1
|
Du L, Roberts JD. Transforming growth factor-β downregulates sGC subunit expression in pulmonary artery smooth muscle cells via MEK and ERK signaling. Am J Physiol Lung Cell Mol Physiol 2018; 316:L20-L34. [PMID: 30260287 DOI: 10.1152/ajplung.00319.2018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
TGFβ activation during newborn lung injury decreases the expression of pulmonary artery smooth muscle cell (PASMC)-soluble guanylate cyclase (sGC), a critical mediator of nitric oxide signaling. Using a rat PASMC line (CS54 cells), we determined how TGFβ downregulates sGC expression. We found that TGFβ decreases sGC expression through stimulating its type I receptor; TGFβ type I receptor (TGFβR1) inhibitors prevented TGFβ-1-mediated decrease in sGCα1 subunit mRNA levels in the cells. However, TGFβR1-Smad mechanisms do not regulate sGC; effective knockdown of Smad2 and Smad3 expression and function did not protect sGCα1 mRNA levels during TGFβ-1 exposure. A targeted small-molecule kinase inhibitor screen suggested that MEK signaling regulates sGC expression in TGFβ-stimulated PASMC. TGFβ activates PASMC MEK/ERK signaling; CS54 cell treatment with TGFβ-1 increased MEK and ERK phosphorylation in a biphasic, time- and dose-dependent manner. Moreover, MEK/ERK activity appears to be required for TGFβ-mediated sGC expression inhibition in PASMC; MEK and ERK inhibitors protected sGCα1 mRNA expression in TGFβ-1-treated CS54 cells. Nuclear ERK activity is sufficient for sGC regulation; heterologous expression of a nucleus-retained, constitutively active ERK2-MEK1 fusion protein decreased CS54 cell sGCα1 mRNA levels. The in vivo relevance of this TGFβ-MEK/ERK-sGC downregulation pathway is suggested by the detection of ERK activation and sGCα1 protein expression downregulation in TGFβ-associated mouse pup hyperoxic lung injury, and the determination that ERK decreases sGCα1 protein expression in TGFβ-1-treated primary PASMC obtained from mouse pups. These studies identify MEK/ERK signaling as an important pathway by which TGFβ regulates sGC expression in PASMC.
Collapse
Affiliation(s)
- Lili Du
- Cardiovascular Research Center of the General Medical Services, Massachusetts General Hospital , Boston, Massachusetts.,Harvard Medical School, Cambridge, Massachusetts
| | - Jesse D Roberts
- Cardiovascular Research Center of the General Medical Services, Massachusetts General Hospital , Boston, Massachusetts.,Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital , Boston, Massachusetts.,Department of Pediatrics, Massachusetts General Hospital , Boston, Massachusetts.,Harvard Medical School, Cambridge, Massachusetts
| |
Collapse
|
2
|
Joo D, Woo JS, Cho KH, Han SH, Min TS, Yang DC, Yun CH. Biphasic activation of extracellular signal-regulated kinase (ERK) 1/2 in epidermal growth factor (EGF)-stimulated SW480 colorectal cancer cells. BMB Rep 2017; 49:220-5. [PMID: 26879318 PMCID: PMC4915241 DOI: 10.5483/bmbrep.2016.49.4.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Indexed: 12/21/2022] Open
Abstract
Cancer cells have different characteristics due to the genetic differences where these unique features may strongly influence the effectiveness of therapeutic interventions. Here, we show that the spontaneous reactivation of extracellular signalregulated kinase (ERK), distinct from conventional ERK activation, represents a potent mechanism for cancer cell survival. We studied ERK1/2 activation in vitro in SW480 colorectal cancer cells. Although ERK signaling tends to be transiently activated, we observed the delayed reactivation of ERK1/2 in epidermal growth factor (EGF)-stimulated SW480 cells. This effect was observed even after EGF withdrawal. While phosphorylated ERK1/2 translocated into the nucleus following its primary activation, it remained in the cytoplasm during late-phase activation. The inhibition of primary ERK1/2 activation or protein trafficking, blocked reactivation and concurrently increased caspase 3 activity. Our results suggest that the biphasic activation of ERK1/2 plays a role in cancer cell survival; thus, regulation of ERK1/2 activation may improve the efficacy of cancer therapies that target ERK signaling. [BMB Reports 2016; 49(4): 220-225]
Collapse
Affiliation(s)
- Donghyun Joo
- Department of Agricultural Biotechnology and Center for Agricultural Biomaterials; Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
| | - Jong Soo Woo
- Department of Agricultural Biotechnology and Center for Agricultural Biomaterials; Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
| | - Kwang-Hyun Cho
- 2Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - Seung Hyun Han
- Department of Oral Microbiology and Immunology, Dental Research Institute, and BK21 Program, School of Dentistry, Seoul National University, Seoul 08826, Korea
| | - Tae Sun Min
- National Research Foundation of Korea, Daejeon 34113, Korea
| | - Deok-Chun Yang
- Korean Ginseng Center and Ginseng Genetic Resource Bank, Kyung Hee University, Yongin 17104, Korea
| | - Cheol-Heui Yun
- Department of Agricultural Biotechnology and Center for Agricultural Biomaterials; Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
3
|
Cyclic AMP signalling through PKA but not Epac is essential for neurturin-induced biphasic ERK1/2 activation and neurite outgrowths through GFRα2 isoforms. Cell Signal 2011; 23:1727-37. [PMID: 21723942 DOI: 10.1016/j.cellsig.2011.06.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2011] [Revised: 06/09/2011] [Accepted: 06/15/2011] [Indexed: 11/23/2022]
Abstract
Cyclic AMP (cAMP) and neurotrophic factors are known to interact closely to promote neurite outgrowth and neuronal regeneration. Glial cell line-derived neurotrophic factor (GDNF) and its family member neurturin (NTN) transduce signal through a multi-component receptor complex consisting of GDNF family receptor alpha 2 (GFRα2) and Ret receptor tyrosine kinase. Neurons from GFRα2-deficient mice do not promote axonal initiation when stimulated by NTN, consistent with the role of GFRα2 in neuronal outgrowth. Multiple alternatively spliced isoforms of GFRα2 are known to be expressed in the nervous system. GFRα2a and GFRα2c but not GFRα2b promoted neurite outgrowth. It is currently unknown if cAMP signalling is differentially regulated by these isoforms. In this study, NTN activation of GFRα2a and GFRα2c but not GFRα2b induced biphasic ERK1/2 activation and phosphorylation of the major cAMP target CREB. Interestingly, inhibition of cAMP signalling significantly impaired GFRα2a and GFRα2c-mediated neurite outgrowth while cAMP agonists cooperated with GFRα2b to induce neurite outgrowth. Importantly, the specific cAMP effector PKA but not Epac was essential for NTN-induced neurite outgrowth, through transcription and translation-dependent activation of late phase ERK1/2. Taken together, these results not only demonstrated the essential role of cAMP-PKA signalling in NTN-induced biphasic ERK1/2 activation and neurite outgrowth, but also suggested cAMP-PKA signalling as a hitherto unrecognized underlying mechanism contributing to the differential neuritogenic activities of GFRα2 isoforms.
Collapse
|
4
|
Liu Y, Templeton DM. Role of the cytoskeleton in Cd2+-induced death of mouse mesangial cells. Can J Physiol Pharmacol 2011; 88:341-52. [PMID: 20393599 DOI: 10.1139/y09-133] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Cadmium induces apoptotic cell death in mouse mesangial cells that is in part dependent on reactive oxygen species (ROS). Cadmium also activates multiple kinases in these cells, including the Ca2+/calmodulin-dependent protein kinase II (CaMK-II) and p38 kinase, and also leads to disruption of the filamentous actin cytoskeleton. We investigated the role of the cytoskeleton in Cd2+-induced cell death. Cell viability was decreased by Cd2+ and two types of apoptotic death, defined by flow cytometry, were increased. Disruption of actin filaments with cytochalasin D was partially protective, whereas stabilization of the cytoskeleton with jasplakinolide was without effect, indicating that cytoskeletal disruption contributes to, but is not necessary for, induction of apoptosis. Inhibition of CaMK-II and p38 kinase, mitochondrial stabilization with cyclosporine A, and the antioxidant N-acetyl cysteine all protected against apoptosis and prevented disruption of the cytoskeleton. Cytochalasin D decreased Cd2+-dependent ROS production, reduced the decline in mitochondrial membrane potential, and decreased phosphorylation of p38 kinase. We conclude that Cd2+-dependent actin disruption is a downstream event facilitating apoptotic death. Cadmium-dependent cell death involves actin-dependent mitochondrial changes, ROS production, and p38 activation.
Collapse
Affiliation(s)
- Ying Liu
- Department of Laboratory Medicine and Pathobiology, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada
| | | |
Collapse
|
5
|
Chen L, Meng Q, Kao W, Xia Y. IκB kinase β regulates epithelium migration during corneal wound healing. PLoS One 2011; 6:e16132. [PMID: 21264230 PMCID: PMC3022035 DOI: 10.1371/journal.pone.0016132] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2010] [Accepted: 12/07/2010] [Indexed: 01/04/2023] Open
Abstract
The IKKβ is known to regulate transcription factor NF-κB activation leading to inflammatory responses. Recent gene knockout studies have shown that IKKβ can orchestrate local inflammatory responses and regulate homeostasis of epithelial tissues. To investigate whether IKKβ has an intrinsic role in epithelial cells, we established an in vivo system in the immune privileged corneal epithelium. We generated triple transgenic Krt12rtTA/rtTAt/tet-O-Cre/IkkβF/F (IkkβΔCE/ΔCE) mice by crossing the Krt12-rtTA knock-in mice, which express the reverse tetracycline transcription activator in corneal epithelial cells, with the tet-O-Cre and IkkβF/F mice. Doxcycline-induced IKKβ ablation occurred in corneal epithelial cells of triple transgenic IkkβΔCE/ΔCE mice, but loss of IKKβ did not cause ocular abnormalities in fetal development and postnatal maintenance. Instead, loss of IKKβ significantly delayed healing of corneal epithelial debridement without affecting cell proliferation, apoptosis or macrophage infiltration. In vitro studies with human corneal epithelial cells (HCEpi) also showed that IKKβ was required for cytokine-induced cell migration and wound closure but was dispensable for cell proliferation. In both in vivo and in vitro settings, IKKβ was required for optimal activation of NF-κB and p38 signaling in corneal epithelial cells, and p38 activation is likely mediated through formation of an IKKβ-p38 protein complex. Thus, our studies in corneal epithelium reveal a previously un-recognized role for IKKβ in the control of epithelial cell motility and wound healing.
Collapse
Affiliation(s)
- Liang Chen
- Department of Environmental Health, University of Cincinnati Medical Center, Cincinnati, Ohio, United States of America
| | - Qinghang Meng
- Department of Environmental Health, University of Cincinnati Medical Center, Cincinnati, Ohio, United States of America
| | - Winston Kao
- Department of Ophthalmology, University of Cincinnati Medical Center, Cincinnati, Ohio, United States of America
| | - Ying Xia
- Department of Environmental Health, University of Cincinnati Medical Center, Cincinnati, Ohio, United States of America
- * E-mail:
| |
Collapse
|
6
|
Protein targets of inflammatory serine proteases and cardiovascular disease. JOURNAL OF INFLAMMATION-LONDON 2010; 7:45. [PMID: 20804552 PMCID: PMC2936362 DOI: 10.1186/1476-9255-7-45] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2010] [Accepted: 08/30/2010] [Indexed: 01/13/2023]
Abstract
Serine proteases are a key component of the inflammatory response as they are discharged from activated leukocytes and mast cells or generated through the coagulation cascade. Their enzymatic activity plays a major role in the body's defense mechanisms but it has also an impact on vascular homeostasis and tissue remodeling. Here we focus on the biological role of serine proteases in the context of cardiovascular disease and their mechanism(s) of action in determining specific vascular and tissue phenotypes. Protease-activated receptors (PARs) mediate serine protease effects; however, these proteases also exert a number of biological activities independent of PARs as they target specific protein substrates implicated in vascular remodeling and the development of cardiovascular disease thus controlling their activities. In this review both PAR-dependent and -independent mechanisms of action of serine proteases are discussed for their relevance to vascular homeostasis and structural/functional alterations of the cardiovascular system. The elucidation of these mechanisms will lead to a better understanding of the molecular forces that control vascular and tissue homeostasis and to effective preventative and therapeutic approaches.
Collapse
|
7
|
Kaur J, Adya R, Tan BK, Chen J, Randeva HS. Identification of chemerin receptor (ChemR23) in human endothelial cells: chemerin-induced endothelial angiogenesis. Biochem Biophys Res Commun 2009; 391:1762-8. [PMID: 20044979 DOI: 10.1016/j.bbrc.2009.12.150] [Citation(s) in RCA: 261] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2009] [Accepted: 12/24/2009] [Indexed: 12/13/2022]
Abstract
Chemerin acting via its distinct G protein-coupled receptor CMKLR1 (ChemR23), is a novel adipokine, circulating levels of which are raised in inflammatory states. Chemerin shows strong correlation with various facets of the metabolic syndrome; these states are associated with an increased incidence of cardiovascular disease (CVD) and dysregulated angiogenesis. We therefore, investigated the regulation of ChemR23 by pro-inflammatory cytokines and assessed the angiogenic potential of chemerin in human endothelial cells (EC). We have demonstrated the novel presence of ChemR23 in human ECs and its significant up-regulation (P<0.001) by pro-inflammatory cytokines, TNF-alpha, IL-1beta and IL-6. More importantly, chemerin was potently angiogenic, as assessed by conducting functional in-vitro angiogenic assays; chemerin also dose-dependently induced gelatinolytic (MMP-2 & MMP-9) activity of ECs (P<0.001). Furthermore, chemerin dose-dependently activated PI3K/Akt and MAPKs pathways (P<0.01), key angiogenic and cell survival cascades. Our data provide the first evidence of chemerin-induced endothelial angiogenesis and MMP production and activity.
Collapse
Affiliation(s)
- Jaspreet Kaur
- Endocrinology and Metabolism Research Group, University of Warwick Medical School, Gibbet Hill Road, Coventry CV4 7AL, UK
| | | | | | | | | |
Collapse
|
8
|
Meredith D, Panchatcharam M, Miriyala S, Tsai YS, Morris AJ, Maeda N, Stouffer GA, Smyth SS. Dominant-negative loss of PPARgamma function enhances smooth muscle cell proliferation, migration, and vascular remodeling. Arterioscler Thromb Vasc Biol 2009; 29:465-71. [PMID: 19179641 PMCID: PMC2773202 DOI: 10.1161/atvbaha.109.184234] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
OBJECTIVE The peroxisome proliferator activated receptor-gamma (PPARgamma) protein is a nuclear transcriptional activator with importance in diabetes management as the molecular target for the thiazolidinedione (TZD) family of drugs. Substantial evidence indicates that the TZD family of PPARgamma agonists may retard the development of atherosclerosis. However, recent clinical data have suggested that at least one TZD may increase the risk of myocardial infarction and death from cardiovascular disease. In this study, we used a genetic approach to disrupt PPARgamma signaling to probe the protein's role in smooth muscle cell (SMC) responses that are important for atherosclerosis. METHODS AND RESULTS SMC isolated from transgenic mice harboring the dominate-negative P465L mutation in PPARgamma (PPARgamma(L/+)) exhibited greater proliferation and migration then did wild-type cells. Upregulation of ETS-1, but not ERK activation, correlated with enhanced proliferative and migratory responses PPARgamma(L/+) SMCs. After arterial injury, PPARgamma(L/+) mice had a approximately 4.3-fold increase in the development of intimal hyperplasia. CONCLUSIONS These findings are consistent with a normal role for PPARgamma in inhibiting SMC migration and proliferation in the context of restenosis or atherosclerosis.
Collapse
MESH Headings
- Animals
- Carotid Artery Injuries/metabolism
- Carotid Artery Injuries/pathology
- Cell Movement
- Cell Proliferation
- Cells, Cultured
- Disease Models, Animal
- Extracellular Signal-Regulated MAP Kinases/metabolism
- Hyperplasia
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic
- Muscle, Smooth, Vascular/enzymology
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Mutation
- Myocytes, Smooth Muscle/enzymology
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- PPAR gamma/genetics
- PPAR gamma/metabolism
- Phosphorylation
- Proto-Oncogene Protein c-ets-1/metabolism
- Time Factors
- Wound Healing
Collapse
Affiliation(s)
- Dane Meredith
- Carolina Cardiovascular Biology Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, ,
| | - Manikandan Panchatcharam
- Division of Cardiovascular Medicine, The Gill Heart Institute, University of Kentucky, Lexington, KY 40536, , ,
| | - Sumitra Miriyala
- Division of Cardiovascular Medicine, The Gill Heart Institute, University of Kentucky, Lexington, KY 40536, , ,
| | - Yau-Sheng Tsai
- Department of Pathology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, ,
| | - Andrew J. Morris
- Division of Cardiovascular Medicine, The Gill Heart Institute, University of Kentucky, Lexington, KY 40536, , ,
| | - Nobuyo Maeda
- Department of Pathology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, ,
| | - George A. Stouffer
- Carolina Cardiovascular Biology Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, ,
| | - Susan S. Smyth
- Division of Cardiovascular Medicine, The Gill Heart Institute, University of Kentucky, Lexington, KY 40536, , ,
- Department of Veterans Affairs Medical Center, Lexington, Kentucky 40511,
| |
Collapse
|