1
|
Wei X, Zhao G, Chen N, Xu X, Jiang H, Tran D, Glissmeyer E, Goldring MB, Goldring SR, Wang D. Identification of formulation parameters that affect the analgesic efficacy of ProGel-Dex - A thermoresponsive polymeric dexamethasone prodrug for chronic arthritis pain relief. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2024; 62:102782. [PMID: 39179013 PMCID: PMC11687284 DOI: 10.1016/j.nano.2024.102782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/08/2024] [Accepted: 08/19/2024] [Indexed: 08/26/2024]
Abstract
The relief of joint pain is one of the main objectives in the clinical management of arthritis. Although significant strides have been made in improving management of rheumatoid and related forms of inflammatory arthritis, there are still major unmet needs for therapies that selectively provide potent, sustained and safe joint pain relief, especially among patients with osteoarthritis (OA), the most common form of arthritis. We have recently developed ProGel-Dex, an N-(2-hydroxypropyl) methacrylamide (HPMA) copolymer-based thermoresponsive dexamethasone (Dex) prodrug, which forms a hydrogel upon intra-articular administration and provides sustained improvement in pain-related behavior and inflammation in rodent models of arthritis. The focus of the present study was to investigate the impact of ProGel-Dex formulation parameters on its physicochemical properties and in vivo efficacy. The results of this study provide essential knowledge for the future design of ProGel-Dex that can provide more effective, sustained and safe relief of joint pain and inflammation.
Collapse
Affiliation(s)
- Xin Wei
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Gang Zhao
- Ensign Pharmaceutical, Inc., Omaha, NE 68106, USA
| | - Ningrong Chen
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Xiaoke Xu
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Haochen Jiang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Daniel Tran
- Ensign Pharmaceutical, Inc., Omaha, NE 68106, USA
| | | | | | - Steven R Goldring
- Ensign Pharmaceutical, Inc., Omaha, NE 68106, USA; Hospital for Special Surgery, New York, NY 10021, USA
| | - Dong Wang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, 68198, USA; Ensign Pharmaceutical, Inc., Omaha, NE 68106, USA; Department of Orthopaedic Surgery & Rehabilitation, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| |
Collapse
|
2
|
Oliveira JMS, Sabatini CA, Santos-Neto AJ, Foresti E. Broken into pieces: The challenges of determining sulfonated azo dyes in biological reactor effluents using LC-ESI-MS/MS analysis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 318:120877. [PMID: 36535425 DOI: 10.1016/j.envpol.2022.120877] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 12/09/2022] [Accepted: 12/12/2022] [Indexed: 06/17/2023]
Abstract
Most studies on the biodegradation of textile azo dyes use color as parameter for measuring the efficiency of degradation. Although widely employed, spectrophotometric methods are susceptible to the interference of metabolites or degradation products from the biological treatment. We propose a method for determination of a model sulfonated azo dye (Direct Black 22, DB22) in wastewater using solid-phase extraction (SPE) and liquid chromatography - electrospray ionization tandem mass spectrometry (LC-ESI-MS/MS). MS analysis in negative electrospray ionization mode showed DB22 as the most abundant precursor ion, corresponding to [M-3Na + H]2-, which yields two radical anions of m/z 370.1 and m/z 645 after MS/MS fragmentation by collision-induced dissociation (CID). Calibration curve presented adequate linearity and precision in the range of 120-1500 ng mL-1, and recovery and detection limit were appropriate to the typically employed working concentrations. Nevertheless, we observed that standard heating of DB22 under alkaline conditions to simulate the production of wastewater during dye-baths resulted in loss of MS/MS signal, without affecting color. Further analysis showed that DB22 undergoes hydrolysis and does not remain unaltered in solution. Alternative methods of hydrolysis evaluated resulted in no MS/MS signal as well. SPE-LC-ESI-MS/MS analysis evidenced the structural change of DB22 in aqueous solution while the dyeing-capacity was preserved. This technique has also the potential of being tailored to consider the detection of the hydrolyzed fragments of azo dyes in wastewater for appropriate quantification, but it was not the scope of the current step of this research. Color remains as a more reliable parameter for monitoring azo compounds which are unstable in aqueous solution, while a more robust and holistic method needs to be developed for the speciation of the DB22 products of thermal hydrolysis.
Collapse
Affiliation(s)
- J M S Oliveira
- Department of Hydraulics and Sanitation, São Carlos School of Engineering, University of São Paulo, Av. Trabalhador São Carlense, 400, 13566-590, São Carlos, SP, Brazil.
| | - C A Sabatini
- Department of Hydraulics and Sanitation, São Carlos School of Engineering, University of São Paulo, Av. Trabalhador São Carlense, 400, 13566-590, São Carlos, SP, Brazil
| | - A J Santos-Neto
- São Carlos Institute of Chemistry (IQSC), Av. Trabalhador São Carlense, 400, 13566-590, São Carlos, SP, Brazil
| | - E Foresti
- Department of Hydraulics and Sanitation, São Carlos School of Engineering, University of São Paulo, Av. Trabalhador São Carlense, 400, 13566-590, São Carlos, SP, Brazil
| |
Collapse
|
3
|
Zhang M, Ren Y, Du S, Zhou Y, Jiang W, Ke Z, Jiang M, Qiu J, He J, Hong Q. A novel hydrolase PyzH catalyses the cleavage of C=N double bond for pymetrozine degradation in Pseudomonas sp. BYT-1. Environ Microbiol 2021; 23:3265-3273. [PMID: 33939873 DOI: 10.1111/1462-2920.15557] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 04/29/2021] [Accepted: 05/01/2021] [Indexed: 11/26/2022]
Abstract
Pymetrozine is a synthetic pesticide that can be utilized as the sole carbon source by Pseudomonas sp. strain BYT-1. However, the genes involved in the degradation of pymetrozine remain unknown. We used transposon mutagenesis to create a mutant that unable to hydrolyze pymetrozine. The transposon interrupted the gene pyzH, which was cloned by self-formed adaptor PCR. PyzH hydrolyzed the C=N double bond of pymetrozine to produce 4-amino-6-methyl-4,5-dihydro-2H-[1,2,4]triazin-3-one (AMDT) and nicotinaldehyde; the latter inhibits PyzH activity. PyzH can completely hydrolyze pymetrozine in the presence of dehydrogenase ORF6, which can convert nicotinaldehyde into nicotinic acid and relieve the inhibition. H2 18 O-labeling experiments showed that the oxygen atom of nicotinaldehyde came from water instead of oxygen. PyzH homologous genes were also found in other soil isolates able to degrade pymetrozine.
Collapse
Affiliation(s)
- Mingliang Zhang
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Yijun Ren
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Shilong Du
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Yidong Zhou
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Wankui Jiang
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Zhijian Ke
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Mingli Jiang
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Jiguo Qiu
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Jian He
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Qing Hong
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| |
Collapse
|
4
|
Nesterkina M, Barbalat D, Kravchenko I. Design, synthesis and pharmacological profile of (−)-verbenone hydrazones. OPEN CHEM 2020. [DOI: 10.1515/chem-2020-0103] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
AbstractA series of novel (−)-verbenone hydrazones was designed and synthesized via condensation of terpenoid with hydrazides derived from phenoxyacetic acid. The structure of target compounds was confirmed by 1H-NMR and 13C-NMR analysis, Raman and FT-IR spectroscopy, electrospray ionization method and fast atom bombardment (FAB) mass spectrometry. Thermal properties of (−)-verbenone hydrazones 3a–3e were estimated by differential scanning calorimetry and their purity by HPLC coupled to mass spectrometry. Verbenone hydrazones were revealed to exist as Z/E geometrical isomers about C═N bond and cis/trans amide conformers. Verbenone derivatives were estimated as potential anticonvulsant agents after their oral administration against pentylenetetrazole and maximal electroshock-induced seizures in mice. Analgesic effect of hydrazones was studied by topical application on models of allyl isothiocyanate and capsaicin-induced pain. The present findings indicate that verbenone hydrazones contribute to seizure protection both at short (6 h) and long (24 h) time periods by blocking chemical- and electroshock-induced convulsions. Binding of compounds 3a–3e to TRPA1/TRPV1 ion channels was suggested as a feasible mechanism explaining their significant analgesic activity.
Collapse
Affiliation(s)
- Mariia Nesterkina
- Department of Organic and Pharmaceutical Technologies, Odessa National Polytechnic University, Odessa 65044, Ukraine
| | - Dmytro Barbalat
- Department of Analytical and Toxicological Chemistry, Odessa I.I. Mechnikov National University, Odessa 65082, Ukraine
| | - Iryna Kravchenko
- Department of Organic and Pharmaceutical Technologies, Odessa National Polytechnic University, Odessa 65044, Ukraine
| |
Collapse
|
5
|
Sun G, Zhang M, Liu X, Gao Q, Jiang W, Zhou Y, Wang H, Cui M, Qiu J, Xu J, Hong Q. Isolation and Characterization of the Pymetrozine-Degrading Strain Pseudomonas sp. BYT-1. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:4170-4176. [PMID: 30912660 DOI: 10.1021/acs.jafc.8b06155] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
In this study, we isolated and characterized the bacterial strain Pseudomonas sp. BYT-1, which is capable of degrading pymetrozine and using it as the sole carbon source for growth. Strain BYT-1 could degrade 2.30 mM pymetrozine within 20 h under the optimal conditions of 30 °C and pH 7.0. Investigation of the degradation pathway showed that pymetrozine was oxidatively hydrolyzed to 4-amino-6-methyl-4,5-dihydro-2 H-[1,2,4]triazin-3-one (AMDT) and nicotinic acid (NA). The former accumulates as the end product in the culture, whereas the latter was hydroxylated to 6-hydroxynicotinic acid (6HNA) and subjected to further degradation. The transformation of pymetrozine to AMDT and NA by the cell-free extracts of strain BYT-1 also supported that the oxidative hydrolysis of the C═N double bond in pymetrozine was the initial degradation step. This is the first report on a pure bacterial culture with the ability to degrade pymetrozine. These findings enhance our understanding of the microbial degradation mechanism of pymetrozine.
Collapse
Affiliation(s)
- Gaojie Sun
- Key Lab of Microbiological Agricultural Environment, Ministry of Agriculture, College of Life Science , Nanjing Agriculture University , Nanjing 210095 , People's Republic of China
| | - Mingliang Zhang
- Key Lab of Microbiological Agricultural Environment, Ministry of Agriculture, College of Life Science , Nanjing Agriculture University , Nanjing 210095 , People's Republic of China
| | - Xiaoan Liu
- Key Lab of Microbiological Agricultural Environment, Ministry of Agriculture, College of Life Science , Nanjing Agriculture University , Nanjing 210095 , People's Republic of China
| | - Qinqin Gao
- Key Lab of Microbiological Agricultural Environment, Ministry of Agriculture, College of Life Science , Nanjing Agriculture University , Nanjing 210095 , People's Republic of China
| | - Wankui Jiang
- Key Lab of Microbiological Agricultural Environment, Ministry of Agriculture, College of Life Science , Nanjing Agriculture University , Nanjing 210095 , People's Republic of China
| | - Yidong Zhou
- Key Lab of Microbiological Agricultural Environment, Ministry of Agriculture, College of Life Science , Nanjing Agriculture University , Nanjing 210095 , People's Republic of China
| | - Hui Wang
- Key Lab of Microbiological Agricultural Environment, Ministry of Agriculture, College of Life Science , Nanjing Agriculture University , Nanjing 210095 , People's Republic of China
| | - Mengdi Cui
- Key Lab of Microbiological Agricultural Environment, Ministry of Agriculture, College of Life Science , Nanjing Agriculture University , Nanjing 210095 , People's Republic of China
| | - Jiguo Qiu
- Key Lab of Microbiological Agricultural Environment, Ministry of Agriculture, College of Life Science , Nanjing Agriculture University , Nanjing 210095 , People's Republic of China
| | - Jianhong Xu
- Jiangsu Key Laboratory for Food Quality and Safety, State Key Laboratory Cultivation Base, Ministry of Science and Technology, Institute of Food Safety and Nutrition , Jiangsu Academy of Agricultural Sciences , Nanjing 210014 , People's Republic of China
| | - Qing Hong
- Key Lab of Microbiological Agricultural Environment, Ministry of Agriculture, College of Life Science , Nanjing Agriculture University , Nanjing 210095 , People's Republic of China
- Jiangsu Key Laboratory for Food Quality and Safety, State Key Laboratory Cultivation Base, Ministry of Science and Technology, Institute of Food Safety and Nutrition , Jiangsu Academy of Agricultural Sciences , Nanjing 210014 , People's Republic of China
| |
Collapse
|
6
|
Zhang YA, Di J, Du W. Preparation of PA 6- g-LCX-PAH fiber for removing formaldehyde. POLYM ENG SCI 2018. [DOI: 10.1002/pen.24755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Yi-An Zhang
- College of Textiles and Clothing; Jiangnan University; Wuxi 214122 People's Republic of China
| | - Jianfeng Di
- College of Textiles and Clothing; Jiangnan University; Wuxi 214122 People's Republic of China
- College of Textiles and Clothing; Wuyi University; Jiangmen 529020 People's Republic of China
| | - Wenqin Du
- College of Textiles and Clothing; Wuyi University; Jiangmen 529020 People's Republic of China
| |
Collapse
|
7
|
Sheng X, Li X, Li M, Zhang R, Deng S, Yang W, Chang G, Ye X. An Injectable Oxidized Carboxymethyl Cellulose/Polyacryloyl Hydrazide Hydrogel via Schiff Base Reaction. Aust J Chem 2018. [DOI: 10.1071/ch17214] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
A series of injectable hydrogels was prepared by cross-linking oxidized carboxymethyl cellulose (oxi-CMC) with polyacryloyl hydrazide (PAH) via a Schiff base reaction under physiological conditions. The hydrogels exhibited superior performance such as appropriate rheology properties, high swelling ratio, and low degradation rate. In phosphate buffer solution (PBS, pH 7.4) at 37°C, the swelling ratio of the hydrogels ranged from 19 to 28 after 7 h, the degradation percentage of the oxi-CMC6/PAH3 hydrogel was ~47 % after 20 days. Using bovine serum albumin (BSA) as a model protein drug, the results of in vitro drug release studies demonstrated that the sustained release of BSA could be cooperatively controlled through drug diffusion and hydrogel degradation in PBS (pH 7.4) at 37°C, and the cumulative release percentage of BSA from a drug-loaded oxi-CMC6/PAH3 hydrogel was ~88 % after 8 days. The results signified that oxi-CMC6/PAH3 hydrogel could be potentially applied in the fields of drug delivery vehicles, tissue engineering, and cell encapsulation materials.
Collapse
|
8
|
Ethanolamine Catabolism in Pseudomonas aeruginosa PAO1 Is Regulated by the Enhancer-Binding Protein EatR (PA4021) and the Alternative Sigma Factor RpoN. J Bacteriol 2016; 198:2318-29. [PMID: 27325678 DOI: 10.1128/jb.00357-16] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Accepted: 06/13/2016] [Indexed: 12/31/2022] Open
Abstract
UNLABELLED Although genes encoding enzymes and proteins related to ethanolamine catabolism are widely distributed in the genomes of Pseudomonas spp., ethanolamine catabolism has received little attention among this metabolically versatile group of bacteria. In an attempt to shed light on this subject, this study focused on defining the key regulatory factors that govern the expression of the central ethanolamine catabolic pathway in Pseudomonas aeruginosa PAO1. This pathway is encoded by the PA4022-eat-eutBC operon and consists of a transport protein (Eat), an ethanolamine-ammonia lyase (EutBC), and an acetaldehyde dehydrogenase (PA4022). EutBC is an essential enzyme in ethanolamine catabolism because it hydrolyzes this amino alcohol into ammonia and acetaldehyde. The acetaldehyde intermediate is then converted into acetate in a reaction catalyzed by acetaldehyde dehydrogenase. Using a combination of growth analyses and β-galactosidase fusions, the enhancer-binding protein PA4021 and the sigma factor RpoN were shown to be positive regulators of the PA4022-eat-eutBC operon in P. aeruginosa PAO1. PA4021 and RpoN were required for growth on ethanolamine, and both of these regulatory proteins were essential for induction of the PA4022-eat-eutBC operon. Unexpectedly, the results indicate that acetaldehyde (and not ethanolamine) serves as the inducer molecule that is sensed by PA4021 and leads to the transcriptional activation of the PA4022-eat-eutBC operon. Due to its regulatory role in ethanolamine catabolism, PA4021 was given the name EatR. Both EatR and its target genes are conserved in several other Pseudomonas spp., suggesting that these bacteria share a mechanism for regulating ethanolamine catabolism. IMPORTANCE The results of this study provide a basis for understanding ethanolamine catabolism and its regulation in Pseudomonas aeruginosa PAO1. Interestingly, expression of the ethanolamine-catabolic genes in this bacterium was found to be under the control of a positive-feedback regulatory loop in a manner dependent on the transcriptional regulator PA4021, the sigma factor RpoN, and the metabolite acetaldehyde. Previously characterized regulators of ethanolamine catabolism are known to sense and respond directly to ethanolamine. In contrast, PA4021 (EatR) appears to monitor the intracellular levels of free acetaldehyde and responds through transcriptional activation of the ethanolamine-catabolic genes. This regulatory mechanism is unique and represents an alternative strategy used by bacteria to govern the acquisition of ethanolamine from their surroundings.
Collapse
|
9
|
Lingli H, Ning X, Harnud S, Yuanhu P, Dongmei C, Yanfei T, Zhenli L, Zonghui Y. Metabolic Disposition and Elimination of Cyadox in Pigs, Chickens, Carp, and Rats. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:5557-5569. [PMID: 25973850 DOI: 10.1021/acs.jafc.5b01745] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The metabolism, distribution, and elimination of cyadox (CYA) is investigated in pigs, chickens, carp, and rats to identify the marker residue and target tissue of CYA in food animals for food safety concerns. Following a single oral gavage of [(3)H]-CYA, the total radioactivity was rapidly excreted, with more than 95% of the dose excreted within 14 days in the four species. Fecal excretion of the total radioactivity was 66.2% and 51.6%, and urinary excretion of the total radioactivity was 28.35% and 44.3% in rats and pigs, respectively. Radioactivity was observed in nearly all of the tissues in the first 6 h after 7 days of consecutive oral dosing. The highest radioactivity and longest persistence were in the livers and kidneys, where the majority of the radioactivity was cleared within 7 days. A total of 15 metabolites were identified in rats, pigs, chickens, and carp, and eight new metabolites were identified for the first time in vivo. No parent drug could be detected in the tissues of rats and pigs. The major metabolites of CYA were Cy1, Cy3, and Cy6 in pigs, Cy1, Cy5, and Cy6 in chickens, Cy1, Cy2, and Cy4 in carp, and Cy1, Cy2, Cy4, and Cy5 in rats. Cy1 was suggested to be the marker residue, and the kidneys were identified as the target tissue of CYA in pigs and chickens. These results provide comprehensive information for the food safety evaluation of CYA in food animals and will improve the understanding of the pharmacology and toxicology of CYA in animals.
Collapse
Affiliation(s)
- Huang Lingli
- †MOA Laboratory of Risk Assessment for Quality and Safety of Livestock and Poultry Products, ‡National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, and §Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China
| | - Xu Ning
- †MOA Laboratory of Risk Assessment for Quality and Safety of Livestock and Poultry Products, ‡National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, and §Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China
| | - Sechenchogt Harnud
- †MOA Laboratory of Risk Assessment for Quality and Safety of Livestock and Poultry Products, ‡National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, and §Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China
| | - Pan Yuanhu
- †MOA Laboratory of Risk Assessment for Quality and Safety of Livestock and Poultry Products, ‡National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, and §Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China
| | - Chen Dongmei
- †MOA Laboratory of Risk Assessment for Quality and Safety of Livestock and Poultry Products, ‡National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, and §Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China
| | - Tao Yanfei
- †MOA Laboratory of Risk Assessment for Quality and Safety of Livestock and Poultry Products, ‡National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, and §Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China
| | - Liu Zhenli
- †MOA Laboratory of Risk Assessment for Quality and Safety of Livestock and Poultry Products, ‡National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, and §Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China
| | - Yuan Zonghui
- †MOA Laboratory of Risk Assessment for Quality and Safety of Livestock and Poultry Products, ‡National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, and §Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China
| |
Collapse
|
10
|
Hydrazidase, a novel amidase signature enzyme that hydrolyzes acylhydrazides. J Bacteriol 2015; 197:1115-24. [PMID: 25583978 DOI: 10.1128/jb.02443-14] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The degradation mechanisms of natural and artificial hydrazides have been elucidated. Here we screened and isolated bacteria that utilize the acylhydrazide 4-hydroxybenzoic acid 1-phenylethylidene hydrazide (HBPH) from soils. Physiological and phylogenetic studies identified one bacterium as Microbacterium sp. strain HM58-2, from which we purified intracellular hydrazidase, cloned its gene, and prepared recombinant hydrazidase using an Escherichia coli expression system. The Microbacterium sp. HM58-2 hydrazidase is a 631-amino-acid monomer that was 31% identical to indoleacetamide hydrolase isolated from Bradyrhizobium japonicum. Phylogenetic studies indicated that the Microbacterium sp. HM58-2 hydrazidase constitutes a novel hydrazidase group among amidase signature proteins that are distributed within proteobacteria, actinobacteria, and firmicutes. The hydrazidase stoichiometrically hydrolyzed the acylhydrazide residue of HBPH to the corresponding acid and hydrazine derivative. Steady-state kinetics showed that the enzyme hydrolyzes structurally related 4-hydrozybenzamide to hydroxybenzoic acid at a lower rate than HBPH, indicating that the hydrazidase prefers hydrazide to amide. The hydrazidase contains the catalytic Ser-Ser-Lys motif that is conserved among members of the amidase signature family; it shares a catalytic mechanism with amidases, according to mutagenesis findings, and another hydrazidase-specific mechanism must exist that compensates for the absence of the catalytic Ser residue. The finding that an environmental bacterium produces hydrazidase implies the existence of a novel bacterial mechanism of hydrazide degradation that impacts its ecological role.
Collapse
|
11
|
Kumar A, Ujjwal RR, Mittal A, Bansal A, Ojha U. Polyacryloyl hydrazide: an efficient, simple, and cost effective precursor to a range of functional materials through hydrazide based click reactions. ACS APPLIED MATERIALS & INTERFACES 2014; 6:1855-65. [PMID: 24397622 DOI: 10.1021/am404837f] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Preparation and studies of ion exchangeable epoxy resins, stimuli responsive hydrogels, and polymer-dye conjugates have been accomplished through hydrazide based click reactions using polyacryloyl hydrazide (PAH) as the precursor. A convenient synthesis of PAH with quantitative functionality was achieved by treatment of polymethyl acrylate with hydrazine hydrate in the presence of tetra-n-butyl ammonium bromide. PAH was cured with bisphenol A diglycidyl ether (BADGE) at 60 °C to form transparent resins with superior mechanical properties (tensile strength = 2-40 MPa, Young's modulus = 3.3-1043 MPa, and ultimate elongation = 9-75%) compared to the conventional resins prepared using triethylene tetramine. The resins exhibited higher ion exchange capacities (1.2-6.3 mmol/g) compared to the commercial AHA ammonium-type (Tokuyama Co., Japan) membranes. An azo dye with aldehyde functionality was covalently attached to PAH through hydrazone linkage, and the dye labeled PAH exhibited colorimetric sensing ability for base and acids up to micromolar concentration. The swelling of the PAH based hydrogel varied in the range 4-450% depending on the pH and temperature of the medium. The hydrogels gradually released 30% of the original encapsulated dye in a period of 200 h. PAH-hydroxy naphthaldehyde conjugate released 75% of the original loading in ∼11 days at 37 °C and pH 5.0 through cleavage of the -CONHN═C- linkage. The study depicts the versatility of PAH as a precursor and inspires synthesis of a range of new materials based on PAH in the future.
Collapse
Affiliation(s)
- Anuj Kumar
- Department of Chemistry, Rajiv Gandhi Institute of Petroleum Technology , Raebareli Ratapur Chowk, UP-229316, India
| | | | | | | | | |
Collapse
|
12
|
Group X aldehyde dehydrogenases of Pseudomonas aeruginosa PAO1 degrade hydrazones. J Bacteriol 2012; 194:1447-56. [PMID: 22267508 DOI: 10.1128/jb.06590-11] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Hydrazones are natural and synthetic compounds containing a C=N-N moiety. Here we found that the opportunistic pathogen Pseudomonas aeruginosa PAO1 produced NAD(+)- or NADP(+)-dependent hydrazone dehydrogenase (HDH), which converts hydrazones to the corresponding hydrazides and acids rather than to the simple hydrolytic product aldehydes. Gene cloning indicated that the HDH is part of the group X aldehyde dehydrogenase (ALDH) family, which is distributed among bacteria, although the physiological roles of the ALDH family remain unknown. The PAO1 strain upregulated HDH in the presence of the hydrazone adipic acid bis(ethylidene hydrazide) (AEH). Gene disruption of the HDH-encoding hdhA (PA4022) decreased growth rates in culture medium containing AEH as the sole carbon source, and this effect was more obvious in the double gene disruption of hdhA and its orthologous exaC (PA1984), indicating that these genes are responsible for hydrazone utilization. Recombinant proteins of group X ALDHs from Escherichia coli, Paracoccus denitrificans, and Ochrobactrum anthropi also acted as HDHs in that they produced HDH activity in the cells and degraded hydrazones. These findings indicated the physiological roles of group X ALDHs in bacteria and showed that they comprise a distinct ALDH subfamily.
Collapse
|
13
|
Suzen S, Cihaner SS, Coban T. Synthesis and comparison of antioxidant properties of indole-based melatonin analogue indole amino Acid derivatives. Chem Biol Drug Des 2011; 79:76-83. [PMID: 21883955 DOI: 10.1111/j.1747-0285.2011.01216.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Increased levels of reactive oxygen species attributed to oxidative stress have been found to be responsible for the development of some vital diseases such as cardiovascular, neurodegenerative and autoimmune diseases. Recently, it was observed that melatonin is a highly important antioxidant, and melatonin analogues are under investigation to find out improved antioxidant activity. In this study, 14 melatonin -based analogue indole amino acid and N-protected amino acid derivatives were synthesized and elucidated spectrometrically. To investigate the antioxidant activity of the synthesized compounds and to compare with melatonin, butylhydroxytoluene and vitamin E, lipid peroxidation inhibition and 2,2-diphenyl-1-picrylhydrazyl radical-scavenging activities were tested. The results indicated that the synthesized new indole amino acid derivatives have similar activities to melatonin in 2,2-diphenyl-1-picrylhydrazyl radical-scavenging activity assay but more potent activities in lipid peroxidation inhibition assay.
Collapse
Affiliation(s)
- Sibel Suzen
- Faculty of Pharmacy, Department of Pharmaceutical Chemistry, Ankara University, 06100 Tandogan, Ankara, Turkey.
| | | | | |
Collapse
|
14
|
Xu N, Huang L, Liu Z, Pan Y, Wang X, Tao Y, Chen D, Wang Y, Peng D, Yuan ZH. Metabolism of cyadox by the intestinal mucosa microsomes and gut flora of swine, and identification of metabolites by high-performance liquid chromatography combined with ion trap/time-of-flight mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2011; 25:2333-2344. [PMID: 21766376 DOI: 10.1002/rcm.5119] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Cyadox (CYX), 2-formylquinoxaline-1,4-dioxide cyanoacetylhydrazone, is an antimicrobial and growth-promoting feed additive for food-producing animals. To reveal biotransformation of CYX in swine intestine, CYX was incubated with swine intestinal microsomes and mucosa in the presence of an NADPH-generating system and swine ileal flora and colonic flora, respectively. The metabolites of CYX were identified using high-performance liquid chromatography combined with ion trap/time-of-flight mass spectrometry (LC/MS-ITTOF). Structural elucidation of the metabolites was precisely performed by comparing their changes in molecular mass, full scan MS/MS spectra and accurate mass measurements with those of the parent drug. Finally, seven metabolites were identified as follows: three reduced metabolites (cyadox 1-monoxide (Cy1), cyadox 4-monoxide (Cy2) and bisdesoxycyadox (Cy4)); hydroxylation metabolite (3-hydroxylcyadox 1-monoxide (Cy3)); hydrolysis metabolite of the amide bond (N-decyanoacetyl cyadox (Cy5)); a hydrogenation metabolite (11,12-dihydro-bisdesoxycyadox (Cy6)) and a side-chain cleavage metabolite (2-hydromethylquinoxaline (Cy7)). Only one metabolite (Cy1) was found in intestinal microsomes. Cy1, Cy2 and Cy4 were detected in intestinal mucosa, ileal and colonic flora. In addition, Cy3 and Cy5 were only obtained from ileal flora, and Cy6 and Cy7 alone were observed in colonic bacteria. The results indicated that N→O group reduction was the main metabolic pathway of CYX metabolism in swine ileal flora, intestinal microsomes and mucosa. New metabolic profiles of hydrogenation and cleavage on the side chain were found in colonic bacteria. Among the identified metabolites, two new metabolites (Cy6, Cy7) were detected for the first time. These studies will contribute to clarify comprehensively the metabolism of CYX in animals, and provide evidence to explain the pharmacology and toxicology effects of CYX in animals.
Collapse
Affiliation(s)
- Ning Xu
- MAO Key Laboratory of Food Safety Evaluation/National Reference Laboratory of Veterinary Drug Residues (HZAU), Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Yılmaz AD, Coban T, Suzen S. Synthesis and antioxidant activity evaluations of melatonin-based analogue indole-hydrazide/hydrazone derivatives. J Enzyme Inhib Med Chem 2011; 27:428-36. [DOI: 10.3109/14756366.2011.594048] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Ayse Didem Yılmaz
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ankara University
06100 Tandogan, Ankara Turkey
| | - Tulay Coban
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Ankara University
06100 Tandogan, Ankara Turkey
| | - Sibel Suzen
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ankara University
06100 Tandogan, Ankara Turkey
| |
Collapse
|