottawa, Ottawa, Ontario, Canada, and Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Hu Zhou
- Ottawa Institute of Systems Biology (OISB), University of Ottawa, Ottawa, Ontario, Canada, and Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Mehmet Selim Asmer
- Ottawa Institute of Systems Biology (OISB), University of Ottawa, Ottawa, Ontario, Canada, and Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Daniel Figeys
- Ottawa Institute of Systems Biology (OISB), University of Ottawa, Ottawa, Ontario, Canada, and Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|