1
|
Geslain SAM, Hausmann S, Geiser J, Allen GE, Gonzalez D, Valentini M. Critical functions and key interactions mediated by the RNase E scaffolding domain in Pseudomonas aeruginosa. PLoS Genet 2025; 21:e1011618. [PMID: 40096066 PMCID: PMC11964227 DOI: 10.1371/journal.pgen.1011618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 04/02/2025] [Accepted: 02/12/2025] [Indexed: 03/19/2025] Open
Abstract
The RNA degradosome is a bacterial multi-protein complex mediating mRNA processing and degradation. In Pseudomonadota, this complex assembles on the C-terminal domain (CTD) of RNase E through short linear motifs (SLiMs) that determine its composition and functionality. In the human pathogen Pseudomonas aeruginosa, the RNase E CTD exhibits limited similarity to that of model organisms, impeding our understanding of RNA metabolic processes in this bacterium. Our study systematically maps the interactions mediated by the P. aeruginosa RNase E CTD and highlights its critical role in transcript regulation and cellular functions. We identified the SLiMs crucial for membrane attachment, RNA binding and complex clustering, as well as for direct binding to the core components PNPase and RhlB. Transcriptome analyses of RNase E CTD mutants revealed altered expression of genes involved in quorum sensing, type III secretion, and amino acid metabolism. Additionally, we show that the mutants are impaired in cold adaptation, pH response, and virulence in an infection model. Overall, this work establishes the essential role of the RNA degradosome in driving bacterial adaptability and pathogenicity.
Collapse
Affiliation(s)
| | - Stéphane Hausmann
- Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland
| | - Johan Geiser
- Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland
| | - George Edward Allen
- Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland
| | - Diego Gonzalez
- Laboratory of Microbiology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Martina Valentini
- Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland
| |
Collapse
|
2
|
Zetzsche H, Raschke L, Fürtig B. Allosteric activation of RhlB by RNase E induces partial duplex opening in substrate RNA. Front Mol Biosci 2023; 10:1139919. [PMID: 37719267 PMCID: PMC10500059 DOI: 10.3389/fmolb.2023.1139919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 08/10/2023] [Indexed: 09/19/2023] Open
Abstract
The E. coli DEAD-Box helicase RhlB is responsible for ATP-dependent unwinding of structured mRNA to facilitate RNA degradation by the protein complex degradosome. The allosteric interaction with complex partner RNase E is necessary to stimulate both, RhlB's ATPase and RNA unwinding activity to levels comparable with other DEAD-Box helicases. However, the structural changes of the helicase RhlB induced by binding of RNase E have not been characterized and how those lead to increased reaction rates has remained unclear. We investigated the origin of this activation for RNA substrates with different topologies. Using NMR spectroscopy and an RNA centered approach, we could show that RNase E binding increases the affinity of RhlB towards a subset of RNA substrates, which leads to increased ATP turnover rates. Most strikingly, our studies revealed that in presence of RNase E (694-790) RhlB induces a conformational change in an RNA duplex with 5'- overhang even in absence of ATP, leading to partial duplex opening. Those results indicate a unique and novel activation mode of RhlB among DEAD-Box helicases, as ATP binding is thought to be an essential prerequisite for RNA unwinding.
Collapse
Affiliation(s)
| | | | - Boris Fürtig
- Center for Biomolecular Magnetic Resonance (BMRZ), Institute for Organic Chemistry and Chemical Biology, Johann Wolfgang Goethe-Universität, Frankfurt, Germany
| |
Collapse
|
3
|
Roux C, Etienne TA, Hajnsdorf E, Ropers D, Carpousis AJ, Cocaign-Bousquet M, Girbal L. The essential role of mRNA degradation in understanding and engineering E. coli metabolism. Biotechnol Adv 2021; 54:107805. [PMID: 34302931 DOI: 10.1016/j.biotechadv.2021.107805] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 06/28/2021] [Accepted: 07/14/2021] [Indexed: 11/17/2022]
Abstract
Metabolic engineering strategies are crucial for the development of bacterial cell factories with improved performance. Until now, optimal metabolic networks have been designed based on systems biology approaches integrating large-scale data on the steady-state concentrations of mRNA, protein and metabolites, sometimes with dynamic data on fluxes, but rarely with any information on mRNA degradation. In this review, we compile growing evidence that mRNA degradation is a key regulatory level in E. coli that metabolic engineering strategies should take into account. We first discuss how mRNA degradation interacts with transcription and translation, two other gene expression processes, to balance transcription regulation and remove poorly translated mRNAs. The many reciprocal interactions between mRNA degradation and metabolism are also highlighted: metabolic activity can be controlled by changes in mRNA degradation and in return, the activity of the mRNA degradation machinery is controlled by metabolic factors. The mathematical models of the crosstalk between mRNA degradation dynamics and other cellular processes are presented and discussed with a view towards novel mRNA degradation-based metabolic engineering strategies. We show finally that mRNA degradation-based strategies have already successfully been applied to improve heterologous protein synthesis. Overall, this review underlines how important mRNA degradation is in regulating E. coli metabolism and identifies mRNA degradation as a key target for innovative metabolic engineering strategies in biotechnology.
Collapse
Affiliation(s)
- Charlotte Roux
- TBI, Université de Toulouse, CNRS, INRAE, INSA, 31077 Toulouse, France; UMR8261, CNRS, Université de Paris, Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie Curie, 75005 Paris, France.
| | - Thibault A Etienne
- TBI, Université de Toulouse, CNRS, INRAE, INSA, 31077 Toulouse, France; Univ. Grenoble Alpes, Inria, 38000 Grenoble, France.
| | - Eliane Hajnsdorf
- UMR8261, CNRS, Université de Paris, Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie Curie, 75005 Paris, France.
| | | | - A J Carpousis
- TBI, Université de Toulouse, CNRS, INRAE, INSA, 31077 Toulouse, France; LMGM, Université de Toulouse, CNRS, UPS, CBI, 31062 Toulouse, France.
| | | | - Laurence Girbal
- TBI, Université de Toulouse, CNRS, INRAE, INSA, 31077 Toulouse, France.
| |
Collapse
|
4
|
The RNA degradosome promotes tRNA quality control through clearance of hypomodified tRNA. Proc Natl Acad Sci U S A 2019; 116:1394-1403. [PMID: 30622183 DOI: 10.1073/pnas.1814130116] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The factors and mechanisms that govern tRNA stability in bacteria are not well understood. Here, we investigated the influence of posttranscriptional modification of bacterial tRNAs (tRNA modification) on tRNA stability. We focused on ThiI-generated 4-thiouridine (s4U), a modification found in bacterial and archaeal tRNAs. Comprehensive quantification of Vibrio cholerae tRNAs revealed that the abundance of some tRNAs is decreased in a ΔthiI strain in a stationary phase-specific manner. Multiple mechanisms, including rapid degradation of a subset of hypomodified tRNAs, account for the reduced abundance of tRNAs in the absence of thiI Through transposon insertion sequencing, we identified additional tRNA modifications that promote tRNA stability and bacterial viability. Genetic analysis of suppressor mutants as well as biochemical analyses revealed that rapid degradation of hypomodified tRNA is mediated by the RNA degradosome. Elongation factor Tu seems to compete with the RNA degradosome, protecting aminoacyl tRNAs from decay. Together, our observations describe a previously unrecognized bacterial tRNA quality control system in which hypomodification sensitizes tRNAs to decay mediated by the RNA degradosome.
Collapse
|
5
|
Sinha D, Matz LM, Cameron TA, De Lay NR. Poly(A) polymerase is required for RyhB sRNA stability and function in Escherichia coli. RNA (NEW YORK, N.Y.) 2018; 24:1496-1511. [PMID: 30061117 PMCID: PMC6191717 DOI: 10.1261/rna.067181.118] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 07/24/2018] [Indexed: 05/05/2023]
Abstract
Small regulatory RNAs (sRNAs) are an important class of bacterial post-transcriptional regulators that control numerous physiological processes, including stress responses. In Gram-negative bacteria including Escherichia coli, the RNA chaperone Hfq binds many sRNAs and facilitates pairing to target transcripts, resulting in changes in mRNA transcription, translation, or stability. Here, we report that poly(A) polymerase (PAP I), which promotes RNA degradation by exoribonucleases through the addition of poly(A) tails, has a crucial role in the regulation of gene expression by Hfq-dependent sRNAs. Specifically, we show that deletion of pcnB, encoding PAP I, paradoxically resulted in an increased turnover of certain Hfq-dependent sRNAs, including RyhB. RyhB instability in the pcnB deletion strain was suppressed by mutations in hfq or ryhB that disrupt pairing of RyhB with target RNAs, by mutations in the 3' external transcribed spacer of the glyW-cysT-leuZ transcript (3'ETSLeuZ) involved in pairing with RyhB, or an internal deletion in rne, which encodes the endoribonuclease RNase E. Finally, the reduced stability of RyhB in the pcnB deletion strain resulted in impaired regulation of some of its target mRNAs, specifically sodB and sdhCDAB. Altogether our data support a model where PAP I plays a critical role in ensuring the efficient decay of the 3'ETSLeuZ In the absence of PAP I, the 3'ETSLeuZ transcripts accumulate, bind Hfq, and pair with RyhB, resulting in its depletion via RNase E-mediated decay. This ultimately leads to a defect in RyhB function in a PAP I deficient strain.
Collapse
Affiliation(s)
- Dhriti Sinha
- Department of Microbiology and Molecular Genetics, McGovern Medical School, University of Texas Health Science Center, Houston, Texas 77030, USA
| | - Lisa M Matz
- Department of Microbiology and Molecular Genetics, McGovern Medical School, University of Texas Health Science Center, Houston, Texas 77030, USA
| | - Todd A Cameron
- Department of Microbiology and Molecular Genetics, McGovern Medical School, University of Texas Health Science Center, Houston, Texas 77030, USA
| | - Nicholas R De Lay
- Department of Microbiology and Molecular Genetics, McGovern Medical School, University of Texas Health Science Center, Houston, Texas 77030, USA
- MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, University of Texas Health Science Center, Houston, Texas 77030, USA
| |
Collapse
|
6
|
Redder P, Hausmann S, Khemici V, Yasrebi H, Linder P. Bacterial versatility requires DEAD-box RNA helicases. FEMS Microbiol Rev 2015; 39:392-412. [PMID: 25907111 DOI: 10.1093/femsre/fuv011] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/04/2015] [Indexed: 11/13/2022] Open
Abstract
RNA helicases of the DEAD-box and DEAH-box families are important players in many processes involving RNA molecules. These proteins can modify RNA secondary structures or intermolecular RNA interactions and modulate RNA-protein complexes. In bacteria, they are known to be involved in ribosome biogenesis, RNA turnover and translation initiation. They thereby play an important role in the adaptation of bacteria to changing environments and to respond to stress conditions.
Collapse
Affiliation(s)
- Peter Redder
- Department of Microbiology and Molecular Medicine, CMU, Faculty of Medicine, University of Geneva, 1, rue Michel Servet, CH 1211 Geneva 4, Switzerland
| | - Stéphane Hausmann
- Department of Microbiology and Molecular Medicine, CMU, Faculty of Medicine, University of Geneva, 1, rue Michel Servet, CH 1211 Geneva 4, Switzerland
| | - Vanessa Khemici
- Department of Microbiology and Molecular Medicine, CMU, Faculty of Medicine, University of Geneva, 1, rue Michel Servet, CH 1211 Geneva 4, Switzerland
| | - Haleh Yasrebi
- Department of Microbiology and Molecular Medicine, CMU, Faculty of Medicine, University of Geneva, 1, rue Michel Servet, CH 1211 Geneva 4, Switzerland
| | - Patrick Linder
- Department of Microbiology and Molecular Medicine, CMU, Faculty of Medicine, University of Geneva, 1, rue Michel Servet, CH 1211 Geneva 4, Switzerland
| |
Collapse
|
7
|
Membrane recognition and dynamics of the RNA degradosome. PLoS Genet 2015; 11:e1004961. [PMID: 25647427 PMCID: PMC4372235 DOI: 10.1371/journal.pgen.1004961] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Accepted: 12/17/2014] [Indexed: 01/07/2023] Open
Abstract
RNase E, which is the central component of the multienzyme RNA degradosome, serves as a scaffold for interaction with other enzymes involved in mRNA degradation including the DEAD-box RNA helicase RhlB. Epifluorescence microscopy under live cell conditions shows that RNase E and RhlB are membrane associated, but neither protein forms cytoskeletal-like structures as reported earlier by Taghbalout and Rothfield. We show that association of RhlB with the membrane depends on a direct protein interaction with RNase E, which is anchored to the inner cytoplasmic membrane through an MTS (Membrane Targeting Sequence). Molecular dynamics simulations show that the MTS interacts with the phospholipid bilayer by forming a stabilized amphipathic α-helix with the helical axis oriented parallel to the plane of the bilayer and hydrophobic side chains buried deep in the acyl core of the membrane. Based on the molecular dynamics simulations, we propose that the MTS freely diffuses in the membrane by a novel mechanism in which a large number of weak contacts are rapidly broken and reformed. TIRFm (Total Internal Reflection microscopy) shows that RNase E in live cells rapidly diffuses over the entire inner membrane forming short-lived foci. Diffusion could be part of a scanning mechanism facilitating substrate recognition and cooperativity. Remarkably, RNase E foci disappear and the rate of RNase E diffusion increases with rifampicin treatment. Control experiments show that the effect of rifampicin is specific to RNase E and that the effect is not a secondary consequence of the shut off of E. coli transcription. We therefore interpret the effect of rifampicin as being due to the depletion of RNA substrates for degradation. We propose a model in which formation of foci and constraints on diffusion arise from the transient clustering of RNase E into cooperative degradation bodies. Recent discoveries that two ribonucleases with major roles in mRNA degradation, RNase E of Escherichia coli and RNase Y of Bacillus subtilis, are localized to the inner cytoplasmic membrane suggest that spatial separation of transcription and mRNA degradation are general features of the bacterial cell. Here we show that RNase E rapidly diffuses over the entire inner membrane forming short-lived foci. Results of molecular dynamics simulations lead us to suggest that RNase E interacts with the lipid membrane by a novel mechanism permitting a high degree of translational freedom. We show that RNA substrate is necessary for the formation of RNase E foci and that formation of foci correlates with constraints on the diffusion of RNase E. We therefore propose that foci are degradation bodies in which several RNase E molecules engage an RNA substrate. The sequestration of the mRNA degradation machinery to the inner cytoplasmic membrane has important consequences for mRNA turnover. This organization likely favors formation of polyribosomes on nascent transcripts before they are exposed to the degradation machinery. Rapid diffusion of RNase E on the inner cytoplasmic membrane could be part of a scanning mechanism that facilitates recognition of cytoplasmic polyribosomes and cooperative degradation of mRNA.
Collapse
|
8
|
Aït-Bara S, Carpousis AJ, Quentin Y. RNase E in the γ-Proteobacteria: conservation of intrinsically disordered noncatalytic region and molecular evolution of microdomains. Mol Genet Genomics 2014; 290:847-62. [PMID: 25432321 PMCID: PMC4435900 DOI: 10.1007/s00438-014-0959-5] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Accepted: 11/11/2014] [Indexed: 12/19/2022]
Abstract
RNase E of Escherichia coli is a membrane-associated endoribonuclease that has a major role in mRNA degradation. The enzyme has a large C-terminal noncatalytic region that is mostly intrinsically disordered (ID). Under standard growth conditions, RhlB, enolase and PNPase associate with the noncatalytic region to form the multienzyme RNA degradosome. To elucidate the origin and evolution of the RNA degradosome, we have identified and characterized orthologs of RNase E in the γ-Proteobacteria, a phylum of bacteria with diverse ecological niches and metabolic phenotypes and an ancient origin contemporary with the radiation of animals, plants and fungi. Intrinsic disorder, composition bias and tandem sequence repeats are conserved features of the noncatalytic region. Composition bias is bipartite with a catalytic domain proximal ANR-rich region and distal AEPV-rich region. Embedded in the noncatalytic region are microdomains (also known as MoRFs, MoREs or SLiMs), which are motifs that interact with protein and other ligands. Our results suggest that tandem repeat sequences are the progenitors of microdomains. We have identified 24 microdomains with phylogenetic signals that were acquired once with few losses. Microdomains involved in membrane association and RNA binding are universally conserved suggesting that they were present in ancestral RNase E. The RNA degradosome of E. coli arose in two steps with RhlB and PNPase acquisition early in a major subtree of the γ-Proteobacteria and enolase acquisition later. We propose a mechanism of microdomain acquisition and evolution and discuss implications of these results for the structure and function of the multienzyme RNA degradosome.
Collapse
Affiliation(s)
- Soraya Aït-Bara
- Laboratoire de Microbiologie et Génétique Moléculaires, UMR 5100, Centre National de la Recherche Scientifique and Université Paul Sabatier, 118, route de Narbonne, 31062, Toulouse Cedex 9, France
| | | | | |
Collapse
|
9
|
Pietras Z, Hardwick SW, Swiezewski S, Luisi BF. Potential regulatory interactions of Escherichia coli RraA protein with DEAD-box helicases. J Biol Chem 2013; 288:31919-29. [PMID: 24045937 PMCID: PMC3814787 DOI: 10.1074/jbc.m113.502146] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Members of the DEAD-box family of RNA helicases contribute to virtually every aspect of RNA metabolism, in organisms from all domains of life. Many of these helicases are constituents of multicomponent assemblies, and their interactions with partner proteins within the complexes underpin their activities and biological function. In Escherichia coli the DEAD-box helicase RhlB is a component of the multienzyme RNA degradosome assembly, and its interaction with the core ribonuclease RNase E boosts the ATP-dependent activity of the helicase. Earlier studies have identified the regulator of ribonuclease activity A (RraA) as a potential interaction partner of both RNase E and RhlB. We present structural and biochemical evidence showing how RraA can bind to, and modulate the activity of RhlB and another E. coli DEAD-box enzyme, SrmB. Crystallographic structures are presented of RraA in complex with a portion of the natively unstructured C-terminal tail of RhlB at 2.8-Å resolution, and in complex with the C-terminal RecA-like domain of SrmB at 2.9 Å. The models suggest two distinct mechanisms by which RraA might modulate the activity of these and potentially other helicases.
Collapse
Affiliation(s)
- Zbigniew Pietras
- From the Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1GA, United Kingdom and
| | | | | | | |
Collapse
|
10
|
Intracellular ribonucleases involved in transcript processing and decay: precision tools for RNA. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2013; 1829:491-513. [PMID: 23545199 DOI: 10.1016/j.bbagrm.2013.03.009] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Revised: 03/19/2013] [Accepted: 03/22/2013] [Indexed: 12/15/2022]
Abstract
In order to adapt to changing environmental conditions and regulate intracellular events such as division, cells are constantly producing new RNAs while discarding old or defective transcripts. These functions require the coordination of numerous ribonucleases that precisely cleave and trim newly made transcripts to produce functional molecules, and rapidly destroy unnecessary cellular RNAs. In recent years our knowledge of the nature, functions and structures of these enzymes in bacteria, archaea and eukaryotes has dramatically expanded. We present here a synthetic overview of the recent development in this dynamic area which has seen the identification of many new endoribonucleases and exoribonucleases. Moreover, the increasing pace at which the structures of these enzymes, or of their catalytic domains, have been solved has provided atomic level detail into their mechanisms of action. Based on sequence conservation and structural data, these proteins have been grouped into families, some of which contain only ribonuclease members, others including a variety of nucleolytic enzymes that act upon DNA and/or RNA. At the other extreme some ribonucleases belong to families of proteins involved in a wide variety of enzymatic reactions. Functional characterization of these fascinating enzymes has provided evidence for the extreme diversity of their biological functions that include, for example, removal of poly(A) tails (deadenylation) or poly(U) tails from eukaryotic RNAs, processing of tRNA and mRNA 3' ends, maturation of rRNAs and destruction of unnecessary mRNAs. This article is part of a Special Issue entitled: RNA Decay mechanisms.
Collapse
|
11
|
Iost I, Bizebard T, Dreyfus M. Functions of DEAD-box proteins in bacteria: current knowledge and pending questions. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2013; 1829:866-77. [PMID: 23415794 DOI: 10.1016/j.bbagrm.2013.01.012] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Revised: 01/30/2013] [Accepted: 01/31/2013] [Indexed: 11/18/2022]
Abstract
DEAD-box proteins are RNA-dependent ATPases that are widespread in all three kingdoms of life. They are thought to rearrange the structures of RNA or ribonucleoprotein complexes but their exact mechanism of action is rarely known. Whereas in yeast most DEAD-box proteins are essential, no example of an essential bacterial DEAD-box protein has been reported so far; at most, their absence results in cold-sensitive growth. Moreover, whereas yeast DEAD-box proteins are implicated in virtually all reactions involving RNA, in E. coli (the bacterium where DEAD-box proteins have been mostly studied) their role is limited to ribosome biogenesis, mRNA degradation, and possibly translation initiation. Plausible reasons for these differences are discussed here. In spite of their dispensability, E. coli DEAD-box proteins are valuable models for the mechanism of action of DEAD-box proteins in general because the reactions in which they participate can be reproduced in vitro. Here we review our present understanding of this mechanism of action. Using selected examples for which information is available: (i) we describe how, by interacting directly with a particular RNA motif or by binding to proteins that themselves recognize such a motif, DEAD-box proteins are brought to their specific RNA substrate(s); (ii) we discuss the nature of the structural transitions that DEAD-box proteins induce on their substrates; and (iii) we analyze the reasons why these proteins are mostly important at low temperatures. This article is part of a Special Issue entitled: The Biology of RNA helicases-Modulation for life.
Collapse
Affiliation(s)
- Isabelle Iost
- Univ. Bordeaux, ARNA Laboratory, F-33000 Bordeaux, France.
| | | | | |
Collapse
|
12
|
Bacterial helicases in post-transcriptional control. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2013; 1829:878-83. [PMID: 23291566 DOI: 10.1016/j.bbagrm.2012.12.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Revised: 12/17/2012] [Accepted: 12/20/2012] [Indexed: 12/25/2022]
Abstract
Among the five superfamilies of helicases involved in RNA and DNA metabolism, superfamily 2 and superfamily 5 include bacterial RNA-helicases. These enzymes have been shown to be involved in ribosome biogenesis and post-transcriptional gene regulation. Here, we focus on bacterial regulatory mechanisms that are mediated by RNA helicases belonging to superfamily 2, which includes DEAD-box and DEAH-box helicases. Some of these helicases are part of bacterial degradosomes and were shown to unwind RNA duplexes. We will review examples where these enzymes have been implicated in translatability and metabolic stability of bacterial transcripts. This article is part of a Special Issue entitled: The Biology of RNA helicases - Modulation for life.
Collapse
|
13
|
Schomburg D, Schomburg I. RNA helicase 3.6.4.13. CLASS 3.4–6 HYDROLASES, LYASES, ISOMERASES, LIGASES 2013. [PMCID: PMC7123474 DOI: 10.1007/978-3-642-36260-6_25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
EC number 3.6.4.13 Systematic name ATP phosphohydrolase (RNA helix unwinding) Recommended name RNA helicase Synonyms 1a NTPase/helicase <16> [5] ATP/dATP-dependent RNA helicase <1,42> [32] ATPase <10,12> [1,36] ATPase/RNA helicase <1,42> [32] ATPase/helicase <10> [36,41] BMV 1a protein <16> [5] BmL3-helicase <1,42> [32] Brr2p <6> [50] DBP2 <24> [30] DDX17 <33> [12] DDX19 <43> [56] DDX25 <23,34,35> [12,21] DDX3 <25> [8] DDX3X <25> (<25> the gene is localized to the X chromosome [12]) [12] DDX3Y <29> (<29> the gene is localized to the Y chromosome [12]) [12] DDX4 <30> [12] DDX5 <32> [12] DEAD box RNA helicase <1,2,3> [32,45,52] DEAD box helicase <2> [45] DEAD-box RNA helicase <4,5,7,38,47,48> [9,14,16,25,53,55] DEAD-box protein DED1 <38> [11] DEAD-box rRNA helicase <5> [26] DEAH-box RNA helicase <24> [30] DEAH-box protein 2 <24> [30] DED1 <38> [11,14] DENV NS3H <10> [41] DEXD/H-box RNA helicase <43> [56] DEx(H/D)RNA helicase <12> [23] DHX9 <44> [58] DbpA <5> [10,25,26] Dhx9/RNA helicase A <13> [61] EhDEAD1 <7> [16] EhDEAD1 RNA helicase <7> [16] FRH <9> [54] FRQ-interacting RNA helicase <9> [54] GRTH <3> [57] GRTH/DDX25 <3,35> [21,51] HCV NS3 helicase <12> [48] KOKV helicase <27> [7] Mtr4p <31> [22] NPH-II <8> [18,28] NS3 <10,12,17,20,39,41> (<12,39> ambiguous [27,42,44]) [1,2,4,27,35,36,39, 42,44,46] NS3 ATPase/helicase <10> [41] NS3 NTPase/helicase <17> (<17> ambiguous [46]) [46] NS3 helicase <10,12,17> [15,44,46] NS3 protein <10,12,17,18> (<12> ambiguous [39]) [15,39,40,41,62] NTPase/helicase <12> (<12> ambiguous [37]) [37,39] RHA <6> [31,49] RNA helicase <2> [45] RNA helicase A <6,44> [31,49,58] RNA helicase CrhR <14> [59] RNA helicase DDX3 <25> [8] RNA helicase Ddx39 <47> [53] RNA helicase Hera <4> [9] RNA-dependent ATPase <37> [34] RNA-dependent NTPase/helicase <12> [1] RTPase <10> [36] RhlB <5> [43] SpolvlgA <48> [55] Supv3L1 <46> [64] TGBp1 NTPase/helicase domain <22,28> [24] Tk-DeaD <15> [47] VRH1 <26> [33] YxiN <2> [45] eIF4A <36> [20] eIF4A helicase <36> [20] eIF4AIII <37> [34] eukaryotic initiation factor eIF 4A <36> [20] gonadotropin-regulated testicular RNA helicase <3> [51,57] helicase <10> [41] helicase B <5> [43] helicase/nucleoside triphosphatase <10> [4] non structural protein 3 <12> (<12> ambiguous [37,38]) [37,38] non-structural 3 <10> [36] non-structural protein 3 <17> [46] non-structural protein 3 protein <18> [40] nonstructural protein 3 <12,17,20,39,40,41> (<12,17,39,40> ambiguous [6,27, 39,42,44,46]) [1,2,6,27,35,39,42,44,46] nucleoside 5’-triphosphatase <10> [4] nucleoside triphosphatase/RNA helicase and 5’-RNA triphosphatase <20> [2] nucleoside triphosphatase/helicase <16> [5] p54 RNA helicase <45> [60] p68 RNA helicase <3,6> [52,63] protein NS3 <12> (<12> ambiguous [38]) [38]
Collapse
|
14
|
Tsai YC, Du D, Domínguez-Malfavón L, Dimastrogiovanni D, Cross J, Callaghan AJ, García-Mena J, Luisi BF. Recognition of the 70S ribosome and polysome by the RNA degradosome in Escherichia coli. Nucleic Acids Res 2012; 40:10417-10431. [PMID: 22923520 PMCID: PMC3488216 DOI: 10.1093/nar/gks739] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2012] [Revised: 07/10/2012] [Accepted: 07/11/2012] [Indexed: 01/28/2023] Open
Abstract
The RNA degradosome is a multi-enzyme assembly that contributes to key processes of RNA metabolism, and it engages numerous partners in serving its varied functional roles. Small domains within the assembly recognize collectively a diverse range of macromolecules, including the core protein components, the cytoplasmic lipid membrane, mRNAs, non-coding regulatory RNAs and precursors of structured RNAs. We present evidence that the degradosome can form a stable complex with the 70S ribosome and polysomes, and we demonstrate the proximity in vivo of ribosomal proteins and the scaffold of the degradosome, RNase E. The principal interactions are mapped to two, independent, RNA-binding domains from RNase E. RhlB, the RNA helicase component of the degradosome, also contributes to ribosome binding, and this is favoured through an activating interaction with RNase E. The catalytic activity of RNase E for processing 9S RNA (the ribosomal 5S RNA precursor) is repressed in the presence of the ribosome, whereas there is little affect on the cleavage of single-stranded substrates mediated by non-coding RNA, suggestings that the enzyme retains capacity to cleave unstructured substrates when associated with the ribosome. We propose that polysomes may act as antennae that enhance the rates of capture of the limited number of degradosomes, so that they become recruited to sites of active translation to act on mRNAs as they become exposed or tagged for degradation.
Collapse
Affiliation(s)
- Yi-Chun Tsai
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1GA, UK, Departamento de Genética y Biología Molecular. Cinvestav-IPN, México DF 07360, Mexico and Biophysics Laboratories, School of Biological Sciences, Institute of Biomedical and Biomolecular Sciences, University of Portsmouth, Portsmouth PO1 2DY, UK
| | - Dijun Du
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1GA, UK, Departamento de Genética y Biología Molecular. Cinvestav-IPN, México DF 07360, Mexico and Biophysics Laboratories, School of Biological Sciences, Institute of Biomedical and Biomolecular Sciences, University of Portsmouth, Portsmouth PO1 2DY, UK
| | - Lilianha Domínguez-Malfavón
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1GA, UK, Departamento de Genética y Biología Molecular. Cinvestav-IPN, México DF 07360, Mexico and Biophysics Laboratories, School of Biological Sciences, Institute of Biomedical and Biomolecular Sciences, University of Portsmouth, Portsmouth PO1 2DY, UK
| | - Daniela Dimastrogiovanni
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1GA, UK, Departamento de Genética y Biología Molecular. Cinvestav-IPN, México DF 07360, Mexico and Biophysics Laboratories, School of Biological Sciences, Institute of Biomedical and Biomolecular Sciences, University of Portsmouth, Portsmouth PO1 2DY, UK
| | - Jonathan Cross
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1GA, UK, Departamento de Genética y Biología Molecular. Cinvestav-IPN, México DF 07360, Mexico and Biophysics Laboratories, School of Biological Sciences, Institute of Biomedical and Biomolecular Sciences, University of Portsmouth, Portsmouth PO1 2DY, UK
| | - Anastasia J. Callaghan
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1GA, UK, Departamento de Genética y Biología Molecular. Cinvestav-IPN, México DF 07360, Mexico and Biophysics Laboratories, School of Biological Sciences, Institute of Biomedical and Biomolecular Sciences, University of Portsmouth, Portsmouth PO1 2DY, UK
| | - Jaime García-Mena
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1GA, UK, Departamento de Genética y Biología Molecular. Cinvestav-IPN, México DF 07360, Mexico and Biophysics Laboratories, School of Biological Sciences, Institute of Biomedical and Biomolecular Sciences, University of Portsmouth, Portsmouth PO1 2DY, UK
| | - Ben F. Luisi
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1GA, UK, Departamento de Genética y Biología Molecular. Cinvestav-IPN, México DF 07360, Mexico and Biophysics Laboratories, School of Biological Sciences, Institute of Biomedical and Biomolecular Sciences, University of Portsmouth, Portsmouth PO1 2DY, UK
| |
Collapse
|
15
|
From conformational chaos to robust regulation: the structure and function of the multi-enzyme RNA degradosome. Q Rev Biophys 2011; 45:105-45. [DOI: 10.1017/s003358351100014x] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
AbstractThe RNA degradosome is a massive multi-enzyme assembly that occupies a nexus in RNA metabolism and post-transcriptional control of gene expression inEscherichia coliand many other bacteria. Powering RNA turnover and quality control, the degradosome serves also as a machine for processing structured RNA precursors during their maturation. The capacity to switch between destructive and processing modes involves cooperation between degradosome components and is analogous to the process of RNA surveillance in other domains of life. Recruitment of components and cellular compartmentalisation of the degradosome are mediated through small recognition domains that punctuate a natively unstructured segment within a scaffolding core. Dynamic in conformation, variable in composition and non-essential under certain laboratory conditions, the degradosome has nonetheless been maintained throughout the evolution of many bacterial species, due most likely to its diverse contributions in global cellular regulation. We describe the role of the degradosome and its components in RNA decay pathways inE. coli, and we broadly compare these pathways in other bacteria as well as archaea and eukaryotes. We discuss the modular architecture and molecular evolution of the degradosome, its roles in RNA degradation, processing and quality control surveillance, and how its activity is regulated by non-coding RNA. Parallels are drawn with analogous machinery in organisms from all life domains. Finally, we conjecture on roles of the degradosome as a regulatory hub for complex cellular processes.
Collapse
|
16
|
Ribozyme stability, exon skipping, and a potential role for RNA helicase in group I intron splicing by Coxiella burnetii. J Bacteriol 2011; 193:5292-9. [PMID: 21803999 DOI: 10.1128/jb.05472-11] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The 23S rRNA gene of Coxiella burnetii, the agent of Q fever in humans, contains an unusually high number of conserved, selfish genetic elements, including two group I introns, termed Cbu.L1917 (L1917) and Cbu.L1951 (L1951). To better understand the role that introns play in Coxiella's biology, we determined the intrinsic stability time periods (in vitro half-lives) of the encoded ribozymes to be ∼15 days for L1917 and ∼5 days for L1951, possibly due to differences in their sizes (551 and 1,559 bases, respectively), relative degrees of compactness of the respective RNA structures, and amounts of single-stranded RNA. In vivo half-lives for both introns were also determined to be ∼11 min by the use of RNase protection assays and an Escherichia coli model. Intron RNAs were quantified in synchronous cultures of C. burnetii and found to closely parallel those of 16S rRNA; i.e., ribozyme levels significantly increased between days 0 and 3 and then remained stable until 8 days postinfection. Both 16S rRNA and ribozyme levels fell during the stationary and death phases (days 8 to 14). The marked stability of the Coxiella intron RNAs is presumably conferred by their association with ribosomes, a stoichiometric relationship that was determined to be one ribozyme, of either type, per 500 ribosomes. Inaccuracies in splicing (exon 2 skipping) were found to increase during the first 5 days in culture, with a rate of approximately one improperly spliced 23S rRNA per 1.3 million copies. The in vitro efficiency of L1917 intron splicing was significantly enhanced in the presence of a recombinant Coxiella RNA DEAD-box helicase (CBU_0670) relative to that of controls, suggesting that this enzyme may serve as an intron RNA splice facilitator in vivo.
Collapse
|
17
|
Bustamante C, Cheng W, Mejia YX, Meija YX. Revisiting the central dogma one molecule at a time. Cell 2011; 144:480-97. [PMID: 21335233 PMCID: PMC3063003 DOI: 10.1016/j.cell.2011.01.033] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2010] [Revised: 01/21/2011] [Accepted: 01/26/2011] [Indexed: 12/24/2022]
Abstract
The faithful relay and timely expression of genetic information depend on specialized molecular machines, many of which function as nucleic acid translocases. The emergence over the last decade of single-molecule fluorescence detection and manipulation techniques with nm and Å resolution and their application to the study of nucleic acid translocases are painting an increasingly sharp picture of the inner workings of these machines, the dynamics and coordination of their moving parts, their thermodynamic efficiency, and the nature of their transient intermediates. Here we present an overview of the main results arrived at by the application of single-molecule methods to the study of the main machines of the central dogma.
Collapse
Affiliation(s)
- Carlos Bustamante
- Jason L. Choy Laboratory of Single-Molecule Biophysics, University of California, Berkeley, 94720, USA.
| | | | | | | |
Collapse
|
18
|
Characterization of the RNA degradosome of Pseudoalteromonas haloplanktis: conservation of the RNase E-RhlB interaction in the gammaproteobacteria. J Bacteriol 2010; 192:5413-23. [PMID: 20729366 DOI: 10.1128/jb.00592-10] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The degradosome is a multienzyme complex involved in mRNA degradation in Escherichia coli. The essential endoribonuclease RNase E contains a large noncatalytic region necessary for protein-protein interactions with other components of the RNA degradosome. Interacting proteins include the DEAD-box RNA helicase RhlB, the glycolytic enzyme enolase, and the exoribonuclease PNPase. Pseudoalteromonas haloplanktis, a psychrotolerant gammaproteobacterium distantly related to E. coli, encodes homologs of each component of the RNA degradosome. In P. haloplanktis, RNase E associates with RhlB and PNPase but not enolase. Plasmids expressing P. haloplanktis RNase E (Ph-RNase E) can complement E. coli strains lacking E. coli RNase E (Ec-RNase E). Ph-RNase E, however, does not confer a growth advantage to E. coli at low temperature. Ph-RNase E has a heterologous protein-protein interaction with Ec-RhlB but not with Ec-enolase or Ec-PNPase. The Ph-RNase E binding sites for RhlB and PNPase were mapped by deletion analysis. The PNPase binding site is located at the C-terminal end of Ph-RNase E at the same position as that in Ec-RNase E, but the sequence of the site is not conserved. The sequence of the RhlB binding site in Ph-RNase E is related to the sequence in Ec-RNase E. Together with the heterologous interaction between Ph-RNase E and Ec-RhlB, our results suggest that the underlying structural motif for the RNase E-RhlB interaction is conserved. Since the activity of Ec-RhlB requires its physical interaction with Ec-RNase E, conservation of the underlying structural motif over a large evolutionary distance could be due to constraints involved in the control of RhlB activity.
Collapse
|
19
|
Arraiano CM, Andrade JM, Domingues S, Guinote IB, Malecki M, Matos RG, Moreira RN, Pobre V, Reis FP, Saramago M, Silva IJ, Viegas SC. The critical role of RNA processing and degradation in the control of gene expression. FEMS Microbiol Rev 2010; 34:883-923. [PMID: 20659169 DOI: 10.1111/j.1574-6976.2010.00242.x] [Citation(s) in RCA: 263] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The continuous degradation and synthesis of prokaryotic mRNAs not only give rise to the metabolic changes that are required as cells grow and divide but also rapid adaptation to new environmental conditions. In bacteria, RNAs can be degraded by mechanisms that act independently, but in parallel, and that target different sites with different efficiencies. The accessibility of sites for degradation depends on several factors, including RNA higher-order structure, protection by translating ribosomes and polyadenylation status. Furthermore, RNA degradation mechanisms have shown to be determinant for the post-transcriptional control of gene expression. RNases mediate the processing, decay and quality control of RNA. RNases can be divided into endonucleases that cleave the RNA internally or exonucleases that cleave the RNA from one of the extremities. Just in Escherichia coli there are >20 different RNases. RNase E is a single-strand-specific endonuclease critical for mRNA decay in E. coli. The enzyme interacts with the exonuclease polynucleotide phosphorylase (PNPase), enolase and RNA helicase B (RhlB) to form the degradosome. However, in Bacillus subtilis, this enzyme is absent, but it has other main endonucleases such as RNase J1 and RNase III. RNase III cleaves double-stranded RNA and family members are involved in RNA interference in eukaryotes. RNase II family members are ubiquitous exonucleases, and in eukaryotes, they can act as the catalytic subunit of the exosome. RNases act in different pathways to execute the maturation of rRNAs and tRNAs, and intervene in the decay of many different mRNAs and small noncoding RNAs. In general, RNases act as a global regulatory network extremely important for the regulation of RNA levels.
Collapse
Affiliation(s)
- Cecília M Arraiano
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Apartado 127, 2781-901 Oeiras, Portugal.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Survey of the year 2008: applications of isothermal titration calorimetry. J Mol Recognit 2010; 23:395-413. [DOI: 10.1002/jmr.1025] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
21
|
Górna MW, Pietras Z, Tsai YC, Callaghan AJ, Hernández H, Robinson CV, Luisi BF. The regulatory protein RraA modulates RNA-binding and helicase activities of the E. coli RNA degradosome. RNA (NEW YORK, N.Y.) 2010; 16:553-562. [PMID: 20106955 PMCID: PMC2822920 DOI: 10.1261/rna.1858010] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2009] [Accepted: 12/03/2009] [Indexed: 05/28/2023]
Abstract
The Escherichia coli endoribonuclease RNase E is an essential enzyme having key roles in mRNA turnover and the processing of several structured RNA precursors, and it provides the scaffold to assemble the multienzyme RNA degradosome. The activity of RNase E is inhibited by the protein RraA, which can interact with the ribonuclease's degradosome-scaffolding domain. Here, we report that RraA can bind to the RNA helicase component of the degradosome (RhlB) and the two RNA-binding sites in the degradosome-scaffolding domain of RNase E. In the presence of ATP, the helicase can facilitate the exchange of RraA for RNA stably bound to the degradosome. Our data suggest that RraA can affect multiple components of the RNA degradosome in a dynamic, energy-dependent equilibrium. The multidentate interactions of RraA impede the RNA-binding and ribonuclease activities of the degradosome and may result in complex modulation and rerouting of degradosome activity.
Collapse
Affiliation(s)
- Maria W Górna
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
22
|
The Q motif of a viral packaging motor governs its force generation and communicates ATP recognition to DNA interaction. Proc Natl Acad Sci U S A 2009; 106:14355-60. [PMID: 19706522 DOI: 10.1073/pnas.0904364106] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A key step in the assembly of many viruses is the packaging of DNA into preformed procapsids by an ATP-powered molecular motor. To shed light on the motor mechanism we used single-molecule optical tweezers measurements to study the effect of mutations in the large terminase subunit in bacteriophage lambda on packaging motor dynamics. A mutation, K84A, in the putative ATPase domain driving DNA translocation was found to decrease motor velocity by approximately 40% but did not change the force dependence or decrease processivity substantially. These findings support the hypothesis that a deviant "Walker A-like" phosphate-binding motif lies adjacent to residue 84. Another mutation, Y46F, was also found to decrease motor velocity by approximately 40% but also increase slipping during DNA translocation by >10-fold. These findings support the hypothesis that viral DNA packaging motors contain an adenine-binding motif that regulates ATP hydrolysis and substrate affinity analogous to the "Q motif" recently identified in DEAD-box RNA helicases. We also find impaired force generation for the Y46F mutant, which shows that the Q motif plays an important role in determining the power and efficiency of the packaging motor.
Collapse
|
23
|
Chapter 1 A Phylogenetic View of Bacterial Ribonucleases. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2009; 85:1-41. [DOI: 10.1016/s0079-6603(08)00801-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
24
|
Régnier P, Hajnsdorf E. Poly(A)-assisted RNA decay and modulators of RNA stability. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2009; 85:137-85. [PMID: 19215772 DOI: 10.1016/s0079-6603(08)00804-0] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
In Escherichia coli, RNA degradation is orchestrated by the degradosome with the assistance of complementary pathways and regulatory cofactors described in this chapter. They control the stability of each transcript and regulate the expression of many genes involved in environmental adaptation. The poly(A)-dependent degradation machinery has diverse functions such as the degradation of decay intermediates generated by endoribonucleases, the control of the stability of regulatory non coding RNAs (ncRNAs) and the quality control of stable RNA. The metabolism of poly(A) and mechanism of poly(A)-assisted degradation are beginning to be understood. Regulatory factors, exemplified by RraA and RraB, control the decay rates of subsets of transcripts by binding to RNase E, in contrast to regulatory ncRNAs which, assisted by Hfq, target RNase E to specific transcripts. Destabilization is often consecutive to the translational inactivation of mRNA. However, there are examples where RNA degradation is the primary regulatory step.
Collapse
Affiliation(s)
- Philippe Régnier
- CNRS UPR9073, Institut de Biologie Physico-Chimique, Paris, France
| | | |
Collapse
|
25
|
Carpousis AJ, Luisi BF, McDowall KJ. Endonucleolytic initiation of mRNA decay in Escherichia coli. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2009; 85:91-135. [PMID: 19215771 DOI: 10.1016/s0079-6603(08)00803-9] [Citation(s) in RCA: 125] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Instability is a fundamental property of mRNA that is necessary for the regulation of gene expression. In E. coli, the turnover of mRNA involves multiple, redundant pathways involving 3'-exoribonucleases, endoribonucleases, and a variety of other enzymes that modify RNA covalently or affect its conformation. Endoribonucleases are thought to initiate or accelerate the process of mRNA degradation. A major endoribonuclease in this process is RNase E, which is a key component of the degradative machinery amongst the Proteobacteria. RNase E is the central element in a multienzyme complex known as the RNA degradosome. Structural and functional data are converging on models for the mechanism of activation and regulation of RNase E and its paralog, RNase G. Here, we discuss current models for mRNA degradation in E. coli and we present current thinking on the structure and function of RNase E based on recent crystal structures of its catalytic core.
Collapse
Affiliation(s)
- Agamemnon J Carpousis
- Laboratoire de Microbiologie et Génétique Moléculaires, CNRS et Université Paul Sabatier, 31062 Toulouse, France
| | | | | |
Collapse
|
26
|
Worrall JAR, Górna M, Crump NT, Phillips LG, Tuck AC, Price AJ, Bavro VN, Luisi BF. Reconstitution and analysis of the multienzyme Escherichia coli RNA degradosome. J Mol Biol 2008; 382:870-83. [PMID: 18691600 PMCID: PMC7611026 DOI: 10.1016/j.jmb.2008.07.059] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2008] [Revised: 07/18/2008] [Accepted: 07/23/2008] [Indexed: 10/21/2022]
Abstract
The Escherichia coli RNA degradosome is a multienzyme assembly that functions in transcript turnover and maturation of structured RNA precursors. We have developed a procedure to reconstitute the RNA degradosome from recombinant components using modular coexpression vectors. The reconstituted assembly can be purified on a scale that has enabled biochemical and biophysical analyses, and we compare the properties of recombinant and cell-extracted RNA degradosomes. We present evidence that auxiliary protein components can be recruited to the 'superprotomer' core of the assembly through a dynamic equilibrium involving RNA intermediaries. We discuss the implications for the regulation of RNA degradosome function in vivo.
Collapse
Affiliation(s)
| | | | - Nicholas T. Crump
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK
| | - Lara G. Phillips
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK
| | - Alex C. Tuck
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK
| | - Amanda J. Price
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK
| | - Vassiliy N. Bavro
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK
| | - Ben F. Luisi
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK
| |
Collapse
|
27
|
Carpousis AJ, Khemici V, Poljak L. Assaying DEAD-box RNA helicases and their role in mRNA degradation in Escherichia coli. Methods Enzymol 2008; 447:183-97. [PMID: 19161844 DOI: 10.1016/s0076-6879(08)02210-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The DEAD-box RNA helicases are a ubiquitous family of enzymes involved in processes that include RNA splicing, ribosome biogenesis, and mRNA degradation. In general, these enzymes help to unwind short stretches of double-stranded RNA in processes that involve the remodeling of RNA structure or of ribonucleoprotein complexes. Here we describe work from our laboratory on the characterization of the RhlB of Escherichia coli, a DEAD-box RNA helicase that is part of a multienzyme complex known as the RNA degradosome. RhlB interacts physically and functionally with RNase E and polynucleotide phosphorylase (PNPase), two other components of the RNA degradosome. We describe enzyme assays that demonstrated that the interaction between RhlB and RNase E is necessary for the ATPase and RNA unwinding activities of RhlB. We also describe an mRNA degradation assay that showed that RhlB facilitates the degradation of structured mRNA by PNPase. These assays are discussed in the context of how they have contributed to our understanding of the function of RhlB in mRNA degradation.
Collapse
Affiliation(s)
- Agamemnon J Carpousis
- Laboratoire de Microbiologie et Génétique Moléculaire, Centre National de la Recherche Scientifique and Université Paul Sabatier, Toulouse, France
| | | | | |
Collapse
|