1
|
Steinberg N, Galleguillos D, Zaidi A, Horkey M, Sipione S. Naïve Huntington's disease microglia mount a normal response to inflammatory stimuli but display a partially impaired development of innate immune tolerance that can be counteracted by ganglioside GM1. J Neuroinflammation 2023; 20:276. [PMID: 37996924 PMCID: PMC10668379 DOI: 10.1186/s12974-023-02963-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 11/18/2023] [Indexed: 11/25/2023] Open
Abstract
Chronic activation and dysfunction of microglia have been implicated in the pathogenesis and progression of many neurodegenerative disorders, including Huntington's disease (HD). HD is a genetic condition caused by a mutation that affects the folding and function of huntingtin (HTT). Signs of microglia activation have been observed in HD patients even before the onset of symptoms. It is unclear, however, whether pro-inflammatory microglia activation in HD results from cell-autonomous expression of mutant HTT, is the response of microglia to a diseased brain environment, or both. In this study, we used primary microglia isolated from HD knock-in (Q140) and wild-type (Q7) mice to investigate their response to inflammatory conditions in vitro in the absence of confounding effects arising from brain pathology. We show that naïve Q140 microglia do not undergo spontaneous pro-inflammatory activation and respond to inflammatory triggers, including stimulation of TLR4 and TLR2 and exposure to necrotic cells, with similar kinetics of pro-inflammatory gene expression as wild-type microglia. Upon termination of the inflammatory insult, the transcription of pro-inflammatory cytokines is tapered off in Q140 and wild-type microglia with similar kinetics. However, the ability of Q140 microglia to develop tolerance in response to repeated inflammatory stimulations is partially impaired in vitro and in vivo, potentially contributing to the establishment of chronic neuroinflammation in HD. We further show that ganglioside GM1, a glycosphingolipid with anti-inflammatory effects on wild-type microglia, not only decreases the production of pro-inflammatory cytokines and nitric oxide in activated Q140 microglia, but also dramatically dampen microglia response to re-stimulation with LPS in an experimental model of tolerance. These effects are independent from the expression of interleukin 1 receptor associated kinase 3 (Irak-3), a strong modulator of LPS signaling involved in the development of innate immune tolerance and previously shown to be upregulated by immune cell treatment with gangliosides. Altogether, our data suggest that external triggers are required for HD microglia activation, but a cell-autonomous dysfunction that affects the ability of HD microglia to acquire tolerance might contribute to the establishment of neuroinflammation in HD. Administration of GM1 might be beneficial to attenuate chronic microglia activation and neuroinflammation.
Collapse
Affiliation(s)
- Noam Steinberg
- Department of Pharmacology, Neuroscience and Mental Health Institute and Glycomics Institute of Alberta, University of Alberta, Edmonton, AB, Canada
| | - Danny Galleguillos
- Department of Pharmacology, Neuroscience and Mental Health Institute and Glycomics Institute of Alberta, University of Alberta, Edmonton, AB, Canada
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Asifa Zaidi
- Department of Pharmacology, Neuroscience and Mental Health Institute and Glycomics Institute of Alberta, University of Alberta, Edmonton, AB, Canada
| | | | - Simonetta Sipione
- Department of Pharmacology, Neuroscience and Mental Health Institute and Glycomics Institute of Alberta, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
2
|
Ex Vivo Evaluation of Glutamine Treatment in Sepsis and Trauma in a Human Peripheral Blood Mononuclear Cells Model. Nutrients 2023; 15:nu15010252. [PMID: 36615909 PMCID: PMC9824313 DOI: 10.3390/nu15010252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/21/2022] [Accepted: 12/29/2022] [Indexed: 01/05/2023] Open
Abstract
We aimed to assess the lipopolysaccharide (LPS), or heat shock (HS) induction, and glutamine-modulating effects on heat shock protein-90α (HSP90α) and cytokines in an ex vivo model using peripheral blood mononuclear cells (PBMCs). The PBMCs of patients with septic shock, trauma-related systemic inflammatory response syndrome (SIRS), and healthy subjects were incubated with 1 μg/mL LPS at 43 °C (HS). Glutamine 10 mM was added 1 hour before or after induction or not at all. We measured mRNA HSP90α, monocyte (m) and lymphocyte (l) HSP90α proteins, interleukin (IL)-1b, -6, -8, -10, tumor necrosis factor-α (TNF-α), and monocyte chemoattractant protein-1 (MCP-1) supernatant levels. Heat shock increased the HSP90α mRNA and mHSP90α in all groups (10-fold in sepsis, p < 0.001 and p = 0.047, respectively). LPS induced the mHSP90α and lHSP90α in healthy (p < 0.001) and mHSP90α in SIRS (p = 0.004) but not in sepsis. LPS induced the cytokines at 24 and 48 h in all groups, especially in trauma (p < 0.001); HS only induced the IL-8 in healthy (p = 0.003) and septic subjects (p = 0.05). Glutamine at 10 mM before or after stimulation did not alter any induction effect of LPS or HS on HSP90α mRNA and mHSP90α protein in sepsis. In SIRS, glutamine before LPS decreased the mHSP90α but increased it when given after HS (p = 0.018). Before or after LPS (p = 0.049) and before HS (p = 0.018), glutamine decreased the lHSP90α expression in sepsis but increased it in SIRS when given after HS (p = 0.003). Regarding cytokines, glutamine enhanced the LPS-induced MCP-1 at 48 h in healthy (p = 0.011), SIRS (p < 0.001), and sepsis (p = 0.006). In conclusion, glutamine at 10 mM, before or after LPS and HS, modulates mHSP90α and lHSP90α in sepsis and SIRS differently and unpredictably. Although it does not alter the stimulation effect on interleukins, glutamine enhances the LPS induction effect on supernatant MCP-1 in all groups. Future research should seek to elucidate better the impact of glutamine and temperature modulation on HSP90α and MCP-1 pathways in sepsis and trauma.
Collapse
|
3
|
Samakovli D, Roka L, Plitsi PK, Drakakaki G, Haralampidis K, Stravopodis DJ, Hatzopoulos P, Milioni D. BRI1 and BAK1 Canonical Distribution in Plasma Membrane Is HSP90 Dependent. Cells 2022; 11:3341. [PMID: 36359737 PMCID: PMC9656807 DOI: 10.3390/cells11213341] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/16/2022] [Accepted: 10/18/2022] [Indexed: 10/22/2023] Open
Abstract
The activation of BRASSINOSTEROID INSENSITIVE1 (BRI1) and its association with the BRI1 ASSOCIATED RECEPTOR KINASE1 (BAK1) are key steps for the initiation of the BR signaling cascade mediating hypocotyl elongation. Heat shock protein 90 (HSP90) is crucial in the regulation of signaling processes and the activation of hormonal receptors. We report that HSP90 is required for the maintenance of the BRI1 receptor at the plasma membrane (PM) and its association with the BAK1 co-receptor during BL-ligand stimulation. HSP90 mediates BR perception and signal transduction through physical interactions with BRI1 and BAK1, while chaperone depletion resulted in lower levels of BRI1 and BAK1 receptors at the PM and affected the spatial partitioning and organization of BRI1/BAK1 heterocomplexes at the PM. The BRI1/BAK1 interaction relies on the HSP90-dependent activation of the kinase domain of BRI1 which leads to the confinement of the spatial dynamics of the membrane resident BRI1 and the attenuation of the downstream signaling. This is evident by the impaired activation and transcriptional activity of BRI1 EMS SUPPRESSOR 1 (BES1) upon HSP90 depletion. Our findings provide conclusive evidence that further expands the commitment of HSP90 in BR signaling through the HSP90-mediated activation of BRI1 in the control of the BR signaling cascade in plants.
Collapse
Affiliation(s)
- Despina Samakovli
- Biotechnology Department, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece
| | - Loukia Roka
- Biotechnology Department, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece
| | | | - Georgia Drakakaki
- Department of Plant Sciences, University of California, Davis, CA 95616, USA
| | - Kosmas Haralampidis
- Biology Department, National and Kapodistrian University of Athens, 15701 Athens, Greece
| | | | - Polydefkis Hatzopoulos
- Biotechnology Department, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece
| | - Dimitra Milioni
- Biotechnology Department, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece
| |
Collapse
|
4
|
Zhou X, Matskova L, Zheng S, Wang X, Wang Y, Xiao X, Mo Y, Wölke M, Li L, Zheng Q, Huang G, Zhang Z, Ernberg I. Mechanisms of Anergic Inflammatory Response in Nasopharyngeal Carcinoma Cells Despite Ubiquitous Constitutive NF-κB Activation. Front Cell Dev Biol 2022; 10:861916. [PMID: 35938161 PMCID: PMC9353648 DOI: 10.3389/fcell.2022.861916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 06/15/2022] [Indexed: 11/29/2022] Open
Abstract
Commensal microbes cross talk with their colonized mucosa. We show that microbes and their cell wall components induce an inflammatory response in cultured human mucosal cells derived from the nonmalignant nasopharyngeal epithelium (NNE) cells in vitro. NNE cells show significant induction of NF-κB with nuclear shuttling and inflammatory gene response when exposed to Gram-positive bacteria (streptococci) or peptidoglycan (PGN), a component of the Gram-positive bacterial cell wall. This response is abrogated in nasopharyngeal carcinoma (NPC)–derived cell lines. The inflammatory response induced by NF-κB signaling was blocked at two levels in the tumor-derived cells. We found that NF-κB was largely trapped in lipid droplets (LDs) in the cytoplasm of the NPC-derived cells, while the increased expression of lysine-specific histone demethylase 1 (LSD1, a repressive nuclear factor) reduces the response mediated by remaining NF-κB at the promoters responding to inflammatory stimuli. This refractory response in NPC cells might be a consequence of long-term exposure to microbes in vivo during carcinogenic progression. It may contribute to the decreased antitumor immune responses in NPC, among others despite heavy T-helper cell infiltration, and thus facilitate tumor progression.
Collapse
Affiliation(s)
- Xiaoying Zhou
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Solna, Sweden
- Life Science Institute, Guangxi Medical University, Nanning, China
- Key Laboratory of Early Prevention and Treatment for Regional High-Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, China
| | - Liudmila Matskova
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Solna, Sweden
| | - Shixing Zheng
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Solna, Sweden
- ENT Institute and Department of Otorhinolaryngology, Eye and ENT Hospital, Fudan University, Shanghai, China
| | - Xiaoxia Wang
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Solna, Sweden
| | - Yifang Wang
- Life Science Institute, Guangxi Medical University, Nanning, China
- Key Laboratory of Early Prevention and Treatment for Regional High-Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, China
| | - Xue Xiao
- Department of Otolaryngology-Head and Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yingxi Mo
- Department of Research, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, China
| | - Marleen Wölke
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Solna, Sweden
| | - Limei Li
- Key Laboratory of Early Prevention and Treatment for Regional High-Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, China
| | - Qian Zheng
- Life Science Institute, Guangxi Medical University, Nanning, China
- Key Laboratory of Early Prevention and Treatment for Regional High-Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, China
| | - Guangwu Huang
- Key Laboratory of Early Prevention and Treatment for Regional High-Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, China
- Department of Otolaryngology-Head and Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Zhe Zhang
- Key Laboratory of Early Prevention and Treatment for Regional High-Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, China
- ENT Institute and Department of Otorhinolaryngology, Eye and ENT Hospital, Fudan University, Shanghai, China
| | - Ingemar Ernberg
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Solna, Sweden
- *Correspondence: Ingemar Ernberg,
| |
Collapse
|
5
|
Guo W, Wang X, Li Y, Bai O. Function and regulation of lipid signaling in lymphomagenesis: A novel target in cancer research and therapy. Crit Rev Oncol Hematol 2020; 154:103071. [PMID: 32810718 DOI: 10.1016/j.critrevonc.2020.103071] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 07/23/2020] [Accepted: 07/29/2020] [Indexed: 12/14/2022] Open
Abstract
To survive under the challenging conditions, cancer cells adapt their own metabolic mechanism(s) to be able steady supplying energy and metabolites for synthesis of new biomass. Aberrant lipid metabolism in cancer cells becomes a hall marker of carcinogenesis. Epidemiologic evidence indicates that fat intake, in particular saturated or animal fat, may increase the risk of lymphoma. Understanding the specific alterations of lymphoma metabolism becomes essential to address malignant transformation, progression, and therapeutic approaches. This review is focused on the lipid metabolism, with emphasis on fatty acid synthase, lipid rafts, exosomes, and metabolic diseases, in distinct lymphoma entities.
Collapse
Affiliation(s)
- Wei Guo
- Department of Hematology, Cancer Center, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Xingtong Wang
- Department of Hematology, Cancer Center, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Yan Li
- Division of Surgical Oncology, Department of Surgery, School of Medicine, University of Louisville, Louisville, KY 40202, United States.
| | - Ou Bai
- Department of Hematology, Cancer Center, The First Hospital of Jilin University, Changchun, Jilin, China.
| |
Collapse
|
6
|
Paszek A, Kardyńska M, Bagnall J, Śmieja J, Spiller DG, Widłak P, Kimmel M, Widlak W, Paszek P. Heat shock response regulates stimulus-specificity and sensitivity of the pro-inflammatory NF-κB signalling. Cell Commun Signal 2020; 18:77. [PMID: 32448393 PMCID: PMC7245923 DOI: 10.1186/s12964-020-00583-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 04/16/2020] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Ability to adapt to temperature changes trough the Heat Shock Response (HSR) pathways is one of the most fundamental and clinically relevant cellular response systems. Heat Shock (HS) affects the signalling and gene expression responses of the Nuclear Factor κB (NF-κB) transcription factor, a critical regulator of proliferation and inflammation, however, our quantitative understanding of how cells sense and adapt to temperature changes is limited. METHODS We used live-cell time-lapse microscopy and mathematical modelling to understand the signalling of the NF-κB system in the human MCF7 breast adenocarcinoma cells in response to pro-inflammatory Interleukin 1β (IL1β) and Tumour Necrosis Factor α (TNFα) cytokines, following exposure to a 37-43 °C range of physiological and clinical temperatures. RESULTS We show that exposure to 43 °C 1 h HS inhibits the immediate NF-κB signalling response to TNFα and IL1β stimulation although uptake of cytokines is not impaired. Within 4 h after HS treatment IL1β-induced NF-κB responses return to normal levels, but the recovery of the TNFα-induced responses is still affected. Using siRNA knock-down of Heat Shock Factor 1 (HSF1) we show that this stimulus-specificity is conferred via the Inhibitory κB kinase (IKK) signalosome where HSF1-dependent feedback regulates TNFα, but not IL1β-mediated IKK recovery post HS. Furthermore, we demonstrate that through the temperature-dependent denaturation and recovery of IKK, TNFα and IL1β-mediated signalling exhibit different temperature sensitivity and adaptation to repeated HS when exposed to a 37-43 °C temperature range. Specifically, IL1β-mediated NF-κB responses are more robust to temperature changes in comparison to those induced by TNFα treatment. CONCLUSIONS We demonstrate that the kinetics of the NF-κB system following temperature stress is cytokine specific and exhibit differential adaptation to temperature changes. We propose that this differential temperature sensitivity is mediated via the IKK signalosome, which acts as a bona fide temperature sensor trough the HSR cross-talk. This novel quantitative understanding of NF-κB and HSR interactions is fundamentally important for the potential optimization of therapeutic hyperthermia protocols. Video Abstract.
Collapse
Affiliation(s)
- Anna Paszek
- Department of Systems Biology and Engineering, Silesian University of Technology, Gliwice, Poland
- System Microscopy Centre, School of Biology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
- Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice Branch, Gliwice, Poland
| | - Małgorzata Kardyńska
- Department of Systems Biology and Engineering, Silesian University of Technology, Gliwice, Poland
| | - James Bagnall
- System Microscopy Centre, School of Biology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Jarosław Śmieja
- Department of Systems Biology and Engineering, Silesian University of Technology, Gliwice, Poland
| | - David G. Spiller
- System Microscopy Centre, School of Biology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Piotr Widłak
- Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice Branch, Gliwice, Poland
| | - Marek Kimmel
- Department of Systems Biology and Engineering, Silesian University of Technology, Gliwice, Poland
- Departments of Statistics and Bioengineering, Rice University, Houston, TX USA
| | - Wieslawa Widlak
- Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice Branch, Gliwice, Poland
| | - Pawel Paszek
- System Microscopy Centre, School of Biology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| |
Collapse
|
7
|
Andocs G, Rehman MU, Zhao QL, Tabuchi Y, Kanamori M, Kondo T. Comparison of biological effects of modulated electro-hyperthermia and conventional heat treatment in human lymphoma U937 cells. Cell Death Discov 2016; 2:16039. [PMID: 27551529 PMCID: PMC4979466 DOI: 10.1038/cddiscovery.2016.39] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 04/28/2016] [Accepted: 05/01/2016] [Indexed: 11/10/2022] Open
Abstract
Loco-regional hyperthermia treatment has long history in oncology. Modulated electro-hyperthermia (mEHT, trade name: oncothermia) is an emerging curative treatment method in this field due to its highly selective actions. The impedance-matched, capacitive-coupled modulated radiofrequency (RF) current is selectively focused in the malignant cell membrane of the cancer cells. Our objective is studying the cell-death process and comparing the cellular effects of conventional water-bath hyperthermia treatment to mEHT. The U937 human histiocytic lymphoma cell line was used for the experiments. In the case of conventional hyperthermia treatment, cells were immersed in a thermoregulated water bath, whereas in the case of mEHT, the cells were treated using a special RF generator (LabEHY, Oncotherm) and an applicator. The heating dynamics, the maximum temperature reached (42 °C) and the treatment duration (30 min) were exactly the same in both cases. Cell samples were analysed using different flow cytometric methods as well as microarray gene expression assay and western blot analysis was also used to reveal the molecular basis of the induced effects. Definite difference was observed in the biological response to different heat treatments. At 42 °C, only mEHT induced significant apoptotic cell death. The GeneChip analysis revealed a whole cluster of genes, which are highly up-regulated in case of only RF heating, but not in conventional heating. The Fas, c-Jun N-terminal kinases (JNK) and ERK signalling pathway was the dominant factor to induce apoptotic cell death in mEHT, whereas the cell-protective mechanisms dominated in case of conventional heating. This study has clearly shown that conventional hyperthermia and RF mEHT can result in different biological responses at the same temperature. The reason for the difference is the distinct, non-homogenous energy distribution on the cell membrane, which activates cell death-related signalling pathways in mEHT treatment but not in conventional heat treatment.
Collapse
Affiliation(s)
- G Andocs
- Department of Radiological Sciences, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama , Toyama, Japan
| | - M U Rehman
- Department of Radiological Sciences, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama , Toyama, Japan
| | - Q-L Zhao
- Department of Radiological Sciences, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama , Toyama, Japan
| | - Y Tabuchi
- Division of Molecular Genetics, Life Science Research Center, University of Toyama , Toyama, Japan
| | - M Kanamori
- Department of Human Science, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama , Toyama, Japan
| | - T Kondo
- Department of Radiological Sciences, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama , Toyama, Japan
| |
Collapse
|
8
|
Niu G, Zhang H, Liu D, Chen L, Belani C, Wang HG, Cheng H. Tid1, the Mammalian Homologue of Drosophila Tumor Suppressor Tid56, Mediates Macroautophagy by Interacting with Beclin1-containing Autophagy Protein Complex. J Biol Chem 2015; 290:18102-18110. [PMID: 26055714 DOI: 10.1074/jbc.m115.665950] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Indexed: 12/19/2022] Open
Abstract
One of the fundamental functions of molecular chaperone proteins is to selectively conjugate cellular proteins, targeting them directly to lysosome. Some of chaperones, such as the stress-induced Hsp70, also play important roles in autophagosome-forming macroautophagy under various stress conditions. However, the role of their co-chaperones in autophagy regulation has not been well defined. We here show that Tid1, a DnaJ co-chaperone for Hsp70 and the mammalian homologue of the Drosophila tumor suppressor Tid56, is a key mediator of macroautophagy pathway. Ectopic expression of Tid1 induces autophagy by forming LC3+ autophagosome foci, whereas silencing Tid1 leads to drastic impairment of autophagy as induced by nutrient deprivation or rapamycin. In contrast, Hsp70 is dispensable for a role in nutrient deprivation-induced autophagy. The murine Tid1 can be replaced with human Tid1 in murine fibroblast cells for induction of autophagy. We further show that Tid1 increases autophagy flux by interacting with the Beclin1-PI3 kinase class III protein complex in response to autophagy inducing signal and that Tid1 is an essential mediator that connects IκB kinases to the Beclin1-containing autophagy protein complex. Together, these results reveal a crucial role of Tid1 as an evolutionarily conserved and essential mediator of canonical macroautophagy.
Collapse
Affiliation(s)
- Ge Niu
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Huan Zhang
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Dan Liu
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Li Chen
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Chandra Belani
- Penn State Hershey Cancer Institute, Penn State University College of Medicine, Hershey, Pennsylvania 17033
| | - Hong-Gang Wang
- Penn State Hershey Cancer Institute, Penn State University College of Medicine, Hershey, Pennsylvania 17033
| | - Hua Cheng
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Maryland 21201; Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland 21201; Departments of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland 21201; Departments of Medicine, University of Maryland School of Medicine, Baltimore, Maryland 21201.
| |
Collapse
|
9
|
Acosta-Pérez G, Maximina Bertha Moreno-Altamirano M, Rodríguez-Luna G, Javier Sánchez-Garcia F. Differential dependence of the ingestion of necrotic cells and TNF-alpha / IL-1beta production by murine macrophages on lipid rafts. Scand J Immunol 2008; 68:423-9. [PMID: 18782272 DOI: 10.1111/j.1365-3083.2008.02155.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Monocytes and macrophages may encounter both pro-inflammatory and anti-inflammatory signals during their lifetime, in the form of micro-organisms or their products or as cytokines. In addition, macrophages are also exposed to apoptotic and necrotic cells. Apoptosis or 'programmed cell death' is thought to be the physiological end of developing or maturing cells, whereas necrosis is regarded as 'accidental death' or injury-associated cell death. Apoptotic cells are cleared from tissues by phagocytic cells without eliciting an inflammatory response, while necrotic cells elicit inflammation. Several cell membrane molecules from apoptotic and necrotic, as well as from phagocytic cells, have been shown to participate in the process of endocytosis of dying and potentially harmful cells. Apart from an array of cell surface receptors, it is also known that lipid rafts are key components of cell-cell communication and signalling. By using the interaction of BALB/c mice thymus-derived apoptotic or necrotic cells with murine macrophages of the J774 cell line as a model system, we provide evidence that endocytosis of apoptotic but not of necrotic cells is inhibited by methyl-beta-cyclodextrin, a cholesterol sequestering agent, able to disrupt lipid rafts. However, necrotic but not apoptotic cells co-localize with lipid rafts within macrophages. Interestingly, necrotic cell-induced secretion of TNF-alpha and IL-1beta was also inhibited by methyl-beta-cyclodextrin, thus suggesting a role for lipid rafts in the signalling of this particular inflammatory response. Taken together, our results argue in favour of differential macrophage recognition of apoptotic and necrotic cells at the level of lipid rafts, and endocytosis versus signalling for TNF-alpha and IL-1beta synthesis.
Collapse
Affiliation(s)
- G Acosta-Pérez
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico DF, Mexico
| | | | | | | |
Collapse
|