1
|
Haidar-Ahmad N, Manigat FO, Silué N, Pontier SM, Campbell-Valois FX. A Tale about Shigella: Evolution, Plasmid, and Virulence. Microorganisms 2023; 11:1709. [PMID: 37512882 PMCID: PMC10383432 DOI: 10.3390/microorganisms11071709] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 06/23/2023] [Accepted: 06/26/2023] [Indexed: 07/30/2023] Open
Abstract
Shigella spp. cause hundreds of millions of intestinal infections each year. They target the mucosa of the human colon and are an important model of intracellular bacterial pathogenesis. Shigella is a pathovar of Escherichia coli that is characterized by the presence of a large invasion plasmid, pINV, which encodes the characteristic type III secretion system and icsA used for cytosol invasion and cell-to-cell spread, respectively. First, we review recent advances in the genetic aspects of Shigella, shedding light on its evolutionary history within the E. coli lineage and its relationship to the acquisition of pINV. We then discuss recent insights into the processes that allow for the maintenance of pINV. Finally, we describe the role of the transcription activators VirF, VirB, and MxiE in the major virulence gene regulatory cascades that control the expression of the type III secretion system and icsA. This provides an opportunity to examine the interplay between these pINV-encoded transcriptional activators and numerous chromosome-encoded factors that modulate their activity. Finally, we discuss novel chromosomal genes icaR, icaT, and yccE that are regulated by MxiE. This review emphasizes the notion that Shigella and E. coli have walked the fine line between commensalism and pathogenesis for much of their history.
Collapse
Affiliation(s)
- Nathaline Haidar-Ahmad
- Host-Microbe Interactions Laboratory, Centre for Chemical and Synthetic Biology, Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - France Ourida Manigat
- Host-Microbe Interactions Laboratory, Centre for Chemical and Synthetic Biology, Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Navoun Silué
- Host-Microbe Interactions Laboratory, Centre for Chemical and Synthetic Biology, Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Stéphanie M Pontier
- Centre de Recherche Santé Environnementale et Biodiversité de l'Outaouais (SEBO), CEGEP de l'Outaouais, Gatineau, QC J8Y 6M4, Canada
| | - François-Xavier Campbell-Valois
- Host-Microbe Interactions Laboratory, Centre for Chemical and Synthetic Biology, Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada
- Centre for Infection, Immunity and Inflammation, Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| |
Collapse
|
2
|
Superstructure formation by RodZ hexamers of Shigella sonnei maintains the rod shape of bacilli. PLoS One 2020; 15:e0228052. [PMID: 32053625 PMCID: PMC7018016 DOI: 10.1371/journal.pone.0228052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 01/06/2020] [Indexed: 11/19/2022] Open
Abstract
The rod shape of bacilli is maintained by bacterial cytoskeletal protein MreB, an actin homolog that acts in concert with the inner membrane protein RodZ. We previously reported RodZ binds RNA to control the posttranscriptional regulation of invE (virB), which controls the type III secretion system essential for the virulence of Shigella. Here, we show that purified RodZ forms "superstructures" of high molecular mass that dissociate into a midsized "basal complex" in the presence of nonionic detergent, or to a monomer in the presence of dithiothreitol. We used mass spectrometry to show that the basal complex was a hexamer. Electrophoresis mobility shift assays combined with gel filtration detected the RNA-binding activity in fractions containing molecules larger than the basal hexamer. The superstructure was consistently detected with MreB in crude cell lysates of S. sonnei that were fractionated using gel filtration. Immunofluorescence microscopy using two different super-resolution settings showed that wild-type RodZ was distributed in cells as separate dots. Consistent with the superstructure comprising homohexamers, majority of the dots distributed among areas of discrete values. In addition, simultaneous immunodetection of MreB provided the first evidence of colocalization with RodZ as larger patch like signals. These findings indicate that native RodZ forms clusters of various sizes, which may correspond to a superstructure comprising multiple hexamers required for the RNA-binding activity.
Collapse
|
3
|
Dorman MJ, Dorman CJ. Regulatory Hierarchies Controlling Virulence Gene Expression in Shigella flexneri and Vibrio cholerae. Front Microbiol 2018; 9:2686. [PMID: 30473684 PMCID: PMC6237886 DOI: 10.3389/fmicb.2018.02686] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 10/22/2018] [Indexed: 12/13/2022] Open
Abstract
Gram-negative enteropathogenic bacteria use a variety of strategies to cause disease in the human host and gene regulation in some form is typically a part of the strategy. This article will compare the toxin-based infection strategy used by the non-invasive pathogen Vibrio cholerae, the etiological agent in human cholera, with the invasive approach used by Shigella flexneri, the cause of bacillary dysentery. Despite the differences in the mechanisms by which the two pathogens cause disease, they use environmentally-responsive regulatory hierarchies to control the expression of genes that have some features, and even some components, in common. The involvement of AraC-like transcription factors, the integration host factor, the Factor for inversion stimulation, small regulatory RNAs, the RNA chaperone Hfq, horizontal gene transfer, variable DNA topology and the need to overcome the pervasive silencing of transcription by H-NS of horizontally acquired genes are all shared features. A comparison of the regulatory hierarchies in these two pathogens illustrates some striking cross-species similarities and differences among mechanisms coordinating virulence gene expression. S. flexneri, with its low infectious dose, appears to use a strategy that is centered on the individual bacterial cell, whereas V. cholerae, with a community-based, quorum-dependent approach and an infectious dose that is several orders of magnitude higher, seems to rely more on the actions of a bacterial collective.
Collapse
Affiliation(s)
- Matthew J Dorman
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
| | - Charles J Dorman
- Department of Microbiology, Moyne Institute of Preventive Medicine, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
4
|
Mitobe J, Sinha R, Mitra S, Nag D, Saito N, Shimuta K, Koizumi N, Koley H. An attenuated Shigella mutant lacking the RNA-binding protein Hfq provides cross-protection against Shigella strains of broad serotype. PLoS Negl Trop Dis 2017; 11:e0005728. [PMID: 28727722 PMCID: PMC5544247 DOI: 10.1371/journal.pntd.0005728] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 08/04/2017] [Accepted: 06/19/2017] [Indexed: 11/19/2022] Open
Abstract
Few live attenuated vaccines protect against multiple serotypes of bacterial pathogen because host serotype-specific immune responses are limited to the serotype present in the vaccine strain. Here, immunization with a mutant of Shigella flexneri 2a protected guinea pigs against subsequent infection by S. dysenteriae type 1 and S. sonnei strains. This deletion mutant lacked the RNA-binding protein Hfq leading to increased expression of the type III secretion system via loss of regulation, resulting in attenuation of cell viability through repression of stress response sigma factors. Such increased antigen production and simultaneous attenuation were expected to elicit protective immunity against Shigella strains of heterologous serotypes. Thus, the vaccine potential of this mutant was tested in two guinea pig models of shigellosis. Animals vaccinated in the left eye showed fewer symptoms upon subsequent challenge via the right eye, and even survived subsequent intestinal challenge. In addition, oral vaccination effectively induced production of immunoglobulins without severe side effects, again protecting all animals against subsequent intestinal challenge with S. dysenteriae type 1 or S. sonnei strains. Antibodies against common virulence proteins and the O-antigen of S. flexneri 2a were detected by immunofluorescence microscopy. Reaction of antibodies with various strains, including enteroinvasive Escherichia coli, suggested that common virulence proteins induced protective immunity against a range of serotypes. Therefore, vaccination is expected to cover not only the most prevalent serotypes of S. sonnei and S. flexneri 2a, but also various Shigella strains, including S. dysenteriae type 1, which produces Shiga toxin.
Collapse
Affiliation(s)
- Jiro Mitobe
- Department of Bacteriology I, National Institute of Infectious Diseases, Shinjuku, Tokyo, Japan
- * E-mail:
| | - Ritam Sinha
- Division of Bacteriology, National Institute of Cholera and Enteric Diseases, Beliaghata, Kolkata, India
| | - Soma Mitra
- Department of Bacteriology I, National Institute of Infectious Diseases, Shinjuku, Tokyo, Japan
- Division of Bacteriology, National Institute of Cholera and Enteric Diseases, Beliaghata, Kolkata, India
| | - Dhrubajyoti Nag
- Division of Bacteriology, National Institute of Cholera and Enteric Diseases, Beliaghata, Kolkata, India
| | - Noriko Saito
- Laboratory of Electron Microscopy, National Institute of Infectious Diseases, Shinjuku, Tokyo, Japan
| | - Ken Shimuta
- Department of Bacteriology I, National Institute of Infectious Diseases, Shinjuku, Tokyo, Japan
| | - Nobuo Koizumi
- Department of Bacteriology I, National Institute of Infectious Diseases, Shinjuku, Tokyo, Japan
| | - Hemanta Koley
- Division of Bacteriology, National Institute of Cholera and Enteric Diseases, Beliaghata, Kolkata, India
| |
Collapse
|
5
|
Bhatt S, Egan M, Ramirez J, Xander C, Jenkins V, Muche S, El-Fenej J, Palmer J, Mason E, Storm E, Buerkert T. Hfq and three Hfq-dependent small regulatory RNAs-MgrR, RyhB and McaS-coregulate the locus of enterocyte effacement in enteropathogenic Escherichia coli. Pathog Dis 2016; 75:ftw113. [PMID: 27956465 DOI: 10.1093/femspd/ftw113] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 07/28/2016] [Accepted: 12/10/2016] [Indexed: 11/15/2022] Open
Abstract
Enteropathogenic Escherichia coli (EPEC) is a significant cause of infantile diarrhea and death in developing countries. The pathogenicity island locus of enterocyte effacement (LEE) is essential for EPEC to cause diarrhea. Besides EPEC, the LEE is also present in other gastrointestinal pathogens, most notably enterohemorrhagic E. coli (EHEC). Whereas transcriptional control of the LEE has been meticulously examined, posttranscriptional regulation, including the role of Hfq-dependent small RNAs, remains undercharacterized. However, the past few years have witnessed a surge in the identification of riboregulators of the LEE in EHEC. Contrastingly, the posttranscriptional regulatory landscape of EPEC remains cryptic. Here we demonstrate that the RNA-chaperone Hfq represses the LEE of EPEC by targeting the 5' untranslated leader region of grlR in the grlRA mRNA. Three conserved small regulatory RNAs (sRNAs)-MgrR, RyhB and McaS-are involved in the Hfq-dependent regulation of grlRA MgrR and RyhB exert their effects by directly base-pairing to the 5' region of grlR Whereas MgrR selectively represses grlR but activates grlA, RyhB represses gene expression from the entire grlRA transcript. Meanwhile, McaS appears to target the grlRA mRNA indirectly. Thus, our results provide the first definitive evidence that implicates multiple sRNAs in regulating the LEE and the resulting virulence of EPEC.
Collapse
Affiliation(s)
- Shantanu Bhatt
- Department of Biology, Saint Joseph's University, 5600 City Avenue, Science Center, Philadelphia, PA 19131, USA
| | - Marisa Egan
- Department of Biology, Saint Joseph's University, 5600 City Avenue, Science Center, Philadelphia, PA 19131, USA
| | - Jasmine Ramirez
- Department of Biology, Saint Joseph's University, 5600 City Avenue, Science Center, Philadelphia, PA 19131, USA
| | - Christian Xander
- Department of Biology, Saint Joseph's University, 5600 City Avenue, Science Center, Philadelphia, PA 19131, USA
| | - Valerie Jenkins
- Department of Biology, Saint Joseph's University, 5600 City Avenue, Science Center, Philadelphia, PA 19131, USA
| | - Sarah Muche
- Department of Biology, Saint Joseph's University, 5600 City Avenue, Science Center, Philadelphia, PA 19131, USA
| | - Jihad El-Fenej
- Department of Biology, Saint Joseph's University, 5600 City Avenue, Science Center, Philadelphia, PA 19131, USA
| | - Jamie Palmer
- Department of Biology, Saint Joseph's University, 5600 City Avenue, Science Center, Philadelphia, PA 19131, USA
| | - Elisabeth Mason
- Department of Biology, Saint Joseph's University, 5600 City Avenue, Science Center, Philadelphia, PA 19131, USA
| | - Elizabeth Storm
- Department of Biology, Saint Joseph's University, 5600 City Avenue, Science Center, Philadelphia, PA 19131, USA
| | - Thomas Buerkert
- Department of Biology, Saint Joseph's University, 5600 City Avenue, Science Center, Philadelphia, PA 19131, USA
| |
Collapse
|
6
|
Shiratsuchi A, Nitta M, Kuroda A, Komiyama C, Gawasawa M, Shimamoto N, Tuan TQ, Morita T, Aiba H, Nakanishi Y. Inhibition of Phagocytic Killing of Escherichia coli in Drosophila Hemocytes by RNA Chaperone Hfq. THE JOURNAL OF IMMUNOLOGY 2016; 197:1298-307. [PMID: 27357148 DOI: 10.4049/jimmunol.1501953] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 06/01/2016] [Indexed: 12/20/2022]
Abstract
An RNA chaperone of Escherichia coli, called host factor required for phage Qβ RNA replication (Hfq), forms a complex with small noncoding RNAs to facilitate their binding to target mRNA for the alteration of translation efficiency and stability. Although the role of Hfq in the virulence and drug resistance of bacteria has been suggested, how this RNA chaperone controls the infectious state remains unknown. In the present study, we addressed this issue using Drosophila melanogaster as a host for bacterial infection. In an assay for abdominal infection using adult flies, an E. coli strain with mutation in hfq was eliminated earlier, whereas flies survived longer compared with infection with a parental strain. The same was true with flies deficient in humoral responses, but the mutant phenotypes were not observed when a fly line with impaired hemocyte phagocytosis was infected. The results from an assay for phagocytosis in vitro revealed that Hfq inhibits the killing of E. coli by Drosophila phagocytes after engulfment. Furthermore, Hfq seemed to exert this action partly through enhancing the expression of σ(38), a stress-responsive σ factor that was previously shown to be involved in the inhibition of phagocytic killing of E. coli, by a posttranscriptional mechanism. Our study indicates that the RNA chaperone Hfq contributes to the persistent infection of E. coli by maintaining the expression of bacterial genes, including one coding for σ(38), that help bacteria evade host immunity.
Collapse
Affiliation(s)
- Akiko Shiratsuchi
- Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan; School of Pharmacy, Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan; and
| | - Mao Nitta
- School of Pharmacy, Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan; and
| | - Ayumi Kuroda
- School of Pharmacy, Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan; and
| | - Chiharu Komiyama
- Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
| | - Mitsuko Gawasawa
- School of Pharmacy, Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan; and
| | - Naoto Shimamoto
- Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
| | - Tran Quoc Tuan
- Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
| | - Teppei Morita
- Faculty of Pharmaceutical Sciences, Suzuka University of Medical Sciences, Suzuka, Mie 513-0816, Japan
| | - Hiroji Aiba
- Faculty of Pharmaceutical Sciences, Suzuka University of Medical Sciences, Suzuka, Mie 513-0816, Japan
| | - Yoshinobu Nakanishi
- Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan; School of Pharmacy, Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan; and
| |
Collapse
|
7
|
Feliciano JR, Grilo AM, Guerreiro SI, Sousa SA, Leitão JH. Hfq: a multifaceted RNA chaperone involved in virulence. Future Microbiol 2015; 11:137-51. [PMID: 26685037 DOI: 10.2217/fmb.15.128] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Hfq has emerged in recent years as a master regulator of gene expression in bacteria, mainly due to its ability to mediate the interaction of small noncoding RNAs with their mRNA targets, including those related to virulence in Gram-negative bacteria. In this work, we review current knowledge on the involvement of Hfq in the regulation of virulence traits related to secretion systems, alternative sigma factors, outer membrane proteins, polysaccharides and iron metabolism. Recent data from transcriptomics and proteomics studies performed for major pathogens are included. We also summarize and correlate current knowledge on how Hfq protein impacts pathogenicity of bacterial pathogens.
Collapse
Affiliation(s)
- Joana R Feliciano
- iBB - Instituto de Bioengenharia e Biociências, Instituto Superior Técnico, Universidade de Lisboa. Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | | | - Soraia I Guerreiro
- iBB - Instituto de Bioengenharia e Biociências, Instituto Superior Técnico, Universidade de Lisboa. Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Sílvia A Sousa
- iBB - Instituto de Bioengenharia e Biociências, Instituto Superior Técnico, Universidade de Lisboa. Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Jorge H Leitão
- iBB - Instituto de Bioengenharia e Biociências, Instituto Superior Técnico, Universidade de Lisboa. Av. Rovisco Pais, 1049-001 Lisboa, Portugal.,Departamento de Bioengenharia, Instituto Superior Técnico, Universidade de Lisboa. Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| |
Collapse
|
8
|
Abstract
Pathogenic bacteria sense environmental cues, including the local temperature, to control the production of key virulence factors. Thermal regulation can be achieved at the level of DNA, RNA or protein and although many virulence factors are subject to thermal regulation, the exact mechanisms of control are yet to be elucidated in many instances. Understanding how virulence factors are regulated by temperature presents a significant challenge, as gene expression and protein production are often influenced by complex regulatory networks involving multiple transcription factors in bacteria. Here we highlight some recent insights into thermal regulation of virulence in pathogenic bacteria. We focus on bacteria which cause disease in mammalian hosts, which are at a significantly higher temperature than the outside environment. We outline the mechanisms of thermal regulation and how understanding this fundamental aspect of the biology of bacteria has implications for pathogenesis and human health.
Collapse
Affiliation(s)
- Oliver Lam
- a The Sir William Dunn School of Pathology ; University of Oxford ; Oxford , UK
| | | | | |
Collapse
|
9
|
Yang G, Wang L, Wang Y, Li P, Zhu J, Qiu S, Hao R, Wu Z, Li W, Song H. hfq regulates acid tolerance and virulence by responding to acid stress in Shigella flexneri. Res Microbiol 2015; 166:476-85. [DOI: 10.1016/j.resmic.2015.06.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Revised: 06/13/2015] [Accepted: 06/17/2015] [Indexed: 11/28/2022]
|
10
|
Characterization of the ospZ promoter in Shigella flexneri and its regulation by VirB and H-NS. J Bacteriol 2013; 195:2562-72. [PMID: 23543709 DOI: 10.1128/jb.00212-13] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
OspZ is an effector protein of the type III secretion system in Shigella spp. that downregulates the human inflammatory response during bacterial infection. The ospZ gene is located on the large virulence plasmid of Shigella. Many genes on this plasmid are transcriptionally repressed by the nucleoid structuring protein H-NS and derepressed by VirB, a DNA-binding protein that displays homology to the plasmid partitioning proteins ParB and SopB. In this study, we characterized the ospZ promoter and investigated its regulation by H-NS and VirB in Shigella flexneri. We show that H-NS represses and VirB partially derepresses the ospZ promoter. H-NS-mediated repression requires sequences located between -731 and -412 relative to the beginning of the ospZ gene. Notably, the VirB-dependent derepression of ospZ requires the same VirB binding sites as are required for the VirB-dependent derepression of the divergent icsP gene. These sites are centered 425 bp upstream of the ospZ gene but over 1 kb upstream of the icsP transcription start site. Although these VirB binding sites lie closer to ospZ than icsP, the VirB-dependent increase in ospZ promoter activity is lower than that observed at the icsP promoter. This indicates that the proximity of VirB binding sites to Shigella promoters does not necessarily correlate with the level of VirB-dependent derepression. These findings have implications for virulence gene regulation in Shigella and other pathogens that control gene expression using mechanisms of transcriptional repression and derepression.
Collapse
|
11
|
VirF-independent regulation of Shigella virB transcription is mediated by the small RNA RyhB. PLoS One 2012; 7:e38592. [PMID: 22701677 PMCID: PMC3372517 DOI: 10.1371/journal.pone.0038592] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Accepted: 05/11/2012] [Indexed: 01/12/2023] Open
Abstract
Infection of the human host by Shigella species requires the coordinated production of specific Shigella virulence factors, a process mediated largely by the VirF/VirB regulatory cascade. VirF promotes the transcription of virB, a gene encoding the transcriptional activator of several virulence-associated genes. This study reveals that transcription of virB is also regulated by the small RNA RyhB, and importantly, that this regulation is not achieved indirectly via modulation of VirF activity. These data are the first to demonstrate that the regulation of virB transcription can be uncoupled from the master regulator VirF. It is also established that efficient RyhB-dependent regulation of transcription is facilitated by specific nucleic acid sequences within virB. This study not only reveals RyhB-dependent regulation of virB transcription as a novel point of control in the central regulatory circuit modulating Shigella virulence, but also highlights the versatility of RyhB in controlling bacterial gene expression.
Collapse
|
12
|
RodZ regulates the post-transcriptional processing of the Shigella sonnei type III secretion system. EMBO Rep 2011; 12:911-6. [PMID: 21779005 DOI: 10.1038/embor.2011.132] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2010] [Revised: 06/13/2011] [Accepted: 06/14/2011] [Indexed: 12/23/2022] Open
Abstract
The expression of the type III secretion system-a main determinant of virulence in Shigella-is controlled by regulator cascades VirF-InvE (VirB) and CpxAR two-component system. A screen for mutants that restore virulence in the cpxA background led to the isolation of a mutant of rodZ, a cytoskeletal protein that maintains the rod-shaped morphology of bacilli. InvE is normally repressed at 30 °C because of decreased messenger RNA (mRNA) stability, but rodZ mutants markedly increase invE-mRNA stability. Importantly, the inhibition of InvE production by RodZ can be genetically separated from its role in cell-shape maintenance, indicating that these functions are distinguishable. Thus, we propose that RodZ is a new membrane-bound RNA-binding protein that provides a scaffold for post-transcriptional regulation.
Collapse
|
13
|
Rational design of an artificial genetic switch: Co-option of the H-NS-repressed proU operon by the VirB virulence master regulator. J Bacteriol 2011; 193:5950-60. [PMID: 21873493 DOI: 10.1128/jb.05557-11] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The H-NS protein represses the transcription of hundreds of genes in Gram-negative bacteria. Derepression is achieved by a multitude of mechanisms, many of which involve the binding of a protein to DNA at the repressed promoter in a manner that compromises the maintenance of the H-NS-DNA nucleoprotein repression complex. The principal virulence gene promoters in Shigella flexneri, the cause of bacillary dysentery, are repressed by H-NS. VirB, a protein that closely resembles members of the ParB family of plasmid-partitioning proteins, derepresses the operons that encode the main structural components and the effector proteins of the S. flexneri type III secretion system. Bioinformatic analysis suggests that VirB has been co-opted into its current role as an H-NS antagonist in S. flexneri. To test this hypothesis, the potential for VirB to act as a positive regulator of proU, an operon that is repressed by H-NS, was assessed. Although VirB has no known relationship with the osmoregulated proU operon, it could relieve H-NS-mediated repression when the parS-like VirB binding site was placed appropriately upstream of the RpoD-dependent proU promoter. These results reveal the remarkable facility with which novel regulatory circuits can evolve, at least among those promoters that are repressed by H-NS.
Collapse
|
14
|
Watanabe H. [Regulation of expression of virulence-associated genes and pathogenesis of pathogenic bacteria ]. Nihon Saikingaku Zasshi 2011; 66:1-5. [PMID: 21498961 DOI: 10.3412/jsb.66.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Haruo Watanabe
- National Institute of Infectious Diseases, 1-23-1, Toyama, Shinjuku, Tokyo 162-8640
| |
Collapse
|
15
|
Bhatt S, Romeo T, Kalman D. Honing the message: post-transcriptional and post-translational control in attaching and effacing pathogens. Trends Microbiol 2011; 19:217-24. [PMID: 21333542 DOI: 10.1016/j.tim.2011.01.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2010] [Revised: 01/12/2011] [Accepted: 01/14/2011] [Indexed: 01/05/2023]
Abstract
Bacteria evolve their capacity to cause disease by acquiring virulence genes that are usually clustered in discrete genetic modules termed pathogenicity islands (PAI). Stable integration of PAIs into pre-existing transcriptional networks coordinates expression from PAIs with ancestral genes in response to diverse environmental cues. Such transcriptional controls are evident in the regulation of the locus of enterocyte effacement (LEE), a PAI of enteropathogenic and enterohemorrhagic Escherichia coli. However, recent reports indicate that global post-transcriptional and post-translational regulators, including CsrA, Hfq and ClpXP, fine-tune the transcriptional output from the LEE. In this opinion article, we highlight recent advances in the understanding of post-transcriptional and post-translational regulation in attaching and effacing pathogens.
Collapse
Affiliation(s)
- Shantanu Bhatt
- Microbiology and Molecular Genetics Program, Emory University, Atlanta, GA 30322, USA
| | | | | |
Collapse
|
16
|
Identification of a chitin-induced small RNA that regulates translation of the tfoX gene, encoding a positive regulator of natural competence in Vibrio cholerae. J Bacteriol 2011; 193:1953-65. [PMID: 21317321 DOI: 10.1128/jb.01340-10] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The tfoX (also called sxy) gene product is the central regulator of DNA uptake in the naturally competent bacteria Haemophilus influenzae and Vibrio cholerae. However, the mechanisms regulating tfoX gene expression in both organisms are poorly understood. Our previous studies revealed that in V. cholerae, chitin disaccharide (GlcNAc)₂ is needed to activate the transcription and translation of V. cholerae tfoX (tfoX(VC)) to induce natural competence. In this study, we screened a multicopy library of V. cholerae DNA fragments necessary for translational regulation of tfoX(VC). A clone carrying the VC2078-VC2079 intergenic region, designated tfoR, increased the expression of a tfoX(VC)::lacZ translational fusion constructed in Escherichia coli. Using a tfoX(VC)::lacZ reporter system in V. cholerae, we confirmed that tfoR positively regulated tfoX(VC) expression at the translational level. Deletion of tfoR abolished competence for exogenous DNA even when (GlcNAc)₂ was provided. The introduction of a plasmid clone carrying the tfoR(+) gene into the tfoR deletion mutant complemented the competence deficiency. We also found that the tfoR gene encodes a 102-nucleotide small RNA (sRNA), which was transcriptionally activated in the presence of (GlcNAc)₂. Finally, we showed that this sRNA activated translation from tfoX(VC) mRNA in a highly purified in vitro translation system. Taking these results together, we propose that in the presence of (GlcNAc)₂, TfoR sRNA is expressed to activate the translation of tfoX(VC), which leads to the induction of natural competence.
Collapse
|
17
|
Papenfort K, Vogel J. Regulatory RNA in bacterial pathogens. Cell Host Microbe 2010; 8:116-27. [PMID: 20638647 DOI: 10.1016/j.chom.2010.06.008] [Citation(s) in RCA: 256] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2010] [Revised: 05/18/2010] [Accepted: 06/22/2010] [Indexed: 01/26/2023]
Abstract
Bacteria constitute a large and diverse class of infectious agents, causing devastating diseases in humans, animals, and plants. Our understanding of gene expression control, which forms the basis for successful prevention and treatment strategies, has until recently neglected the many roles that regulatory RNAs might have in bacteria. In recent years, several such regulators have been found to facilitate host-microbe interactions and act as key switches between saprophytic and pathogenic lifestyles. This review covers the versatile regulatory RNA mechanisms employed by bacterial pathogens and highlights the dynamic interplay between riboregulation and virulence factor expression.
Collapse
Affiliation(s)
- Kai Papenfort
- RNA Biology Group, Max Planck Institute for Infection Biology, Charitéplatz 1, D-10117 Berlin, Germany
| | | |
Collapse
|
18
|
Rich RL, Myszka DG. Grading the commercial optical biosensor literature-Class of 2008: 'The Mighty Binders'. J Mol Recognit 2010; 23:1-64. [PMID: 20017116 DOI: 10.1002/jmr.1004] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Optical biosensor technology continues to be the method of choice for label-free, real-time interaction analysis. But when it comes to improving the quality of the biosensor literature, education should be fundamental. Of the 1413 articles published in 2008, less than 30% would pass the requirements for high-school chemistry. To teach by example, we spotlight 10 papers that illustrate how to implement the technology properly. Then we grade every paper published in 2008 on a scale from A to F and outline what features make a biosensor article fabulous, middling or abysmal. To help improve the quality of published data, we focus on a few experimental, analysis and presentation mistakes that are alarmingly common. With the literature as a guide, we want to ensure that no user is left behind.
Collapse
Affiliation(s)
- Rebecca L Rich
- Center for Biomolecular Interaction Analysis, University of Utah, Salt Lake City, UT 84132, USA
| | | |
Collapse
|
19
|
|
20
|
Dietrich M, Munke R, Gottschald M, Ziska E, Boettcher JP, Mollenkopf H, Friedrich A. The effect of hfq on global gene expression and virulence in Neisseria gonorrhoeae. FEBS J 2009; 276:5507-20. [PMID: 19691497 DOI: 10.1111/j.1742-4658.2009.07234.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Hfq is an RNA chaperone that functions as a pleiotropic regulator for RNA metabolism in bacteria. In several pathogenic bacteria, Hfq contributes indirectly to virulence by binding to riboregulators that modulate the stability or translation efficiency of RNA transcripts. To characterize the role of Hfq in the pathogenicity of Neisseria gonorrhoeae, we generated an N. gonorrhoeae hfq mutant. Infectivity and global changes in gene expression caused by the hfq mutation in N. gonorrhoeae strain MS11 were analyzed. Transcriptional analysis using a custom-made N. gonorrhoeae microarray revealed that 369 ORFs were differentially regulated in the hfq mutant, MS11hfq, in comparison with the wild-type strain (202 were upregulated, and 167 were downregulated). The loss-of-function mutation in hfq led to pleiotropic phenotypic effects, including an altered bacterial growth rate and reduced adherence to epithelial cells. Twitching motility and microcolony formation were not affected. Hfq also appears to play a minor role in inducing the inflammatory response of infected human epithelial cells. Interleukin-8 production was slightly decreased, and activation of c-Jun N-terminal kinase, a mitogen-activated protein kinase, was reduced in MS11hfq-infected epithelial cells in comparison with wild type-infected cells. However, activation of nuclear factor kappa B, extracellular signal-regulated kinase 1/2 and p38 remained unchanged. The data presented suggest that Hfq plays an important role as a post-transcriptional regulator in N. gonorrhoeae strain MS11 but does not contribute significantly to its virulence in cell culture models.
Collapse
Affiliation(s)
- Manuela Dietrich
- Department of Molecular Biology, Max Planck Institute for Infection Biology, Berlin, Germany
| | | | | | | | | | | | | |
Collapse
|
21
|
Tree JJ, Wolfson EB, Wang D, Roe AJ, Gally DL. Controlling injection: regulation of type III secretion in enterohaemorrhagic Escherichia coli. Trends Microbiol 2009; 17:361-70. [PMID: 19660954 DOI: 10.1016/j.tim.2009.06.001] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2008] [Revised: 05/25/2009] [Accepted: 06/01/2009] [Indexed: 12/01/2022]
Abstract
Type III secretion (T3S) systems enable the injection of bacterial proteins through membrane barriers into host cells, either from outside the host cell or from within a vacuole. This system is required for colonization of their ruminant reservoir hosts by enterohaemorrhagic Escherichia coli (EHEC) and might also be important for the etiology of disease in the incidental human host. T3S systems of E. coli inject a cocktail of proteins into epithelial cells that enables bacterial attachment and promotes longer-term colonization in the animal. Here, we review recent progress in our understanding of the regulation of T3S in EHEC, focusing on the induction and assembly of the T3S system, the co-ordination of effector protein expression, and the timing of effector protein export through the apparatus. Strain variation is often associated with differences in bacteriophages encoding the production of Shiga toxin and in multiple cryptic prophage elements that can encode effector proteins and T3S regulators. It is evident that this repertoire of phage-related sequences results in the different levels of T3S demonstrated between strains, with implications for EHEC epidemiology and strain evolution.
Collapse
Affiliation(s)
- Jai J Tree
- Immunity and Infection Division, The Roslin Institute and R(D)SVS, Chancellor's Building, University of Edinburgh, Edinburgh, EH16 4SB, UK
| | | | | | | | | |
Collapse
|
22
|
Klinkert B, Narberhaus F. Microbial thermosensors. Cell Mol Life Sci 2009; 66:2661-76. [PMID: 19554260 PMCID: PMC11115684 DOI: 10.1007/s00018-009-0041-3] [Citation(s) in RCA: 126] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2009] [Revised: 03/27/2009] [Accepted: 04/21/2009] [Indexed: 12/27/2022]
Abstract
Temperature is among the most important of the parameters that free-living microbes monitor. Microbial physiology needs to be readjusted in response to sudden temperature changes. When the ambient temperature rises or drops to potentially harmful levels, cells mount protective stress responses--so-called heat or cold shock responses, respectively. Pathogenic microorganisms often respond to a temperature of around 37 degrees C by inducing virulence gene expression. There are two main ways in which temperature can be measured. Often, the consequences of a sudden temperature shift are detected. Such indirect signals are known to be the accumulation of denatured proteins (heat shock) or stalled ribosomes (cold shock). However, this article focuses solely on direct thermosensors. Since the conformation of virtually every biomolecule is susceptible to temperature changes, primary sensors include DNA, RNA, proteins and lipids.
Collapse
Affiliation(s)
- Birgit Klinkert
- Lehrstuhl für Biologie der Mikroorganismen, Ruhr-Universität Bochum, Universitätsstrasse 150, NDEF 06/783, 44780 Bochum, Germany
| | - Franz Narberhaus
- Lehrstuhl für Biologie der Mikroorganismen, Ruhr-Universität Bochum, Universitätsstrasse 150, NDEF 06/783, 44780 Bochum, Germany
| |
Collapse
|
23
|
Geng J, Song Y, Yang L, Feng Y, Qiu Y, Li G, Guo J, Bi Y, Qu Y, Wang W, Wang X, Guo Z, Yang R, Han Y. Involvement of the post-transcriptional regulator Hfq in Yersinia pestis virulence. PLoS One 2009; 4:e6213. [PMID: 19593436 PMCID: PMC2704395 DOI: 10.1371/journal.pone.0006213] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2009] [Accepted: 06/18/2009] [Indexed: 11/19/2022] Open
Abstract
Background Yersinia pestis is the causative agent of plague, which is transmitted primarily between fleas and mammals and is spread to humans through the bite of an infected flea or contact with afflicted animals. Hfq is proposed to be a global post-transcriptional regulator that acts by mediating interactions between many regulatory small RNAs (sRNAs) and their mRNA targets. Sequence comparisons revealed that Y. pestis appears to produce a functional homologue of E. coli Hfq. Methodology and Principal Findings Phenotype comparisons using in vitro assays demonstrated that Y. pestis Hfq was involved in resistance to H2O2, heat and polymyxin B and contributed to growth under nutrient-limiting conditions. The role of Hfq in Y. pestis virulence was also assessed using macrophage and mouse infection models, and the gene expression affected by Hfq was determined using microarray-based transcriptome and real time PCR analysis. The macrophage infection assay showed that the Y. pestis hfq deletion strain did not have any significant difference in its ability to associate with J774A.1 macrophage cells. However, hfq deletion appeared to significantly impair the ability of Y. pestis to resist phagocytosis and survive within macrophages at the initial stage of infection. Furthermore, the hfq deletion strain was highly attenuated in mice after subcutaneous or intravenous injection. Transcriptome analysis supported the results concerning the attenuated phenotype of the hfq mutant and showed that the deletion of the hfq gene resulted in significant alterations in mRNA abundance of 243 genes in more than 13 functional classes, about 23% of which are known or hypothesized to be involved in stress resistance and virulence. Conclusions and Significance Our results indicate that Hfq is a key regulator involved in Y. pestis stress resistance, intracellular survival and pathogenesis. It appears that Hfq acts by controlling the expression of many virulence- and stress-associated genes, probably in conjunction with small noncoding RNAs.
Collapse
Affiliation(s)
- Jing Geng
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Yajun Song
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Lei Yang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Yanyan Feng
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Yefeng Qiu
- Laboratory Animal Center, Academy of Military Medical Sciences, Beijing, China
| | - Gang Li
- Laboratory Animal Center, Academy of Military Medical Sciences, Beijing, China
| | - Jingyu Guo
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Yujing Bi
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Yi Qu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Wang Wang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Xiaoyi Wang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Zhaobiao Guo
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Ruifu Yang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
- * E-mail: (RY); (YH)
| | - Yanping Han
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
- * E-mail: (RY); (YH)
| |
Collapse
|
24
|
Liao Y, Wei ZH, Bai L, Deng Z, Zhong JJ. Effect of fermentation temperature on validamycin A production by Streptomyces hygroscopicus 5008. J Biotechnol 2009; 142:271-4. [DOI: 10.1016/j.jbiotec.2009.04.015] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2008] [Revised: 04/08/2009] [Accepted: 04/25/2009] [Indexed: 10/20/2022]
|
25
|
Hansen AM, Kaper JB. Hfq affects the expression of the LEE pathogenicity island in enterohaemorrhagic Escherichia coli. Mol Microbiol 2009; 73:446-65. [PMID: 19570135 DOI: 10.1111/j.1365-2958.2009.06781.x] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Colonization of the intestinal epithelium by enterohaemorrhagic Escherichia coli (EHEC) is characterized by an attaching and effacing (A/E) histopathology. The locus of enterocyte effacement (LEE) pathogenicity island encodes many genes required for the A/E phenotype including the global regulator of EHEC virulence gene expression, Ler. The LEE is subject to a complex regulatory network primarily targeting ler transcription. The RNA chaperone Hfq, implicated in post-transcriptional regulation, is an important virulence factor in many bacterial pathogens. Although post-transcriptional regulation of EHEC virulence genes is known to occur, a regulatory role of Hfq in EHEC virulence gene expression has yet to be defined. Here, we show that an hfq mutant expresses increased levels of LEE-encoded proteins prematurely, leading to earlier A/E lesion formation relative to wild type. Hfq indirectly affects LEE expression in exponential phase independent of Ler by negatively controlling levels of the regulators GrlA and GrlR through post-transcriptional regulation of the grlRA messenger. Moreover, Hfq negatively affects LEE expression in stationary phase independent of GrlA and GrlR. Altogether, Hfq plays an important role in co-ordinating the temporal expression of the LEE by controlling grlRA expression at the post-transcriptional level.
Collapse
Affiliation(s)
- Anne-Marie Hansen
- Department of Microbiology and Immunology, University of Maryland School of Medicine, 685 W. Baltimore St., Baltimore, MD 21201, USA
| | | |
Collapse
|
26
|
Involvement of RNA-binding protein Hfq in the osmotic-response regulation of invE gene expression in Shigella sonnei. BMC Microbiol 2009; 9:110. [PMID: 19476612 PMCID: PMC2694808 DOI: 10.1186/1471-2180-9-110] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2008] [Accepted: 05/28/2009] [Indexed: 12/31/2022] Open
Abstract
Background The expression of Type III secretion system (TTSS) in Shigella is regulated in response to changes in environmental osmolarity and temperature. Temperature-dependent regulation of virF, the master regulator of TTSS synthesis, is believed to occur at the transcriptional level. We recently demonstrated, however, that TTSS synthesis also involves post-transcriptional regulation of the synthesis of InvE, a target of virF and key regulator of TTSS synthesis. The mRNA levels of invE (virB) are stable at 37°C, but mRNA stability markedly decreases at low temperatures where the TTSS synthesis is tightly repressed. Deletion of hfq, which encodes an RNA chaperone in Gram-negative bacteria, results in the restoration of expression of invE and other TTSS genes at low temperature due to an increase in the stability of invE mRNA. To date, the molecular details of the regulation of TTSS expression in response to osmotic pressure are not known. In the current study, we investigated the mechanism of regulation of TTSS by osmotic pressure. Results Transcription of virF, which encodes the master regulator of TTSS expression, was partially repressed under low osmotic conditions. Several lines of evidence indicated that osmolarity-dependent changes in TTSS synthesis are controlled at the post-transcriptional level, through the regulation of InvE synthesis. First, the expression InvE protein was tightly repressed under low osmotic growth conditions, even though invE mRNA transcripts were readily detectable. Second, under low osmotic conditions, invE mRNA was rapidly degraded, whereas deletion of hfq, which encodes an RNA chaperone, resulted in increased invE mRNA stability and the production of InvE protein. Third, the binding of purified Hfq in vitro to invE RNA was stronger in low-salt buffer, as assessed by gel-shift analysis and surface plasmon resonance (Biacore analysis). Conclusion Osmolarity-dependent changes in TTSS synthesis in Shigella involve the post-transcriptional regulation of InvE expression, in addition to partial transcriptional activation by virF. The stability of invE mRNA is reduced under low osmotic conditions, similar to the effect of temperature. Deletion of an RNA chaperone gene (hfq) abolished the repression of TTSS synthesis at low osmolarity through a mechanism that involved increased stability of invE mRNA. We propose that the expression of Shigella virulence genes in response to both osmolarity and temperature involves the post-transcriptional regulation of expression of InvE, a critical regulator of TTSS synthesis.
Collapse
|