1
|
Wang J, Miao T, Wang Y, Wang T, He Z, Xiong F, Yuan D, Guo Q, Yang Y, Tang Z, Huang B, Zhao J. Altered expression and potential role of N6-methyladenosine mRNA methylation in abdominal aortic aneurysm mouse model. Sci Rep 2025; 15:18893. [PMID: 40442295 PMCID: PMC12123021 DOI: 10.1038/s41598-025-03760-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 05/22/2025] [Indexed: 06/02/2025] Open
Abstract
It is an important cause of death in old age to rupture an abdominal aortic aneurysm. The pathogenesis of AAA has not been fully elucidated, and m6A RNA methylation regulators have never been implicated in AAA development. This study aimed to explore the expression profile, potential functions and regulated mechanism of m6A RNA methylation in the abdominal aortic aneurysm mice model. A successful AAA mouse model was established using Ang II. M6A- methylated RNA Immunoprecipitation (MeRIP) sequencing and RNA sequencing were performed to identify the m6A sites in the abdominal aorta walls samples. The expression of m6A methylation regulators was analyzed in the datasets and MeRIP-qPCR was performed to verify the results of MeRIP-sequencing. Bioinformatics analysis was used to evaluate the m6A patterns and indicate the potential signaling pathway. There were 2039 differentially methylated m6A peaks involving 1865 mRNAs in the AAA group relative to the control, of which 1610 peaks in 1466 mRNAs were hypermethylated, and 429 peaks in 410 mRNAs were hypomethylated. The hypermethylated mRNAs in AAA group were primarily enriched in transcription regulation and intercellular signaling, especially the Wnt signaling-associated processes. Hypomethylated m6A sites were mainly enriched in G protein-coupled receptor activity and ion channel activity. MeRIP-qPCR suggested that the sequencing data were reliable and accurate. The mRNA expression of 24 m6A regulators showed no obvious difference between AAA and the control group, but the m6A methylation levels of three components of methyltransferases complex and one 'readers' were significantly increased. Our study suggested an original viewpoint that the m6A modification might be regulated by several unidentified regulation modes or genes in the Ang II-induced AAA mice model, and be closely relevant to the combined effect of m6A methylation modification in the Wnt pathway, G protein-coupled receptor, and ion channel-associated genes, which were worthy of further investigation.
Collapse
Affiliation(s)
- Julin Wang
- Department of Vascular Surgery, West China Hospital, Sichuan University, 37 GuoXue Alley, Chengdu, 610041, Sichuan, People's Republic of China
| | - Tianyu Miao
- Department of Vascular Surgery, West China Hospital, Sichuan University, 37 GuoXue Alley, Chengdu, 610041, Sichuan, People's Republic of China
| | - Yanyun Wang
- Laboratory of Molecular Translational Medicine, Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
| | - Tiehao Wang
- Department of Vascular Surgery, West China Hospital, Sichuan University, 37 GuoXue Alley, Chengdu, 610041, Sichuan, People's Republic of China
| | - Zhangyu He
- West China School of Basic Sciences and Forensic Medicine, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
| | - Fei Xiong
- Department of Vascular Surgery, West China Hospital, Sichuan University, 37 GuoXue Alley, Chengdu, 610041, Sichuan, People's Republic of China
| | - Ding Yuan
- Department of Vascular Surgery, West China Hospital, Sichuan University, 37 GuoXue Alley, Chengdu, 610041, Sichuan, People's Republic of China
| | - Qiang Guo
- Department of Vascular Surgery, West China Hospital, Sichuan University, 37 GuoXue Alley, Chengdu, 610041, Sichuan, People's Republic of China
| | - Yi Yang
- Department of Vascular Surgery, West China Hospital, Sichuan University, 37 GuoXue Alley, Chengdu, 610041, Sichuan, People's Republic of China
| | - Zhichen Tang
- Laboratory of Molecular Translational Medicine, Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
| | - Bin Huang
- Department of Vascular Surgery, West China Hospital, Sichuan University, 37 GuoXue Alley, Chengdu, 610041, Sichuan, People's Republic of China.
| | - Jichun Zhao
- Department of Vascular Surgery, West China Hospital, Sichuan University, 37 GuoXue Alley, Chengdu, 610041, Sichuan, People's Republic of China.
| |
Collapse
|
2
|
Sponga A, Arolas JL, Schwarz TC, Jeffries CM, Rodriguez Chamorro A, Kostan J, Ghisleni A, Drepper F, Polyansky A, De Almeida Ribeiro E, Pedron M, Zawadzka-Kazimierczuk A, Mlynek G, Peterbauer T, Doto P, Schreiner C, Hollerl E, Mateos B, Geist L, Faulkner G, Kozminski W, Svergun DI, Warscheid B, Zagrovic B, Gautel M, Konrat R, Djinović-Carugo K. Order from disorder in the sarcomere: FATZ forms a fuzzy but tight complex and phase-separated condensates with α-actinin. SCIENCE ADVANCES 2021; 7:eabg7653. [PMID: 34049882 PMCID: PMC8163081 DOI: 10.1126/sciadv.abg7653] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 04/13/2021] [Indexed: 05/03/2023]
Abstract
In sarcomeres, α-actinin cross-links actin filaments and anchors them to the Z-disk. FATZ (filamin-, α-actinin-, and telethonin-binding protein of the Z-disk) proteins interact with α-actinin and other core Z-disk proteins, contributing to myofibril assembly and maintenance. Here, we report the first structure and its cellular validation of α-actinin-2 in complex with a Z-disk partner, FATZ-1, which is best described as a conformational ensemble. We show that FATZ-1 forms a tight fuzzy complex with α-actinin-2 and propose an interaction mechanism via main molecular recognition elements and secondary binding sites. The obtained integrative model reveals a polar architecture of the complex which, in combination with FATZ-1 multivalent scaffold function, might organize interaction partners and stabilize α-actinin-2 preferential orientation in Z-disk. Last, we uncover FATZ-1 ability to phase-separate and form biomolecular condensates with α-actinin-2, raising the question whether FATZ proteins can create an interaction hub for Z-disk proteins through membraneless compartmentalization during myofibrillogenesis.
Collapse
Affiliation(s)
- Antonio Sponga
- Department of Structural and Computational Biology, Max Perutz Labs, University of Vienna, Campus Vienna Biocenter 5, A-1030 Vienna, Austria
| | - Joan L Arolas
- Department of Structural and Computational Biology, Max Perutz Labs, University of Vienna, Campus Vienna Biocenter 5, A-1030 Vienna, Austria
| | - Thomas C Schwarz
- Department of Structural and Computational Biology, Max Perutz Labs, University of Vienna, Campus Vienna Biocenter 5, A-1030 Vienna, Austria
| | - Cy M Jeffries
- European Molecular Biology Laboratory (EMBL), Hamburg Unit, Hamburg, Germany
| | - Ariadna Rodriguez Chamorro
- Department of Structural and Computational Biology, Max Perutz Labs, University of Vienna, Campus Vienna Biocenter 5, A-1030 Vienna, Austria
| | - Julius Kostan
- Department of Structural and Computational Biology, Max Perutz Labs, University of Vienna, Campus Vienna Biocenter 5, A-1030 Vienna, Austria
| | - Andrea Ghisleni
- King's College London BHF Centre for Research Excellence, Randall Centre for Cell and Molecular Biophysics, London SE1 1UL, UK
| | - Friedel Drepper
- Biochemistry and Functional Proteomics, Institute of Biology II, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, 79104 Freiburg, Germany
| | - Anton Polyansky
- Department of Structural and Computational Biology, Max Perutz Labs, University of Vienna, Campus Vienna Biocenter 5, A-1030 Vienna, Austria
- National Research University Higher School of Economics, Moscow 101000, Russia
| | - Euripedes De Almeida Ribeiro
- Department of Structural and Computational Biology, Max Perutz Labs, University of Vienna, Campus Vienna Biocenter 5, A-1030 Vienna, Austria
| | - Miriam Pedron
- Department of Structural and Computational Biology, Max Perutz Labs, University of Vienna, Campus Vienna Biocenter 5, A-1030 Vienna, Austria
| | - Anna Zawadzka-Kazimierczuk
- Biological and Chemical Research Centre, Faculty of Chemistry, University of Warsaw, Zwirki i Wigury 101, 02-089 Warsaw, Poland
| | - Georg Mlynek
- Department of Structural and Computational Biology, Max Perutz Labs, University of Vienna, Campus Vienna Biocenter 5, A-1030 Vienna, Austria
| | - Thomas Peterbauer
- Department of Biochemistry and Cell Biology, Max Perutz Labs, University of Vienna, Dr. BohrGasse 9, A-1030 Vienna, Austria
| | - Pierantonio Doto
- Department of Structural and Computational Biology, Max Perutz Labs, University of Vienna, Campus Vienna Biocenter 5, A-1030 Vienna, Austria
| | - Claudia Schreiner
- Department of Structural and Computational Biology, Max Perutz Labs, University of Vienna, Campus Vienna Biocenter 5, A-1030 Vienna, Austria
| | - Eneda Hollerl
- Department of Structural and Computational Biology, Max Perutz Labs, University of Vienna, Campus Vienna Biocenter 5, A-1030 Vienna, Austria
| | - Borja Mateos
- Department of Structural and Computational Biology, Max Perutz Labs, University of Vienna, Campus Vienna Biocenter 5, A-1030 Vienna, Austria
| | - Leonhard Geist
- Department of Structural and Computational Biology, Max Perutz Labs, University of Vienna, Campus Vienna Biocenter 5, A-1030 Vienna, Austria
| | | | - Wiktor Kozminski
- Biological and Chemical Research Centre, Faculty of Chemistry, University of Warsaw, Zwirki i Wigury 101, 02-089 Warsaw, Poland
| | - Dmitri I Svergun
- King's College London BHF Centre for Research Excellence, Randall Centre for Cell and Molecular Biophysics, London SE1 1UL, UK
| | - Bettina Warscheid
- Biochemistry and Functional Proteomics, Institute of Biology II, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, 79104 Freiburg, Germany
| | - Bojan Zagrovic
- Department of Structural and Computational Biology, Max Perutz Labs, University of Vienna, Campus Vienna Biocenter 5, A-1030 Vienna, Austria
| | - Mathias Gautel
- King's College London BHF Centre for Research Excellence, Randall Centre for Cell and Molecular Biophysics, London SE1 1UL, UK
| | - Robert Konrat
- Department of Structural and Computational Biology, Max Perutz Labs, University of Vienna, Campus Vienna Biocenter 5, A-1030 Vienna, Austria
| | - Kristina Djinović-Carugo
- Department of Structural and Computational Biology, Max Perutz Labs, University of Vienna, Campus Vienna Biocenter 5, A-1030 Vienna, Austria.
- Department of Biochemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, SI-1000 Ljubljana, Slovenia
| |
Collapse
|
3
|
Abstract
Vascular smooth muscle (VSM; see Table 1 for a list of abbreviations) is a heterogeneous biomaterial comprised of cells and extracellular matrix. By surrounding tubes of endothelial cells, VSM forms a regulated network, the vasculature, through which oxygenated blood supplies specialized organs, permitting the development of large multicellular organisms. VSM cells, the engine of the vasculature, house a set of regulated nanomotors that permit rapid stress-development, sustained stress-maintenance and vessel constriction. Viscoelastic materials within, surrounding and attached to VSM cells, comprised largely of polymeric proteins with complex mechanical characteristics, assist the engine with countering loads imposed by the heart pump, and with control of relengthening after constriction. The complexity of this smart material can be reduced by classical mechanical studies combined with circuit modeling using spring and dashpot elements. Evaluation of the mechanical characteristics of VSM requires a more complete understanding of the mechanics and regulation of its biochemical parts, and ultimately, an understanding of how these parts work together to form the machinery of the vascular tree. Current molecular studies provide detailed mechanical data about single polymeric molecules, revealing viscoelasticity and plasticity at the protein domain level, the unique biological slip-catch bond, and a regulated two-step actomyosin power stroke. At the tissue level, new insight into acutely dynamic stress-strain behavior reveals smooth muscle to exhibit adaptive plasticity. At its core, physiology aims to describe the complex interactions of molecular systems, clarifying structure-function relationships and regulation of biological machines. The intent of this review is to provide a comprehensive presentation of one biomachine, VSM.
Collapse
Affiliation(s)
- Paul H Ratz
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, Virginia, USA
| |
Collapse
|
4
|
Chauveau C, Rowell J, Ferreiro A. A rising titan: TTN review and mutation update. Hum Mutat 2014; 35:1046-59. [PMID: 24980681 DOI: 10.1002/humu.22611] [Citation(s) in RCA: 188] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Accepted: 06/20/2014] [Indexed: 01/10/2023]
Abstract
The 364 exon TTN gene encodes titin (TTN), the largest known protein, which plays key structural, developmental, mechanical, and regulatory roles in cardiac and skeletal muscles. Prior to next-generation sequencing (NGS), routine analysis of the whole TTN gene was impossible due to its giant size and complexity. Thus, only a few TTN mutations had been reported and the general incidence and spectrum of titinopathies was significantly underestimated. In the last months, due to the widespread use of NGS, TTN is emerging as a major gene in human-inherited disease. So far, 127 TTN disease-causing mutations have been reported in patients with at least 10 different conditions, including isolated cardiomyopathies, purely skeletal muscle phenotypes, or infantile diseases affecting both types of striated muscles. However, the identification of TTN variants in virtually every individual from control populations, as well as the multiplicity of TTN isoforms and reference sequences used, stress the difficulties in assessing the relevance, inheritance, and correlation with the phenotype of TTN sequence changes. In this review, we provide the first comprehensive update of the TTN mutations reported and discuss their distribution, molecular mechanisms, associated phenotypes, transmission pattern, and phenotype-genotype correlations, alongside with their implications for basic research and for human health.
Collapse
Affiliation(s)
- Claire Chauveau
- Inserm, U787 Myology Group, Institut de Myologie, Groupe Hospitalier Pitié-Salpêtrière, Paris, France; UPMC, UMR787, Paris, France
| | | | | |
Collapse
|
5
|
Abstract
α-Actinins are a major class of actin filament cross-linking proteins expressed in virtually all cells. In muscle, actinins cross-link thin filaments from adjacent sarcomeres. In non-muscle cells, different actinin isoforms play analogous roles in cross-linking actin filaments and anchoring them to structures such as cell-cell and cell-matrix junctions. Although actinins have long been known to play roles in cytokinesis, cell adhesion and cell migration, recent studies have provided further mechanistic insights into these functions. Roles for actinins in synaptic plasticity and membrane trafficking events have emerged more recently, as has a 'non-canonical' function for actinins in transcriptional regulation in the nucleus. In the present paper we review recent advances in our understanding of these diverse cell biological functions of actinins in non-muscle cells, as well as their roles in cancer and in genetic disorders affecting platelet and kidney physiology. We also make two proposals with regard to the actinin nomenclature. First, we argue that naming actinin isoforms according to their expression patterns is problematic and we suggest a more precise nomenclature system. Secondly, we suggest that the α in α-actinin is superfluous and can be omitted.
Collapse
|
6
|
Obeidat M, Miller S, Probert K, Billington CK, Henry AP, Hodge E, Nelson CP, Stewart CE, Swan C, Wain LV, Artigas MS, Melén E, Ushey K, Hao K, Lamontagne M, Bossé Y, Postma DS, Tobin MD, Sayers I, Hall IP. GSTCD and INTS12 regulation and expression in the human lung. PLoS One 2013; 8:e74630. [PMID: 24058608 PMCID: PMC3776747 DOI: 10.1371/journal.pone.0074630] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Accepted: 08/05/2013] [Indexed: 12/29/2022] Open
Abstract
Genome-Wide Association Study (GWAS) meta-analyses have identified a strong association signal for lung function, which maps to a region on 4q24 containing two oppositely transcribed genes: glutathione S-transferase, C-terminal domain containing (GSTCD) and integrator complex subunit 12 (INTS12). Both genes were found to be expressed in a range of human airway cell types. The promoter regions and transcription start sites were determined in mRNA from human lung and a novel splice variant was identified for each gene. We obtained the following evidence for GSTCD and INTS12 co-regulation and expression: (i) correlated mRNA expression was observed both via Q-PCR and in a lung expression quantitative trait loci (eQTL) study, (ii) induction of both GSTCD and INTS12 mRNA expression in human airway smooth muscle cells was seen in response to TGFβ1, (iii) a lung eQTL study revealed that both GSTCD and INTS12 mRNA levels positively correlate with percent predicted FEV1, and (iv) FEV1 GWAS associated SNPs in 4q24 were found to act as an eQTL for INTS12 in a number of tissues. In fixed sections of human lung tissue, GSTCD protein expression was ubiquitous, whereas INTS12 expression was predominantly in epithelial cells and pneumocytes. During human fetal lung development, GSTCD protein expression was observed to be highest at the earlier pseudoglandular stage (10-12 weeks) compared with the later canalicular stage (17-19 weeks), whereas INTS12 expression levels did not alter throughout these stages. Knowledge of the transcriptional and translational regulation and expression of GSTCD and INTS12 provides important insights into the potential role of these genes in determining lung function. Future work is warranted to fully define the functions of INTS12 and GSTCD.
Collapse
Affiliation(s)
- Ma’en Obeidat
- Division of Respiratory Medicine, University of Nottingham, Queen’s Medical Center, Nottingham, United Kingdom
- James Hogg Research Centre, Institute for Heart and Lung Health, University of British Columbia, Vancouver, British Columbia, Canada
| | - Suzanne Miller
- Division of Respiratory Medicine, University of Nottingham, Queen’s Medical Center, Nottingham, United Kingdom
| | - Kelly Probert
- Division of Respiratory Medicine, University of Nottingham, Queen’s Medical Center, Nottingham, United Kingdom
| | - Charlotte K. Billington
- Division of Respiratory Medicine, University of Nottingham, Queen’s Medical Center, Nottingham, United Kingdom
| | - Amanda P. Henry
- Division of Respiratory Medicine, University of Nottingham, Queen’s Medical Center, Nottingham, United Kingdom
| | - Emily Hodge
- Division of Respiratory Medicine, University of Nottingham, Queen’s Medical Center, Nottingham, United Kingdom
| | - Carl P. Nelson
- Division of Respiratory Medicine, University of Nottingham, Queen’s Medical Center, Nottingham, United Kingdom
| | - Ceri E. Stewart
- Division of Respiratory Medicine, University of Nottingham, Queen’s Medical Center, Nottingham, United Kingdom
| | - Caroline Swan
- Division of Respiratory Medicine, University of Nottingham, Queen’s Medical Center, Nottingham, United Kingdom
| | - Louise V. Wain
- Genetic Epidemiology Group, Department of Health Sciences, University of Leicester, Leicester, United Kingdom
| | - María Soler Artigas
- Genetic Epidemiology Group, Department of Health Sciences, University of Leicester, Leicester, United Kingdom
| | - Erik Melén
- Institute of Environmental Medicine, Karolinska Institutet and Sachs’ Children’s Hospital, Stockholm, Sweden
| | - Kevin Ushey
- James Hogg Research Centre, Institute for Heart and Lung Health, University of British Columbia, Vancouver, British Columbia, Canada
| | - Ke Hao
- Department of Genetics and Genomic Sciences, Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, United States of America
| | - Maxime Lamontagne
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Laval University, Québec City, Canada
| | - Yohan Bossé
- Department of Molecular Medicine, Laval University, Québec City, Canada
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Laval University, Québec City, Canada
| | - Dirkje S. Postma
- Department of Pulmonology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Martin D. Tobin
- Genetic Epidemiology Group, Department of Health Sciences, University of Leicester, Leicester, United Kingdom
- National Institute for Health Research (NIHR) Leicester Respiratory Biomedical Research Unit, Glenfield Hospital, Leicester, United Kingdom
| | - Ian Sayers
- Division of Respiratory Medicine, University of Nottingham, Queen’s Medical Center, Nottingham, United Kingdom
| | - Ian P. Hall
- Division of Respiratory Medicine, University of Nottingham, Queen’s Medical Center, Nottingham, United Kingdom
| |
Collapse
|
7
|
Susic-Jung L, Hornbruch-Freitag C, Kuckwa J, Rexer KH, Lammel U, Renkawitz-Pohl R. Multinucleated smooth muscles and mononucleated as well as multinucleated striated muscles develop during establishment of the male reproductive organs of Drosophila melanogaster. Dev Biol 2012; 370:86-97. [DOI: 10.1016/j.ydbio.2012.07.022] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Revised: 07/10/2012] [Accepted: 07/11/2012] [Indexed: 11/16/2022]
|
8
|
Collin GB, Marshall JD, King BL, Milan G, Maffei P, Jagger DJ, Naggert JK. The Alström syndrome protein, ALMS1, interacts with α-actinin and components of the endosome recycling pathway. PLoS One 2012; 7:e37925. [PMID: 22693585 PMCID: PMC3365098 DOI: 10.1371/journal.pone.0037925] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2011] [Accepted: 04/30/2012] [Indexed: 01/26/2023] Open
Abstract
Alström syndrome (ALMS) is a progressive multi-systemic disorder characterized by cone-rod dystrophy, sensorineural hearing loss, childhood obesity, insulin resistance and cardiac, renal, and hepatic dysfunction. The gene responsible for Alström syndrome, ALMS1, is ubiquitously expressed and has multiple splice variants. The protein encoded by this gene has been implicated in ciliary function, cell cycle control, and intracellular transport. To gain better insight into the pathways through which ALMS1 functions, we carried out a yeast two hybrid (Y2H) screen in several mouse tissue libraries to identify ALMS1 interacting partners. The majority of proteins found to interact with the murine carboxy-terminal end (19/32) of ALMS1 were α-actinin isoforms. Interestingly, several of the identified ALMS1 interacting partners (α-actinin 1, α-actinin 4, myosin Vb, rad50 interacting 1 and huntingtin associated protein1A) have been previously associated with endosome recycling and/or centrosome function. We examined dermal fibroblasts from human subjects bearing a disruption in ALMS1 for defects in the endocytic pathway. Fibroblasts from these patients had a lower uptake of transferrin and reduced clearance of transferrin compared to controls. Antibodies directed against ALMS1 N- and C-terminal epitopes label centrosomes and endosomal structures at the cleavage furrow of dividing MDCK cells, respectively, suggesting isoform-specific cellular functions. Our results suggest a role for ALMS1 variants in the recycling endosome pathway and give us new insights into the pathogenesis of a subset of clinical phenotypes associated with ALMS.
Collapse
Affiliation(s)
- Gayle B. Collin
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
| | - Jan D. Marshall
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
| | - Benjamin L. King
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
- Mount Desert Island Biological Laboratory, Salisbury Cove, Maine, United States of America
| | - Gabriella Milan
- Department of Medical and Surgical Sciences, University of Padua, Padua, Italy
| | - Pietro Maffei
- Department of Medical and Surgical Sciences, University of Padua, Padua, Italy
| | - Daniel J. Jagger
- UCL Ear Institute, University College London, London, United Kingdom
| | - Jürgen K. Naggert
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
- * E-mail:
| |
Collapse
|
9
|
Rich RL, Myszka DG. Grading the commercial optical biosensor literature-Class of 2008: 'The Mighty Binders'. J Mol Recognit 2010; 23:1-64. [PMID: 20017116 DOI: 10.1002/jmr.1004] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Optical biosensor technology continues to be the method of choice for label-free, real-time interaction analysis. But when it comes to improving the quality of the biosensor literature, education should be fundamental. Of the 1413 articles published in 2008, less than 30% would pass the requirements for high-school chemistry. To teach by example, we spotlight 10 papers that illustrate how to implement the technology properly. Then we grade every paper published in 2008 on a scale from A to F and outline what features make a biosensor article fabulous, middling or abysmal. To help improve the quality of published data, we focus on a few experimental, analysis and presentation mistakes that are alarmingly common. With the literature as a guide, we want to ensure that no user is left behind.
Collapse
Affiliation(s)
- Rebecca L Rich
- Center for Biomolecular Interaction Analysis, University of Utah, Salt Lake City, UT 84132, USA
| | | |
Collapse
|
10
|
Wang J, Hu H, Wang S, Shi J, Chen S, Wei H, Xu X, Lu L. The important role of actinin-like protein (AcnA) in cytokinesis and apical dominance of hyphal cells in Aspergillus nidulans. Microbiology (Reading) 2009; 155:2714-2725. [DOI: 10.1099/mic.0.029215-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The actin cytoskeleton is involved in many processes in eukaryotic cells, including interaction with a wide variety of actin-binding proteins such as the actin-capping proteins, the actin filament nucleators and the actin cross-linking proteins. Here, we report the identification and characterization of an actinin-like protein (AcnA) from the filamentous fungus Aspergillus nidulans. Not only did the depletion of AcnA by alcA(p) promoter repression or the deletion of AcnA result in explicit abnormalities in septation and conidiation, but also the acnA mutants induced a loss of apical dominance in cells with dichotomous branching, in which a new branch was formed by splitting the existing tip in two. Consequently, the colony showed flabellate edges. Moreover, we found that the localization of the GFP–AcnA fusion was quite dynamic. In the isotropic expansion phase of the germinated spore, GFP–AcnA was organized as cortical patches with cables lining the cell wall. Subsequently, GFP–AcnA was localized to the actively growing hyphal tips and to the sites of septation in the form of combined double contractile rings. Our data suggest that AcnA plays an important role in cytokinesis and apical dominance of hyphal cells, possibly via actin-dependent polarization maintenance and medial ring establishment in A. nidulans. This is the first report, to our knowledge, of the function of an actinin-like protein in filamentous fungi.
Collapse
Affiliation(s)
- Jinjun Wang
- Nanjing Engineering and Technology Research Center for Microbiology, Jiangsu Key Laboratory for Bioresource Technology, College of Life Sciences, Nanjing Normal University, Nanjing 210046, PR China
| | - Hongqin Hu
- Nanjing Engineering and Technology Research Center for Microbiology, Jiangsu Key Laboratory for Bioresource Technology, College of Life Sciences, Nanjing Normal University, Nanjing 210046, PR China
| | - Sha Wang
- Nanjing Engineering and Technology Research Center for Microbiology, Jiangsu Key Laboratory for Bioresource Technology, College of Life Sciences, Nanjing Normal University, Nanjing 210046, PR China
| | - Jie Shi
- Nanjing Engineering and Technology Research Center for Microbiology, Jiangsu Key Laboratory for Bioresource Technology, College of Life Sciences, Nanjing Normal University, Nanjing 210046, PR China
| | - Shaochun Chen
- Nanjing Engineering and Technology Research Center for Microbiology, Jiangsu Key Laboratory for Bioresource Technology, College of Life Sciences, Nanjing Normal University, Nanjing 210046, PR China
| | - Hua Wei
- Nanjing Engineering and Technology Research Center for Microbiology, Jiangsu Key Laboratory for Bioresource Technology, College of Life Sciences, Nanjing Normal University, Nanjing 210046, PR China
| | - Xushi Xu
- Nanjing Engineering and Technology Research Center for Microbiology, Jiangsu Key Laboratory for Bioresource Technology, College of Life Sciences, Nanjing Normal University, Nanjing 210046, PR China
| | - Ling Lu
- Nanjing Engineering and Technology Research Center for Microbiology, Jiangsu Key Laboratory for Bioresource Technology, College of Life Sciences, Nanjing Normal University, Nanjing 210046, PR China
| |
Collapse
|