1
|
Enns CA, Jue S, Zhang AS. Hepatocyte neogenin is required for hemojuvelin-mediated hepcidin expression and iron homeostasis in mice. Blood 2021; 138:486-499. [PMID: 33824974 PMCID: PMC8370464 DOI: 10.1182/blood.2020009485] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 03/26/2021] [Indexed: 12/21/2022] Open
Abstract
Neogenin (NEO1) is a ubiquitously expressed multifunctional transmembrane protein. It interacts with hemojuvelin (HJV), a BMP coreceptor that plays a pivotal role in hepatic hepcidin expression. Earlier studies suggest that the function of HJV relies on its interaction with NEO1. However, the role of NEO1 in iron homeostasis remains controversial because of the lack of an appropriate animal model. Here, we generated a hepatocyte-specific Neo1 knockout (Neo1fl/fl;Alb-Cre+) mouse model that circumvented the developmental and lethality issues of the global Neo1 mutant. Results show that ablation of hepatocyte Neo1 decreased hepcidin expression and caused iron overload. This iron overload did not result from altered iron utilization by erythropoiesis. Replacement studies revealed that expression of the Neo1L1046E mutant that does not interact with Hjv, was unable to correct the decreased hepcidin expression and high serum iron in Neo1fl/fl;Alb-Cre+ mice. In Hjv-/- mice, expression of HjvA183R mutant that has reduced interaction with Neo1, also displayed a blunted induction of hepcidin expression. These observations indicate that Neo1-Hjv interaction is essential for hepcidin expression. Further analyses suggest that the Hjv binding triggered the cleavage of the Neo1 cytoplasmic domain by a protease, which resulted in accumulation of truncated Neo1 on the plasma membrane. Additional studies did not support that Neo1 functions by inhibiting Hjv shedding as previously proposed. Together, our data favor a model in which Neo1 interaction with Hjv leads to accumulation of cleaved Neo1 on the plasma membrane, where Neo1 acts as a scaffold to induce the Bmp signaling and hepcidin expression.
Collapse
Affiliation(s)
- Caroline A Enns
- Department of Cell, Developmental, and Cancer Biology, Oregon Health & Science University, Portland, OR
| | - Shall Jue
- Department of Cell, Developmental, and Cancer Biology, Oregon Health & Science University, Portland, OR
| | - An-Sheng Zhang
- Department of Cell, Developmental, and Cancer Biology, Oregon Health & Science University, Portland, OR
| |
Collapse
|
2
|
Zhao T, Guo X, Sun Y. Iron Accumulation and Lipid Peroxidation in the Aging Retina: Implication of Ferroptosis in Age-Related Macular Degeneration. Aging Dis 2021; 12:529-551. [PMID: 33815881 PMCID: PMC7990372 DOI: 10.14336/ad.2020.0912] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 09/12/2020] [Indexed: 01/19/2023] Open
Abstract
Iron is an essential component in many biological processes in the human body. It is critical for the visual phototransduction cascade in the retina. However, excess iron can be toxic. Iron accumulation and reduced efficiency of intracellular antioxidative defense systems predispose the aging retina to oxidative stress-induced cell death. Age-related macular degeneration (AMD) is characterized by retinal iron accumulation and lipid peroxidation. The mechanisms underlying AMD include oxidative stress-mediated death of retinal pigment epithelium (RPE) cells and subsequent death of retinal photoreceptors. Understanding the mechanism of the disruption of iron and redox homeostasis in the aging retina and AMD is crucial to decipher these mechanisms of cell death and AMD pathogenesis. The mechanisms of retinal cell death in AMD are an area of active investigation; previous studies have proposed several types of cell death as major mechanisms. Ferroptosis, a newly discovered programmed cell death pathway, has been associated with the pathogenesis of several neurodegenerative diseases. Ferroptosis is initiated by lipid peroxidation and is characterized by iron-dependent accumulation. In this review, we provide an overview of the mechanisms of iron accumulation and lipid peroxidation in the aging retina and AMD, with an emphasis on ferroptosis.
Collapse
Affiliation(s)
- Tantai Zhao
- 1Department of Ophthalmology, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,2Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, China
| | - Xiaojian Guo
- 1Department of Ophthalmology, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,2Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, China
| | - Yun Sun
- 1Department of Ophthalmology, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,2Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, China
| |
Collapse
|
3
|
A high selective “ Turn-Off ” aminopyrene based cyclotriphosphazene fluorescent chemosensors for Fe 3+ /Cu 2+ ions. Inorganica Chim Acta 2018. [DOI: 10.1016/j.ica.2018.04.028] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
4
|
Miszczuk GS, Barosso IR, Larocca MC, Marrone J, Marinelli RA, Boaglio AC, Sánchez Pozzi EJ, Roma MG, Crocenzi FA. Mechanisms of canalicular transporter endocytosis in the cholestatic rat liver. Biochim Biophys Acta Mol Basis Dis 2018; 1864:1072-1085. [DOI: 10.1016/j.bbadis.2018.01.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 01/12/2018] [Accepted: 01/16/2018] [Indexed: 01/03/2023]
|
5
|
Zhao N, Maxson JE, Zhang RH, Wahedi M, Enns CA, Zhang AS. Neogenin Facilitates the Induction of Hepcidin Expression by Hemojuvelin in the Liver. J Biol Chem 2016; 291:12322-35. [PMID: 27072365 DOI: 10.1074/jbc.m116.721191] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Indexed: 01/24/2023] Open
Abstract
Hemojuvelin (HJV) regulates iron homeostasis by direct interaction with bone morphogenetic protein (BMP) ligands to induce hepcidin expression through the BMP signaling pathway in the liver. Crystallography studies indicate that HJV can simultaneously bind to both BMP2 and the ubiquitously expressed cell surface receptor neogenin. However, the role of the neogenin-HJV interaction in the function of HJV is unknown. Here we identify a mutation in HJV that specifically lowers its interaction with neogenin. Expression of this mutant Hjv in the liver of Hjv(-/-) mice dramatically attenuated its induction of BMP signaling and hepcidin mRNA, suggesting that interaction with neogenin is critical for the iron regulatory function of HJV. Further studies revealed that neogenin co-immunoprecipitated with ALK3, an essential type-I BMP receptor for hepatic hepcidin expression. Neogenin has also been shown to facilitate the cleavage of HJV by furin in transfected cells. Surprisingly, although cleavage of HJV by furin has been implicated in the regulation of HJV function in cell culture models and furin-cleaved soluble Hjv is detectable in the serum of mice, mutating the furin cleavage site did not alter the stimulation of hepcidin expression by Hjv in mice. In vivo studies validated the important role of HJV-BMP interaction for Hjv stimulation of BMP signaling and hepcidin expression. Together these data support a model in which neogenin acts as a scaffold to facilitate assembly of the HJV·BMP·BMP receptor complex to induce hepcidin expression.
Collapse
Affiliation(s)
- Ningning Zhao
- From the Department of Cell, Developmental, and Cancer Biology, Oregon Health & Science University, Portland, Oregon 97239
| | - Julia E Maxson
- From the Department of Cell, Developmental, and Cancer Biology, Oregon Health & Science University, Portland, Oregon 97239
| | - Richard H Zhang
- From the Department of Cell, Developmental, and Cancer Biology, Oregon Health & Science University, Portland, Oregon 97239
| | - Mastura Wahedi
- From the Department of Cell, Developmental, and Cancer Biology, Oregon Health & Science University, Portland, Oregon 97239
| | - Caroline A Enns
- From the Department of Cell, Developmental, and Cancer Biology, Oregon Health & Science University, Portland, Oregon 97239
| | - An-Sheng Zhang
- From the Department of Cell, Developmental, and Cancer Biology, Oregon Health & Science University, Portland, Oregon 97239
| |
Collapse
|
6
|
Rausa M, Ghitti M, Pagani A, Nai A, Campanella A, Musco G, Camaschella C, Silvestri L. Identification of TMPRSS6 cleavage sites of hemojuvelin. J Cell Mol Med 2015; 19:879-88. [PMID: 25704252 PMCID: PMC4395201 DOI: 10.1111/jcmm.12462] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Accepted: 09/19/2014] [Indexed: 12/11/2022] Open
Abstract
Hemojuvelin (HJV), the coreceptor of the BMP-SMAD pathway that up-regulates hepcidin transcription, is a repulsive guidance molecule (RGMc) which undergoes a complex intracellular processing. Following autoproteolysis, it is exported to the cell surface both as a full-length and a heterodimeric protein. In vitro membrane HJV (m-HJV) is cleaved by the transmembrane serine protease TMPRSS6 to attenuate signalling and to inhibit hepcidin expression. In this study, we investigated the number and position of HJV cleavage sites by mutagenizing arginine residues (R), potential TMPRSS6 targets, to alanine (A). We analysed translation and membrane expression of HJV R mutants and the pattern of fragments they release in the culture media in the presence of TMPRSS6. Abnormal fragments were observed for mutants at arginine 121, 176, 218, 288 and 326. Considering that all variants, except HJVR121A, lack autoproteolytic activity and some (HJVR176A and HJVR288A) are expressed at reduced levels on cell surface, we identified the fragments originating from either full-length or heterodimeric proteins and defined the residues 121 and 326 as the TMPRSS6 cleavage sites in both isoforms. Using the N-terminal FLAG-tagged HJV, we showed that residue 121 is critical also in the rearrangement of the N-terminal heterodimeric HJV. Exploiting the recently reported RGMb crystallographic structure, we generated a model of HJV that was used as input structure for all-atoms molecular dynamics simulation in explicit solvent. As assessed by in silico studies, we concluded that some arginines in the von Willebrand domain appear TMPRSS6 insensitive, likely because of partial protein structure destabilization.
Collapse
Affiliation(s)
- Marco Rausa
- Division of Genetics and Cell Biology, IRCCS Ospedale San Raffaele, Milan, Italy; Vita Salute University, Milan, Italy
| | | | | | | | | | | | | | | |
Collapse
|
7
|
|
8
|
Gao GY, Qu WJ, Shi BB, Zhang P, Lin Q, Yao H, Yang WL, Zhang YM, Wei TB. A highly selective fluorescent chemosensor for iron ion based on 1H-imidazo [4,5-b] phenazine derivative. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2013; 121:514-519. [PMID: 24291427 DOI: 10.1016/j.saa.2013.11.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2013] [Revised: 10/29/2013] [Accepted: 11/03/2013] [Indexed: 06/02/2023]
Abstract
Two kinds of fluorescent sensors (S and S1) for Fe(3+) bearing 1H-Imidazo [4,5-b] phenazine derivatives have been designed and synthesized. Between the two sensors, S showed excellent fluorescent specific selectivity and high sensitivity for Fe(3+) in DMSO solution. The test strip based on S was fabricated, which could act as a convenient and efficient Fe(3+) test kit. The recognition mechanism of the sensor toward Fe(3+) was evaluated by MS, IR and XRD. The detection limit of the sensor S towards Fe(3+) is 4.8×10(-6)M. And other cations, including Hg(2+),Ag(+), Ca(2+), Cu(2+), Co(2+), Ni(2+), Cd(2+), Pb(2+), Zn(2+), Cr(3+), and Mg(2+) had no influence on the probing behavior.
Collapse
Affiliation(s)
- Guo-ying Gao
- Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Northwest Normal University, Lanzhou, Gansu 730070, PR China; Key Laboratory of Polymer Materials of Gansu Province, Northwest Normal University, Lanzhou, Gansu 730070, PR China; College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, PR China
| | - Wen-juan Qu
- Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Northwest Normal University, Lanzhou, Gansu 730070, PR China; Key Laboratory of Polymer Materials of Gansu Province, Northwest Normal University, Lanzhou, Gansu 730070, PR China; College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, PR China
| | - Bing-bing Shi
- Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Northwest Normal University, Lanzhou, Gansu 730070, PR China; Key Laboratory of Polymer Materials of Gansu Province, Northwest Normal University, Lanzhou, Gansu 730070, PR China; College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, PR China
| | - Peng Zhang
- Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Northwest Normal University, Lanzhou, Gansu 730070, PR China; Key Laboratory of Polymer Materials of Gansu Province, Northwest Normal University, Lanzhou, Gansu 730070, PR China; College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, PR China
| | - Qi Lin
- Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Northwest Normal University, Lanzhou, Gansu 730070, PR China; Key Laboratory of Polymer Materials of Gansu Province, Northwest Normal University, Lanzhou, Gansu 730070, PR China; College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, PR China
| | - Hong Yao
- Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Northwest Normal University, Lanzhou, Gansu 730070, PR China; Key Laboratory of Polymer Materials of Gansu Province, Northwest Normal University, Lanzhou, Gansu 730070, PR China; College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, PR China
| | - Wen-long Yang
- Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Northwest Normal University, Lanzhou, Gansu 730070, PR China; Key Laboratory of Polymer Materials of Gansu Province, Northwest Normal University, Lanzhou, Gansu 730070, PR China; College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, PR China
| | - You-ming Zhang
- Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Northwest Normal University, Lanzhou, Gansu 730070, PR China; Key Laboratory of Polymer Materials of Gansu Province, Northwest Normal University, Lanzhou, Gansu 730070, PR China; College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, PR China
| | - Tai-bao Wei
- Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Northwest Normal University, Lanzhou, Gansu 730070, PR China; Key Laboratory of Polymer Materials of Gansu Province, Northwest Normal University, Lanzhou, Gansu 730070, PR China; College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, PR China.
| |
Collapse
|
9
|
Abstract
Iron is a micronutrient essential for almost all organisms: bacteria, plants, and animals. It is a metal that exists in multiple redox states, including the divalent ferrous (Fe(2+)) and the trivalent ferric (Fe(3+)) species. The multiple oxidation states of iron make it excellent for electron transfer, allowing iron to be selected during evolution as a cofactor for many proteins involved in central cellular processes including oxygen transport, mitochondrial respiration, and DNA synthesis. However, the redox cycling of ferrous and ferric iron in the presence of H2O2, which is physiologically present in the cells, also leads to the production of free radicals (Fenton reaction) that can attack and damage lipids, proteins, DNA, and other cellular components. To meet the physiological needs of the body, but to prevent cellular damage by iron, the amount of iron in the body must be tightly regulated. Here we review how the liver is the central conductor of systemic iron balance and show that this central role is related to the secretion of a peptide hormone hepcidin by hepatocytes. We then review how the liver receives and integrates the many signals that report the body's iron needs to orchestrate hepcidin production and maintain systemic iron homeostasis.
Collapse
|
10
|
Tian C, Liu J. Repulsive guidance molecules (RGMs) and neogenin in bone morphogenetic protein (BMP) signaling. Mol Reprod Dev 2013; 80:700-17. [PMID: 23740870 DOI: 10.1002/mrd.22199] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Accepted: 05/28/2013] [Indexed: 02/06/2023]
Abstract
Bone morphogenetic proteins (BMPs) belong to the transforming growth factor-beta (TGFβ) superfamily. BMPs mediate a highly conserved signal transduction cascade through the type-I and type-II serine/threonine kinase receptors and intracellular Smad proteins, which regulate multiple developmental and homeostatic processes. Mutations in this pathway can cause various diseases in humans, such as skeletal disorders, cardiovascular diseases, and various cancers. Multiple levels of regulation, including extracellular regulation, help to ensure proper spatiotemporal control of BMP signaling in the right cellular context. The family of repulsive guidance molecules (RGMs) and the type-I transmembrane protein neogenin, a paralog of DCC (Deleted in Colorectal Cancer), have been implicated in modulating the BMP pathway. In this review, we discuss the properties and functions of RGM proteins and neogenin, focusing on their roles in the modulation of BMP signal transduction.
Collapse
Affiliation(s)
- Chenxi Tian
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York
| | | |
Collapse
|
11
|
Lawen A, Lane DJR. Mammalian iron homeostasis in health and disease: uptake, storage, transport, and molecular mechanisms of action. Antioxid Redox Signal 2013. [PMID: 23199217 DOI: 10.1089/ars.2011.4271] [Citation(s) in RCA: 165] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Iron is a crucial factor for life. However, it also has the potential to cause the formation of noxious free radicals. These double-edged sword characteristics demand a tight regulation of cellular iron metabolism. In this review, we discuss the various pathways of cellular iron uptake, cellular iron storage, and transport. Recent advances in understanding the reduction and uptake of non-transferrin-bound iron are discussed. We also discuss the recent progress in the understanding of transcriptional and translational regulation by iron. Furthermore, we discuss recent advances in the understanding of the regulation of cellular and systemic iron homeostasis and several key diseases resulting from iron deficiency and overload. We also discuss the knockout mice available for studying iron metabolism and the related human conditions.
Collapse
Affiliation(s)
- Alfons Lawen
- Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash University, Melbourne, Australia.
| | | |
Collapse
|
12
|
Jorge EC, Ahmed MU, Bothe I, Coutinho LL, Dietrich S. RGMa and RGMb expression pattern during chicken development suggest unexpected roles for these repulsive guidance molecules in notochord formation, somitogenesis, and myogenesis. Dev Dyn 2012; 241:1886-900. [PMID: 23073896 DOI: 10.1002/dvdy.23889] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Revised: 10/01/2012] [Accepted: 10/01/2012] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND Repulsive guidance molecules (RGM) are high-affinity ligands for the Netrin receptor Neogenin, and they are crucial for nervous system development including neural tube closure; neuronal and neural crest cell differentiation and axon guidance. Recent studies implicated RGM molecules in bone morphogenetic protein signaling, which regulates a variety of developmental processes. Moreover, a role for RGMc in iron metabolism has been established. This suggests that RGM molecules may play important roles in non-neural tissues. RESULTS To explore which tissues and processed may be regulated by RGM molecules, we systematically investigated the expression of RGMa and RGMb, the only RGM molecules currently known for avians, in the chicken embryo. CONCLUSIONS Our study suggests so far unknown roles of RGM molecules in notochord, somite and skeletal muscle development.
Collapse
Affiliation(s)
- Erika Cristina Jorge
- Universidade Federal de Minas Gerais-Departamento de Morfologia, Belo Horizonte, MG, Brazil.
| | | | | | | | | |
Collapse
|
13
|
Enns CA, Ahmed R, Zhang AS. Neogenin interacts with matriptase-2 to facilitate hemojuvelin cleavage. J Biol Chem 2012; 287:35104-35117. [PMID: 22893705 PMCID: PMC3471701 DOI: 10.1074/jbc.m112.363937] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2012] [Revised: 07/28/2012] [Indexed: 01/12/2023] Open
Abstract
Hemojuvelin (HJV) and matriptase-2 (MT2) are co-expressed in hepatocytes, and both are essential for systemic iron homeostasis. HJV is a glycosylphosphatidylinositol-linked membrane protein that acts as a co-receptor for bone morphogenetic proteins to induce hepcidin expression. MT2 regulates the levels of membrane-bound HJV in hepatocytes by binding to and cleaving HJV into an inactive soluble form that is released from cells. HJV also interacts with neogenin, a ubiquitously expressed transmembrane protein with multiple functions. In this study, we showed that neogenin interacted with MT2 as well as with HJV and facilitated the cleavage of HJV by MT2. In contrast, neogenin was not cleaved by MT2, indicating some degree of specificity by MT2. Down-regulation of neogenin with siRNA increased the amount of MT2 and HJV on the plasma membrane, suggesting a lack of neogenin involvement in their trafficking to the cell surface. The increase in MT2 and HJV upon neogenin knockdown was likely due to the inhibition of cell surface MT2 and HJV internalization. Analysis of the Asn-linked oligosaccharides showed that MT2 cleavage of cell surface HJV was coupled to a transition from high mannose oligosaccharides to complex oligosaccharides on HJV. These results suggest that neogenin forms a ternary complex with both MT2 and HJV at the plasma membrane. The complex facilitates HJV cleavage by MT2, and release of the cleaved HJV from the cell occurs after a retrograde trafficking through the TGN/Golgi compartments.
Collapse
Affiliation(s)
- Caroline A Enns
- Department of Cell and Developmental Biology, Oregon Health and Science University, Portland, Oregon 97239
| | - Riffat Ahmed
- Department of Cell and Developmental Biology, Oregon Health and Science University, Portland, Oregon 97239
| | - An-Sheng Zhang
- Department of Cell and Developmental Biology, Oregon Health and Science University, Portland, Oregon 97239.
| |
Collapse
|
14
|
Sheftel AD, Mason AB, Ponka P. The long history of iron in the Universe and in health and disease. BIOCHIMICA ET BIOPHYSICA ACTA 2012; 1820:161-87. [PMID: 21856378 PMCID: PMC3258305 DOI: 10.1016/j.bbagen.2011.08.002] [Citation(s) in RCA: 141] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2011] [Revised: 07/19/2011] [Accepted: 08/01/2011] [Indexed: 12/21/2022]
Abstract
BACKGROUND Not long after the Big Bang, iron began to play a central role in the Universe and soon became mired in the tangle of biochemistry that is the prima essentia of life. Since life's addiction to iron transcends the oxygenation of the Earth's atmosphere, living things must be protected from the potentially dangerous mix of iron and oxygen. The human being possesses grams of this potentially toxic transition metal, which is shuttling through his oxygen-rich humor. Since long before the birth of modern medicine, the blood-vibrant red from a massive abundance of hemoglobin iron-has been a focus for health experts. SCOPE OF REVIEW We describe the current understanding of iron metabolism, highlight the many important discoveries that accreted this knowledge, and describe the perils of dysfunctional iron handling. GENERAL SIGNIFICANCE Isaac Newton famously penned, "If I have seen further than others, it is by standing upon the shoulders of giants". We hope that this review will inspire future scientists to develop intellectual pursuits by understanding the research and ideas from many remarkable thinkers of the past. MAJOR CONCLUSIONS The history of iron research is a long, rich story with early beginnings, and is far from being finished. This article is part of a Special Issue entitled Transferrins: Molecular mechanisms of iron transport and disorders.
Collapse
Affiliation(s)
- Alex D. Sheftel
- University of Ottawa Heart Institute, 40 Ruskin St., Ottawa, ON K1Y 4W7, Canada
| | - Anne B. Mason
- Department of Biochemistry, College of Medicine, University of Vermont, 89 Beaumont Avenue, Burlington, VT 05405-0068, USA
| | - Prem Ponka
- Lady Davis Institute for Medical Research, Jewish General Hospital, 3755 Côte-Ste.-Catherine Rd., Montréal, QC H3T 1E2, and Departments of Physiology and Medicine, McGill University, Montréal, QC, Canada
| |
Collapse
|
15
|
Fujikura Y, Krijt J, Nečas E. Liver and muscle hemojuvelin are differently glycosylated. BMC BIOCHEMISTRY 2011; 12:52. [PMID: 21936923 PMCID: PMC3190341 DOI: 10.1186/1471-2091-12-52] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2011] [Accepted: 09/21/2011] [Indexed: 02/06/2023]
Abstract
Background Hemojuvelin (HJV) is one of essential components for expression of hepcidin, a hormone which regulates iron transport. HJV is mainly expressed in muscle and liver, and processing of HJV in both tissues is similar. However, hepcidin is expressed in liver but not in muscle and the role of the muscle HJV is yet to be established. Our preliminary analyses of mouse tissue HJV showed that the apparent molecular masses of HJV peptides are different in liver (50 kDa monomer and 35 and 20 kDa heterodimer fragments) and in muscle (55 kDa monomer and a 34 kDa possible large fragment of heterodimer). One possible explanation is glycosylation which could lead to difference in molecular mass. Results We investigated glycosylation of HJV in both liver and muscle tissue from mice. PNGase F treatment revealed that the HJV large fragments of liver and muscle were digested to peptides with similar masses, 30 and 31 kDa, respectively, and the liver 20 kDa small fragment of heterodimer was digested to 16 kDa, while the 50 kDa liver and 55 kDa muscle monomers were reduced to 42 and 48 kDa, respectively. Endo H treatment produced distinct digestion profiles of the large fragment: a small fraction of the 35 kDa peptide was reduced to 33 kDa in liver, while the majority of the 34 kDa peptide was digested to 33 kDa and a very small fraction to 31 kDa in muscle. In addition, liver HJV was found to be neuraminidase-sensitive but its muscle counterpart was neuraminidase-resistant. Conclusions Our results indicate that different oligosaccharides are attached to liver and muscle HJV peptides, which may contribute to different functions of HJV in the two tissues.
Collapse
Affiliation(s)
- Yuzo Fujikura
- Institute of Pathophysiology and Center of Experimental Haematology First Faculty of Medicine, Charles University in Prague U Nemocnice 5, 12853 Prague 2, Czech Republic.
| | | | | |
Collapse
|
16
|
Chen J, Enns CA. Hereditary hemochromatosis and transferrin receptor 2. Biochim Biophys Acta Gen Subj 2011; 1820:256-63. [PMID: 21864651 DOI: 10.1016/j.bbagen.2011.07.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2011] [Revised: 07/26/2011] [Accepted: 07/29/2011] [Indexed: 02/08/2023]
Abstract
BACKGROUND Multicellular organisms regulate the uptake of calories, trace elements, and other nutrients by complex feedback mechanisms. In the case of iron, the body senses internal iron stores, iron requirements for hematopoiesis, and inflammatory status, and regulates iron uptake by modulating the uptake of dietary iron from the intestine. Both the liver and the intestine participate in the coordination of iron uptake and distribution in the body. The liver senses inflammatory signals and iron status of the organism and secretes a peptide hormone, hepcidin. Under high iron or inflammatory conditions hepcidin levels increase. Hepcidin binds to the iron transport protein, ferroportin (FPN), promoting FPN internalization and degradation. Decreased FPN levels reduce iron efflux out of intestinal epithelial cells and macrophages into the circulation. Derangements in iron metabolism result in either the abnormal accumulation of iron in the body, or in anemias. The identification of the mutations that cause the iron overload disease, hereditary hemochromatosis (HH), or iron-refractory iron-deficiency anemia has revealed many of the proteins used to regulate iron uptake. SCOPE OF THE REVIEW In this review we discuss recent data concerning the regulation of iron homeostasis in the body by the liver and how transferrin receptor 2 (TfR2) affects this process. MAJOR CONCLUSIONS TfR2 plays a key role in regulating iron homeostasis in the body. GENERAL SIGNIFICANCE The regulation of iron homeostasis is important. One third of the people in the world are anemic. HH is the most common inherited disease in people of Northern European origin and can lead to severe health complications if left untreated. This article is part of a Special Issue entitled Transferrins: Molecular mechanisms of iron transport and disorders.
Collapse
Affiliation(s)
- Juxing Chen
- Department of Cell and Developmental Biology L215, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd., Portland, OR 97239, USA
| | | |
Collapse
|
17
|
Yang F, West AP, Bjorkman PJ. Crystal structure of a hemojuvelin-binding fragment of neogenin at 1.8Å. J Struct Biol 2011; 174:239-44. [PMID: 20971194 PMCID: PMC3074981 DOI: 10.1016/j.jsb.2010.10.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2010] [Revised: 10/12/2010] [Accepted: 10/13/2010] [Indexed: 01/24/2023]
Abstract
Neogenin is a type I transmembrane glycoprotein with a large ectodomain containing tandem immunoglobulin-like and fibronectin type III (FNIII) domains. Closely related to the tumor suppressor gene DCC, neogenin functions in critical biological processes through binding to various ligands, including netrin, repulsive guidance molecules, and the iron regulatory protein hemojuvelin. We previously reported that neogenin binds to hemojuvelin through its membrane-proximal fifth and sixth FNIII domains (FN5-6), with domain 6 (FN6) contributing the majority of critical binding interactions. Here we present the crystal structure of FN5-6, the hemojuvelin-binding fragment of human neogenin, at 1.8Å. The two FNIII domains are orientated nearly linearly, a domain arrangement most similar to that of a tandem FNIII-containing fragment within the cytoplasmic tail of the β4 integrin. By mapping surface-exposed residues that differ between neogenin FN5-6 and the comparable domains from DCC, which does not bind hemojuvelin, we identified a potential hemojuvelin-binding site on neogenin FN6. Neogenin FN5, which does not bind hemojuvelin in isolation, exhibits a highly electropositive surface, which may be involved in interactions with negatively-charged polysaccharides or phospholipids in the membrane bilayer. The neogenin FN5-6 structure can be used to facilitate a molecular understanding of neogenin's interaction with hemojuvelin to regulate iron homeostasis and with hemojuvelin-related repulsive guidance molecules to mediate axon guidance.
Collapse
Affiliation(s)
- Fan Yang
- Graduate option in Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125
- Division of Biology, California Institute of Technology, Pasadena, California 91125
| | - Anthony P. West
- Division of Biology, California Institute of Technology, Pasadena, California 91125
| | - Pamela J. Bjorkman
- Division of Biology, California Institute of Technology, Pasadena, California 91125
- Howard Hughes Medical Institute, California Institute of Technology, Pasadena, California 91125
| |
Collapse
|
18
|
Abstract
Systemic iron homeostasis is maintained by the coordinate regulation of iron absorption in the duodenum, iron recycling of senescent erythrocytes in macrophages, and mobilization of storage iron in the liver. These processes are controlled by hepcidin, a key iron regulatory hormone. Hepcidin is a 25-amino acid peptide secreted predominantly from hepatocytes. It downregulates ferroportin, the only known iron exporter, and therefore inhibits iron efflux from duodenal enterocytes, macrophages, and hepatocytes into the circulation. Hepcidin expression is regulated positively by body iron load. Although the underlying mechanism of iron-regulated hepcidin expression has not been fully elucidated, several proteins have been identified that participate in this process. Among them, hemojuvelin (HJV) plays a particularly important role. HJV undergoes complicated post-translational processing in an iron-dependent manner, and it interacts with multiple proteins that are essential for iron homeostasis. In this review, I focus on the recent findings that elucidate the role of HJV and its interacting partners in the modulation of hepatic hepcidin expression.
Collapse
|
19
|
Maxson JE, Chen J, Enns CA, Zhang AS. Matriptase-2- and proprotein convertase-cleaved forms of hemojuvelin have different roles in the down-regulation of hepcidin expression. J Biol Chem 2010; 285:39021-8. [PMID: 20937842 DOI: 10.1074/jbc.m110.183160] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Hemojuvelin (HJV) is an important regulator of iron metabolism. Membrane-anchored HJV up-regulates expression of the iron regulatory hormone, hepcidin, through the bone morphogenic protein (BMP) signaling pathway by acting as a BMP co-receptor. HJV can be cleaved by the furin family of proprotein convertases, which releases a soluble form of HJV that suppresses BMP signaling and hepcidin expression by acting as a decoy that competes with membrane HJV for BMP ligands. Recent studies indicate that matriptase-2 binds and degrades HJV, leading to a decrease in cell surface HJV. In the present work, we show that matriptase-2 cleaves HJV at Arg(288), which produces one major soluble form of HJV. This shed form of HJV has decreased ability to bind BMP6 and does not suppress BMP6-induced hepcidin expression. These results suggest that the matriptase-2 and proprotein convertase-cleavage products have different roles in the regulation of hepcidin expression.
Collapse
Affiliation(s)
- Julia E Maxson
- Department of Cell and Developmental Biology, Oregon Health and Science University, Portland, Oregon 97239, USA
| | | | | | | |
Collapse
|
20
|
Abstract
The human body cannot actively excrete excess iron. As a consequence, iron absorption must be strictly regulated to ensure adequate iron uptake and prevent toxic iron accumulation. Iron absorption is controlled chiefly by hepcidin, the iron-regulatory hormone. Produced by the liver and secreted into the circulation, hepcidin regulates iron metabolism by inhibiting iron release from cells, including duodenal enterocytes, which mediate the absorption of dietary iron. Hepcidin production increases in response to iron loading and decreases in iron deficiency. Such regulation of hepcidin expression serves to modulate iron absorption to meet body iron demand. This review discusses the proteins that orchestrate hepatic hepcidin production and iron absorption by the intestine. Emphasis is placed on the proteins that directly sense iron and how they coordinate and fine-tune the molecular, cellular, and physiologic responses to iron deficiency and overload.
Collapse
Affiliation(s)
- Mitchell D Knutson
- Food Science and Human Nutrition Department, University of Florida, Gainesville, Florida 32611-2710, USA.
| |
Collapse
|
21
|
Abstract
Iron overload is the principal cause of morbidity and mortality in beta-thalassemia with or without transfusion dependence. Iron homeostasis is regulated by the hepatic peptide hormone hepcidin. Hepcidin controls dietary iron absorption, plasma iron concentrations, and tissue iron distribution. A deficiency in this hormone is the main or contributing factor of iron overload in iron-loading anemias such as beta-thalassemia. Hepcidin deficiency results from a strong suppressive effect of the high erythropoietic activity on hepcidin expression. Although in thalassemia major patients iron absorption contributes less to the total iron load than transfusions, in non-transfused thalassemia, low hepcidin, and the consequent hyperabsorption of dietary iron is the major cause of systemic iron overload. Hepcidin diagnostics and future therapeutic agonists may help in management of patients with beta-thalassemia.
Collapse
Affiliation(s)
- Elizabeta Nemeth
- Department of Medicine, University of California at Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
22
|
Pietrangelo A. Hereditary hemochromatosis: pathogenesis, diagnosis, and treatment. Gastroenterology 2010; 139:393-408, 408.e1-2. [PMID: 20542038 DOI: 10.1053/j.gastro.2010.06.013] [Citation(s) in RCA: 387] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2010] [Revised: 05/28/2010] [Accepted: 06/03/2010] [Indexed: 02/06/2023]
Abstract
In the late 1800s, hemochromatosis was considered an odd autoptic finding. More than a century later, it was finally recognized as a hereditary, multi-organ disorder associated with a polymorphism that is common among white people: a 845G-->A change in HFE that results in C282Y in the gene product. Hemochromatosis is now a well-defined syndrome characterized by normal iron-driven erythropoiesis and the toxic accumulation of iron in parenchymal cells of liver, heart, and endocrine glands. It can be caused by mutations that affect any of the proteins that limit the entry of iron into the blood. In mice, deletion of the iron hormone hepcidin and any of 8 genes that regulate its biology, including Hfe, transferrin receptor 2 (Tfr2), and hemojuvelin (Hjv) (which all sense the accumulation of iron that hepcidin corrects) or ferroportin (Fpn) (the cellular iron exporter down-regulated by hepcidin), cause iron overload but not organ disease. In humans, loss of TfR2, HJV, and hepcidin itself or FPN mutations result in full-blown hemochromatosis. Unlike these rare instances, in white people, homozygotes for C282Y polymorphism in HFE are numerous, but they are only predisposed to hemochromatosis; complete organ disease develops in a minority, when these individuals abuse alcohol or from other unidentified modifying factors. HFE gene testing can be used to diagnose hemochromatosis, but analyses of liver histology and clinical features are still required to identify patients with rare, non-HFE forms of the disease. The role of hepcidin in the pathogenesis of hemochromatosis reveals its similarities to endocrine diseases such as diabetes and indicates new approaches to diagnosis and management of this common disorder in iron metabolism.
Collapse
Affiliation(s)
- Antonello Pietrangelo
- 2nd Division of Internal Medicine and Centre for Hemochromatosis, University Hospital of Modena, Modena, Italy.
| |
Collapse
|
23
|
Gnana-Prakasam JP, Martin PM, Smith SB, Ganapathy V. Expression and function of iron-regulatory proteins in retina. IUBMB Life 2010; 62:363-70. [PMID: 20408179 DOI: 10.1002/iub.326] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Iron is essential for cell survival and function; yet excess iron is toxic to cells. Therefore, the cellular and whole-body levels of iron are regulated exquisitely. At least a dozen proteins participate in the regulation of iron homeostasis. Hemochromatosis, a genetic disorder of iron overload, is caused by mutations in at least five genes, namely HFE, hemojuvelin, Transferrin receptor 2, ferroportin, and hepcidin. Retina is separated from systemic circulation by inner and outer blood-retinal barriers; therefore it is widely believed that this tissue is immune to changes in systemic circulation. Even though hemochromatosis is associated with iron overload and dysfunction of a variety of systemic organs, little is known on the effects of this disease on the retina. Recent studies have shown that all five genes that are associated with hemochromatosis are expressed in the retina in a cell type-specific manner. The retinal pigment epithelium, which forms the outer blood-retinal barrier, expresses all of these five genes. It is therefore clearly evident that iron homeostasis in the retina is maintained locally by active participation of various iron-regulatory proteins. Excess iron is detrimental to the retina as evidenced from human studies and from mouse models of iron overload. Retinal iron homeostasis is disrupted in various clinical conditions such as hemochromatosis, aceruloplasminemia, age-related macular degeneration, and bacterial and viral infections.
Collapse
Affiliation(s)
- Jaya P Gnana-Prakasam
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, GA, USA
| | | | | | | |
Collapse
|
24
|
Targeting the hepcidin-ferroportin axis in the diagnosis and treatment of anemias. Adv Hematol 2009; 2010:750643. [PMID: 20066043 PMCID: PMC2798567 DOI: 10.1155/2010/750643] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2009] [Accepted: 11/23/2009] [Indexed: 01/19/2023] Open
Abstract
The hepatic peptide hormone hepcidin regulates dietary iron absorption, plasma iron concentrations, and tissue iron distribution. Hepcidin acts by causing the degradation of its receptor, the cellular iron exporter ferroportin. The loss of ferroportin decreases iron flow into plasma from absorptive enterocytes, from macrophages that recycle the iron of senescent erythrocytes, and from hepatocytes that store iron, thereby lowering plasma iron concentrations. Malfunctions of the hepcidin-ferroportin axis contribute to the pathogenesis of different anemias. Deficient production of hepcidin causes systemic iron overload in iron-loading anemias such as beta-thalassemia; whereas hepcidin excess contributes to the development of anemia in inflammatory disorders and chronic kidney disease, and may cause erythropoietin resistance. The diagnosis of different forms of anemia will be facilitated by improved hepcidin assays, and the treatment will be enhanced by the development of hepcidin agonists and antagonists.
Collapse
|
25
|
Zhang AS, Yang F, Wang J, Tsukamoto H, Enns CA. Hemojuvelin-neogenin interaction is required for bone morphogenic protein-4-induced hepcidin expression. J Biol Chem 2009; 284:22580-9. [PMID: 19564337 DOI: 10.1074/jbc.m109.027318] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Hemojuvelin (HJV) is a glycosylphosphatidylinositol-linked protein and binds both bone morphogenic proteins (BMPs) and neogenin. Cellular HJV acts as a BMP co-receptor to enhance the transcription of hepcidin, a key iron regulatory hormone secreted predominantly by liver hepatocytes. In this study we characterized the role of neogenin in HJV-regulated hepcidin expression. Both HJV and neogenin were expressed in liver hepatocytes. Knockdown of neogenin decreased BMP4-induced hepcidin mRNA levels by 16-fold in HJV-expressing HepG2 cells but only by about 2-fold in cells transfected with either empty vector or G99V mutant HJV that does not bind BMPs. Further studies indicated that disruption of the HJV-neogenin interaction is responsible for a marked suppression of hepcidin expression. Moreover, in vivo studies showed that hepatic hepcidin mRNA could be significantly suppressed by blocking the interaction of HJV with full-length neogenin with a soluble fragment of neogenin in mice. Together, these results suggest that the HJV-neogenin interaction is required for the BMP-mediated induction of hepcidin expression when HJV is expressed. Combined with our previous studies, our results support that hepatic neogenin possesses two functions, mediation of cellular HJV release, and stimulation of HJV-enhanced hepcidin expression.
Collapse
Affiliation(s)
- An-Sheng Zhang
- Department of Cell and Developmental Biology, Oregon Health and Science University, Portland, Oregon 97239, USA.
| | | | | | | | | |
Collapse
|
26
|
VanSlyke JK, Naus CC, Musil LS. Conformational maturation and post-ER multisubunit assembly of gap junction proteins. Mol Biol Cell 2009; 20:2451-63. [PMID: 19297523 PMCID: PMC2675624 DOI: 10.1091/mbc.e09-01-0062] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2009] [Accepted: 03/06/2009] [Indexed: 01/01/2023] Open
Abstract
For all previously well-characterized oligomeric integral membrane proteins, folding, multisubunit assembly, and recognition of conformationally immature molecules for degradation occurs at their organelle of synthesis. This cannot, however, be the case for the gap junction-forming protein connexin43 (Cx43), which when endogenously expressed undergoes multisubunit assembly into connexons only after its transport to the trans-Golgi network. We have developed two novel assays to assess Cx43 folding and assembly: acquisition of resistance of disulfide bonds to reduction by extracellularly added DTT and Triton X-114 detergent phase partitioning. We show that Cx43 synthesized at physiologically relevant levels undergoes a multistep conformational maturation process in which folding of connexin monomers within the ER is a prerequisite for multisubunit assembly in the TGN. Similar results were obtained with Cx32, disproving the widely reported contention that the site of endogenous beta connexin assembly is the ER. Exogenous overexpression of Cx43, Cx32, or Cx26 allows these events to take place within the ER, the first example of the TGN and ER as alternative sites for oligomeric assembly. Our findings also constitute the first biochemical evidence that defective connexin folding is a cause of the human disorder X-linked Charcot-Marie-Tooth disease.
Collapse
Affiliation(s)
- Judy K. VanSlyke
- *Department of Biochemistry and Molecular Biology, Oregon Health & Science University, Portland, OR 97239; and
| | - Christian C. Naus
- Department of Cellular and Physiological Sciences, Life Sciences Institute, The University of British Columbia, Vancouver, BC V6T 1Z3
| | - Linda S. Musil
- *Department of Biochemistry and Molecular Biology, Oregon Health & Science University, Portland, OR 97239; and
| |
Collapse
|
27
|
Hänninen MM, Haapasalo J, Haapasalo H, Fleming RE, Britton RS, Bacon BR, Parkkila S. Expression of iron-related genes in human brain and brain tumors. BMC Neurosci 2009; 10:36. [PMID: 19386095 PMCID: PMC2679039 DOI: 10.1186/1471-2202-10-36] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2008] [Accepted: 04/22/2009] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Defective iron homeostasis may be involved in the development of some diseases within the central nervous system. Although the expression of genes involved in normal iron balance has been intensively studied in other tissues, little is known about their expression in the brain. We investigated the mRNA levels of hepcidin (HAMP), HFE, neogenin (NEO1), transferrin receptor 1 (TFRC), transferrin receptor 2 (TFR2), and hemojuvelin (HFE2) in normal human brain, brain tumors, and astrocytoma cell lines. The specimens included 5 normal brain tissue samples, 4 meningiomas, one medulloblastoma, 3 oligodendrocytic gliomas, 2 oligoastrocytic gliomas, 8 astrocytic gliomas, and 3 astrocytoma cell lines. RESULTS Except for hemojuvelin, all genes studied had detectable levels of mRNA. In most tumor types, the pattern of gene expression was diverse. Notable findings include high expression of transferrin receptor 1 in the hippocampus and medulla oblongata compared to other brain regions, low expression of HFE in normal brain with elevated HFE expression in meningiomas, and absence of hepcidin mRNA in astrocytoma cell lines despite expression in normal brain and tumor specimens. CONCLUSION These results indicate that several iron-related genes are expressed in normal brain, and that their expression may be dysregulated in brain tumors.
Collapse
Affiliation(s)
- Milla M Hänninen
- Institute of Medical Technology and School of Medicine, University of Tampere, Tampere University Hospital, Tampere, Finland
| | - Joonas Haapasalo
- Department of Pathology, Centre for Laboratory Medicine, Tampere University Hospital, Tampere, Finland
| | - Hannu Haapasalo
- Department of Pathology, Centre for Laboratory Medicine, Tampere University Hospital, Tampere, Finland
| | - Robert E Fleming
- Department of Pediatrics, Saint Louis University Liver Center, Saint Louis University School of Medicine, St. Louis, Missouri, USA
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University Liver Center, Saint Louis University School of Medicine, St Louis, Missouri, USA
| | - Robert S Britton
- Division of Gastroenterology and Hepatology, Saint Louis University Liver Center, Saint Louis University School of Medicine, St Louis, Missouri, USA
| | - Bruce R Bacon
- Division of Gastroenterology and Hepatology, Saint Louis University Liver Center, Saint Louis University School of Medicine, St Louis, Missouri, USA
| | - Seppo Parkkila
- Institute of Medical Technology and School of Medicine, University of Tampere, Tampere University Hospital, Tampere, Finland
| |
Collapse
|
28
|
Zhang AS, Enns CA. Molecular mechanisms of normal iron homeostasis. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2009; 2009:207-14. [PMID: 20008200 PMCID: PMC5831338 DOI: 10.1182/asheducation-2009.1.207] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Humans possess elegant control mechanisms to maintain iron homeostasis by coordinately regulating iron absorption, iron recycling, and mobilization of stored iron. Dietary iron absorption is regulated locally by hypoxia inducible factor (HIF) signaling and iron-regulatory proteins (IRPs) in enterocytes and systematically by hepatic hepcidin, the central iron regulatory hormone. Hepcidin not only controls the rate of iron absorption but also determines iron mobilization from stores through negatively modulating the function of ferroportin, the only identified cellular iron exporter to date. The regulation of hepatic hepcidin is accomplished by the coordinated activity of multiple proteins through different signaling pathways. Recent studies have greatly expanded the knowledge in the understanding of hepcidin expression and regulation by the bone morphogenetic protein (BMP) signaling, the erythroid factors, and inflammation. In this review, we mainly focus on the roles of recently identified proteins in the regulation of iron homeostasis.
Collapse
|
29
|
Abstract
Hemojuvelin (HJV) was recently identified as a critical regulator of iron homeostasis. It is either associated with cell membranes through a glycosylphosphatidylinositol anchor or released as a soluble form. Membrane-anchored HJV acts as a coreceptor for bone morphogenetic proteins and activates the transcription of hepcidin, a hormone that regulates iron efflux from cells. Soluble HJV antagonizes bone morphogenetic protein signaling and suppresses hepcidin expression. In this study, we examined the trafficking and processing of HJV. Cellular HJV reached the plasma membrane without obtaining complex oligosaccharides, indicating that HJV avoided Golgi processing. Secreted HJV, in contrast, has complex oligosaccharides and can be derived from HJV with high-mannose oligosaccharides at the plasma membrane. Our results support a model in which retrograde trafficking of HJV before cleavage is the predominant processing pathway. Release of HJV requires it to bind to the transmembrane receptor neogenin. Neogenin does not, however, play a role in HJV trafficking to the cell surface, suggesting that it could be involved either in retrograde trafficking of HJV or in cleavage leading to HJV release.
Collapse
|