1
|
Cho UH, Hetzer MW. Caspase-mediated nuclear pore complex trimming in cell differentiation and endoplasmic reticulum stress. eLife 2023; 12:RP89066. [PMID: 37665327 PMCID: PMC10476967 DOI: 10.7554/elife.89066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2023] Open
Abstract
During apoptosis, caspases degrade 8 out of ~30 nucleoporins to irreversibly demolish the nuclear pore complex. However, for poorly understood reasons, caspases are also activated during cell differentiation. Here, we show that sublethal activation of caspases during myogenesis results in the transient proteolysis of four peripheral Nups and one transmembrane Nup. 'Trimmed' NPCs become nuclear export-defective, and we identified in an unbiased manner several classes of cytoplasmic, plasma membrane, and mitochondrial proteins that rapidly accumulate in the nucleus. NPC trimming by non-apoptotic caspases was also observed in neurogenesis and endoplasmic reticulum stress. Our results suggest that caspases can reversibly modulate nuclear transport activity, which allows them to function as agents of cell differentiation and adaptation at sublethal levels.
Collapse
Affiliation(s)
- Ukrae H Cho
- Molecular and Cell Biology Laboratory, Salk Institute for Biological StudiesLa JollaUnited States
| | - Martin W Hetzer
- Molecular and Cell Biology Laboratory, Salk Institute for Biological StudiesLa JollaUnited States
- Institute of Science and Technology Austria (IST Austria)KlosterneuburgAustria
| |
Collapse
|
2
|
Franco-Obregón A, Tai YK, Wu KY, Iversen JN, Wong CJK. The Developmental Implications of Muscle-Targeted Magnetic Mitohormesis: A Human Health and Longevity Perspective. Bioengineering (Basel) 2023; 10:956. [PMID: 37627841 PMCID: PMC10451851 DOI: 10.3390/bioengineering10080956] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/07/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023] Open
Abstract
Muscle function reflects muscular mitochondrial status, which, in turn, is an adaptive response to physical activity, representing improvements in energy production for de novo biosynthesis or metabolic efficiency. Differences in muscle performance are manifestations of the expression of distinct contractile-protein isoforms and of mitochondrial-energy substrate utilization. Powerful contractures require immediate energy production from carbohydrates outside the mitochondria that exhaust rapidly. Sustained muscle contractions require aerobic energy production from fatty acids by the mitochondria that is slower and produces less force. These two patterns of muscle force generation are broadly classified as glycolytic or oxidative, respectively, and require disparate levels of increased contractile or mitochondrial protein production, respectively, to be effectively executed. Glycolytic muscle, hence, tends towards fibre hypertrophy, whereas oxidative fibres are more disposed towards increased mitochondrial content and efficiency, rather than hypertrophy. Although developmentally predetermined muscle classes exist, a degree of functional plasticity persists across all muscles post-birth that can be modulated by exercise and generally results in an increase in the oxidative character of muscle. Oxidative muscle is most strongly correlated with organismal metabolic balance and longevity because of the propensity of oxidative muscle for fatty-acid oxidation and associated anti-inflammatory ramifications which occur at the expense of glycolytic-muscle development and hypertrophy. This muscle-class size disparity is often at odds with common expectations that muscle mass should scale positively with improved health and longevity. Brief magnetic-field activation of the muscle mitochondrial pool has been shown to recapitulate key aspects of the oxidative-muscle phenotype with similar metabolic hallmarks. This review discusses the common genetic cascades invoked by endurance exercise and magnetic-field therapy and the potential physiological differences with regards to human health and longevity. Future human studies examining the physiological consequences of magnetic-field therapy are warranted.
Collapse
Affiliation(s)
- Alfredo Franco-Obregón
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore; (K.Y.W.); (J.N.I.); (C.J.K.W.)
- Institute of Health Technology and Innovation (iHealthtech), National University of Singapore, Singapore 117599, Singapore
- Biolonic Currents Electromagnetic Pulsing Systems Laboratory (BICEPS), National University of Singapore, Singapore 117599, Singapore
- NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore
- Healthy Longevity Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
- Nanomedicine Translational Research Programme, Centre for NanoMedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117544, Singapore
| | - Yee Kit Tai
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore; (K.Y.W.); (J.N.I.); (C.J.K.W.)
- Institute of Health Technology and Innovation (iHealthtech), National University of Singapore, Singapore 117599, Singapore
- Biolonic Currents Electromagnetic Pulsing Systems Laboratory (BICEPS), National University of Singapore, Singapore 117599, Singapore
- NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
| | - Kwan Yu Wu
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore; (K.Y.W.); (J.N.I.); (C.J.K.W.)
- Institute of Health Technology and Innovation (iHealthtech), National University of Singapore, Singapore 117599, Singapore
- Biolonic Currents Electromagnetic Pulsing Systems Laboratory (BICEPS), National University of Singapore, Singapore 117599, Singapore
- Faculty of Medicine, Utrecht University, 3584 CS Utrecht, The Netherlands
| | - Jan Nikolas Iversen
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore; (K.Y.W.); (J.N.I.); (C.J.K.W.)
- Institute of Health Technology and Innovation (iHealthtech), National University of Singapore, Singapore 117599, Singapore
- Biolonic Currents Electromagnetic Pulsing Systems Laboratory (BICEPS), National University of Singapore, Singapore 117599, Singapore
| | - Craig Jun Kit Wong
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore; (K.Y.W.); (J.N.I.); (C.J.K.W.)
- Institute of Health Technology and Innovation (iHealthtech), National University of Singapore, Singapore 117599, Singapore
- Biolonic Currents Electromagnetic Pulsing Systems Laboratory (BICEPS), National University of Singapore, Singapore 117599, Singapore
| |
Collapse
|
3
|
Maeno T, Arimatsu R, Ojima K, Yamaya Y, Imakyure H, Watanabe N, Komiya Y, Kobayashi K, Nakamura M, Nishimura T, Tatsumi R, Suzuki T. Netrin-4 synthesized in satellite cell-derived myoblasts stimulates autonomous fusion. Exp Cell Res 2023; 430:113698. [PMID: 37437770 DOI: 10.1016/j.yexcr.2023.113698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 06/20/2023] [Accepted: 06/23/2023] [Indexed: 07/14/2023]
Abstract
Satellite cells are indispensable for skeletal muscle regeneration and hypertrophy by forming nascent myofibers (myotubes). They synthesize multi-potent modulator netrins (secreted subtypes: netrin-1, -3, and -4), originally found as classical neural axon guidance molecules. While netrin-1 and -3 have key roles in myogenic differentiation, the physiological significance of netrin-4 is still unclear. This study examined whether netrin-4 regulates myofiber type commitment and myotube formation. Initially, the expression profiles indicated that satellite cells isolated from the extensor digitorum longus muscle (EDL muscle: fast-twitch myofiber-abundant) expressed slightly more netrin-4 than the soleus muscle (slow-type abundant) cells. As netrin-4 knockdown inhibited both slow- and fast-type myotube formation, netrin-4 may not directly regulate myofiber type commitment. However, netrin-4 knockdown in satellite cell-derived myoblasts reduced the myotube fusion index, while exogenous netrin-4 promoted myotube formation, even though netrin-4 expression level was maximum during the initiation stage of myogenic differentiation. Furthermore, netrin-4 knockdown also inhibited MyoD (a master transcriptional factor of myogenesis) and Myomixer (a myoblast fusogenic molecule) expression. These data suggest that satellite cells synthesize netrin-4 during myogenic differentiation initiation to promote their own fusion, stimulating the MyoD-Myomixer signaling axis.
Collapse
Affiliation(s)
- Takahiro Maeno
- Laboratory of Muscle and Meat Science, Department of Animal and Marine Bioresource Sciences, Research Faculty of Agriculture, Graduate School of Agriculture, Kyushu University, Fukuoka, Japan
| | - Rio Arimatsu
- Laboratory of Cell and Tissue Biology, Research Faculty of Agriculture, Graduate School of Agriculture, Hokkaido University, Sapporo, Japan
| | - Koichi Ojima
- Muscle Biology Research Unit, Division of Animal Products Research, Institute of Livestock and Grassland Science, NARO, Tsukuba, Japan
| | - Yuki Yamaya
- Laboratory of Cell and Tissue Biology, Research Faculty of Agriculture, Graduate School of Agriculture, Hokkaido University, Sapporo, Japan
| | - Hikaru Imakyure
- Laboratory of Muscle and Meat Science, Department of Animal and Marine Bioresource Sciences, Research Faculty of Agriculture, Graduate School of Agriculture, Kyushu University, Fukuoka, Japan
| | - Naruha Watanabe
- Laboratory of Muscle and Meat Science, Department of Animal and Marine Bioresource Sciences, Research Faculty of Agriculture, Graduate School of Agriculture, Kyushu University, Fukuoka, Japan
| | - Yusuke Komiya
- Department of Animal Science, School of Veterinary Medicine, Kitasato University, Towada, Japan
| | - Ken Kobayashi
- Laboratory of Cell and Tissue Biology, Research Faculty of Agriculture, Graduate School of Agriculture, Hokkaido University, Sapporo, Japan
| | - Mako Nakamura
- Laboratory of Muscle and Meat Science, Department of Animal and Marine Bioresource Sciences, Research Faculty of Agriculture, Graduate School of Agriculture, Kyushu University, Fukuoka, Japan
| | - Takanori Nishimura
- Laboratory of Cell and Tissue Biology, Research Faculty of Agriculture, Graduate School of Agriculture, Hokkaido University, Sapporo, Japan
| | - Ryuichi Tatsumi
- Laboratory of Muscle and Meat Science, Department of Animal and Marine Bioresource Sciences, Research Faculty of Agriculture, Graduate School of Agriculture, Kyushu University, Fukuoka, Japan
| | - Takahiro Suzuki
- Laboratory of Muscle and Meat Science, Department of Animal and Marine Bioresource Sciences, Research Faculty of Agriculture, Graduate School of Agriculture, Kyushu University, Fukuoka, Japan.
| |
Collapse
|
4
|
Kurosaka M, Hung YL, Machida S, Kohda K. IL-4 Signaling Promotes Myoblast Differentiation and Fusion by Enhancing the Expression of MyoD, Myogenin, and Myomerger. Cells 2023; 12:cells12091284. [PMID: 37174683 PMCID: PMC10177410 DOI: 10.3390/cells12091284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 04/20/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023] Open
Abstract
Myoblast fusion is essential for skeletal muscle development, growth, and regeneration. However, the molecular mechanisms underlying myoblast fusion and differentiation are not fully understood. Previously, we reported that interleukin-4 (IL-4) promotes myoblast fusion; therefore, we hypothesized that IL-4 signaling might regulate the expression of the molecules involved in myoblast fusion. In this study, we showed that in addition to fusion, IL-4 promoted the differentiation of C2C12 myoblast cells by inducing myoblast determination protein 1 (MyoD) and myogenin, both of which regulate the expression of myomerger and myomaker, the membrane proteins essential for myoblast fusion. Unexpectedly, IL-4 treatment increased the expression of myomerger, but not myomaker, in C2C12 cells. Knockdown of IL-4 receptor alpha (IL-4Rα) in C2C12 cells by small interfering RNA impaired myoblast fusion and differentiation. We also demonstrated a reduction in the expression of MyoD, myogenin, and myomerger by knockdown of IL-4Rα in C2C12 cells, while the expression level of myomaker remained unchanged. Finally, cell mixing assays and the restoration of myomerger expression partially rescued the impaired fusion in the IL-4Rα-knockdown C2C12 cells. Collectively, these results suggest that the IL-4/IL-4Rα axis promotes myoblast fusion and differentiation via the induction of myogenic regulatory factors, MyoD and myogenin, and myomerger.
Collapse
Affiliation(s)
- Mitsutoshi Kurosaka
- Department of Physiology, St. Marianna University School of Medicine, Kanagawa 216-8511, Japan
| | - Yung-Li Hung
- Institute of Health and Sports & Medicine, Juntendo University, Chiba 270-1695, Japan
| | - Shuichi Machida
- Institute of Health and Sports & Medicine, Juntendo University, Chiba 270-1695, Japan
- Graduate School of Health and Sports Science, Juntendo University, Chiba 270-1695, Japan
| | - Kazuhisa Kohda
- Department of Physiology, St. Marianna University School of Medicine, Kanagawa 216-8511, Japan
| |
Collapse
|
5
|
Nieto-Felipe J, Macias-Diaz A, Sanchez-Collado J, Berna-Erro A, Jardin I, Salido GM, Lopez JJ, Rosado JA. Role of Orai-family channels in the activation and regulation of transcriptional activity. J Cell Physiol 2023; 238:714-726. [PMID: 36952615 DOI: 10.1002/jcp.30971] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/12/2023] [Accepted: 01/27/2023] [Indexed: 03/25/2023]
Abstract
Store operated Ca2+ entry (SOCE) is a cornerstone for the maintenance of intracellular Ca2+ homeostasis and the regulation of a variety of cellular functions. SOCE is mediated by STIM and Orai proteins following the activation of inositol 1,4,5-trisphosphate receptors. Then, a reduction of the endoplasmic reticulum intraluminal Ca2+ concentration is sensed by STIM proteins, which undergo a conformational change and activate plasma membrane Ca2+ channels comprised by Orai proteins. STIM1/Orai-mediated Ca2+ signals are finely regulated and modulate the activity of different transcription factors, including certain isoforms of the nuclear factor of activated T-cells, the cAMP-response element binding protein, the nuclear factor κ-light chain-enhancer of activated B cells, c-fos, and c-myc. These transcription factors associate SOCE with a plethora of signaling events and cellular functions. Here we provide an overview of the current knowledge about the role of Orai channels in the regulation of transcription factors through Ca2+ -dependent signaling pathways.
Collapse
Affiliation(s)
- Joel Nieto-Felipe
- Departamento de Fisiología, Instituto Universitario de Biomarcadores de Patologías Moleculares, Universidad de Extremadura, Caceres, Spain
| | - Alvaro Macias-Diaz
- Departamento de Fisiología, Instituto Universitario de Biomarcadores de Patologías Moleculares, Universidad de Extremadura, Caceres, Spain
| | - Jose Sanchez-Collado
- Departamento de Fisiología, Instituto Universitario de Biomarcadores de Patologías Moleculares, Universidad de Extremadura, Caceres, Spain
| | - Alejandro Berna-Erro
- Departamento de Fisiología, Instituto Universitario de Biomarcadores de Patologías Moleculares, Universidad de Extremadura, Caceres, Spain
| | - Isaac Jardin
- Departamento de Fisiología, Instituto Universitario de Biomarcadores de Patologías Moleculares, Universidad de Extremadura, Caceres, Spain
| | - Gines M Salido
- Departamento de Fisiología, Instituto Universitario de Biomarcadores de Patologías Moleculares, Universidad de Extremadura, Caceres, Spain
| | - Jose J Lopez
- Departamento de Fisiología, Instituto Universitario de Biomarcadores de Patologías Moleculares, Universidad de Extremadura, Caceres, Spain
| | - Juan A Rosado
- Departamento de Fisiología, Instituto Universitario de Biomarcadores de Patologías Moleculares, Universidad de Extremadura, Caceres, Spain
| |
Collapse
|
6
|
Zhang RN, Bao X, Liu Y, Wang Y, Li XY, Tan G, Mbadhi MN, Xu W, Yang Q, Yao LY, Chen L, Zhao XY, Hu CQ, Zhang JX, Zheng HT, Wu Y, Li S, Chen SJ, Chen SY, Lv J, Shi LL, Tang JM. The spatiotemporal matching pattern of Ezrin/Periaxin involved in myoblast differentiation and fusion and Charcot-Marie-Tooth disease-associated muscle atrophy. J Transl Med 2023; 21:173. [PMID: 36870952 PMCID: PMC9985213 DOI: 10.1186/s12967-023-04016-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 02/21/2023] [Indexed: 03/06/2023] Open
Abstract
BACKGROUND Clinically, Charcot-Marie-Tooth disease (CMT)-associated muscle atrophy still lacks effective treatment. Deletion and mutation of L-periaxin can be involved in CMT type 4F (CMT4F) by destroying the myelin sheath form, which may be related to the inhibitory role of Ezrin in the self-association of L-periaxin. However, it is still unknown whether L-periaxin and Ezrin are independently or interactively involved in the process of muscle atrophy by affecting the function of muscle satellite cells. METHOD A gastrocnemius muscle atrophy model was prepared to mimic CMT4F and its associated muscle atrophy by mechanical clamping of the peroneal nerve. Differentiating C2C12 myoblast cells were treated with adenovirus-mediated overexpression or knockdown of Ezrin. Then, overexpression of L-periaxin and NFATc1/c2 or knockdown of L-periaxin and NFATc3/c4 mediated by adenovirus vectors were used to confirm their role in Ezrin-mediated myoblast differentiation, myotube formation and gastrocnemius muscle repair in a peroneal nerve injury model. RNA-seq, real-time PCR, immunofluorescence staining and Western blot were used in the above observation. RESULTS For the first time, instantaneous L-periaxin expression was highest on the 6th day, while Ezrin expression peaked on the 4th day during myoblast differentiation/fusion in vitro. In vivo transduction of adenovirus vectors carrying Ezrin, but not Periaxin, into the gastrocnemius muscle in a peroneal nerve injury model increased the numbers of muscle myosin heavy chain (MyHC) I and II type myofibers, reducing muscle atrophy and fibrosis. Local muscle injection of overexpressed Ezrin combined with incubation of knockdown L-periaxin within the injured peroneal nerve or injection of knockdown L-periaxin into peroneal nerve-injured gastrocnemius muscle not only increased the number of muscle fibers but also recovered their size to a relatively normal level in vivo. Overexpression of Ezrin promoted myoblast differentiation/fusion, inducing increased MyHC-I+ and MyHC-II + muscle fiber specialization, and the specific effects could be enhanced by the addition of adenovirus vectors for knockdown of L-periaxin by shRNA. Overexpression of L-periaxin did not alter the inhibitory effects on myoblast differentiation and fusion mediated by knockdown of Ezrin by shRNA in vitro but decreased myotube length and size. Mechanistically, overexpressing Ezrin did not alter protein kinase A gamma catalytic subunit (PKA-γ cat), protein kinase A I alpha regulatory subunit (PKA reg Iα) or PKA reg Iβ levels but increased PKA-α cat and PKA reg II α levels, leading to a decreased ratio of PKA reg I/II. The PKA inhibitor H-89 remarkably abolished the effects of overexpressing-Ezrin on increased myoblast differentiation/fusion. In contrast, knockdown of Ezrin by shRNA significantly delayed myoblast differentiation/fusion accompanied by an increased PKA reg I/II ratio, and the inhibitory effects could be eliminated by the PKA reg activator N6-Bz-cAMP. Meanwhile, overexpressing Ezrin enhanced type I muscle fiber specialization, accompanied by an increase in NFATc2/c3 levels and a decrease in NFATc1 levels. Furthermore, overexpressing NFATc2 or knocking down NFATc3 reversed the inhibitory effects of Ezrin knockdown on myoblast differentiation/fusion. CONCLUSIONS The spatiotemporal pattern of Ezrin/Periaxin expression was involved in the control of myoblast differentiation/fusion, myotube length and size, and myofiber specialization, which was related to the activated PKA-NFAT-MEF2C signaling pathway, providing a novel L-Periaxin/Ezrin joint strategy for the treatment of muscle atrophy induced by nerve injury, especially in CMT4F.
Collapse
Affiliation(s)
- Ruo-Nan Zhang
- Faculty of Basic Medical Sciences, Postgraduate Union Training Basement of Jin Zhou Medical University, Hubei University of Medicine, Shiyan, 442000, Hubei, People's Republic of China.,Department of Physiology, Hubei Key Laboratory of Embryonic Stem Cell Research,Faculty of Basic Medical Sciences, Hubei University of Medicine, Shiyan, 442000, Hubei, People's Republic of China.,Emergency Comprehensive Department, Shiyan Maternal and Child Health Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei, People's Republic of China
| | - Xin Bao
- Faculty of Basic Medical Sciences, Postgraduate Union Training Basement of Jin Zhou Medical University, Hubei University of Medicine, Shiyan, 442000, Hubei, People's Republic of China.,Department of Physiology, Hubei Key Laboratory of Embryonic Stem Cell Research,Faculty of Basic Medical Sciences, Hubei University of Medicine, Shiyan, 442000, Hubei, People's Republic of China.,Experimental Medical Center, Dongfeng Hospital, Hubei University of Medicine, Shiyan, China
| | - Yun Liu
- Department of Physiology, Hubei Key Laboratory of Embryonic Stem Cell Research,Faculty of Basic Medical Sciences, Hubei University of Medicine, Shiyan, 442000, Hubei, People's Republic of China
| | - Yan Wang
- Department of Physiology, Hubei Key Laboratory of Embryonic Stem Cell Research,Faculty of Basic Medical Sciences, Hubei University of Medicine, Shiyan, 442000, Hubei, People's Republic of China
| | - Xing-Yuan Li
- Department of Physiology, Hubei Key Laboratory of Embryonic Stem Cell Research,Faculty of Basic Medical Sciences, Hubei University of Medicine, Shiyan, 442000, Hubei, People's Republic of China.,Department of Physiology, Faculty of Basic Medical Sciences, Zunyi Medical University, Zunyi, 563006, Guizhou, People's Republic of China
| | - Ge Tan
- Department of Physiology, Hubei Key Laboratory of Embryonic Stem Cell Research,Faculty of Basic Medical Sciences, Hubei University of Medicine, Shiyan, 442000, Hubei, People's Republic of China
| | - Magdaleena Naemi Mbadhi
- Department of Physiology, Hubei Key Laboratory of Embryonic Stem Cell Research,Faculty of Basic Medical Sciences, Hubei University of Medicine, Shiyan, 442000, Hubei, People's Republic of China
| | - Wei Xu
- Department of Physiology, Hubei Key Laboratory of Embryonic Stem Cell Research,Faculty of Basic Medical Sciences, Hubei University of Medicine, Shiyan, 442000, Hubei, People's Republic of China
| | - Qian Yang
- Institute of Anesthesiology, Department of Anesthesiology, Hubei University of Medicine, Shiyan, 442000, Hubei, People's Republic of China.,Department of Physiology, Hubei Key Laboratory of Embryonic Stem Cell Research,Faculty of Basic Medical Sciences, Hubei University of Medicine, Shiyan, 442000, Hubei, People's Republic of China
| | - Lu-Yuan Yao
- Institute of Anesthesiology, Department of Anesthesiology, Hubei University of Medicine, Shiyan, 442000, Hubei, People's Republic of China.,Department of Physiology, Hubei Key Laboratory of Embryonic Stem Cell Research,Faculty of Basic Medical Sciences, Hubei University of Medicine, Shiyan, 442000, Hubei, People's Republic of China
| | - Long Chen
- Experimental Medical Center, Dongfeng Hospital, Hubei University of Medicine, Shiyan, China
| | - Xiao-Ying Zhao
- Department of Physiology, Hubei Key Laboratory of Embryonic Stem Cell Research,Faculty of Basic Medical Sciences, Hubei University of Medicine, Shiyan, 442000, Hubei, People's Republic of China
| | - Chang-Qing Hu
- Department of Physiology, Hubei Key Laboratory of Embryonic Stem Cell Research,Faculty of Basic Medical Sciences, Hubei University of Medicine, Shiyan, 442000, Hubei, People's Republic of China
| | - Jing-Xuan Zhang
- Department of Physiology, Hubei Key Laboratory of Embryonic Stem Cell Research,Faculty of Basic Medical Sciences, Hubei University of Medicine, Shiyan, 442000, Hubei, People's Republic of China
| | - Hong-Tao Zheng
- Department of Physiology, Hubei Key Laboratory of Embryonic Stem Cell Research,Faculty of Basic Medical Sciences, Hubei University of Medicine, Shiyan, 442000, Hubei, People's Republic of China
| | - Yan Wu
- Department of Physiology, Hubei Key Laboratory of Embryonic Stem Cell Research,Faculty of Basic Medical Sciences, Hubei University of Medicine, Shiyan, 442000, Hubei, People's Republic of China
| | - Shan Li
- Department of Biochemistry, Faculty of Basic Medical Sciences, Hubei University of Medicine, Shiyan, 442000, Hubei, People's Republic of China
| | - Shao-Juan Chen
- Department of Stomatology, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei, People's Republic of China
| | - Shi-You Chen
- Department of Surgery, University of Missouri, Columbia, USA
| | - Jing Lv
- Institute of Anesthesiology, Department of Anesthesiology, Hubei University of Medicine, Shiyan, 442000, Hubei, People's Republic of China.
| | - Liu-Liu Shi
- Department of Physiology, Hubei Key Laboratory of Embryonic Stem Cell Research,Faculty of Basic Medical Sciences, Hubei University of Medicine, Shiyan, 442000, Hubei, People's Republic of China.
| | - Jun-Ming Tang
- Faculty of Basic Medical Sciences, Postgraduate Union Training Basement of Jin Zhou Medical University, Hubei University of Medicine, Shiyan, 442000, Hubei, People's Republic of China. .,Institute of Anesthesiology, Department of Anesthesiology, Hubei University of Medicine, Shiyan, 442000, Hubei, People's Republic of China. .,Department of Physiology, Hubei Key Laboratory of Embryonic Stem Cell Research,Faculty of Basic Medical Sciences, Hubei University of Medicine, Shiyan, 442000, Hubei, People's Republic of China.
| |
Collapse
|
7
|
Continuous exposure to isoprenaline reduced myotube size by delaying myoblast differentiation and fusion through the NFAT-MEF2C signaling pathway. Sci Rep 2023; 13:436. [PMID: 36624121 PMCID: PMC9829891 DOI: 10.1038/s41598-022-22330-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 10/13/2022] [Indexed: 01/11/2023] Open
Abstract
We aimed to explore whether superfluous sympathetic activity affects myoblast differentiation, fusion, and myofiber types using a continuous single-dose isoprenaline exposure model in vitro and to further confirm the role of distinct NFATs in ISO-mediated effects. Compared with delivery of single and interval single, continuous single-dose ISO most obviously diminished myotube size while postponing myoblast differentiation/fusion in a time- and dose-dependent pattern, accompanied by an apparent decrease in nuclear NFATc1/c2 levels and a slight increase in nuclear NFATc3/c4 levels. Overexpression of NFATc1 or NFATc2, particularly NFATc1, markedly abolished the inhibitory effects of ISO on myoblast differentiation/fusion, myotube size and Myh7 expression, which was attributed to a remarkable increase in the nuclear NFATc1/c2 levels and a reduction in the nuclear NFATc4 levels and the associated increase in the numbers of MyoG and MEF2C positive nuclei within more than 3 nuclei myotubes, especially in MEF2C. Moreover, knockdown of NFATc3 by shRNA did not alter the inhibitory effect of ISO on myoblast differentiation/fusion or myotube size but partially recovered the expression of Myh7, which was related to the slightly increased nuclear levels of NFATc1/c2, MyoG and MEF2C. Knockdown of NFATc4 by shRNA prominently increased the number of MyHC +, MyoG or MEF2C + myoblast cells with 1 ~ 2 nuclei, causing fewer numbers and smaller myotube sizes. However, NFATc4 knockdown further deteriorated the effects of ISO on myoblast fusion and myotube size, with more than 5 nuclei and Myh1/2/4 expression, which was associated with a decrease in nuclear NFATc2/c3 levels. Therefore, ISO inhibited myoblast differentiation/fusion and myotube size through the NFAT-MyoG-MEF2C signaling pathway.
Collapse
|
8
|
Lim JY, Kim E, Douglas CM, Wirianto M, Han C, Ono K, Kim SY, Ji JH, Tran CK, Chen Z, Esser KA, Yoo SH. The circadian E3 ligase FBXL21 regulates myoblast differentiation and sarcomere architecture via MYOZ1 ubiquitination and NFAT signaling. PLoS Genet 2022; 18:e1010574. [PMID: 36574402 PMCID: PMC9829178 DOI: 10.1371/journal.pgen.1010574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 01/09/2023] [Accepted: 12/14/2022] [Indexed: 12/28/2022] Open
Abstract
Numerous molecular and physiological processes in the skeletal muscle undergo circadian time-dependent oscillations in accordance with daily activity/rest cycles. The circadian regulatory mechanisms underlying these cyclic processes, especially at the post-transcriptional level, are not well defined. Previously, we reported that the circadian E3 ligase FBXL21 mediates rhythmic degradation of the sarcomere protein TCAP in conjunction with GSK-3β, and Psttm mice harboring an Fbxl21 hypomorph allele show reduced muscle fiber diameter and impaired muscle function. To further elucidate the regulatory function of FBXL21 in skeletal muscle, we investigated another sarcomere protein, Myozenin1 (MYOZ1), that we identified as an FBXL21-binding protein from yeast 2-hybrid screening. We show that FBXL21 binding to MYOZ1 led to ubiquitination-mediated proteasomal degradation. GSK-3β co-expression and inhibition were found to accelerate and decelerate FBXL21-mediated MYOZ1 degradation, respectively. Previously, MYOZ1 has been shown to inhibit calcineurin/NFAT signaling important for muscle differentiation. In accordance, Fbxl21 KO and MyoZ1 KO in C2C12 cells impaired and enhanced myogenic differentiation respectively compared with control C2C12 cells, concomitant with distinct effects on NFAT nuclear localization and NFAT target gene expression. Importantly, in Psttm mice, both the levels and diurnal rhythm of NFAT2 nuclear localization were significantly diminished relative to wild-type mice, and circadian expression of NFAT target genes associated with muscle differentiation was also markedly dampened. Furthermore, Psttm mice exhibited significant disruption of sarcomere structure with a considerable excess of MYOZ1 accumulation in the Z-line. Taken together, our study illustrates a pivotal role of FBXL21 in sarcomere structure and muscle differentiation by regulating MYOZ1 degradation and NFAT2 signaling.
Collapse
Affiliation(s)
- Ji Ye Lim
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| | - Eunju Kim
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| | - Collin M. Douglas
- Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, Florida, United States of America
| | - Marvin Wirianto
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| | - Chorong Han
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| | - Kaori Ono
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| | - Sun Young Kim
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| | - Justin H. Ji
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| | - Celia K. Tran
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| | - Zheng Chen
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| | - Karyn A. Esser
- Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, Florida, United States of America
| | - Seung-Hee Yoo
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| |
Collapse
|
9
|
Lin Y, Wang D, Zhao H, Li D, Li X, Lin L. Pou3f1 mediates the effect of Nfatc3 on ulcerative colitis-associated colorectal cancer by regulating inflammation. Cell Mol Biol Lett 2022; 27:75. [PMID: 36064319 PMCID: PMC9446766 DOI: 10.1186/s11658-022-00374-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 08/01/2022] [Accepted: 08/12/2022] [Indexed: 12/14/2022] Open
Abstract
Background Ulcerative colitis-associated colorectal cancer (UC-CRC) is an important complication of ulcerative colitis. Pou3f1 (POU class 3 homeobox 1) is a critical regulator for developmental events and cellular biological processes. However, the role of Pou3f1 in the development of UC-CRC is unclear. Methods In vivo, a UC-CRC mouse model was induced by azoxymethane (AOM) and dextran sulfate sodium (DSS). Body weight, colon length, mucosal damage, tumor formation, and survival rate were assessed to determine the progression of UC-CRC. Western blot, quantitative real-time PCR, ELISA, immunohistochemistry, immunofluorescence and TUNEL were performed to examine the severity of inflammation and tumorigenesis. In vitro, LPS-treated mouse bone marrow-derived macrophages (BMDMs) and RAW264.7 cells were used to study the role of Pou3f1 in inflammation. ChIP and luciferase reporter assays were used to confirm the interaction between Nfatc3 and Pou3f1. Results Pou3f1 expression was increased in the colons of UC-CRC mice, and its inhibition attenuated mucosal injury, reduced colon tumorigenesis and increased survival ratio. Knockdown of Pou3f1 suppressed cell proliferation and increased cell death in colon tumors. Both the in vivo and in vitro results showed that Pou3f1 depletion reduced the production of proinflammation mediators. In addition, ChIP and luciferase reporter assays demonstrated that Nfatc3 directly bound with the Pou3f1 promoter to induce its expression. The effect of Nfatc3 on the inflammatory response in macrophages was suppressed by Pou3f1 knockdown. Conclusion Overall, it outlines that Pou3f1 mediates the role of Nfatc3 in regulating macrophage inflammation and carcinogenesis in UC-CRC development. Supplementary Information The online version contains supplementary material available at 10.1186/s11658-022-00374-0.
Collapse
Affiliation(s)
- Yan Lin
- Department of Gastroenterology, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, 110004, Shenyang, China
| | - Dongxu Wang
- Department of Gastroenterology, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, 110004, Shenyang, China
| | - Hong Zhao
- Department of Gastroenterology, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, 110004, Shenyang, China.,Department of Gastroenterology, The Second Affiliated Hospital of Shenyang Medical College, Shenyang, China
| | - Dongyue Li
- Department of Gastroenterology, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, 110004, Shenyang, China.,Department of Respiratory, Ansteel Group General Hospital, Anshan, China
| | - Xinning Li
- Department of Gastroenterology, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, 110004, Shenyang, China.,Medical Oncology Ward, Tieling Central Hospital, Tieling, China
| | - Lianjie Lin
- Department of Gastroenterology, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, 110004, Shenyang, China.
| |
Collapse
|
10
|
Wong CJK, Tai YK, Yap JLY, Fong CHH, Loo LSW, Kukumberg M, Fröhlich J, Zhang S, Li JZ, Wang JW, Rufaihah AJ, Franco-Obregón A. Brief exposure to directionally-specific pulsed electromagnetic fields stimulates extracellular vesicle release and is antagonized by streptomycin: A potential regenerative medicine and food industry paradigm. Biomaterials 2022; 287:121658. [PMID: 35841726 DOI: 10.1016/j.biomaterials.2022.121658] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 06/24/2022] [Indexed: 12/12/2022]
Abstract
Pulsing electromagnetic fields (PEMFs) have been shown to promote in vitro and in vivo myogeneses via mitohormetic survival adaptations of which secretome activation is a key component. A single 10-min exposure of donor myoblast cultures to 1.5 mT amplitude PEMFs produced a conditioned media (pCM) capable of enhancing the myogenesis of recipient cultures to a similar degree as direct magnetic exposure. Downwardly-directed magnetic fields produced greater secretome responses than upwardly-directed fields in adherent and fluid-suspended myoblasts. The suspension paradigm allowed for the rapid concentrating of secreted factors, particularly of extracellular vesicles. The brief conditioning of basal media from magnetically-stimulated myoblasts was capable of conferring myoblast survival to a greater degree than basal media supplemented with fetal bovine serum (5%). Downward-directed magnetic fields, applied directly to cells or in the form of pCM, upregulated the protein expression of TRPC channels, markers for cell cycle progression and myogenesis. Direct magnetic exposure produced mild oxidative stress, whereas pCM provision did not, providing a survival advantage on recipient cells. Streptomycin, a TRP channel antagonist, precluded the production of a myogenic pCM. We present a methodology employing a brief and non-invasive PEMF-exposure paradigm to effectively stimulate secretome production and release for commercial or clinical exploitation.
Collapse
Affiliation(s)
- Craig Jun Kit Wong
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, 119228, Singapore; Institute of Health Technology and Innovation (iHealthtech), National University of Singapore, 117599, Singapore; Biolonic Currents Electromagnetic Pulsing Systems Laboratory (BICEPS), National University of Singapore, 117599, Singapore
| | - Yee Kit Tai
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, 119228, Singapore; Institute of Health Technology and Innovation (iHealthtech), National University of Singapore, 117599, Singapore; Biolonic Currents Electromagnetic Pulsing Systems Laboratory (BICEPS), National University of Singapore, 117599, Singapore.
| | - Jasmine Lye Yee Yap
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, 119228, Singapore; Institute of Health Technology and Innovation (iHealthtech), National University of Singapore, 117599, Singapore; Biolonic Currents Electromagnetic Pulsing Systems Laboratory (BICEPS), National University of Singapore, 117599, Singapore
| | - Charlene Hui Hua Fong
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, 119228, Singapore; Institute of Health Technology and Innovation (iHealthtech), National University of Singapore, 117599, Singapore; Biolonic Currents Electromagnetic Pulsing Systems Laboratory (BICEPS), National University of Singapore, 117599, Singapore
| | - Larry Sai Weng Loo
- Institute of Bioengineering and Bioimaging, A*STAR, The Nanos, #06-01, 31 Biopolis Way, 138669, Singapore; Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, 117593, Singapore
| | - Marek Kukumberg
- Department of Obstetrics & Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, 119228, Singapore; Healthy Longevity Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, 119228, Singapore
| | - Jürg Fröhlich
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, 119228, Singapore; Fields at Work GmbH, Zurich 8032, Switzerland
| | - Sitong Zhang
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, 119228, Singapore; Nanomedicine Translational Research Programme, Centre for NanoMedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Jing Ze Li
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, 119228, Singapore
| | - Jiong-Wei Wang
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, 119228, Singapore; Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, 117593, Singapore; Nanomedicine Translational Research Programme, Centre for NanoMedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Cardiovascular Research Institute, National University Heart Centre Singapore, Singapore, 119074, Singapore
| | - Abdul Jalil Rufaihah
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, 119228, Singapore; Healthy Longevity Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, 119228, Singapore; School of Applied Sciences, Temasek Polytechnic, 529757, Singapore
| | - Alfredo Franco-Obregón
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, 119228, Singapore; Institute of Health Technology and Innovation (iHealthtech), National University of Singapore, 117599, Singapore; Biolonic Currents Electromagnetic Pulsing Systems Laboratory (BICEPS), National University of Singapore, 117599, Singapore; Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, 117593, Singapore; Healthy Longevity Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, 119228, Singapore; Nanomedicine Translational Research Programme, Centre for NanoMedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, 117599, Singapore.
| |
Collapse
|
11
|
A microRNA program regulates the balance between cardiomyocyte hyperplasia and hypertrophy and stimulates cardiac regeneration. Nat Commun 2021; 12:4808. [PMID: 34376683 PMCID: PMC8355162 DOI: 10.1038/s41467-021-25211-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 07/28/2021] [Indexed: 11/09/2022] Open
Abstract
Myocardial regeneration is restricted to early postnatal life, when mammalian cardiomyocytes still retain the ability to proliferate. The molecular cues that induce cell cycle arrest of neonatal cardiomyocytes towards terminally differentiated adult heart muscle cells remain obscure. Here we report that the miR-106b~25 cluster is higher expressed in the early postnatal myocardium and decreases in expression towards adulthood, especially under conditions of overload, and orchestrates the transition of cardiomyocyte hyperplasia towards cell cycle arrest and hypertrophy by virtue of its targetome. In line, gene delivery of miR-106b~25 to the mouse heart provokes cardiomyocyte proliferation by targeting a network of negative cell cycle regulators including E2f5, Cdkn1c, Ccne1 and Wee1. Conversely, gene-targeted miR-106b~25 null mice display spontaneous hypertrophic remodeling and exaggerated remodeling to overload by derepression of the prohypertrophic transcription factors Hand2 and Mef2d. Taking advantage of the regulatory function of miR-106b~25 on cardiomyocyte hyperplasia and hypertrophy, viral gene delivery of miR-106b~25 provokes nearly complete regeneration of the adult myocardium after ischemic injury. Our data demonstrate that exploitation of conserved molecular programs can enhance the regenerative capacity of the injured heart.
Collapse
|
12
|
Conte E, Pannunzio A, Imbrici P, Camerino GM, Maggi L, Mora M, Gibertini S, Cappellari O, De Luca A, Coluccia M, Liantonio A. Gain-of-Function STIM1 L96V Mutation Causes Myogenesis Alteration in Muscle Cells From a Patient Affected by Tubular Aggregate Myopathy. Front Cell Dev Biol 2021; 9:635063. [PMID: 33718371 PMCID: PMC7952532 DOI: 10.3389/fcell.2021.635063] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 02/02/2021] [Indexed: 12/13/2022] Open
Abstract
Tubular Aggregate Myopathy (TAM) is a hereditary ultra-rare muscle disorder characterized by muscle weakness and cramps or myasthenic features. Biopsies from TAM patients show the presence of tubular aggregates originated from sarcoplasmic reticulum due to altered Ca2+ homeostasis. TAM is caused by gain-of-function mutations in STIM1 or ORAI1, proteins responsible for Store-Operated-Calcium-Entry (SOCE), a pivotal mechanism in Ca2+ signaling. So far there is no cure for TAM and the mechanisms through which STIM1 or ORAI1 gene mutation lead to muscle dysfunction remain to be clarified. It has been established that post-natal myogenesis critically relies on Ca2+ influx through SOCE. To explore how Ca2+ homeostasis dysregulation associated with TAM impacts on muscle differentiation cascade, we here performed a functional characterization of myoblasts and myotubes deriving from patients carrying STIM1 L96V mutation by using fura-2 cytofluorimetry, high content imaging and real-time PCR. We demonstrated a higher resting Ca2+ concentration and an increased SOCE in STIM1 mutant compared with control, together with a compensatory down-regulation of genes involved in Ca2+ handling (RyR1, Atp2a1, Trpc1). Differentiating STIM1 L96V myoblasts persisted in a mononuclear state and the fewer multinucleated myotubes had distinct morphology and geometry of mitochondrial network compared to controls, indicating a defect in the late differentiation phase. The alteration in myogenic pathway was confirmed by gene expression analysis regarding early (Myf5, Mef2D) and late (DMD, Tnnt3) differentiation markers together with mitochondrial markers (IDH3A, OGDH). We provided evidences of mechanisms responsible for a defective myogenesis associated to TAM mutant and validated a reliable cellular model usefull for TAM preclinical studies.
Collapse
Affiliation(s)
- Elena Conte
- Department of Pharmacy-Drug Sciences, University of Bari, Bari, Italy
| | | | - Paola Imbrici
- Department of Pharmacy-Drug Sciences, University of Bari, Bari, Italy
| | | | - Lorenzo Maggi
- Neuromuscular Diseases and Neuroimmunology Unit, Foundation IRCCS Neurological Institute C. Besta, Milan, Italy
| | - Marina Mora
- Neuromuscular Diseases and Neuroimmunology Unit, Foundation IRCCS Neurological Institute C. Besta, Milan, Italy
| | - Sara Gibertini
- Neuromuscular Diseases and Neuroimmunology Unit, Foundation IRCCS Neurological Institute C. Besta, Milan, Italy
| | | | - Annamaria De Luca
- Department of Pharmacy-Drug Sciences, University of Bari, Bari, Italy
| | - Mauro Coluccia
- Department of Pharmacy-Drug Sciences, University of Bari, Bari, Italy
| | | |
Collapse
|
13
|
Qi X, Hu M, Xiang Y, Wang D, Xu Y, Hou Y, Zhou H, Luan Y, Wang Z, Zhang W, Li X, Zhao S, Zhao Y. LncRNAs are regulated by chromatin states and affect the skeletal muscle cell differentiation. Cell Prolif 2020; 53:e12879. [PMID: 32770602 PMCID: PMC7507427 DOI: 10.1111/cpr.12879] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 06/24/2020] [Accepted: 07/06/2020] [Indexed: 12/12/2022] Open
Abstract
Objective This study aims to clarify the mechanisms underlying transcriptional regulation and regulatory roles of lncRNAs in skeletal muscle cell differentiation. Methods We analysed the expression patterns of lncRNAs via time‐course RNA‐seq. Then, we further combined the ATAC‐seq and ChIP‐seq to investigate the governing mechanisms of transcriptional regulation of differentially expressed (DE) lncRNAs. Weighted correlation network analysis and GO analysis were conducted to identify the transcription factor (TF)‐lncRNA pairs related to skeletal muscle cell differentiation. Results We identified 385 DE lncRNAs during C2C12 differentiation, the transcription of which is determined by chromatin states around their transcriptional start sites. The TF‐lncRNA correlation network showed substantially concordant changes in DE lncRNAs between C2C12 differentiation and satellite cell rapid growth stages. Moreover, the up‐regulated lncRNAs showed a significant decrease following the differentiation capacity of satellite cells, which gradually declines during skeletal muscle development. Notably, inhibition of the lncRNA Atcayos and Trp53cor1 led to the delayed differentiation of satellite cells. Those lncRNAs were significantly up‐regulated during the rapid growth stage of satellite cells (4‐6 weeks) and down‐regulated with reduced differentiation capacity (8‐12 weeks). It confirms that these lncRNAs are positively associated with myogenic differentiation of satellite cells during skeletal muscle development. Conclusions This study extends the understanding of mechanisms governing transcriptional regulation of lncRNAs and provides a foundation for exploring their functions in skeletal muscle cell differentiation.
Collapse
Affiliation(s)
- Xiaolong Qi
- Key Lab of Agricultural Animal Genetics, Breeding, and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Mingyang Hu
- Key Lab of Agricultural Animal Genetics, Breeding, and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Yue Xiang
- Key Lab of Agricultural Animal Genetics, Breeding, and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Daoyuan Wang
- Key Lab of Agricultural Animal Genetics, Breeding, and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Yueyuan Xu
- Key Lab of Agricultural Animal Genetics, Breeding, and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Ye Hou
- Key Lab of Agricultural Animal Genetics, Breeding, and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Huanhuan Zhou
- Key Lab of Agricultural Animal Genetics, Breeding, and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Yu Luan
- Key Lab of Agricultural Animal Genetics, Breeding, and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Zhangxu Wang
- Key Lab of Agricultural Animal Genetics, Breeding, and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Weiya Zhang
- Key Lab of Agricultural Animal Genetics, Breeding, and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Xinyun Li
- Key Lab of Agricultural Animal Genetics, Breeding, and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, China.,The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Shuhong Zhao
- Key Lab of Agricultural Animal Genetics, Breeding, and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, China.,The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Yunxia Zhao
- Key Lab of Agricultural Animal Genetics, Breeding, and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
14
|
Tai YK, Ng C, Purnamawati K, Yap JLY, Yin JN, Wong C, Patel BK, Soong PL, Pelczar P, Fröhlich J, Beyer C, Fong CHH, Ramanan S, Casarosa M, Cerrato CP, Foo ZL, Pannir Selvan RM, Grishina E, Degirmenci U, Toh SJ, Richards PJ, Mirsaidi A, Wuertz‐Kozak K, Chong SY, Ferguson SJ, Aguzzi A, Monici M, Sun L, Drum CL, Wang J, Franco‐Obregón A. Magnetic fields modulate metabolism and gut microbiome in correlation with
Pgc‐1α
expression: Follow‐up to an in vitro magnetic mitohormetic study. FASEB J 2020; 34:11143-11167. [DOI: 10.1096/fj.201903005rr] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 06/07/2020] [Accepted: 06/15/2020] [Indexed: 01/07/2023]
Affiliation(s)
- Yee Kit Tai
- Department of Surgery Yong Loo Lin School of Medicine, National University of Singapore Singapore Singapore
- Biolonic Currents Electromagnetic Pulsing Systems Laboratory BICEPS, National University of Singapore Singapore Singapore
| | - Charmaine Ng
- Department of Surgery Yong Loo Lin School of Medicine, National University of Singapore Singapore Singapore
| | - Kristy Purnamawati
- Department of Surgery Yong Loo Lin School of Medicine, National University of Singapore Singapore Singapore
- Biolonic Currents Electromagnetic Pulsing Systems Laboratory BICEPS, National University of Singapore Singapore Singapore
| | - Jasmine Lye Yee Yap
- Department of Surgery Yong Loo Lin School of Medicine, National University of Singapore Singapore Singapore
- Biolonic Currents Electromagnetic Pulsing Systems Laboratory BICEPS, National University of Singapore Singapore Singapore
| | - Jocelyn Naixin Yin
- Department of Surgery Yong Loo Lin School of Medicine, National University of Singapore Singapore Singapore
- Biolonic Currents Electromagnetic Pulsing Systems Laboratory BICEPS, National University of Singapore Singapore Singapore
| | - Craig Wong
- Department of Surgery Yong Loo Lin School of Medicine, National University of Singapore Singapore Singapore
- Biolonic Currents Electromagnetic Pulsing Systems Laboratory BICEPS, National University of Singapore Singapore Singapore
| | - Bharati Kadamb Patel
- Department of Surgery Yong Loo Lin School of Medicine, National University of Singapore Singapore Singapore
| | - Poh Loong Soong
- Department of Surgery Yong Loo Lin School of Medicine, National University of Singapore Singapore Singapore
- Biolonic Currents Electromagnetic Pulsing Systems Laboratory BICEPS, National University of Singapore Singapore Singapore
| | - Pawel Pelczar
- Centre for Transgenic Models University of Basel Basel Switzerland
- Institute of Laboratory Animal Science University of Zürich Zürich Switzerland
| | | | - Christian Beyer
- Centre Suisse d'électronique et de microtechnique, CSEM SA Neuchatel Switzerland
| | - Charlene Hui Hua Fong
- Department of Surgery Yong Loo Lin School of Medicine, National University of Singapore Singapore Singapore
- Biolonic Currents Electromagnetic Pulsing Systems Laboratory BICEPS, National University of Singapore Singapore Singapore
| | - Sharanya Ramanan
- Department of Surgery Yong Loo Lin School of Medicine, National University of Singapore Singapore Singapore
- Biolonic Currents Electromagnetic Pulsing Systems Laboratory BICEPS, National University of Singapore Singapore Singapore
| | - Marco Casarosa
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio” University of Florence Florence Italy
- Institute for Biomechanics ETH Zürich Zürich Switzerland
| | | | - Zi Ling Foo
- Department of Surgery Yong Loo Lin School of Medicine, National University of Singapore Singapore Singapore
- Biolonic Currents Electromagnetic Pulsing Systems Laboratory BICEPS, National University of Singapore Singapore Singapore
| | - Rina Malathi Pannir Selvan
- Department of Surgery Yong Loo Lin School of Medicine, National University of Singapore Singapore Singapore
- Biolonic Currents Electromagnetic Pulsing Systems Laboratory BICEPS, National University of Singapore Singapore Singapore
| | - Elina Grishina
- Department of Surgery Yong Loo Lin School of Medicine, National University of Singapore Singapore Singapore
- Biolonic Currents Electromagnetic Pulsing Systems Laboratory BICEPS, National University of Singapore Singapore Singapore
| | - Ufuk Degirmenci
- Institute of Molecular and Cell Biology, A*STAR Singapore Singapore
| | - Shi Jie Toh
- Department of Surgery Yong Loo Lin School of Medicine, National University of Singapore Singapore Singapore
- Biolonic Currents Electromagnetic Pulsing Systems Laboratory BICEPS, National University of Singapore Singapore Singapore
| | - Pete J. Richards
- Competence Center for Applied Biotechnology and Molecular Medicine University of Zürich Zürich Switzerland
| | - Ali Mirsaidi
- Competence Center for Applied Biotechnology and Molecular Medicine University of Zürich Zürich Switzerland
| | - Karin Wuertz‐Kozak
- Competence Center for Applied Biotechnology and Molecular Medicine University of Zürich Zürich Switzerland
- Department of Biomedical Engineering Rochester Institute of Technology (RIT) Rochester NY USA
- Cardiovascular Research Institute (CVRI), National University Heart Centre Singapore (NUHCS) Singapore Singapore
| | - Suet Yen Chong
- Department of Surgery Yong Loo Lin School of Medicine, National University of Singapore Singapore Singapore
- Cardiovascular Research Institute (CVRI), National University Heart Centre Singapore (NUHCS) Singapore Singapore
| | - Stephen J. Ferguson
- Institute of Molecular and Cell Biology, A*STAR Singapore Singapore
- Competence Center for Applied Biotechnology and Molecular Medicine University of Zürich Zürich Switzerland
| | - Adriano Aguzzi
- Institut für Neuropathologie Universitätsspital Zürich Zürich Switzerland
| | - Monica Monici
- ASAcampus JL, ASA Res. Div. ‐ Dept. of Experimental and Clinical Biomedical Sciences “Mario Serio” University of Florence Florence Italy
| | - Lei Sun
- DUKE‐NUS Graduate Medical School Singapore Singapore Singapore
| | - Chester L. Drum
- Department of Surgery Yong Loo Lin School of Medicine, National University of Singapore Singapore Singapore
- Cardiovascular Research Institute (CVRI), National University Heart Centre Singapore (NUHCS) Singapore Singapore
| | - Jiong‐Wei Wang
- Department of Surgery Yong Loo Lin School of Medicine, National University of Singapore Singapore Singapore
- Cardiovascular Research Institute (CVRI), National University Heart Centre Singapore (NUHCS) Singapore Singapore
- Department of Physiology Yong Loo Lin School of Medicine, National University of Singapore Singapore Singapore
| | - Alfredo Franco‐Obregón
- Department of Surgery Yong Loo Lin School of Medicine, National University of Singapore Singapore Singapore
- Biolonic Currents Electromagnetic Pulsing Systems Laboratory BICEPS, National University of Singapore Singapore Singapore
- Institute of Molecular and Cell Biology, A*STAR Singapore Singapore
- Department of Physiology Yong Loo Lin School of Medicine, National University of Singapore Singapore Singapore
- Institute for Health Innovation & Technology, iHealthtech National University of Singapore Singapore Singapore
| |
Collapse
|
15
|
Maintenance of the Undifferentiated State in Myogenic Progenitor Cells by TGFβ Signaling is Smad Independent and Requires MEK Activation. Int J Mol Sci 2020; 21:ijms21031057. [PMID: 32033454 PMCID: PMC7038076 DOI: 10.3390/ijms21031057] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 01/28/2020] [Accepted: 02/04/2020] [Indexed: 12/12/2022] Open
Abstract
Transforming growth factor β (TGFβ) is a pluripotent cytokine and regulates a myriad of biological processes. It has been established that TGFβ potently inhibits skeletal muscle differentiation; however, the molecular mechanism is not clearly defined. Previously, we reported that inhibition of the TGFβ canonical pathway by an inhibitory Smad, Smad7, does not reverse this effect on differentiation, suggesting that activation of receptor Smads (R-Smads) by TGFβ is not responsible for repression of myogenesis. In addition, pharmacological blockade of Smad3 activation by TGFβ did not reverse TGFβ's inhibitory effect on myogenesis. In considering other pathways, we observed that TGFβ potently activates MEK/ERK, and a pharmacological inhibitor of MEK reversed TGFβ's inhibitory effect on myogenesis, as indicated by a myogenin promoter-reporter gene, sarcomeric myosin heavy chain accumulation, and phenotypic myotube formation. Furthermore, we found that c-Jun, a known potent repressor of myogenesis, which is coincidently also a down-stream target of MEK/ERK signaling, was phosphorylated and accumulates in the nucleus in response to TGFβ activation. Taken together, these observations support a model in which TGFβ activates a MEK/ERK/c-Jun pathway to repress skeletal myogenesis, maintaining the pluripotent undifferentiated state in myogenic progenitors.
Collapse
|
16
|
Yap JLY, Tai YK, Fröhlich J, Fong CHH, Yin JN, Foo ZL, Ramanan S, Beyer C, Toh SJ, Casarosa M, Bharathy N, Kala MP, Egli M, Taneja R, Lee CN, Franco-Obregón A. Ambient and supplemental magnetic fields promote myogenesis via a TRPC1-mitochondrial axis: evidence of a magnetic mitohormetic mechanism. FASEB J 2019; 33:12853-12872. [PMID: 31518158 DOI: 10.1096/fj.201900057r] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
We show that both supplemental and ambient magnetic fields modulate myogenesis. A lone 10 min exposure of myoblasts to 1.5 mT amplitude supplemental pulsed magnetic fields (PEMFs) accentuated in vitro myogenesis by stimulating transient receptor potential (TRP)-C1-mediated calcium entry and downstream nuclear factor of activated T cells (NFAT)-transcriptional and P300/CBP-associated factor (PCAF)-epigenetic cascades, whereas depriving myoblasts of ambient magnetic fields slowed myogenesis, reduced TRPC1 expression, and silenced NFAT-transcriptional and PCAF-epigenetic cascades. The expression levels of peroxisome proliferator-activated receptor γ coactivator 1α, the master regulator of mitochondriogenesis, was also enhanced by brief PEMF exposure. Accordingly, mitochondriogenesis and respiratory capacity were both enhanced with PEMF exposure, paralleling TRPC1 expression and pharmacological sensitivity. Clustered regularly interspaced short palindromic repeats-Cas9 knockdown of TRPC1 precluded proliferative and mitochondrial responses to supplemental PEMFs, whereas small interfering RNA gene silencing of TRPM7 did not, coinciding with data that magnetoreception did not coincide with the expression or function of other TRP channels. The aminoglycoside antibiotics antagonized and down-regulated TRPC1 expression and, when applied concomitantly with PEMF exposure, attenuated PEMF-stimulated calcium entry, mitochondrial respiration, proliferation, differentiation, and epigenetic directive in myoblasts, elucidating why the developmental potential of magnetic fields may have previously escaped detection. Mitochondrial-based survival adaptations were also activated upon PEMF stimulation. Magnetism thus deploys an authentic myogenic directive that relies on an interplay between mitochondria and TRPC1 to reach fruition.-Yap, J. L. Y., Tai, Y. K., Fröhlich, J., Fong, C. H. H., Yin, J. N., Foo, Z. L., Ramanan, S., Beyer, C., Toh, S. J., Casarosa, M., Bharathy, N., Kala, M. P., Egli, M., Taneja, R., Lee, C. N., Franco-Obregón, A. Ambient and supplemental magnetic fields promote myogenesis via a TRPC1-mitochondrial axis: evidence of a magnetic mitohormetic mechanism.
Collapse
Affiliation(s)
- Jasmine Lye Yee Yap
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,BioIonic Currents Electromagnetic Pulsing Systems (BICEPS) Laboratory, National University of Singapore, Singapore
| | - Yee Kit Tai
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,BioIonic Currents Electromagnetic Pulsing Systems (BICEPS) Laboratory, National University of Singapore, Singapore
| | - Jürg Fröhlich
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Institute for Electromagnetic Fields, Swiss Federal Institute of Technology (ETH), Zurich, Switzerland
| | - Charlene Hui Hua Fong
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,BioIonic Currents Electromagnetic Pulsing Systems (BICEPS) Laboratory, National University of Singapore, Singapore
| | - Jocelyn Naixin Yin
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,BioIonic Currents Electromagnetic Pulsing Systems (BICEPS) Laboratory, National University of Singapore, Singapore
| | - Zi Ling Foo
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,BioIonic Currents Electromagnetic Pulsing Systems (BICEPS) Laboratory, National University of Singapore, Singapore
| | - Sharanya Ramanan
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,BioIonic Currents Electromagnetic Pulsing Systems (BICEPS) Laboratory, National University of Singapore, Singapore
| | - Christian Beyer
- Institute for Electromagnetic Fields, Swiss Federal Institute of Technology (ETH), Zurich, Switzerland.,Centre Suisse d'Électronique et de Microtechnique (CSEM SA), Neuchâtel, Switzerland
| | - Shi Jie Toh
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,BioIonic Currents Electromagnetic Pulsing Systems (BICEPS) Laboratory, National University of Singapore, Singapore
| | - Marco Casarosa
- Department of Experimental and Clinical Biomedical Sciences Mario Serio, University of Florence, Florence, Italy
| | - Narendra Bharathy
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Children's Cancer Therapy Development Institute, Beaverton, Oregon, USA
| | - Monica Palanichamy Kala
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Marcel Egli
- Institute of Medical Engineering, Lucerne University of Applied Sciences and Arts, Hergiswil, Switzerland; and
| | - Reshma Taneja
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Chuen Neng Lee
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Institute for Health Innovation and Technology, iHealthtech, National University of Singapore, Singapore
| | - Alfredo Franco-Obregón
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,BioIonic Currents Electromagnetic Pulsing Systems (BICEPS) Laboratory, National University of Singapore, Singapore.,Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Institute for Health Innovation and Technology, iHealthtech, National University of Singapore, Singapore
| |
Collapse
|
17
|
Fajardo VA, Watson CJF, Bott KN, Moradi F, Maddalena LA, Bellissimo CA, Turner KD, Peters SJ, LeBlanc PJ, MacNeil AJ, Stuart JA, Tupling AR. Neurogranin is expressed in mammalian skeletal muscle and inhibits calcineurin signaling and myoblast fusion. Am J Physiol Cell Physiol 2019; 317:C1025-C1033. [PMID: 31433693 DOI: 10.1152/ajpcell.00345.2018] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Calcineurin is a Ca2+/calmodulin (CaM)-dependent phosphatase that plays a critical role in promoting the slow fiber phenotype and myoblast fusion in skeletal muscle, thereby making calcineurin an attractive cellular target for enhancing fatigue resistance, muscle metabolism, and muscle repair. Neurogranin (Ng) is a CaM-binding protein thought to be expressed solely in brain and neurons, where it inhibits calcineurin signaling by sequestering CaM, thus lowering its cellular availability. Here, we demonstrate for the first time the expression of Ng protein and mRNA in mammalian skeletal muscle. Both protein and mRNA levels are greater in slow-oxidative compared with fast-glycolytic muscles. Coimmunoprecipitation of CaM with Ng in homogenates of C2C12 myotubes, mouse soleus, and human vastus lateralis suggests that these proteins physically interact. To determine whether Ng inhibits calcineurin signaling in muscle, we used Ng siRNA with C2C12 myotubes to reduce Ng protein levels by 60%. As a result of reduced Ng expression, C2C12 myotubes had enhanced CaM-calcineurin binding and calcineurin signaling as indicated by reduced phosphorylation of nuclear factor of activated T cells and increased utrophin mRNA. In addition, calcineurin signaling affects the expression of myogenin and stabilin-2, which are involved in myogenic differentiation and myoblast fusion, respectively. Here, we found that both myogenin and stabilin-2 were significantly elevated by Ng siRNA in C2C12 cells, concomitantly with an increased fusion index. Taken together, these results demonstrate the expression of Ng in mammalian skeletal muscle where it appears to be a novel regulator of calcineurin signaling.
Collapse
Affiliation(s)
- Val A Fajardo
- Department of Kinesiology, Brock University, St. Catharines, Ontario, Canada.,Centre for Bone and Muscle Health, Brock University, St. Catharines, Ontario, Canada
| | - Colton J F Watson
- Department of Health Sciences, Brock University, St. Catharines, Ontario, Canada
| | - Kirsten N Bott
- Department of Kinesiology, Brock University, St. Catharines, Ontario, Canada
| | - Fereshteh Moradi
- Department of Biological Sciences, Brock University, St. Catharines, Ontario, Canada
| | - Lucas A Maddalena
- Department of Biological Sciences, Brock University, St. Catharines, Ontario, Canada
| | | | - Kelli D Turner
- Department of Health Sciences, Brock University, St. Catharines, Ontario, Canada
| | - Sandra J Peters
- Department of Kinesiology, Brock University, St. Catharines, Ontario, Canada.,Centre for Bone and Muscle Health, Brock University, St. Catharines, Ontario, Canada
| | - Paul J LeBlanc
- Department of Health Sciences, Brock University, St. Catharines, Ontario, Canada.,Centre for Bone and Muscle Health, Brock University, St. Catharines, Ontario, Canada
| | - Adam J MacNeil
- Department of Health Sciences, Brock University, St. Catharines, Ontario, Canada
| | - Jeffrey A Stuart
- Department of Biological Sciences, Brock University, St. Catharines, Ontario, Canada
| | - A Russell Tupling
- Department of Kinesiology, University of Waterloo, Waterloo, Ontario, Canada
| |
Collapse
|
18
|
Kim KM, Rana A, Park CY. Orai1 inhibitor STIM2β regulates myogenesis by controlling SOCE dependent transcriptional factors. Sci Rep 2019; 9:10794. [PMID: 31346235 PMCID: PMC6658661 DOI: 10.1038/s41598-019-47259-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 07/09/2019] [Indexed: 12/15/2022] Open
Abstract
Store-operated Ca2+ entry (SOCE), the fundamental Ca2+ signaling mechanism in myogenesis, is mediated by stromal interaction molecule (STIM), which senses the depletion of endoplasmic reticulum Ca2+ stores and induces Ca2+ influx by activating Orai channels in the plasma membrane. Recently, STIM2β, an eight-residue-inserted splice variant of STIM2, was found to act as an inhibitor of SOCE. Although a previous study demonstrated an increase in STIM2β splicing during in vitro differentiation of skeletal muscle, the underlying mechanism and detailed function of STIM2β in myogenesis remain unclear. In this study, we investigated the function of STIM2β in myogenesis using the C2C12 cell line with RNA interference-mediated knockdown and CRISPR-Cas-mediated knockout approaches. Deletion of STIM2β delayed myogenic differentiation through the MEF2C and NFAT4 pathway in C2C12 cells. Further, loss of STIM2β increased cell proliferation by altering Ca2+ homeostasis and inhibited cell cycle arrest mediated by the cyclin D1-CDK4 degradation pathway. Thus, this study identified a previously unknown function of STIM2β in myogenesis and improves the understanding of how cells effectively regulate the development process via alternative splicing.
Collapse
Affiliation(s)
- Kyu Min Kim
- Department of Biological Sciences, School of Life Sciences, UNIST, Ulsan, 44919, Republic of Korea.
| | - Anshul Rana
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Chan Young Park
- Department of Biological Sciences, School of Life Sciences, UNIST, Ulsan, 44919, Republic of Korea.
| |
Collapse
|
19
|
Multiple transcription factors mediating the expressional regulation of myosin heavy chain gene involved in the indeterminate muscle growth of fish. Gene 2019; 687:308-318. [PMID: 30453072 DOI: 10.1016/j.gene.2018.11.040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 11/05/2018] [Accepted: 11/15/2018] [Indexed: 11/22/2022]
Abstract
Torafugu myosin heavy chain gene, MYHM2528-1, is specifically expressed in neonatal slow and fast muscle fibers, suggesting its functional role in indeterminate muscle growth in fish. However, the transcriptional regulatory mechanisms of MYHM2528-1 involved in indeterminate muscle growth in fish remained unknown. We previously isolated a 2100 bp 5'- flanking sequence of torafugu MYHM2528-1 that showed sufficient promoter activity to allow specific gene expression in neonatal muscle fibers of zebrafish. Here, we examined the cis-regulatory mechanism of 2100 bp 5'-flanking region of torafugu MYHM2528-1 using deletion-mutation analysis in zebrafish embryo. We discovered that myoblast determining factor (MyoD) binding elements play a key role and participate in the transcriptional regulation of MYHM2528-1 expression in zebrafish embryos. We further discovered that paired box protein (Pax3) are required for promoting MYHM2528-1 expression and myocyte enhancer factor-2 (MEF2) binding sites participate in the transcriptional regulation of MYHM2528-1 expression in slow/fast skeletal muscles. Our study also confirmed that the nuclear factor of activated T-cell (NFAT) binding sites take part in the transcriptional regulation of MYHM2528-1 expression in slow and fast muscles fiber in relation to indeterminate muscle growth. These results obviously confirmed that multiple cis-elements in the 5'-flanking region of MYHM2528-1 function in the transcriptional regulation of its expression.
Collapse
|
20
|
Sun P, Jia K, Zheng C, Zhu X, Li J, He L, Siwko S, Xue F, Liu M, Luo J. Loss of Lgr4 inhibits differentiation, migration and apoptosis, and promotes proliferation in bone mesenchymal stem cells. J Cell Physiol 2018; 234:10855-10867. [PMID: 30536377 DOI: 10.1002/jcp.27927] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 10/23/2018] [Indexed: 12/12/2022]
Abstract
The key signaling networks regulating bone marrow mesenchymal stem cells (BMSCs) are poorly defined. Lgr4, which belongs to the leucine-rich repeat-containing G protein-coupled receptor (LGR) family, is widely expressed in multiple tissues from early embryogenesis to adulthood. We investigated whether Lgr4 functions in BMSCs and in osteogenesis, adipogenesis, and skeletal myoblasts, using mice with a β-geo gene trap inserted into the Lgr4 gene. Abundant Lgr4 expression was detected in skeletal, adipose and muscular tissue of Lgr4+/- mice at E16.5 by β-gal staining, and Lgr4-deficiency promoted BMSC proliferation (16 ± 4 in wild-type [WT] and 28 ± 2 in Lgr4-/- ) using colony forming units-fibroblast assay, while suppressing BMSC migration (from 103 ± 18 in WT to 57 ± 10 in Lgr4-/- ) by transwell migration assay and apoptosis ratio (from 0.0720 ± 0.0123 to 0.0189 ± 0.0051) by annexin V staining assay. Deletion of Lgr4 decreased bone mass (BV/TV from 19.16 ± 2.14 in WT mice to 10.36 ± 1.96 in KO) and fat mass through inhibiting BMSC differentiation to osteoblasts or adipocytes. Furthermore, LGR4-regulated osteogenic, adipogenic, and myogenic gene expression. Importantly, our data showed that loss of Lgr4-inhibited fracture healing by suppressing osteoblast differentiation. Moreover, deletion of Lgr4 in BMSCs-delayed fracture healing following stem cell therapy by BMSC transplantation. Together, our results demonstrated that LGR4 is essential for mesoderm-derived tissue development and BMSC differentiation, demonstrating that LGR4 could be a promising drug target for related diseases and a critical protein for stem cell therapy.
Collapse
Affiliation(s)
- Peng Sun
- Shanghai Fengxian District Central Hospital and East China Normal University Joint Center for Translational Medicine, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China.,The Key Laboratory of Adolescent Health Assessment and Exercise Intervention of the Ministry of Education, East China Normal University, Shanghai, China
| | - Kunhang Jia
- Shanghai Fengxian District Central Hospital and East China Normal University Joint Center for Translational Medicine, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Chunbing Zheng
- Shanghai Fengxian District Central Hospital and East China Normal University Joint Center for Translational Medicine, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Xinlei Zhu
- Shanghai Fengxian District Central Hospital and East China Normal University Joint Center for Translational Medicine, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Jing Li
- Shanghai Fengxian District Central Hospital and East China Normal University Joint Center for Translational Medicine, Department of Orthopaedics, Shanghai Fengxian District Central Hospital, Shanghai, China
| | - Liang He
- Shanghai Fengxian District Central Hospital and East China Normal University Joint Center for Translational Medicine, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Stefan Siwko
- Department of Molecular and Cellular Medicine, Institute of Biosciences and Technology, Texas A&M University Health Science Center, Houston, Texas
| | - Feng Xue
- Shanghai Fengxian District Central Hospital and East China Normal University Joint Center for Translational Medicine, Department of Orthopaedics, Shanghai Fengxian District Central Hospital, Shanghai, China
| | - Mingyao Liu
- Shanghai Fengxian District Central Hospital and East China Normal University Joint Center for Translational Medicine, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China.,Department of Molecular and Cellular Medicine, Institute of Biosciences and Technology, Texas A&M University Health Science Center, Houston, Texas
| | - Jian Luo
- Shanghai Fengxian District Central Hospital and East China Normal University Joint Center for Translational Medicine, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| |
Collapse
|
21
|
Chen HH, Tsai LK, Liao KY, Wu TC, Huang YH, Huang YC, Chang SW, Wang PY, Tsao YP, Chen SL. Muscle-restricted nuclear receptor interaction protein knockout causes motor neuron degeneration through down-regulation of myogenin at the neuromuscular junction. J Cachexia Sarcopenia Muscle 2018; 9:771-785. [PMID: 29608040 PMCID: PMC6104115 DOI: 10.1002/jcsm.12299] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 02/05/2018] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND Nuclear receptor interaction protein (NRIP) is a calcium/calmodulin (CaM) binding protein. Nuclear receptor interaction protein interacts with CaM to activate calcineurin and CaMKII signalling. The conventional NRIP knockout mice (global knockout) showed muscular abnormality with reduction of muscle oxidative functions and motor function defects. METHODS To investigate the role of NRIP on neuromuscular system, we generated muscle-restricted NRIP knockout mice [conditional knockout (cKO)]. The muscle functions (including oxidative muscle markers and muscle strength) and lumbar motor neuron functions [motor neuron number, axon denervation, neuromuscular junction (NMJ)] were tested. The laser-captured microdissection at NMJ of skeletal muscles and adenovirus gene therapy for rescued effects were performed. RESULTS The cKO mice showed muscular abnormality with reduction of muscle oxidative functions and impaired motor performances as global knockout mice. To our surprise, cKO mice also displayed motor neuron degeneration with abnormal architecture of NMJ. Specifically, the cKO mice revealed reduced motor neuron number with small neuronal size in lumbar spinal cord as well as denervating change, small motor endplates, and decreased myonuclei number at NMJ in skeletal muscles. To explore the mechanisms, we screened various muscle-derived factors and found that myogenin is a potential candidate that myogenin expression was lower in skeletal muscles of cKO mice than wild-type mice. Because NRIP and myogenin were colocalized around acetylcholine receptors at NMJ, we extracted RNA from synaptic and extrasynaptic regions of muscles using laser capture microdissection and showed that myogenin expression was especially lower at synaptic region in cKO than wild-type mice. Notably, overexpression of myogenin using intramuscular adenovirus encoding myogenin treatment rescued abnormal NMJ architecture and preserved motor neuron death in cKO mice. CONCLUSIONS In summary, we demonstrated that deprivation of NRIP decreases myogenin expression at NMJ, possibly leading to abnormal NMJ formation, denervation of acetylcholine receptor, and subsequent loss of spinal motor neuron. Overexpression of myogenin in cKO mice can partially rescue abnormal NMJ architecture and motor neuron death. Therefore, muscular NRIP is a novel trophic factor supporting spinal motor neuron via stabilization of NMJ by myogenin expression.
Collapse
Affiliation(s)
- Hsin-Hsiung Chen
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, 7F, No. 1, Sec. 1, Jen-Ai Rd., Taipei, 100, Taiwan
| | - Li-Kai Tsai
- Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan
| | - Kuan-Yu Liao
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, 7F, No. 1, Sec. 1, Jen-Ai Rd., Taipei, 100, Taiwan
| | - Tung-Chien Wu
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, 7F, No. 1, Sec. 1, Jen-Ai Rd., Taipei, 100, Taiwan
| | - Yun-Hsin Huang
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, 7F, No. 1, Sec. 1, Jen-Ai Rd., Taipei, 100, Taiwan
| | - Yuan-Chun Huang
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, 7F, No. 1, Sec. 1, Jen-Ai Rd., Taipei, 100, Taiwan
| | - Szu-Wei Chang
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, 7F, No. 1, Sec. 1, Jen-Ai Rd., Taipei, 100, Taiwan
| | - Pei-Yu Wang
- Graduate Institute of Brain and Mind Sciences, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yeou-Ping Tsao
- Department of Ophthalmology, Mackay Memorial Hospital, Taipei, Taiwan
| | - Show-Li Chen
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, 7F, No. 1, Sec. 1, Jen-Ai Rd., Taipei, 100, Taiwan
| |
Collapse
|
22
|
Zhang Y, English SG, Storey KB. Regulation of nuclear factor of activated T cells (NFAT) and downstream myogenic proteins during dehydration in the African clawed frog. Mol Biol Rep 2018; 45:751-761. [PMID: 29923155 DOI: 10.1007/s11033-018-4214-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 06/14/2018] [Indexed: 10/28/2022]
Abstract
Xenopus laevis, otherwise known as the African clawed frog, undergoes natural dehydration of up to 30% of its total body water during the dry season in sub-Saharan Africa. To survive under these conditions, a variety of physiological and biochemical changes take place in X. laevis. We were interested in understanding the role that the calcineurin-NFAT pathway plays during dehydration stress response in the skeletal muscles of X. laevis. Immunoblotting was performed to characterize the protein levels of NFATc1-4, calcium signalling proteins, in addition to myogenic proteins (MyoD, MyoG, myomaker). In addition, DNA-protein interaction ELISAs were used to assess the binding of NFATs to their consensus binding sequence, and to identify the effect of urea on NFAT-binding. Our results showed that NFATc1 and c4 protein levels decreased during dehydration, and there were no changes in NFATc2, c3, and calcium signalling proteins. However, MyoG and myomaker both showed increases in protein levels during dehydration, thus indicating that the late myogenic program involving myoblast differentiation, but not satellite cell activation and myoblast proliferation, could be involved in preserving the skeletal muscle of X. laevis during dehydration. In addition, we observed that urea seems to reduce NFATc3-binding to DNA during control, but not during dehydration, possibly indicating that NFATc3 is protected from the denaturing effects of urea as it accumulates during dehydration. These findings expand upon our knowledge of adaptive responses to dehydration, and they identify specific protein targets that could be used to protect the skeletal muscle from damage during stress.
Collapse
Affiliation(s)
- Yichi Zhang
- Institute of Biochemistry and Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, ON, K1S 5B6, Canada.,Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, Sen. Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390, USA
| | - Simon G English
- Institute of Biochemistry and Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, ON, K1S 5B6, Canada
| | - Kenneth B Storey
- Institute of Biochemistry and Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, ON, K1S 5B6, Canada.
| |
Collapse
|
23
|
Tessier SN, Zhang Y, Wijenayake S, Storey KB. MAP kinase signaling and Elk1 transcriptional activity in hibernating thirteen-lined ground squirrels. Biochim Biophys Acta Gen Subj 2017; 1861:2811-2821. [DOI: 10.1016/j.bbagen.2017.07.026] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 07/07/2017] [Accepted: 07/31/2017] [Indexed: 12/13/2022]
|
24
|
Kelu JJ, Webb SE, Parrington J, Galione A, Miller AL. Ca 2+ release via two-pore channel type 2 (TPC2) is required for slow muscle cell myofibrillogenesis and myotomal patterning in intact zebrafish embryos. Dev Biol 2017; 425:109-129. [PMID: 28390800 DOI: 10.1016/j.ydbio.2017.03.031] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 03/30/2017] [Accepted: 03/31/2017] [Indexed: 01/14/2023]
Abstract
We recently demonstrated a critical role for two-pore channel type 2 (TPC2)-mediated Ca2+ release during the differentiation of slow (skeletal) muscle cells (SMC) in intact zebrafish embryos, via the introduction of a translational-blocking morpholino antisense oligonucleotide (MO). Here, we extend our study and demonstrate that knockdown of TPC2 with a non-overlapping splice-blocking MO, knockout of TPC2 (via the generation of a tpcn2dhkz1a mutant line of zebrafish using CRISPR/Cas9 gene-editing), or the pharmacological inhibition of TPC2 action with bafilomycin A1 or trans-ned-19, also lead to a significant attenuation of SMC differentiation, characterized by a disruption of SMC myofibrillogenesis and gross morphological changes in the trunk musculature. When the morphants were injected with tpcn2-mRNA or were treated with IP3/BM or caffeine (agonists of the inositol 1,4,5-trisphosphate receptor (IP3R) and ryanodine receptor (RyR), respectively), many aspects of myofibrillogenesis and myotomal patterning (and in the case of the pharmacological treatments, the Ca2+ signals generated in the SMCs), were rescued. STED super-resolution microscopy revealed a close physical relationship between clusters of RyR in the terminal cisternae of the sarcoplasmic reticulum (SR), and TPC2 in lysosomes, with a mean estimated separation of ~52-87nm. Our data therefore add to the increasing body of evidence, which indicate that localized Ca2+ release via TPC2 might trigger the generation of more global Ca2+ release from the SR via Ca2+-induced Ca2+ release.
Collapse
MESH Headings
- Animals
- Base Sequence
- Behavior, Animal/drug effects
- Body Patterning/drug effects
- CRISPR-Cas Systems/genetics
- Caffeine/pharmacology
- Calcium/metabolism
- Calcium Channels/metabolism
- Calcium Signaling/drug effects
- Cell Death/drug effects
- Cells, Cultured
- Embryo, Nonmammalian/drug effects
- Embryo, Nonmammalian/metabolism
- Gene Knockdown Techniques
- Gene Knockout Techniques
- Inositol 1,4,5-Trisphosphate Receptors/metabolism
- Kinesins/metabolism
- Macrolides/pharmacology
- Models, Biological
- Morpholinos/pharmacology
- Motor Activity/drug effects
- Muscle Cells/cytology
- Muscle Cells/drug effects
- Muscle Cells/metabolism
- Muscle Development/drug effects
- Muscle Fibers, Slow-Twitch/cytology
- Muscle Fibers, Slow-Twitch/drug effects
- Muscle Fibers, Slow-Twitch/metabolism
- Phenotype
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Ryanodine Receptor Calcium Release Channel/metabolism
- Sarcomeres/drug effects
- Sarcomeres/metabolism
- Zebrafish/embryology
- Zebrafish/metabolism
- Zebrafish Proteins/metabolism
Collapse
Affiliation(s)
- Jeffrey J Kelu
- Division of Life Science & State Key Laboratory of Molecular Neuroscience, HKUST, Clear Water Bay, Hong Kong, PR China
| | - Sarah E Webb
- Division of Life Science & State Key Laboratory of Molecular Neuroscience, HKUST, Clear Water Bay, Hong Kong, PR China
| | - John Parrington
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, UK
| | - Antony Galione
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, UK
| | - Andrew L Miller
- Division of Life Science & State Key Laboratory of Molecular Neuroscience, HKUST, Clear Water Bay, Hong Kong, PR China; Marine Biological Laboratory, Woods Hole, MA, USA.
| |
Collapse
|
25
|
Zhang Y, Storey KB. Regulation of gene expression by NFAT transcription factors in hibernating ground squirrels is dependent on the cellular environment. Cell Stress Chaperones 2016; 21:883-94. [PMID: 27344571 PMCID: PMC5003805 DOI: 10.1007/s12192-016-0713-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 05/30/2016] [Accepted: 06/13/2016] [Indexed: 12/22/2022] Open
Abstract
Calcineurin is a calmodulin-stimulated phosphatase that regulates the nuclear translocation of nuclear factor of activated T cell (NFAT) c1-4 through dephosphorylation. We believe that this mechanism plays various roles in the remodeling and maintenance of Ictidomys tridecemlineatus skeletal muscle. During hibernation, bouts of torpor and arousal take place, and squirrels do not lose muscle mass despite being inactive. Protein expression of Ca(2+) signaling proteins were studied using immunoblotting. A DNA-protein interaction ELISA technique was created to test the binding of NFATs in the nucleus to DNA probes containing the NFAT response element under environmental conditions reflective of those during hibernation. Calcineurin protein levels increased by 3.08-fold during torpor (compared to euthermic control), whereas calpain1 levels also rose by 3.66-fold during torpor. Calmodulin levels were elevated upon entering torpor. NFATc4 binding to DNA showed a 1.4-fold increase during torpor, and we found that this binding was further enhanced when 600 nM of Ca(2+) was supplemented. We also found that decreasing the temperature of ELISAs resulted in progressive decreases in the binding of NFATs c1, c3, and c4 to DNA. In summary, calmodulin and calpain1 appear to activate calcineurin and NFATc4 during torpor. NFAT binding to target promoters is affected by intranuclear [Ca(2+)] and environmental temperatures. Therefore, Ca(2+) signaling and temperature changes play key roles in regulation of the NFAT-calcineurin pathway in skeletal muscle of hibernating 13-lined ground squirrels over the torpor-arousal cycle, and they may contribute to the avoidance of disuse-induced muscle atrophy that occurs naturally in these animals.
Collapse
Affiliation(s)
- Yichi Zhang
- Institute of Biochemistry and Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, ON, K1S 5B6, Canada
| | - Kenneth B Storey
- Institute of Biochemistry and Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, ON, K1S 5B6, Canada.
| |
Collapse
|
26
|
Inhibition of skeletal muscle atrophy during torpor in ground squirrels occurs through downregulation of MyoG and inactivation of Foxo4. Cryobiology 2016; 73:112-9. [PMID: 27593478 DOI: 10.1016/j.cryobiol.2016.08.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 08/15/2016] [Accepted: 08/31/2016] [Indexed: 12/20/2022]
Abstract
Foxo4 and MyoG proteins regulate the transcription of numerous genes, including the E3 ubiquitin ligases MAFbx and MuRF1, which are activated in skeletal muscle under atrophy-inducing conditions. In the thirteen-lined ground squirrel, there is little muscle wasting that occurs during hibernation, a process characterized by bouts of torpor and arousal, despite virtual inactivity. Consequently, we were interested in studying the regulatory role of Foxo4 and MyoG on ubiquitin ligases throughout torpor-arousal cycles. Findings indicate that MAFbx and MuRF1 decreased during early torpor (ET) by 42% and 40%, respectively, relative to euthermic control (EC), although MuRF1 expression subsequently increased at late torpor (LT). The expression pattern of MyoG most closely resembled that of MAFbx, with levels decreasing during LT. In addition, the phosphorylation of Foxo4 at Thr-451 showed an initial increase during EN, followed by a decline throughout the remainder of the torpor-arousal cycle, suggesting Foxo4 inhibition. This trend was mirrored by inhibition of the Ras-Ral pathway, as the Ras and Ral proteins were decreased by 77% and 41% respectively, at ET. Foxo4 phosphorylation at S197 was depressed during entrance and torpor, suggesting Foxo4 nuclear localization, and possibly regulating the increase in MuRF1 levels at LT. These findings indicate that signaling pathways involved in regulating muscle atrophy, such as MyoG and Foxo4 through the Ras-Ral pathway, contribute to important muscle-specific changes during hibernation. Therefore, this data provides novel insight into the molecular mechanisms regulating muscle remodeling in a hibernator model.
Collapse
|
27
|
Zhang Y, Aguilar OA, Storey KB. Transcriptional activation of muscle atrophy promotes cardiac muscle remodeling during mammalian hibernation. PeerJ 2016; 4:e2317. [PMID: 27602284 PMCID: PMC4991874 DOI: 10.7717/peerj.2317] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 07/12/2016] [Indexed: 12/12/2022] Open
Abstract
Background. Mammalian hibernation in thirteen-lined ground squirrels (Ictidomys tridecemlineatus) is characterized by dramatic changes on a physiological and molecular level. During hibernation, mammalian hearts show a propensity to hypertrophy due to the need for increasing contractility to pump colder and more viscous blood. While cardiac hypertrophy is quite often a process characterized by decompensation, the ground squirrel studied is an excellent model of cardiac plasticity and cardioprotection under conditions of hypothermia and ischemia. The forkhead box O (Foxo) family of proteins and myogenin (MyoG) are transcription factors that control protein degradation and muscle atrophy by regulating the expression of the E3 ubiquitin ligases, MAFbx and MuRF1. These ligases are part of the ubiquitin proteasome system by transferring ubiquitin to proteins and targeting these proteins for degradation. Regulation of Foxo1 and 3a occurs through phosphorylation at different residues. The threonine-24 (Thr-24) and serine-319 (Ser-319) residues on Foxo1, and the Thr-32 residue on Foxo3a are phosphorylated by Akt, leading to cytoplasmic localization of Foxo. We propose that the described mechanism contributes to the changes taking place in cardiac muscle throughout hibernation. Methods. Total and phosphorylated protein levels of Foxo1 and Foxo3a, as well as total protein levels of MyoG, MAFbx, and MuRF1, were studied using immunoblotting. Results. Immunoblotting results demonstrated upregulations in Foxo1 and Foxo3a total protein levels (1.3- and 4.5-fold increases relative to euthermic control, for Foxo1 and 3a respectively) during late torpor, and protein levels remained elevated throughout the rest of torpor and at interbout arousal. We also observed decreases in inactive, phosphorylated Foxo1 and 3a proteins during throughout torpor, where levels of p-Foxo1 Ser319 and Thr24, as well as p-Foxo3a Thr32 decreased by at least 45% throughout torpor. MyoG was upregulated only during late torpor by 2.4-fold. Protein levels of MAFbx and MuRF1 increased in late torpor as well as during early arousal by as much as 2.8-fold, and MAFbx levels remained elevated during interbout arousal, whereas MuRF1 levels returned to control levels. Discussion. The present results indicate that upregulation and activation of Foxo1 and 3a, in addition to the increase in MyoG levels at late torpor, may be upregulating the expression of MAFbx and MuRF1. These findings suggest that there is activation of the ubiquitin proteasome system (UPS) as ground squirrels arouse from torpor. Therefore, the signalling pathway involving MyoG, and the E3 ligases MAFbx and MuRF1, plays a significant role in cardiac muscle remodelling during hibernation. These findings provide insights into the regulation of protein degradation and turnover in the cardiac muscle of a hibernator model.
Collapse
Affiliation(s)
- Yichi Zhang
- Institute of Biochemistry and Department of Biology, Carleton University , Ottawa , ON , Canada
| | - Oscar A Aguilar
- Institute of Biochemistry and Department of Biology, Carleton University , Ottawa , ON , Canada
| | - Kenneth B Storey
- Institute of Biochemistry and Department of Biology, Carleton University , Ottawa , ON , Canada
| |
Collapse
|
28
|
Santolini M, Sakakibara I, Gauthier M, Ribas-Aulinas F, Takahashi H, Sawasaki T, Mouly V, Concordet JP, Defossez PA, Hakim V, Maire P. MyoD reprogramming requires Six1 and Six4 homeoproteins: genome-wide cis-regulatory module analysis. Nucleic Acids Res 2016; 44:8621-8640. [PMID: 27302134 PMCID: PMC5062961 DOI: 10.1093/nar/gkw512] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 05/26/2016] [Indexed: 11/12/2022] Open
Abstract
Myogenic regulatory factors of the MyoD family have the ability to reprogram differentiated cells toward a myogenic fate. In this study, we demonstrate that Six1 or Six4 are required for the reprogramming by MyoD of mouse embryonic fibroblasts (MEFs). Using microarray experiments, we found 761 genes under the control of both Six and MyoD. Using MyoD ChIPseq data and a genome-wide search for Six1/4 MEF3 binding sites, we found significant co-localization of binding sites for MyoD and Six proteins on over a thousand mouse genomic DNA regions. The combination of both datasets yielded 82 genes which are synergistically activated by Six and MyoD, with 96 associated MyoD+MEF3 putative cis-regulatory modules (CRMs). Fourteen out of 19 of the CRMs that we tested demonstrated in Luciferase assays a synergistic action also observed for their cognate gene. We searched putative binding sites on these CRMs using available databases and de novo search of conserved motifs and demonstrated that the Six/MyoD synergistic activation takes place in a feedforward way. It involves the recruitment of these two families of transcription factors to their targets, together with partner transcription factors, encoded by genes that are themselves activated by Six and MyoD, including Mef2, Pbx-Meis and EBF.
Collapse
Affiliation(s)
- Marc Santolini
- Institut Cochin, Université Paris-Descartes, Centre National de la Recherche Scientifique (CNRS), UMR 8104, Paris, France Institut National de la Santé et de la Recherche Médicale (INSERM) U1016, Paris, France Ecole Normale Supérieure, CNRS, Laboratoire de Physique Statistique, PSL Research University, Université Pierre-et-Marie Curie, Paris, France
| | - Iori Sakakibara
- Institut Cochin, Université Paris-Descartes, Centre National de la Recherche Scientifique (CNRS), UMR 8104, Paris, France Institut National de la Santé et de la Recherche Médicale (INSERM) U1016, Paris, France Division of Integrative Pathophysiology, Proteo-Science Center, Graduate School of Medicine, Ehime University, Ehime, Japan
| | - Morgane Gauthier
- Institut Cochin, Université Paris-Descartes, Centre National de la Recherche Scientifique (CNRS), UMR 8104, Paris, France Institut National de la Santé et de la Recherche Médicale (INSERM) U1016, Paris, France
| | - Francesc Ribas-Aulinas
- Institut Cochin, Université Paris-Descartes, Centre National de la Recherche Scientifique (CNRS), UMR 8104, Paris, France Institut National de la Santé et de la Recherche Médicale (INSERM) U1016, Paris, France
| | | | | | - Vincent Mouly
- Sorbonne Universités, UPMC Univ Paris 06, INSERM UMRS974, CNRS FRE3617, Center for Research in Myology, 75013 Paris, France
| | - Jean-Paul Concordet
- Institut Cochin, Université Paris-Descartes, Centre National de la Recherche Scientifique (CNRS), UMR 8104, Paris, France Institut National de la Santé et de la Recherche Médicale (INSERM) U1016, Paris, France
| | | | - Vincent Hakim
- Ecole Normale Supérieure, CNRS, Laboratoire de Physique Statistique, PSL Research University, Université Pierre-et-Marie Curie, Paris, France
| | - Pascal Maire
- Institut Cochin, Université Paris-Descartes, Centre National de la Recherche Scientifique (CNRS), UMR 8104, Paris, France Institut National de la Santé et de la Recherche Médicale (INSERM) U1016, Paris, France
| |
Collapse
|
29
|
Zhang Y, Storey KB. Expression of nuclear factor of activated T cells (NFAT) and downstream muscle-specific proteins in ground squirrel skeletal and heart muscle during hibernation. Mol Cell Biochem 2015; 412:27-40. [PMID: 26597853 DOI: 10.1007/s11010-015-2605-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 11/14/2015] [Indexed: 10/22/2022]
Abstract
The thirteen-lined ground squirrel (Ictidomys tridecemlineatus) undergoes remarkable adaptive changes during hibernation. Interestingly, skeletal muscle remodelling occurs during the torpor-arousal cycle of hibernation to prevent net muscle loss despite inactivity. Reversible cardiomyocyte hypertrophy occurs in cardiac muscle, allowing the heart to preserve cardiac output during hibernation, while avoiding chronic maladaptive hypertrophy post-hibernation. We propose that calcium signalling proteins [calcineurin (Cn), calmodulin (CaM), and calpain], the nuclear factor of activated T cell (NFAT) family of transcription factors, and the NFAT targets myoferlin and myomaker contribute significantly to adaptations taking place in skeletal and cardiac muscle during hibernation. Protein-level analyses were performed over several conditions: euthermic room temperature (ER), euthermic cold room (EC), entrance into (EN), early (ET), and late torpor (LT) time points, in addition to early (EA), interbout (IA), and late arousal (LA) time points using immunoblotting and DNA-protein interaction (DPI) enzyme-linked immunosorbent assay (ELISAs). In skeletal and cardiac muscle, NFATc2 protein levels were elevated during torpor. NFATc4 increased throughout the torpor-arousal cycle in both tissues, and NFATc1 showed this trend in cardiac muscle only. NFATc3 showed an elevation in DNA-binding activity but not expression during torpor. Myoferlin protein levels dramatically increased during torpor in both skeletal and cardiac muscle. Myomaker levels also increased significantly in cardiac muscle during torpor. Cardiac Cn levels remained stable, whereas CaM and calpain decreased throughout the torpor-arousal cycle. Activation and/or upregulation of NFATc2, c3, myoferlin, and myomaker at torpor could be part of a stress-response mechanism to preserve skeletal muscle mass, whereas CaM and calpain appear to initiate the rapid reversal of cardiac hypertrophy during arousal through downregulation of the NFAT-Cn pathway.
Collapse
Affiliation(s)
- Yichi Zhang
- Department of Biology, Institute of Biochemistry, Carleton University, 1125 Colonel By Drive, Ottawa, ON, K1S 5B6, Canada
| | - Kenneth B Storey
- Department of Biology, Institute of Biochemistry, Carleton University, 1125 Colonel By Drive, Ottawa, ON, K1S 5B6, Canada.
| |
Collapse
|
30
|
Qadir AS, Woo KM, Ryoo HM, Yi T, Song SU, Baek JH. MiR-124 inhibits myogenic differentiation of mesenchymal stem cells via targeting Dlx5. J Cell Biochem 2015; 115:1572-81. [PMID: 24733577 DOI: 10.1002/jcb.24821] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Accepted: 04/11/2014] [Indexed: 11/08/2022]
Abstract
MicroRNAs (miRNAs), including miR-1, miR-133, and miR-206, play a crucial role in muscle development by regulating muscle cell proliferation and differentiation. The aim of the present study was to define the effect of miR-124 on myogenic differentiation of mesenchymal stem cells (MSCs). The expression level of miR-124 in skeletal muscles was much lower than those in primary cultured bone marrow-derived MSCs and the bone, fat and brain tissues obtained from C57BL/6 mice. Myogenic stimuli significantly decreased the expression levels of miR-124 in mouse bone marrow-derived MSCs and C2C12 cells. Forced expression of miR-124 suppressed the expression of myogenic marker genes such as Myf5, Myod1, myogenin and myosin heavy chain and multinucleated myotube formation. Blockade of endogenous miR-124 with a hairpin inhibitor enhanced myogenic marker gene expression and myotube formation. During myogenic differentiation of MSCs and C2C12 cells, the levels of Dlx5, a known target of miR-124, were inversely regulated with those of miR-124. Furthermore, overexpression of Dlx5 increased myogenic differentiation, whereas knockdown of Dlx5 using siRNA inhibited myogenesis in C2C12 cells. These results suggest that miR-124 is a negative regulator of myogenic differentiation of MSCs and that upregulation of Dlx5 accompanied with downregulation of miR-124 by myogenic stimuli is necessary for the proper progression of myogenic differentiation.
Collapse
Affiliation(s)
- Abdul S Qadir
- Department of Molecular Genetics, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Korea
| | | | | | | | | | | |
Collapse
|
31
|
Role of PRDM16 and its PR domain in the epigenetic regulation of myogenic and adipogenic genes during transdifferentiation of C2C12 cells. Gene 2015; 570:191-8. [DOI: 10.1016/j.gene.2015.06.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Revised: 06/02/2015] [Accepted: 06/05/2015] [Indexed: 12/18/2022]
|
32
|
Koyano-Nakagawa N, Shi X, Rasmussen TL, Das S, Walter CA, Garry DJ. Feedback Mechanisms Regulate Ets Variant 2 (Etv2) Gene Expression and Hematoendothelial Lineages. J Biol Chem 2015; 290:28107-28119. [PMID: 26396195 DOI: 10.1074/jbc.m115.662197] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Indexed: 12/12/2022] Open
Abstract
Etv2 is an essential transcriptional regulator of hematoendothelial lineages during embryogenesis. Although Etv2 downstream targets have been identified, little is known regarding the upstream transcriptional regulation of Etv2 gene expression. In this study, we established a novel methodology that utilizes the differentiating ES cell and embryoid body system to define the modules and enhancers embedded within the Etv2 promoter. Using this system, we defined an autoactivating role for Etv2 that is mediated by two adjacent Ets motifs in the proximal promoter. In addition, we defined the role of VEGF/Flk1-Calcineurin-NFAT signaling cascade in the transcriptional regulation of Etv2. Furthermore, we defined an Etv2-Flt1-Flk1 cascade that serves as a negative feedback mechanism to regulate Etv2 gene expression. To complement and extend these studies, we demonstrated that the Flt1 null embryonic phenotype was partially rescued in the Etv2 conditional knockout background. In summary, these studies define upstream and downstream networks that serve as a transcriptional rheostat to regulate Etv2 gene expression.
Collapse
Affiliation(s)
- Naoko Koyano-Nakagawa
- Lillehei Heart Institute, University of Minnesota Medical School, Minneapolis, Minnesota 55455
| | - Xiaozhong Shi
- Lillehei Heart Institute, University of Minnesota Medical School, Minneapolis, Minnesota 55455
| | - Tara L Rasmussen
- Lillehei Heart Institute, University of Minnesota Medical School, Minneapolis, Minnesota 55455
| | - Satyabrata Das
- Lillehei Heart Institute, University of Minnesota Medical School, Minneapolis, Minnesota 55455
| | - Camille A Walter
- Lillehei Heart Institute, University of Minnesota Medical School, Minneapolis, Minnesota 55455
| | - Daniel J Garry
- Lillehei Heart Institute, University of Minnesota Medical School, Minneapolis, Minnesota 55455.
| |
Collapse
|
33
|
Meyer SU, Sass S, Mueller NS, Krebs S, Bauersachs S, Kaiser S, Blum H, Thirion C, Krause S, Theis FJ, Pfaffl MW. Integrative Analysis of MicroRNA and mRNA Data Reveals an Orchestrated Function of MicroRNAs in Skeletal Myocyte Differentiation in Response to TNF-α or IGF1. PLoS One 2015; 10:e0135284. [PMID: 26270642 PMCID: PMC4536022 DOI: 10.1371/journal.pone.0135284] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Accepted: 07/20/2015] [Indexed: 12/23/2022] Open
Abstract
Introduction Skeletal muscle cell differentiation is impaired by elevated levels of the inflammatory cytokine tumor necrosis factor-α (TNF-α) with pathological significance in chronic diseases or inherited muscle disorders. Insulin like growth factor-1 (IGF1) positively regulates muscle cell differentiation. Both, TNF-α and IGF1 affect gene and microRNA (miRNA) expression in this process. However, computational prediction of miRNA-mRNA relations is challenged by false positives and targets which might be irrelevant in the respective cellular transcriptome context. Thus, this study is focused on functional information about miRNA affected target transcripts by integrating miRNA and mRNA expression profiling data. Methodology/Principal Findings Murine skeletal myocytes PMI28 were differentiated for 24 hours with concomitant TNF-α or IGF1 treatment. Both, mRNA and miRNA expression profiling was performed. The data-driven integration of target prediction and paired mRNA/miRNA expression profiling data revealed that i) the quantity of predicted miRNA-mRNA relations was reduced, ii) miRNA targets with a function in cell cycle and axon guidance were enriched, iii) differential regulation of anti-differentiation miR-155-5p and miR-29b-3p as well as pro-differentiation miR-335-3p, miR-335-5p, miR-322-3p, and miR-322-5p seemed to be of primary importance during skeletal myoblast differentiation compared to the other miRNAs, iv) the abundance of targets and affected biological processes was miRNA specific, and v) subsets of miRNAs may collectively regulate gene expression. Conclusions Joint analysis of mRNA and miRNA profiling data increased the process-specificity and quality of predicted relations by statistically selecting miRNA-target interactions. Moreover, this study revealed miRNA-specific predominant biological implications in skeletal muscle cell differentiation and in response to TNF-α or IGF1 treatment. Furthermore, myoblast differentiation-associated miRNAs are suggested to collectively regulate gene clusters and targets associated with enriched specific gene ontology terms or pathways. Predicted miRNA functions of this study provide novel insights into defective regulation at the transcriptomic level during myocyte proliferation and differentiation due to inflammatory stimuli.
Collapse
Affiliation(s)
- Swanhild U. Meyer
- Physiology Weihenstephan, Technische Universität München, Freising, Germany
- * E-mail:
| | - Steffen Sass
- Institute of Computational Biology, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany
| | - Nikola S. Mueller
- Institute of Computational Biology, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany
| | - Stefan Krebs
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Stefan Bauersachs
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Sebastian Kaiser
- Department of Statistics, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Helmut Blum
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, Ludwig-Maximilians-Universität München, Munich, Germany
| | | | - Sabine Krause
- Friedrich-Baur-Institute, Department of Neurology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Fabian J. Theis
- Institute of Computational Biology, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany
- Department of Mathematics, Technische Universität München, Garching, Germany
| | - Michael W. Pfaffl
- Physiology Weihenstephan, Technische Universität München, Freising, Germany
| |
Collapse
|
34
|
C/EBPβ and Nuclear Factor of Activated T Cells Differentially Regulate Adamts-1 Induction by Stimuli Associated with Vascular Remodeling. Mol Cell Biol 2015. [PMID: 26217013 DOI: 10.1128/mcb.00494-15] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Emerging evidence indicates that the metalloproteinase Adamts-1 plays a significant role in the pathophysiology of vessel remodeling, but little is known about the signaling pathways that control Adamts-1 expression. We show that vascular endothelial growth factor (VEGF), angiotensin-II, interleukin-1β, and tumor necrosis factor α, stimuli implicated in pathological vascular remodeling, increase Adamts-1 expression in endothelial and vascular smooth muscle cells. Analysis of the intracellular signaling pathways implicated in this process revealed that VEGF and angiotensin-II upregulate Adamts-1 expression via activation of differential signaling pathways that ultimately promote functional binding of the NFAT or C/EBPβ transcription factors, respectively, to the Adamts-1 promoter. Infusion of mice with angiotensin-II triggered phosphorylation and nuclear translocation of C/EBPβ proteins in aortic cells concomitantly with an increase in the expression of Adamts-1, further underscoring the importance of C/EBPβ signaling in angiotensin-II-induced upregulation of Adamts-1. Similarly, VEGF promoted NFAT activation and subsequent Adamts-1 induction in aortic wall in a calcineurin-dependent manner. Our results demonstrate that Adamts-1 upregulation by inducers of pathological vascular remodeling is mediated by specific signal transduction pathways involving NFAT or C/EBPβ transcription factors. Targeting of these pathways may prove useful in the treatment of vascular disease.
Collapse
|
35
|
Mok GF, Mohammed RH, Sweetman D. Expression of myogenic regulatory factors in chicken embryos during somite and limb development. J Anat 2015; 227:352-60. [PMID: 26183709 PMCID: PMC4560569 DOI: 10.1111/joa.12340] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/22/2015] [Indexed: 01/24/2023] Open
Abstract
The expression of the myogenic regulatory factors (MRFs), Myf5, MyoD, myogenin (Mgn) and MRF4 have been analysed during the development of chicken embryo somites and limbs. In somites, Myf5 is expressed first in somites and paraxial mesoderm at HH stage 9 followed by MyoD at HH stage 12, and Mgn and MRF4 at HH stage 14. In older somites, Myf5 and MyoD are also expressed in the ventrally extending myotome prior to Mgn and MRF4 expression. In limb muscles a similar temporal sequence is observed with Myf5 expression detected first in forelimbs at HH stage 22, MyoD at HH stage 23, Mgn at HH stage 24 and MRF4 at HH stage 30. This report describes the precise time of onset of expression of each MRF in somites and limbs during chicken embryo development, and provides a detailed comparative timeline of MRF expression in different embryonic muscle groups.
Collapse
Affiliation(s)
- Gi Fay Mok
- School of Biosciences, University of Nottingham, Sutton Bonington, UK
| | | | - Dylan Sweetman
- School of Biosciences, University of Nottingham, Sutton Bonington, UK
| |
Collapse
|
36
|
Blais A. Myogenesis in the Genomics Era. J Mol Biol 2015; 427:2023-38. [DOI: 10.1016/j.jmb.2015.02.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 02/04/2015] [Accepted: 02/05/2015] [Indexed: 01/06/2023]
|
37
|
Brancaccio A, Palacios D. Chromatin signaling in muscle stem cells: interpreting the regenerative microenvironment. Front Aging Neurosci 2015; 7:36. [PMID: 25904863 PMCID: PMC4387924 DOI: 10.3389/fnagi.2015.00036] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 03/04/2015] [Indexed: 12/12/2022] Open
Abstract
Muscle regeneration in the adult occurs in response to damage at expenses of a population of adult stem cells, the satellite cells. Upon injury, either physical or genetic, signals released within the satellite cell niche lead to the commitment, expansion and differentiation of the pool of muscle progenitors to repair damaged muscle. To achieve this goal satellite cells undergo a dramatic transcriptional reprogramming to coordinately activate and repress specific subset of genes. Although the epigenetics of muscle regeneration has been extensively discussed, less emphasis has been put on how extra-cellular cues are translated into the specific chromatin reorganization necessary for progression through the myogenic program. In this review we will focus on how satellite cells sense the regenerative microenvironment in physiological and pathological circumstances, paying particular attention to the mechanism through which the external stimuli are transduced to the nucleus to modulate chromatin structure and gene expression. We will discuss the pathways involved and how alterations in this chromatin signaling may contribute to satellite cells dysfunction during aging and disease.
Collapse
Affiliation(s)
- Arianna Brancaccio
- Laboratory of Epigenetics and Signaling, IRCCS Fondazione Santa Lucia Rome, Italy
| | - Daniela Palacios
- Laboratory of Epigenetics and Signaling, IRCCS Fondazione Santa Lucia Rome, Italy
| |
Collapse
|
38
|
Ehlers ML, Celona B, Black BL. NFATc1 controls skeletal muscle fiber type and is a negative regulator of MyoD activity. Cell Rep 2014; 8:1639-1648. [PMID: 25242327 DOI: 10.1016/j.celrep.2014.08.035] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 07/07/2014] [Accepted: 08/15/2014] [Indexed: 12/22/2022] Open
Abstract
Skeletal muscle comprises a heterogeneous population of fibers with important physiological differences. Fast fibers are glycolytic and fatigue rapidly. Slow fibers utilize oxidative metabolism and are fatigue resistant. Muscle diseases such as sarcopenia and atrophy selectively affect fast fibers, but the molecular mechanisms regulating fiber type-specific gene expression remain incompletely understood. Here, we show that the transcription factor NFATc1 controls fiber type composition and is required for fast-to-slow fiber type switching in response to exercise in vivo. Moreover, MyoD is a crucial transcriptional effector of the fast fiber phenotype, and we show that NFATc1 inhibits MyoD-dependent fast fiber gene promoters by physically interacting with the N-terminal activation domain of MyoD and blocking recruitment of the essential transcriptional coactivator p300. These studies establish a molecular mechanism for fiber type switching through direct inhibition of MyoD to control the opposing roles of MyoD and NFATc1 in fast versus slow fiber phenotypes.
Collapse
Affiliation(s)
- Melissa L Ehlers
- Cardiovascular Research Institute, University of California, San Francisco, CA 94158-2517, USA
| | - Barbara Celona
- Cardiovascular Research Institute, University of California, San Francisco, CA 94158-2517, USA
| | - Brian L Black
- Cardiovascular Research Institute, University of California, San Francisco, CA 94158-2517, USA; Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94158-2517, USA.
| |
Collapse
|
39
|
Kaur K, Yang J, Eisenberg CA, Eisenberg LM. 5-azacytidine promotes the transdifferentiation of cardiac cells to skeletal myocytes. Cell Reprogram 2014; 16:324-30. [PMID: 25090621 DOI: 10.1089/cell.2014.0021] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The DNA methylation inhibitor 5-azacytidine is widely used to stimulate the cardiac differentiation of stem cells. However, 5-azacytidine has long been employed as a tool for stimulating skeletal myogenesis. Yet, it is unclear whether the ability of 5-azacytidine to promote both cardiac and skeletal myogenesis is dependent strictly on the native potential of the starting cell population or if this drug is a transdifferentiation agent. To address this issue, we examined the effect of 5-azacytidine on cultures of adult mouse atrial tissue, which contains cardiac but not skeletal muscle progenitors. Exposure to 5-azacytidine caused atrial cells to elongate and increased the presence of fat globules within the cultures. 5-Azacytidine also induced expression of the skeletal myogenic transcription factors MyoD and myogenin. 5-Azacytidine pretreatments allowed atrial cells to undergo adipogenesis or skeletal myogenesis when subsequently cultured with either insulin and dexamethasone or low-serum media, respectively. The presence of skeletal myocytes in atrial cultures was indicated by dual staining for myogenin and sarcomeric α-actin. These data demonstrate that 5-azacytidine converts cardiac cells to noncardiac cell types and suggests that this drug has a compromised efficacy as a cardiac differentiation factor.
Collapse
Affiliation(s)
- Keerat Kaur
- New York Medical College/Westchester Medical Center Stem Cell Laboratory, Departments of Physiology and Medicine, New York Medical College , Valhalla, NY, 10595
| | | | | | | |
Collapse
|
40
|
Parrington J, Tunn R. Ca(2+) signals, NAADP and two-pore channels: role in cellular differentiation. Acta Physiol (Oxf) 2014; 211:285-96. [PMID: 24702694 DOI: 10.1111/apha.12298] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Revised: 02/13/2014] [Accepted: 03/27/2014] [Indexed: 02/06/2023]
Abstract
Ca(2+) signals regulate a wide range of physiological processes. Intracellular Ca(2+) stores can be mobilized in response to extracellular stimuli via a range of signal transduction mechanisms, often involving recruitment of diffusible second messenger molecules. The Ca(2+) -mobilizing messengers InsP3 and cADPR release Ca(2+) from the endoplasmic reticulum via the InsP3 and ryanodine receptors, respectively, while a third messenger, NAADP, releases Ca(2+) from acidic endosomes and lysosomes. Bidirectional communication between the endoplasmic reticulum (ER) and acidic organelles may have functional relevance for endolysosomal function as well as for the generation of Ca(2+) signals. The two-pore channels (TPCs) are currently strong candidates for being key components of NAADP-regulated Ca(2+) channels. Ca(2+) signals have been shown to play important roles in differentiation; however, much remains to be established about the exact signalling mechanisms involved. The investigation of the role of NAADP and TPCs in differentiation is still at an early stage, but recent studies have suggested that they are important mediators of differentiation of neurones, skeletal muscle cells and osteoclasts. NAADP signals and TPCs have also been implicated in autophagy, an important process in differentiation. Further studies will be required to identify the precise mechanism of TPC action and their link with NAADP signalling, as well as relating this to their roles in differentiation and other key processes in the cell and organism.
Collapse
Affiliation(s)
- J. Parrington
- Department of Pharmacology; University of Oxford; Oxford UK
| | - R. Tunn
- Department of Pharmacology; University of Oxford; Oxford UK
| |
Collapse
|
41
|
Crocetti S, Beyer C, Unternährer S, Benavides Damm T, Schade-Kampmann G, Hebeisen M, Di Berardino M, Fröhlich J, Franco-Obregón A. Impedance flow cytometry gauges proliferative capacity by detecting TRPC1 expression. Cytometry A 2014; 85:525-36. [DOI: 10.1002/cyto.a.22461] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Revised: 12/10/2013] [Accepted: 03/03/2014] [Indexed: 01/13/2023]
Affiliation(s)
| | - Christian Beyer
- Electromagnetics in Medicine and Biology Group, Laboratory for Electromagnetic Fields and Microwave Electronics; ETH Zürich Switzerland
| | | | - Tatiana Benavides Damm
- Institute for Biomechanics; ETH Zürich Switzerland
- CC Aerospace Biomedical Science & Technology, Space Biology Group, Luzern University of Applied Sciences and Arts; Hergiswil Switzerland
| | | | - Monika Hebeisen
- Leister Process Technologies; Axetris Division; Kaegiswil Switzerland
| | | | - Jürg Fröhlich
- Electromagnetics in Medicine and Biology Group, Laboratory for Electromagnetic Fields and Microwave Electronics; ETH Zürich Switzerland
| | - Alfredo Franco-Obregón
- Institute for Biomechanics; ETH Zürich Switzerland
- Department of Surgery; Yong Loo Lin School of Medicine, National University of Singapore; Singapore
| |
Collapse
|
42
|
Daou N, Lecolle S, Lefebvre S, della Gaspera B, Charbonnier F, Chanoine C, Armand AS. A new role for the calcineurin/NFAT pathway in neonatal myosin heavy chain expression via the NFATc2/MyoD complex during mouse myogenesis. Development 2014; 140:4914-25. [PMID: 24301466 DOI: 10.1242/dev.097428] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The calcineurin/NFAT (nuclear factor of activated T-cells) signaling pathway is involved in the modulation of the adult muscle fiber type, but its role in the establishment of the muscle phenotype remains elusive. Here, we show that the NFAT member NFATc2 cooperates with the basic helix-loop-helix transcription factor MyoD to induce the expression of a specific myosin heavy chain (MHC) isoform, the neonatal one, during embryogenesis. We found this cooperation to be crucial, as Myod/Nfatc2 double-null mice die at birth, with a dramatic reduction of the major neonatal MHC isoform normally expressed at birth in skeletal muscles, such as limb and intercostal muscles, whereas its expression is unaffected in myofibers mutated for either factor alone. Using gel shift and chromatin immunoprecipitation assays, we identified NFATc2 bound to the neonatal Mhc gene, whereas NFATc1 and NFATc3 would preferentially bind the embryonic Mhc gene. We provide evidence that MyoD synergistically cooperates with NFATc2 at the neonatal Mhc promoter. Altogether, our findings demonstrate that the calcineurin/NFAT pathway plays a new role in establishing the early muscle fiber type in immature myofibers during embryogenesis.
Collapse
Affiliation(s)
- Nissrine Daou
- Centre d'Etude de la Sensori-Motricité, UMR 8194 CNRS, Université Paris Descartes, Centre Universitaire des Saints-Pères, 45 rue des Saints-Pères, F-75270 Paris Cedex 06, France
| | | | | | | | | | | | | |
Collapse
|
43
|
Cytoglobin modulates myogenic progenitor cell viability and muscle regeneration. Proc Natl Acad Sci U S A 2013; 111:E129-38. [PMID: 24367119 DOI: 10.1073/pnas.1314962111] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Mammalian skeletal muscle can remodel, repair, and regenerate itself by mobilizing satellite cells, a resident population of myogenic progenitor cells. Muscle injury and subsequent activation of myogenic progenitor cells is associated with oxidative stress. Cytoglobin is a hemoprotein expressed in response to oxidative stress in a variety of tissues, including striated muscle. In this study, we demonstrate that cytoglobin is up-regulated in activated myogenic progenitor cells, where it localizes to the nucleus and contributes to cell viability. siRNA-mediated depletion of cytoglobin from C2C12 myoblasts increased levels of reactive oxygen species and apoptotic cell death both at baseline and in response to stress stimuli. Conversely, overexpression of cytoglobin reduced reactive oxygen species levels, caspase activity, and cell death. Mice in which cytoglobin was knocked out specifically in skeletal muscle were generated to examine the role of cytoglobin in vivo. Myogenic progenitor cells isolated from these mice were severely deficient in their ability to form myotubes as compared with myogenic progenitor cells from wild-type littermates. Consistent with this finding, the capacity for muscle regeneration was severely impaired in mice deficient for skeletal-muscle cytoglobin. Collectively, these data demonstrate that cytoglobin serves an important role in muscle repair and regeneration.
Collapse
|
44
|
Dirkx E, Gladka MM, Philippen LE, Armand AS, Kinet V, Leptidis S, el Azzouzi H, Salic K, Bourajjaj M, da Silva GJJ, Olieslagers S, van der Nagel R, de Weger R, Bitsch N, Kisters N, Seyen S, Morikawa Y, Chanoine C, Heymans S, Volders PGA, Thum T, Dimmeler S, Cserjesi P, Eschenhagen T, da Costa Martins PA, De Windt LJ. Nfat and miR-25 cooperate to reactivate the transcription factor Hand2 in heart failure. Nat Cell Biol 2013; 15:1282-93. [DOI: 10.1038/ncb2866] [Citation(s) in RCA: 112] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Accepted: 09/24/2013] [Indexed: 01/05/2023]
|
45
|
Cheung WW, Ding W, Gunta SS, Gu Y, Tabakman R, Klapper LN, Gertler A, Mak RH. A pegylated leptin antagonist ameliorates CKD-associated cachexia in mice. J Am Soc Nephrol 2013; 25:119-28. [PMID: 24115476 DOI: 10.1681/asn.2013040432] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Elevated serum leptin levels correlate with inflammation and predict changes in lean body mass in patients with CKD, and activation of the melanocortin system by leptin signaling mediates the pathophysiology of CKD-associated cachexia. We tested whether treatment with a pegylated leptin receptor antagonist (PLA) attenuates cachexia in mice with CKD. CKD and Sham mice received vehicle or PLA (2 or 7 mg/kg per day). At these doses, PLA did not influence serum leptin levels in mice. Treatment with 7 mg/kg per day PLA stimulated appetite and weight gain, improved lean mass and muscle function, reduced energy expenditure, and normalized the levels of hepatic TNF-α and IL-6 mRNA in mice with CKD. Furthermore, treatment with 7 mg/kg per day PLA attenuated the CKD-associated increase in the transcriptional and protein abundance of uncoupling proteins that mediates thermogenesis, and it normalized the molecular signatures of processes associated with muscle wasting in CKD, including proteolysis, myogenesis and muscle regeneration, and expression of proinflammatory muscle cytokines, such as IL-1α, -1β, and -6 and TNF-α. Our results suggest that leptin antagonism may represent a viable therapeutic strategy for cachexia in CKD.
Collapse
Affiliation(s)
- Wai W Cheung
- Division of Pediatric Nephrology, University of California, San Diego, La Jolla, California
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Nandi S, Blais A, Ioshikhes I. Identification of cis-regulatory modules in promoters of human genes exploiting mutual positioning of transcription factors. Nucleic Acids Res 2013; 41:8822-41. [PMID: 23913413 PMCID: PMC3799424 DOI: 10.1093/nar/gkt578] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
In higher organisms, gene regulation is controlled by the interplay of non-random combinations of multiple transcription factors (TFs). Although numerous attempts have been made to identify these combinations, important details, such as mutual positioning of the factors that have an important role in the TF interplay, are still missing. The goal of the present work is in silico mapping of some of such associating factors based on their mutual positioning, using computational screening. We have selected the process of myogenesis as a study case, and we focused on TF combinations involving master myogenic TF Myogenic differentiation (MyoD) with other factors situated at specific distances from it. The results of our work show that some muscle-specific factors occur together with MyoD within the range of ±100 bp in a large number of promoters. We confirm co-occurrence of the MyoD with muscle-specific factors as described in earlier studies. However, we have also found novel relationships of MyoD with other factors not specific for muscle. Additionally, we have observed that MyoD tends to associate with different factors in proximal and distal promoter areas. The major outcome of our study is establishing the genome-wide connection between biological interactions of TFs and close co-occurrence of their binding sites.
Collapse
Affiliation(s)
- Soumyadeep Nandi
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada and Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| | | | | |
Collapse
|
47
|
Valdés JA, Flores S, Fuentes EN, Osorio-Fuentealba C, Jaimovich E, Molina A. IGF-1 induces IP3-dependent calcium signal involved in the regulation of myostatin gene expression mediated by NFAT during myoblast differentiation. J Cell Physiol 2013; 228:1452-63. [DOI: 10.1002/jcp.24298] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Accepted: 11/27/2012] [Indexed: 12/20/2022]
|
48
|
Mitochondria as a potential regulator of myogenesis. ScientificWorldJournal 2013; 2013:593267. [PMID: 23431256 PMCID: PMC3574753 DOI: 10.1155/2013/593267] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Accepted: 01/16/2013] [Indexed: 12/24/2022] Open
Abstract
Recent studies have shown that mitochondria play a role in the regulation of myogenesis. Indeed, the abundance, morphology, and functional properties of mitochondria become altered when the myoblasts differentiate into myotubes. For example, mitochondrial mass/volume, mtDNA copy number, and mitochondrial respiration are markedly increased after the onset of myogenic differentiation. Besides, mitochondrial enzyme activity is also increased, suggesting that the metabolic shift from glycolysis to oxidative phosphorylation as the major energy source occurs during myogenic differentiation. Several lines of evidence suggest that impairment of mitochondrial function and activity blocks myogenic differentiation. However, yet little is known about the molecular mechanisms underlying the regulation of myogenesis by mitochondria. Understanding how mitochondria are involved in myogenesis will provide a valuable insight into the underlying mechanisms that regulate the maintenance of cellular homeostasis. Here, we will summarize the current knowledge regarding the role of mitochondria as a potential regulator of myogenesis.
Collapse
|
49
|
Benavides Damm T, Richard S, Tanner S, Wyss F, Egli M, Franco-Obregón A. Calcium-dependent deceleration of the cell cycle in muscle cells by simulated microgravity. FASEB J 2013; 27:2045-54. [PMID: 23363573 DOI: 10.1096/fj.12-218693] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Of all our mechanosensitive tissues, skeletal muscle is the most developmentally responsive to physical activity. Conversely, restricted mobility due to injury or disease results in muscle atrophy. Gravitational force is another form of mechanical input with profound developmental consequences. The mechanical unloading resulting from the reduced gravitational force experienced during spaceflight results in oxidative muscle loss. We examined the early stages of myogenesis under conditions of simulated microgravity (SM). C2C12 mouse myoblasts in SM proliferated more slowly (2.23× less) as a result of their being retained longer within the G2/M phase of the cell cycle (2.10× more) relative to control myoblasts at terrestrial gravity. Blocking calcium entry via TRP channels with SKF-96365 (10-20 μM) accumulated myoblasts within the G2/M phase of the cell cycle and retarded their proliferation. On the genetic level, SM resulted in the reduced expression of TRPC1 and IGF-1 isoforms, transcriptional events regulated by calcium downstream of mechanical input. A decrease in TRPC1-mediated calcium entry thus appears to be a pivotal event in the muscle atrophy brought on by gravitational mechanical unloading. Hence, relieving the constant force of gravity on cells might prove one valid experimental approach to expose the underlying mechanisms modulating mechanically regulated developmental programs.
Collapse
|
50
|
Mohan ML, Jha BK, Gupta MK, Vasudevan NT, Martelli EE, Mosinski JD, Naga Prasad SV. Phosphoinositide 3-kinase γ inhibits cardiac GSK-3 independently of Akt. Sci Signal 2013; 6:ra4. [PMID: 23354687 DOI: 10.1126/scisignal.2003308] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Activation of cardiac phosphoinositide 3-kinase α (PI3Kα) by growth factors, such as insulin, or activation of PI3Kγ downstream of heterotrimeric guanine nucleotide-binding protein (G protein)-coupled receptors stimulates the activity of the kinase Akt, which phosphorylates and inhibits glycogen synthase kinase-3 (GSK-3). We found that PI3Kγ inhibited GSK-3 independently of the insulin-PI3Kα-Akt axis. Although insulin treatment activated Akt in PI3Kγ knockout mice, phosphorylation of GSK-3 was decreased compared to control mice. GSK-3 is activated when dephosphorylated by the protein phosphatase 2A (PP2A), which is activated when methylated by the PP2A methyltransferase PPMT-1. PI3Kγ knockout mice showed increased activity of PPMT-1 and PP2A and enhanced nuclear export of the GSK-3 substrate NFATc3. GSK-3 inhibits cardiac hypertrophy, and the hearts of PI3Kγ knockout mice were smaller compared to those of wild-type mice. Cardiac overexpression of a catalytically inactive PI3Kγ (PI3Kγ(inact)) transgene in PI3Kγ knockout mice reduced the activities of PPMT-1 and PP2A and increased phosphorylation of GSK-3. Furthermore, PI3Kγ knockout mice expressing the PI3Kγ(inact) transgene had larger hearts than wild-type or PI3Kγ knockout mice. Our studies show that a kinase-independent function of PI3Kγ could directly inhibit GSK-3 function by preventing the PP2A-PPMT-1 interaction and that this inhibition of GSK-3 was independent of Akt.
Collapse
Affiliation(s)
- Maradumane L Mohan
- Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| | | | | | | | | | | | | |
Collapse
|