1
|
Fredenburgh JC, Weitz JI. Exosite crosstalk in thrombin. J Thromb Haemost 2025; 23:1160-1168. [PMID: 39842513 DOI: 10.1016/j.jtha.2025.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 12/13/2024] [Accepted: 01/06/2025] [Indexed: 01/24/2025]
Abstract
Thrombin is the central mediator of hemostasis, where it converts fibrinogen to fibrin, activates upstream factors to promote coagulation, activates factor XIII and thrombin-activatable fibrinolysis inhibitor to stabilize fibrin, mediates anticoagulation, and modulates cellular activity via cell surface receptors. Thus, regulation of thrombin activity is essential to the hemostatic balance. Thrombin is regulated by positively charged surface domains that surround the active site. These exosites bind substrates, inhibitors, cofactors, and receptors, which coordinate to direct thrombin to the appropriate location and modulate catalytic activity. Thus, the exosites are essential to the activity and regulation of thrombin. In addition to acting as binding sites, the exosites modulate the active site allosterically. Furthermore, the exosites impact each other, whereby the binding of ligands to one exosite impacts the function of the opposing exosite. Given the integral role that exosites play in the regulation of thrombin, they are attractive targets for the regulation of thrombin and for the development of new anticoagulants.
Collapse
Affiliation(s)
- James C Fredenburgh
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada; Thrombosis and Atherosclerosis Research Institute, McMaster University and Hamilton Health Sciences, Hamilton, Ontario, Canada.
| | - Jeffrey I Weitz
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada; Thrombosis and Atherosclerosis Research Institute, McMaster University and Hamilton Health Sciences, Hamilton, Ontario, Canada; Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
2
|
Schreuder M, Jourdi G, Veizaj D, Poole DA, Cheung KL, Poenou G, Verhoef D, Thomassen S, Janssen LFH, Stepanian A, Hackeng TM, Gaussem P, Reitsma PH, Geerke DP, Siguret V, Bos MHA. Minimally modified human blood coagulation factor X to bypass direct factor Xa inhibitors. J Thromb Haemost 2024; 22:2211-2226. [PMID: 38729577 DOI: 10.1016/j.jtha.2024.04.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 04/09/2024] [Accepted: 04/23/2024] [Indexed: 05/12/2024]
Abstract
BACKGROUND Direct oral factor (F)Xa inhibitors are widely used as alternatives to conventional vitamin K antagonists in managing venous thromboembolism and nonvalvular atrial fibrillation. Unfortunately, bleeding-related adverse events remain a major concern in clinical practice. In case of bleeding or emergency surgery, rapid-onset reversal agents may be required to counteract the anticoagulant activity. OBJECTIVES The ability of FXa variants to bypass the direct oral FXa inhibitors was assessed. METHODS Human FXa variants were generated through substitution of phenylalanine 174 (F174) for either alanine, isoleucine, or serine. FXa variants were stably expressed in HEK293 cells and purified to homogeneity using ion-exchange chromatography. RESULTS F174-substituted human FX variants demonstrated efficacy in restoring thrombin generation in plasma containing direct FXa inhibitors (apixaban, rivaroxaban, edoxaban). Their ability to bypass the anticoagulant effects stems from a significantly reduced sensitivity for the direct FXa inhibitors due to a decrease in binding affinity determined using molecular dynamics simulations and free energy computation. Furthermore, F174 modification resulted in a partial loss of inhibition by tissue factor pathway inhibitor, enhancing the procoagulant effect of F174-substituted FX. Consequently, the F174A- and F174S-substituted FX variants effectively counteracted the effects of 2 widely used anticoagulants, apixaban and rivaroxaban, in plasma of atrial fibrillation and venous thromboembolism patients. CONCLUSION These human FX variants have the potential to serve as a rescue reversal strategy to overcome the effect of direct FXa inhibitors in case of life-threatening bleeding events or emergency surgical interventions.
Collapse
Affiliation(s)
- Mark Schreuder
- Department of Internal Medicine, Division of Thrombosis and Hemostasis, Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Georges Jourdi
- Assistance publique - Hôpitaux de Paris (AH-HP) Centre, Service d'hématologie biologique, Hôpital Cochin, Paris, France; Innovative Therapies in Haemostasis, Institut national de la santé et de la recherche médicale (INSERM) U1140, Université Paris Cité, Paris, France; Assistance publique - Hôpitaux de Paris (AH-HP) Nord, Service d'hématologie biologique, Hôpital Lariboisière, Paris, France
| | - Dejvid Veizaj
- Department of Internal Medicine, Division of Thrombosis and Hemostasis, Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - David A Poole
- Amsterdam Institute of Molecular and Life Sciences (AIMMS), Division of Molecular and Computational Toxicology, Department of Chemistry and Pharmaceutical Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Ka Lei Cheung
- Department of Internal Medicine, Division of Thrombosis and Hemostasis, Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Géraldine Poenou
- Department of Internal Medicine, Division of Thrombosis and Hemostasis, Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, The Netherlands; Innovative Therapies in Haemostasis, Institut national de la santé et de la recherche médicale (INSERM) U1140, Université Paris Cité, Paris, France
| | - Daniël Verhoef
- Department of Internal Medicine, Division of Thrombosis and Hemostasis, Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, The Netherlands; VarmX B.V., Leiden, The Netherlands
| | - Stella Thomassen
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands
| | - Laura F H Janssen
- Amsterdam Institute of Molecular and Life Sciences (AIMMS), Division of Molecular and Computational Toxicology, Department of Chemistry and Pharmaceutical Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Alain Stepanian
- Assistance publique - Hôpitaux de Paris (AH-HP) Nord, Service d'hématologie biologique, Hôpital Lariboisière, Paris, France; EA3518 Institut Universitaire d'Hématologie, Hôpital Saint Louis, Paris-Diderot, Paris, France
| | - Tilman M Hackeng
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands
| | - Pascale Gaussem
- Innovative Therapies in Haemostasis, Institut national de la santé et de la recherche médicale (INSERM) U1140, Université Paris Cité, Paris, France; Assistance publique - Hôpitaux de Paris (AP-HP) Centre, Service d'hématologie biologique, Hôpital Européen Georges Pompidou, Paris, France
| | - Pieter H Reitsma
- Department of Internal Medicine, Division of Thrombosis and Hemostasis, Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, The Netherlands; VarmX B.V., Leiden, The Netherlands
| | - Daan P Geerke
- Amsterdam Institute of Molecular and Life Sciences (AIMMS), Division of Molecular and Computational Toxicology, Department of Chemistry and Pharmaceutical Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Virginie Siguret
- Innovative Therapies in Haemostasis, Institut national de la santé et de la recherche médicale (INSERM) U1140, Université Paris Cité, Paris, France; Assistance publique - Hôpitaux de Paris (AH-HP) Nord, Service d'hématologie biologique, Hôpital Lariboisière, Paris, France
| | - Mettine H A Bos
- Department of Internal Medicine, Division of Thrombosis and Hemostasis, Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, The Netherlands.
| |
Collapse
|
3
|
Kolyadko VN, Layzer JM, Perry K, Sullenger BA, Krishnaswamy S. An RNA aptamer exploits exosite-dependent allostery to achieve specific inhibition of coagulation factor IXa. Proc Natl Acad Sci U S A 2024; 121:e2401136121. [PMID: 38985762 PMCID: PMC11260126 DOI: 10.1073/pnas.2401136121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 06/06/2024] [Indexed: 07/12/2024] Open
Abstract
Hemostasis relies on a reaction network of serine proteases and their cofactors to form a blood clot. Coagulation factor IXa (protease) plays an essential role in hemostasis as evident from the bleeding disease associated with its absence. RNA aptamers specifically targeting individual coagulation factors have potential as anticoagulants and as probes of the relationship between structure and function. Here, we report X-ray structures of human factor IXa without a ligand bound to the active site either in the apo-form or in complex with an inhibitory aptamer specific for factor IXa. The aptamer binds to an exosite in the catalytic domain and allosterically distorts the active site. Our studies reveal a conformational ensemble of IXa states, wherein large movements of Trp215 near the active site drive functional transitions between the closed (aptamer-bound), latent (apo), and open (substrate-bound) states. The latent state of the apo-enzyme may bear on the uniquely poor catalytic activity of IXa compared to other coagulation proteases. The exosite, to which the aptamer binds, has been implicated in binding VIIIa and heparin, both of which regulate IXa function. Our findings reveal the importance of exosite-driven allosteric modulation of IXa function and new strategies to rebalance hemostasis for therapeutic gain.
Collapse
Affiliation(s)
- Vladimir N. Kolyadko
- Division of Hematology, Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, PA19104
| | | | - Kay Perry
- Northeastern Collaborative Access Team, Department of Chemistry and Chemical Biology, Cornell University, Argonne National Laboratory, Argonne, IL60439
| | | | - Sriram Krishnaswamy
- Division of Hematology, Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, PA19104
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
| |
Collapse
|
4
|
Strijbis VJF, Vatandoost J, Bos MHA. Crippling down factor IX for therapeutic gain. J Thromb Haemost 2023; 21:3287-3291. [PMID: 37678545 DOI: 10.1016/j.jtha.2023.08.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 08/29/2023] [Accepted: 08/29/2023] [Indexed: 09/09/2023]
Affiliation(s)
- Viola J F Strijbis
- Department of Internal Medicine, Division of Thrombosis and Hemostasis, Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, The Netherlands. https://twitter.com/ViolaStrijbis
| | - Jafar Vatandoost
- Department of Biology, Hakim Sabzevari University, Sabzevar, Iran
| | - Mettine H A Bos
- Department of Internal Medicine, Division of Thrombosis and Hemostasis, Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, The Netherlands.
| |
Collapse
|
5
|
Ivanciu L, Arruda VR, Camire RM. Factor IXa variants resistant to plasma inhibitors enhance clot formation in vivo. Blood 2023; 141:2022-2032. [PMID: 36724452 PMCID: PMC10163311 DOI: 10.1182/blood.2022018083] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 12/28/2022] [Accepted: 01/13/2023] [Indexed: 02/03/2023] Open
Abstract
Factor IXa (FIXa) plays a pivotal role in coagulation by contributing to FX activation via the intrinsic pathway. Although antithrombin (AT) and other plasma inhibitors are thought to regulate FIXa procoagulant function, the impact of FIXa inhibition on thrombin generation and clot formation in vivo remains unclear. Here, we generated FIXa variants with altered reactivity to plasma inhibitors that target the FIXa active site but maintain procoagulant function when bound to its cofactor, FVIIIa. We found that selected FIXa variants (eg, FIXa-V16L) have a prolonged activity half-life in the plasma due, in part, to AT resistance. Studies using hemophilia B mice have shown that delayed FIXa inhibition has a major impact on reducing the bleeding phenotype and promoting thrombus formation following administration of FIX protein. Overall, these results demonstrate that the regulation of FIXa inhibition contributes in a major way to the spatial and temporal control of coagulation at the site of vascular injury. Our findings provide novel insights into the physiological regulation of FIXa, enhance our understanding of thrombus formation in vivo via the intrinsic pathway, and suggest that altering FIXa inhibition could have therapeutic benefits.
Collapse
Affiliation(s)
- Lacramioara Ivanciu
- Division of Hematology and the Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children’s Hospital of Philadelphia, Philadelphia, PA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Valder R. Arruda
- Division of Hematology and the Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children’s Hospital of Philadelphia, Philadelphia, PA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Rodney M. Camire
- Division of Hematology and the Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children’s Hospital of Philadelphia, Philadelphia, PA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
6
|
Abstract
INTRODUCTION Hemophilia A (HA) or B (HB) is an X-linked recessive disorder caused by a defect in the factor VIII (FVIII) or factor IX (FIX) gene which leads to the dysfunction of blood coagulation. Protein replacement therapy (PRT) uses recombinant proteins and plasma-derived products, which incurs high cost and inconvenience requiring routine intravenous infusions and life-time treatment. Understanding of detailed molecular mechanisms on FVIII gene function could provide innovative solutions to amend this disorder. In recent decades, gene therapeutics have advanced rapidly and a one-time cure solution has been proposed. AREAS COVERED This review summarizes current understanding of molecular pathways involved in blood coagulation, with emphasis on FVIII's functional role. The existing knowledge and challenges on FVIII gene expression, from transcription, translation, post-translational modification including glycosylation to protein processing and secretion, and co-factor interactions are deciphered and potential molecular interventions discussed. EXPERT OPINION This article reviews the potential treatment targets for HA and HB, including antibodies, small molecules and gene therapeutics, based on molecular mechanisms of FVIII biosynthesis, and further, assessing the pros and cons of these various treatment strategies. Understanding detailed FVIII protein synthesis and secretory pathways could provide exciting opportunities in identifying novel therapeutics to ameliorate hemophilia state.
Collapse
Affiliation(s)
- Jie Gong
- School of Medicine, University of Electronic Science and Technology of China, Sichuan, China
| | - Hao-Lin Wang
- School of Medicine, University of Electronic Science and Technology of China, Sichuan, China
| | - Lung-Ji Chang
- School of Medicine, University of Electronic Science and Technology of China, Sichuan, China.,Geno-Immune Medical Institute, Shenzhen, China
| |
Collapse
|
7
|
Bonde AC, Lund J, Hansen JJ, Winther JR, Nielsen PF, Zahn S, Tiainen P, Olsen OH, Petersen HH, Bjelke JR. The functional role of the autolysis loop in the regulation of factor X upon hemostatic response. J Thromb Haemost 2022; 20:589-599. [PMID: 34927362 DOI: 10.1111/jth.15624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 12/16/2021] [Indexed: 11/26/2022]
Abstract
BACKGROUND The regulation of factor X (FX) is critical to maintain the balance between blood coagulation and fluidity. OBJECTIVES To functionally characterize the role of the FX autolysis loop in the regulation of the zymogen and active form of FX. METHODS We introduced novel N-linked glycosylations on the surface-exposed loop spanning residues 143-150 (chymotrypsin numbering) of FX. The activity and inhibition of recombinant FX variants was quantified in pure component assays. The in vitro thrombin generation potential of the FX variants was evaluated in FX-depleted plasma. RESULTS The factor VIIa (FVIIa)-mediated activation and prothrombin activation was reduced, presumably through steric hinderance. Prothrombin activation was, however, recovered in presence of cofactor factor Va (FVa) despite a reduced prothrombinase assembly. The introduced N-glycans exhibited position-specific effects on the interaction with two FXa inhibitors: tissue factor pathway inhibitor (TFPI) and antithrombin (ATIII). Ki for the inhibition by full-length TFPI of these FXa variants was increased by 7- to 1150-fold, whereas ATIII inhibition in the presence of the heparin-analog Fondaparinux was modestly increased by 2- to 15-fold compared with wild-type. When supplemented in zymogen form, the FX variants exhibited reduced thrombin generation activity relative to wild-type FX, whereas enhanced procoagulant activity was measured for activated FXa variants. CONCLUSION The autolysis loop participates in all aspects of FX regulation. In plasma-based assays, a modest decrease in FX activation rate appeared to knock down the procoagulant response even when down regulation of FXa activity by inhibitors was reduced.
Collapse
Affiliation(s)
- Amalie Carnbring Bonde
- Global Research, Novo Nordisk A/S, Måløv, Denmark
- Section for Biomolecular Sciences, Department of Biology, University of Copenhagen, Copenhagen N, Denmark
| | - Jacob Lund
- Global Research, Novo Nordisk A/S, Måløv, Denmark
| | | | - Jakob Rahr Winther
- Section for Biomolecular Sciences, Department of Biology, University of Copenhagen, Copenhagen N, Denmark
| | | | - Stefan Zahn
- Global Research, Novo Nordisk A/S, Måløv, Denmark
| | | | - Ole Hvilsted Olsen
- Novo Nordisk Foundation Centre for Basic Metabolic Research, University of Copenhagen, Copenhagen N, Denmark
| | | | | |
Collapse
|
8
|
Camire RM. Blood coagulation factor X: molecular biology, inherited disease, and engineered therapeutics. J Thromb Thrombolysis 2021; 52:383-390. [PMID: 33886037 DOI: 10.1007/s11239-021-02456-w] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/13/2021] [Indexed: 12/19/2022]
Abstract
Blood coagulation factor X/Xa sits at a pivotal point in the coagulation cascade and has a role in each of the three major pathways (intrinsic, extrinsic and the common pathway). Due to this central position, it is an attractive therapeutic target to either enhance or dampen thrombin generation. In this brief review, I will summarize key developments in the molecular understanding of this critical clotting factor and discuss the molecular basis of FX deficiency, highlight difficulties in expressing recombinant factor X, and detail two factor X variants evaluated clinically.
Collapse
Affiliation(s)
- Rodney M Camire
- Division of Hematology and the Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA. .,Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
9
|
Schreuder M, Poenou G, Strijbis VJF, Cheung KL, Reitsma PH, Bos MHA. Evolutionary Adaptations in Pseudonaja Textilis Venom Factor X Induce Zymogen Activity and Resistance to the Intrinsic Tenase Complex. Thromb Haemost 2020; 120:1512-1523. [PMID: 32820486 DOI: 10.1055/s-0040-1715441] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The venom of the Australian snake Pseudonaja textilis comprises powerful prothrombin activators consisting of factor X (v-ptFX)- and factor V-like proteins. While all vertebrate liver-expressed factor X (FX) homologs, including that of P. textilis, comprise an activation peptide of approximately 45 to 65 residues, the activation peptide of v-ptFX is significantly shortened to 27 residues. In this study, we demonstrate that exchanging the human FX activation peptide for the snake venom ortholog impedes proteolytic cleavage by the intrinsic factor VIIIa-factor IXa tenase complex. Furthermore, our findings indicate that the human FX activation peptide comprises an essential binding site for the intrinsic tenase complex. Conversely, incorporation of FX into the extrinsic tissue factor-factor VIIa tenase complex is completely dependent on exosite-mediated interactions. Remarkably, the shortened activation peptide allows for factor V-dependent prothrombin conversion while in the zymogen state. This indicates that the active site of FX molecules comprising the v-ptFX activation peptide partially matures upon assembly into a premature prothrombinase complex. Taken together, the shortened activation peptide is one of the remarkable characteristics of v-ptFX that has been modified from its original form, thereby transforming FX into a powerful procoagulant protein. Moreover, these results shed new light on the structural requirements for serine protease activation and indicate that catalytic activity can be obtained without formation of the characteristic Ile16-Asp194 salt bridge via modification of the activation peptide.
Collapse
Affiliation(s)
- Mark Schreuder
- Division of Thrombosis and Hemostasis, Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Geraldine Poenou
- Division of Thrombosis and Hemostasis, Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, The Netherlands.,AP-HP, Hôpital Louis Mourier, Colombes, France
| | - Viola J F Strijbis
- Division of Thrombosis and Hemostasis, Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Ka Lei Cheung
- Division of Thrombosis and Hemostasis, Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Pieter H Reitsma
- Division of Thrombosis and Hemostasis, Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Mettine H A Bos
- Division of Thrombosis and Hemostasis, Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
10
|
Schreuder M, Reitsma PH, Bos MHA. Reversal Agents for the Direct Factor Xa Inhibitors: Biochemical Mechanisms of Current and Newly Emerging Therapies. Semin Thromb Hemost 2020; 46:986-998. [DOI: 10.1055/s-0040-1709134] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
AbstractThe direct oral anticoagulants targeting coagulation factor Xa or thrombin are widely used as alternatives to vitamin K antagonists in the management of venous thromboembolism and nonvalvular atrial fibrillation. In case of bleeding or emergency surgery, reversal agents are helpful to counteract the anticoagulant therapy and restore hemostasis. While idarucizumab has been established as an antidote for the direct thrombin inhibitor dabigatran, reversal strategies for the direct factor Xa inhibitors have been a focal point in clinical care over the past years. In the absence of specific reversal agents, the off-label use of (activated) prothrombin complex concentrate and recombinant factor VIIa have been suggested as effective treatment options during inhibitor-induced bleeding complications. Meanwhile, several specific reversal agents have been developed. In this review, an overview of the current state of nonspecific and specific reversal agents for the direct factor Xa inhibitors is provided, focusing on the biochemistry and mechanism of action and the preclinical assessment of newly emerging therapies.
Collapse
Affiliation(s)
- Mark Schreuder
- Division of Thrombosis and Hemostasis, Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Pieter H. Reitsma
- Division of Thrombosis and Hemostasis, Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Mettine H. A. Bos
- Division of Thrombosis and Hemostasis, Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
11
|
Ahnström J, Gierula M, Temenu J, Laffan MA, Lane DA. Partial rescue of naturally occurring active site factor X variants through decreased inhibition by tissue factor pathway inhibitor and antithrombin. J Thromb Haemost 2020; 18:136-150. [PMID: 31466141 DOI: 10.1111/jth.14627] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 08/22/2019] [Accepted: 08/26/2019] [Indexed: 12/19/2022]
Abstract
BACKGROUND Activated coagulation factor X (FXa) is the serine protease component of prothrombinase, the physiological activator of prothrombin. Factor X Nottingham (A404T) and Taunton (R405G) are two naturally occurring mutations, identified in families with a bleeding phenotype. OBJECTIVE To characterize these FX variants functionally. METHODS The activity and inhibition of recombinant FX variants were quantified in plasma-based and pure component assays. RESULTS The prothrombin times in FX-depleted plasma supplemented with FX Nottingham and Taunton were greatly increased compared to that of wild-type (WT) FX. Kinetic investigations of activated variants in the prothrombinase complex showed kcat /Km reduced ~50-fold and ~5-fold, respectively, explaining the prolonged prothrombin time (PT). The substituted residues are located in the protease domain Na+ -binding loop, important for the activity of FXa, as well as its inhibition. Both FXa Nottingham and Taunton showed reduced affinity for Na+ . Plasma-based thrombin generation assays triggered with 1 pmol/L tissue factor (TF) demonstrated only small differences in activities compared to WT FX, but large reductions at 10 pmol/L TF. Severely reduced inhibition of both FXa Nottingham and Taunton by tissue factor pathway inhibitor (TFPI) and antithrombin (AT), was shown in pure-component FXa inhibition assays. Factor Xa Nottingham and Taunton produced higher amounts of thrombin than WT FXa in pure-component prothrombinase assays in the presence of TFPI and AT, explaining the results from the plasma-based assay. CONCLUSIONS Factor X Nottingham and Taunton both display decreased proteolytic activity. However, their reduced activity in plasma triggered by low TF can be rescued by decreased inhibition by the natural FXa inhibitors, TFPI and AT.
Collapse
Affiliation(s)
- Josefin Ahnström
- Centre for Haematology, Faculty of Medicine, Imperial College London, London, UK
| | - Magdalena Gierula
- Centre for Haematology, Faculty of Medicine, Imperial College London, London, UK
| | - Joseph Temenu
- Centre for Haematology, Faculty of Medicine, Imperial College London, London, UK
| | - Michael A Laffan
- Centre for Haematology, Faculty of Medicine, Imperial College London, London, UK
| | - David A Lane
- Centre for Haematology, Faculty of Medicine, Imperial College London, London, UK
| |
Collapse
|
12
|
Role of the I16-D194 ionic interaction in the trypsin fold. Sci Rep 2019; 9:18035. [PMID: 31792294 PMCID: PMC6889508 DOI: 10.1038/s41598-019-54564-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 11/15/2019] [Indexed: 12/20/2022] Open
Abstract
Activity in trypsin-like proteases is the result of proteolytic cleavage at R15 followed by an ionic interaction that ensues between the new N terminus of I16 and the side chain of the highly conserved D194. This mechanism of activation, first proposed by Huber and Bode, organizes the oxyanion hole and primary specificity pocket for substrate binding and catalysis. Using the clotting protease thrombin as a relevant model, we unravel contributions of the I16-D194 ionic interaction to Na+ binding, stability of the transition state and the allosteric E*-E equilibrium of the trypsin fold. The I16T mutation abolishes the I16-D194 interaction and compromises the architecture of the oxyanion hole. The D194A mutation also abrogates the I16-D194 interaction but, surprisingly, has no effect on the architecture of the oxyanion hole that remains intact through a new H-bond established between G43 and G193. In both mutants, loss of the I16-D194 ionic interaction compromises Na+ binding, reduces stability of the transition state, collapses the 215–217 segment into the primary specific pocket and abrogates the allosteric E*-E equilibrium in favor of a rigid conformation that binds ligand at the active site according to a simple lock-and-key mechanism. These findings refine the structural role of the I16-D194 ionic interaction in the Huber-Bode mechanism of activation and reveal a functional linkage with the allosteric properties of the trypsin fold like Na+ binding and the E*-E equilibrium.
Collapse
|
13
|
Evaluation of biomarkers for monitoring thrombogenic potential of FXaI16L. Blood Coagul Fibrinolysis 2019; 31:16-28. [PMID: 31687988 DOI: 10.1097/mbc.0000000000000866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
: A zymogen-like activated factor X variant (FXa) is being developed for treating acute bleeding conditions. Activated factor V is an essential cofactor to FXa for activating prothrombin to thrombin. Thrombi/emboli formation was observed microscopically in FXa toxicity studies in animals. The objective of this research was to evaluate candidate biomarkers for FXa-induced thrombi/emboli formation to inform safety monitoring and dose-escalation decisions in FXa clinical trials. Effects of intravenous FXa administration on platelets, fibrinogen, activated partial thromboplastin time (aPTT), prothrombin time (PT), D-dimer, tissue factor pathway inhibitor, thrombin : antithrombin complex, antithrombin, and factor V, and protein C (PC) activities were evaluated in mice, rats, and monkeys. Mice had endogenous factor V activity 10× that of monkeys and were overly sensitive to FXa-induced thrombi/emboli formation. In monkeys, decreases in fibrinogen and prolongation in aPTT and PT emerged as potential biomarkers for impending FXa-induced thrombi/emboli formation, based on association of changes with microscopically observable thrombi/emboli (0-97 thrombi/emboli per monkey). PC decreases, measured by a clot-based assay, were also observed. A similar reduction in PC activity, when measured by clot-based assay, was observed in a phase 1 clinical trial. However, an in-vitro experiment with human plasma spiked with increasing concentrations of FXa indicated dose-dependent FXa-induced interference with clot-based assays and no depletion of PC or S by FXa in non-clot-based assays. Nonclinical biomarker studies identified fibrinogen, aPTT and PT as potential biomarkers for monitoring the clinical safety of FXa. Results of clot-based assays with FXa treatment should be interpreted with caution.
Collapse
|
14
|
Samelson-Jones BJ, Finn JD, George LA, Camire RM, Arruda VR. Hyperactivity of factor IX Padua (R338L) depends on factor VIIIa cofactor activity. JCI Insight 2019; 5:128683. [PMID: 31219805 DOI: 10.1172/jci.insight.128683] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Adeno-associated-viral (AAV) vector liver-directed gene therapy (GT) for hemophilia B (HB) is limited by a vector-dose-dependent hepatotoxicity. Recently, this obstacle has been partially circumvented by the use of a hyperactive factor IX (FIX) variant, R338L (Padua), which has an eightfold increased specific activity compared to FIX-WT. FIX-R338L has emerged as the standard for HB GT. However, the underlying mechanism of its hyperactivity is undefined; as such, safety concerns of unregulated coagulation and the potential for thrombotic complications have not been fully addressed. To this end, we evaluated the enzymatic and clotting activity as well as the activation, inactivation, and cofactor-dependence of FIX-R338L relative to FIX-WT. We observed that the high-specific-activity of FIX-R338L requires factor VIIIa (FVIIIa) cofactor. In a novel system utilizing emicizumab, a FVIII-mimicking bispecific antibody, the hyperactivity of both recombinant FIX-R338L and AAV-mediated-transgene-expressed FIX-R338L from HB GT subjects is ablated without FVIIIa activity. We conclude that the molecular regulation of activation, inactivation, and cofactor-dependence of FIX-R338L is similar to FIX-WT, but that the FVIIIa-dependent hyperactivity of FIX-R338L is the result of a faster rate of factor X activation. This mechanism helps mitigate safety concerns of unregulated coagulation and supports the expanded use of FIX-R338L in HB therapy.
Collapse
Affiliation(s)
- Benjamin J Samelson-Jones
- The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.,Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Philadelphia, Pennsylvania, USA
| | - Jonathan D Finn
- The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Lindsey A George
- The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.,Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Philadelphia, Pennsylvania, USA
| | - Rodney M Camire
- The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.,Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Philadelphia, Pennsylvania, USA
| | - Valder R Arruda
- The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.,Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Philadelphia, Pennsylvania, USA
| |
Collapse
|
15
|
Parng C, Bolt M, Pittman DD, Caiazzo T, Dyleski L, Gorovits B, Webster R. Induction and Impact of Anti-Drug Responses Elicited by a Human Recombinant Coagulation Factor FXa I16L in Preclinical Species. AAPS JOURNAL 2019; 21:52. [PMID: 30976993 DOI: 10.1208/s12248-019-0324-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 03/22/2019] [Indexed: 11/30/2022]
Abstract
This paper presents a systemic investigation of ADA development and ADA impact of a human coagulation factor in nonclinical species during drug development and provides insights into potential implications in human if a similar ADA occurs. FXaI16L-induced ADA response was characterized in monkey, mouse, rat, and dog in different studies, and ADA effects on pharmacokinetic and/or pharmacodynamics of FXaI16L were further examined in ADA-negative and ADA-positive animals. After repeated administrations, FXaI16L elicited a dose and exposure day-dependent ADA response which ranged from no response to a transient or persistent response. Increase in exposure day and increase in dose generally enhanced ADA incidence except for a decrease in ADA incidence was observed in monkeys after repeated high-dose administrations. The observable ADA impact on pharmacokinetics was only found in some ADA+ animals and included decrease in clearance and increase in systemic exposure but no increase in half-life. In addition, no or limited effect on pharmacodynamics by ADA was observed. The earliest ADA response was observed after three exposure days, marked elevation of drug exposure was observed in some animals at log titer > 2.0, and the highest antibody titer excited was about 4 (Log10) in all species. A correlation between ADA induction and accumulative exposure after various repeat treatments in different species was found for FXaI16L. In addition, potential immunogenicity risk and mitigation of ADA in clinics are discussed.
Collapse
Affiliation(s)
- Chuenlei Parng
- Pfizer Biomedicine Design, Pharmacokinetics Pharmacodynamics Metabolism, 610 Main St., Cambridge, Massachusetts, 02139, USA.
| | - Michael Bolt
- Pfizer Drug Safety Research and Development, Cambridge, Massachusetts, 02139, USA
| | - Debra D Pittman
- Pfizer Rare Disease Research Unit, Cambridge, Massachusetts, 02139, USA
| | - Teresa Caiazzo
- Pfizer Biomedicine Design, Andover, Massachusetts, 01810, USA
| | - Lisa Dyleski
- Pfizer Biomedicine Design, Andover, Massachusetts, 01810, USA
| | - Boris Gorovits
- Pfizer Biomedicine Design, Andover, Massachusetts, 01810, USA
| | - Rob Webster
- Pfizer Biomedicine Design, Pharmacokinetics Pharmacodynamics Metabolism, 610 Main St., Cambridge, Massachusetts, 02139, USA
| |
Collapse
|
16
|
Novel therapeutics for hemophilia and other bleeding disorders. Blood 2018; 132:23-30. [DOI: 10.1182/blood-2017-09-743385] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 04/17/2018] [Indexed: 11/20/2022] Open
Abstract
Abstract
Hemophilia and von Willebrand disease are the most common congenital bleeding disorders. Treatment of these disorders has focused on replacement of the missing coagulation factor to prevent or treat bleeding. New technologies and insights into hemostasis have driven the development of many promising new therapies for hemophilia and von Willebrand disease. Emerging bypass agents including zymogen-like factor IXa and Xa molecules are in development and a bispecific antibody, emicizumab, demonstrated efficacy in a phase 3 trial in people with hemophilia A and inhibitors. Tissue factor pathway inhibitor, the protein C/S system, and antithrombin are targets of novel compounds in development to alter the hemostatic balance and new approaches using modified factor VIII molecules are being tested for prevention and eradication of inhibitor antibodies in hemophilia A. The first recombinant von Willebrand factor (VWF) product has been approved and has unique VWF multimer content and does not contain factor VIII. These new approaches may offer better routes of administration, improved dosing regimens, and better efficacy for prevention and treatment of bleeding in congenital bleeding disorders.
Collapse
|
17
|
Engineered factor Xa variants retain procoagulant activity independent of direct factor Xa inhibitors. Nat Commun 2017; 8:528. [PMID: 28904343 PMCID: PMC5597622 DOI: 10.1038/s41467-017-00647-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 07/17/2017] [Indexed: 01/02/2023] Open
Abstract
The absence of an adequate reversal strategy to prevent and stop potential life-threatening bleeding complications is a major drawback to the clinical use of the direct oral inhibitors of blood coagulation factor Xa. Here we show that specific modifications of the substrate-binding aromatic S4 subpocket within the factor Xa active site disrupt high-affinity engagement of the direct factor Xa inhibitors. These modifications either entail amino-acid substitution of S4 subsite residues Tyr99 and/or Phe174 (chymotrypsinogen numbering), or extension of the 99-loop that borders the S4 subsite. The latter modifications led to the engineering of a factor Xa variant that is able to support coagulation in human plasma spiked with (supra-)physiological concentrations of direct factor Xa inhibitors. As such, this factor Xa variant has the potential to be employed to bypass the direct factor Xa inhibitor-mediated anticoagulation in patients that require restoration of blood coagulation. A major drawback in the clinical use of the oral anticoagulants that directly inhibit factor Xa in order to prevent blood clot formation is the potential for life threatening bleeding events. Here the authors describe factor Xa variants that are refractory to inhibition by these anticoagulants and could serve as rescue agents in treated patients.
Collapse
|
18
|
Abstract
PURPOSE OF REVIEW New therapies are needed to control bleeding in a range of clinical conditions. This review will discuss the biochemical properties of zymogen-like factor Xa, its preclinical assessment in different model systems, and future development prospects. RECENT FINDINGS Underlying many procoagulant therapeutic approaches is the rapid generation of thrombin to promote robust clot formation. Clinically tested prohemostatic agents (e.g., factor VIIa) can provide effective hemostasis to mitigate bleeding in hemophilia and other clinical situations. Over the past decade, we explored the possibility of using zymogen-like factor Xa variants to rapidly improve clot formation for the treatment of bleeding conditions. Compared to the wild-type enzyme, these variants adopt an altered, low activity, conformation which enables them to resist plasma protease inhibitors. However, zymogen-like factor Xa variants are conformationally dynamic and ligands such as its cofactor, factor Va, stabilize the molecule rescuing procoagulant activity. At the site of vascular injury, the variants in the presence of factor Va serve as effective prohemostatic agents. Preclinical data support their use to stop bleeding in a variety of clinical settings. Phase 1 studies suggest that zymogen-like factor Xa is safe and well tolerated, and a phase 1b is ongoing to assess safety in patients with intracerebral hemorrhage. SUMMARY Zymogen-like factor Xa is a unique prohemostatic agent for the treatment of a range of bleeding conditions.
Collapse
Affiliation(s)
- Nabil K Thalji
- Division of Hematology, Department of Pediatrics, The Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | |
Collapse
|
19
|
Parng C, Markiewicz V, Chen J, Leary B, Duriga N, Dyleski L, Caiazzo T, Bolt M, Joyce A, Gorovits B, Pittman DD, Webster R. Preclinical Pharmacokinetics, Pharmacodynamics, Tissue Distribution, and Interspecies Scaling of Recombinant Human Coagulation Factor Xa I16L. J Pharm Sci 2017; 106:2136-2143. [PMID: 28389265 DOI: 10.1016/j.xphs.2017.03.035] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 03/22/2017] [Accepted: 03/27/2017] [Indexed: 02/03/2023]
Abstract
FXaI16L is a recombinant human FXa variant which is currently being evaluated in the clinic for treating intracerebral hemorrhage. The aim of our studies is to investigate overall pharmacokinetics, pharmacodynamics, and distribution of FXaI16L in preclinical species, and to understand its potential implication in human. Pharmacokinetics of FXaI16L was examined using active site probes and the results showed that FXaI16L displayed fast clearance, low volume of distribution, and a very short plasma resident time in mice, rats, and monkeys. When pharmacodynamics was examined in monkeys, concentration effects of FXaI16L on shortening of active partial prothrombin time and formation of thrombin-antithrombin complex were observed. Furthermore, biodistribution study was conducted in mice using radiolabeled FXaI16L, and showed that 125I-FXaI16L has high plasma protein binding and significant liver and kidney distribution. Human pharmacokinetic prediction for first-in-human dosing was evaluated using allometric scaling, liver blood flow, and a fixed coefficient method, and single species allometric scaling using monkey data was most predictive for human pharmacokinetics of FXaI16L.
Collapse
Affiliation(s)
- Chuenlei Parng
- Biomedicine Design, Pfizer Research and Development, Andover, Massachussetts 01810.
| | | | - Jianqing Chen
- Pfizer Quantitative Medicine, Cambridge, Massachussetts 02140
| | - Beth Leary
- Biomedicine Design, Pfizer Research and Development, Andover, Massachussetts 01810
| | - Nicole Duriga
- Biomedicine Design, Pfizer Research and Development, Andover, Massachussetts 01810
| | - Lisa Dyleski
- Biomedicine Design, Pfizer Research and Development, Andover, Massachussetts 01810
| | - Teresa Caiazzo
- Biomedicine Design, Pfizer Research and Development, Andover, Massachussetts 01810
| | - Michael Bolt
- Pfizer Drug Safety Research and Development, Groton, Connecticut 06340
| | - Alison Joyce
- Biomedicine Design, Pfizer Research and Development, Andover, Massachussetts 01810
| | - Boris Gorovits
- Biomedicine Design, Pfizer Research and Development, Andover, Massachussetts 01810
| | - Debra D Pittman
- Pfizer Rare Disease Research Unit, Hematology, Cambridge, Massachussetts 02140
| | - Robert Webster
- Biomedicine Design, Pfizer Research and Development, Andover, Massachussetts 01810
| |
Collapse
|
20
|
Abstract
There is a clinical need to develop safe and rapid therapeutic strategies to control bleeding arising from a host of emergent situations. Over the past several years our laboratory has developed novel zymogen-like FXa variants and tested their safety and efficacy using hemophilia as a model system. The variants have a spectrum of properties resulting from an amino acid change at the N-terminus of the heavy chain that alters a critical conformational change. These properties, which include resistance to plasma protease inhibitors, low activity in the absence of FVa, and rescue of low activity upon incorporation in prothrombinase, yield remarkably effective pro-hemostatic agents. The FVa-dependent restoration of activity is a key aspect to their efficacy and also contributes to localizing the variants to the site of vascular injury. While pre-clinical data support their use in the setting of hemophilia, they have the potential to act as rapid pro-hemostatic agents for the treatment of a range of bleeding conditions. This review will discuss the biochemical properties of these FXa zymogen-like variants and their in vivo characterization.
Collapse
Affiliation(s)
- Rodney M Camire
- The Children's Hospital of Philadelphia, The Raymond G. Perelman Center for Cellular and Molecular Therapeutics, and Division of Hematology, Department of Pediatrics, The University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104.
| |
Collapse
|
21
|
Affiliation(s)
- James C. Fredenburgh
- From the Departments of Medicine (J.C.F., J.I.W.) and Biochemistry and Biomedical Sciences (J.I.W.) and The Thrombosis and Atherosclerosis Research Institute (J.C.F., J.I.W.), McMaster University, Hamilton, ON, Canada
| | - Jeffrey I. Weitz
- From the Departments of Medicine (J.C.F., J.I.W.) and Biochemistry and Biomedical Sciences (J.I.W.) and The Thrombosis and Atherosclerosis Research Institute (J.C.F., J.I.W.), McMaster University, Hamilton, ON, Canada
| |
Collapse
|
22
|
A rapid pro-hemostatic approach to overcome direct oral anticoagulants. Nat Med 2016; 22:924-32. [PMID: 27455511 DOI: 10.1038/nm.4149] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 06/16/2016] [Indexed: 02/07/2023]
Abstract
Direct inhibitors of coagulation factor Xa (FXa) or thrombin are promising oral anticoagulants that are becoming widely adopted. The ability to reverse their anticoagulant effects is important when serious bleeding occurs or urgent medical procedures are needed. Here, using experimental mouse models of hemostasis, we show that a variant coagulation factor, FXa(I16L), rapidly restores hemostasis in the presence of the anticoagulant effects of these inhibitors. The ability of FXa(I16L) to reverse the anticoagulant effects of FXa inhibitor depends, at least in part, on the ability of the active site inhibitor to hinder antithrombin-dependent FXa inactivation, paradoxically allowing uninhibited FXa to persist in plasma. Because of its inherent catalytic activity, FXa(I16L) is more potent (by >50-fold) in the hemostasis models tested than a noncatalytic antidote that is currently in clinical development. FXa(I16L) also reduces the anticoagulant-associated bleeding in vivo that is induced by the thrombin inhibitor dabigatran. FXa(I16L) may be able to fill an important unmet clinical need for a rapid, pro-hemostatic agent to reverse the effects of several new anticoagulants.
Collapse
|
23
|
George LA, Thalji NK, Raffini LJ, Gimotty PA, Camire RM. Correction of human hemophilia A whole blood abnormalities with a novel bypass agent: zymogen-like FXa(I16L). J Thromb Haemost 2015; 13:1694-8. [PMID: 26190406 DOI: 10.1111/jth.13059] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 07/08/2015] [Indexed: 11/29/2022]
Abstract
BACKGROUND Approximately 30% of hemophilia A (HA) and 5% of hemophilia B patients develop inhibitors to protein replacement therapy, and this is the major cause of disease-related morbidity in the developed world. We previously developed zymogen-like factor Xa (FXa) molecules with impaired active site maturation, enabling a greater half-life than wild-type FXa while maintaining full procoagulant function in the prothrombinase complex. Here we evaluated the ability of zymogen-like FXa(I16L) to correct whole blood thromboelastometry abnormalities of severe HA subjects with and without inhibitors. METHODS Fourteen severe HA subjects without and five with inhibitors were enrolled at baseline ( FVIII C < 1%) > 5 half-lives from factor or bypass therapy. The subjects' whole blood was evaluated by thromboelastography (ROTEM(®) ) using INTEM analysis with two concentrations of FXa(I16L) or recombinant factor VIIa (rFVIIa). RESULTS With 0.1 nm FXa(I16L) , clot time (CT, in minutes [min]) among HA subjects without and with inhibitors (mean = 2.87 min, 95% CI = 2.58-3.15 min, and mean = 2.9 min, 95% CI = 2.07-3.73 min, respectively) did not significantly differ from control CT (mean = 2.73 min, 95% CI = 2.62-2.85 min). Addition of 20 nm rFVIIa, simulating a 90-μg/kg dose, resulted in significantly prolonged CTs for HA subjects without and with inhibitors (mean = 5.43 min, 95% CI = 4.53-6.35 min, and mean = 4.25 min, 95% CI = 3.32-5.17 min, respectively) relative to controls. CONCLUSIONS FXa(I16L) restored thromboelastometry CT to control values in severe HA subjects with and without inhibitors. The findings corroborate previous animal data and demonstrate the first evidence of zymogen-like FXa(I16L) correcting human HA subjects' whole-blood abnormalities and support the use of FXa(I16L) as a novel hemostatic agent.
Collapse
Affiliation(s)
- L A George
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - N K Thalji
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - L J Raffini
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - P A Gimotty
- Department of Biostatistics and Epidemiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - R M Camire
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
24
|
Lyso-Sulfatide Binds Factor Xa and Inhibits Thrombin Generation by the Prothrombinase Complex. PLoS One 2015; 10:e0135025. [PMID: 26263376 PMCID: PMC4532512 DOI: 10.1371/journal.pone.0135025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 07/16/2015] [Indexed: 11/19/2022] Open
Abstract
Blood coagulation reactions are strongly influenced by phospholipids, but little is known about the influence of sphingolipids on coagulation mechanisms. Lysosulfatide (lyso-SF) (sulfogalactosyl sphingosine) prolonged factor Xa (fXa) 1-stage plasma clotting assays, showing it had robust anticoagulant activity. In studies using purified clotting factors, lyso-SF inhibited >90% of prothrombin (II) activation for reaction mixtures containing fXa/factor Va (fVa)/II, and also inhibited II activation generation by fXa/ phospholipids and by Gla-domainless-fXa/fVa/phospholipids. When lyso-SF analogs were tested, results showed that N-acetyl-sulfatide was not anticoagulant, implying that the free amine group was essential for the anticoagulant effects of lyso-SF. Lyso-SF did not inhibit fXa enzymatic hydrolysis of small peptide substrates, showing it did not directly inhibit the fXa activity. In surface plasmon resonance studies, lyso-SF bound to immobilized inactivated fXa as well as inactivated Gla-domainless-fXa. Confirming this lyso-SF:fXa interaction, fluorescence studies showed that fluorescently-labeled-fXa in solution bound to lyso-SF. Thus, lyso-SF is an anticoagulant lipid that inhibits fXa when this enzyme is bound to either phospholipids or to fVa. Mechanisms for inhibition of procoagulant activity are likely to involve lyso-SF binding to fXa domain(s) that are distinct from the fXa Gla domain. This suggests that certain sphingolipids, including lyso-SF and some of its analogs, may down-regulate fXa activity without inhibiting the enzyme's active site or binding to the fXa Gla domain.
Collapse
|
25
|
|
26
|
Baroni M, Pavani G, Pinotti M, Branchini A, Bernardi F, Camire RM. Asymmetric processing of mutant factor X Arg386Cys reveals differences between intrinsic and extrinsic pathway activation. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2015; 1854:1351-6. [PMID: 26012870 DOI: 10.1016/j.bbapap.2015.05.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Revised: 04/30/2015] [Accepted: 05/18/2015] [Indexed: 01/30/2023]
Abstract
Alterations in coagulation factor X (FX) activation, mediated by the extrinsic VIIa/tissue factor (FVIIa/TF) or the intrinsic factor IXa/factor VIIIa (FIXa/FVIIIa) complexes, can result in hemorrhagic/prothrombotic tendencies. However, the molecular determinants involved in substrate recognition by these enzymes are poorly defined. Here, we investigated the role of arginine 386 (chymotrypsin numbering c202), a surface-exposed residue on the FX catalytic domain. The naturally occurring FX386Cys mutant and FX386Ala variant were characterized. Despite the unpaired cysteine, recombinant (r)FX386Cys was efficiently secreted (88.6±21.3% of rFXwt) and possessed normal clearance in mice. rFX386Cys was also normally activated by FVIIa/TF and displayed intact amidolytic activity. In contrast, rFX386Cys activation by the FIXa/FVIIIa complex was 4.5-fold reduced, which was driven by a decrease in the kcat (1.6∗10(-4) s(-1) vs 5.8∗10(-4) s(-1), rFXwt). The virtually unaltered Km (70.6 nM vs 55.6nM, rFXwt) suggested no major alterations in the FX substrate exosite. Functional assays in plasma supplemented with rFX386Cys indicated a remarkable reduction in the thrombin generation rate and thus in coagulation efficiency. Consistently, the rFX386Ala variant displayed similar biochemical features suggesting that global changes at position 386 impact the intrinsic pathway activation. These data indicate that the FXArg386 is involved in FIXa/FVIIIa-mediated FX activation and help in elucidating the bleeding tendency associated with the FX386Cys in a rare FX deficiency case. Taking advantage of the unpaired cysteine, the rFX386Cys mutant may be efficiently targeted by thiol-specific ligands and represent a valuable tool to study FX structure-function relationships both in vitro and in vivo.
Collapse
Affiliation(s)
- M Baroni
- Department of Life Sciences and Biotechnology, University of Ferrara, Italy.
| | - G Pavani
- Department of Life Sciences and Biotechnology, University of Ferrara, Italy; The Children's Hospital of Philadelphia, The University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA; The Center for Cell and Molecular Therapeutics, and Division of Hematology, The University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA; Department of Pediatrics, The University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - M Pinotti
- Department of Life Sciences and Biotechnology, University of Ferrara, Italy
| | - A Branchini
- Department of Life Sciences and Biotechnology, University of Ferrara, Italy
| | - F Bernardi
- Department of Life Sciences and Biotechnology, University of Ferrara, Italy
| | - R M Camire
- The Children's Hospital of Philadelphia, The University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA; The Center for Cell and Molecular Therapeutics, and Division of Hematology, The University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA; Department of Pediatrics, The University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
| |
Collapse
|
27
|
Hemostatic agents of broad applicability produced by selective tuning of factor Xa zymogenicity. Blood 2015; 126:94-102. [PMID: 25896653 DOI: 10.1182/blood-2015-03-634329] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 04/15/2015] [Indexed: 01/01/2023] Open
Abstract
There is a clinical need to develop safe therapeutic strategies to mitigate bleeding. Previously, we found that a novel zymogen-like factor Xa variant (FXa-I16L) was effective in correcting the coagulation defect in hemophilic mice. Here we expand the mutational framework to tune the FX(a) zymogen-like state. Alteration of FXa zymogenicity yields variants (V17M, I16L, I16M, V17T, V17S, and I16T) with a wide range (≤1000-fold) of reduced function toward physiologic substrates and inhibitors. The extent of zymogen-like character, including resistance to antithrombin III, correlates well with plasma half-life (<2 minutes to >4 hours). Importantly, biologic function, including that of the most zymogen-like variant (FXa-I16T), was greatly enhanced when bound to FVa membranes. This resulted in improvement of clotting times and thrombin generation in hemophilic plasma. The FXa variants were remarkably effective in mouse injury models. In these systems, the data show that the more active the protease, the more difficult it is to overcome the protective mechanism of circulating inhibitors to achieve a therapeutic benefit. Depending on the treatment situation, the more zymogen-like variants (V17S and I16T) were most useful when given before injury whereas variants exhibiting greater activity but shorter half-lives (I16L and I16M) were most effective when administered after injury. This new class of FXa variants provides a useful and flexible platform for selectively bioengineering biologic function and half-life to target different clinical bleeding scenarios.
Collapse
|
28
|
Promising coagulation factor VIII bypassing strategies for patients with haemophilia A. Blood Coagul Fibrinolysis 2014; 25:539-52. [DOI: 10.1097/mbc.0000000000000098] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
29
|
von Drygalski A, Cramer TJ, Bhat V, Griffin JH, Gale AJ, Mosnier LO. Improved hemostasis in hemophilia mice by means of an engineered factor Va mutant. J Thromb Haemost 2014; 12:363-72. [PMID: 24818532 PMCID: PMC4161283 DOI: 10.1111/jth.12489] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2013] [Accepted: 12/02/2013] [Indexed: 11/30/2022]
Abstract
BACKGROUND Factor (F)VIIa-based bypassing not always provides sufficient hemostasis in hemophilia. OBJECTIVES To investigate the potential of engineered activated factor V (FVa) variants as bypassing agents in hemophilia A. METHODS Activity of FVa variants was studied in vitro using prothrombinase assays with purified components and in FV- and FVIII-deficient plasma using clotting and thrombin generation assays. In vivo bleed reduction after the tail clip was studied in hemophilia A mice. RESULTS AND CONCLUSIONS FVa mutations included a disulfide bond connecting the A2 and A3 domains and ones that rendered FVa resistant to inactivation by activated protein C (APC). '(super) FVa,' a combination of the A2-A3 disulfide (A2-SS-A3) to stabilize FVa and of APC-cleavage site mutations (Arg506/306/679Gln), had enhanced specific activity and complete APC resistance compared with wild-type FVa, FVL eiden (Arg506Gln), or FVaL eiden (A2-SS-A3). Furthermore, (super) FVa potently increased thrombin generation in vitro in FVIII-deficient plasma. In vivo, (super) FVa reduced bleeding in FVIII-deficient mice more effectively than wild-type FVa. Low-dose (super) FVa, but not wild-type FVa, decreased early blood loss during the first 10 min by more than two-fold compared with saline and provided bleed protection for the majority of mice, similar to treatments with FVIII. During the second 10 min after tail cut, (super) FVa at high dose, but not wild-type FVa, effectively reduced bleeding. These findings suggest that (super) FVa enhances not only clot formation but also clot stabilization. Thus, (super) FVa efficiently improved hemostasis in hemophilia in vitro and in vivo and may have potential therapeutic benefits as a novel bypassing agent in hemophilia.
Collapse
Affiliation(s)
- A von Drygalski
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA, USA; Division of Hematology/Oncology, Department of Medicine, University California San Diego, San Diego, CA, USA
| | | | | | | | | | | |
Collapse
|
30
|
Bunce MW, Bos MHA, Krishnaswamy S, Camire RM. Restoring the procofactor state of factor Va-like variants by complementation with B-domain peptides. J Biol Chem 2013; 288:30151-30160. [PMID: 24014022 DOI: 10.1074/jbc.m113.506840] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Coagulation factor V (FV) circulates as an inactive procofactor and is activated to FVa by proteolytic removal of a large inhibitory B-domain. Conserved basic and acidic sequences within the B-domain appear to play an important role in keeping FV as an inactive procofactor. Here, we utilized recombinant B-domain fragments to elucidate the mechanism of this FV autoinhibition. We show that a fragment encoding the basic region (BR) of the B-domain binds with high affinity to cofactor-like FV(a) variants that harbor an intact acidic region. Furthermore, the BR inhibits procoagulant function of the variants, thereby restoring the procofactor state. The BR competes with FXa for binding to FV(a), and limited proteolysis of the B-domain, specifically at Arg(1545), ablates BR binding to promote high affinity association between FVa and FXa. These results provide new insight into the mechanism by which the B-domain stabilizes FV as an inactive procofactor and reveal how limited proteolysis of FV progressively destabilizes key regulatory regions of the B-domain to produce an active form of the molecule.
Collapse
Affiliation(s)
- Matthew W Bunce
- From the Division of Hematology, The Children's Hospital of Philadelphia and
| | - Mettine H A Bos
- From the Division of Hematology, The Children's Hospital of Philadelphia and
| | - Sriram Krishnaswamy
- From the Division of Hematology, The Children's Hospital of Philadelphia and; the Department of Pediatrics, Perelman School of Medicine, The University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Rodney M Camire
- From the Division of Hematology, The Children's Hospital of Philadelphia and; the Department of Pediatrics, Perelman School of Medicine, The University of Pennsylvania, Philadelphia, Pennsylvania 19104.
| |
Collapse
|
31
|
Brown MA, Stenberg LM, Stenflo J. Coagulation Factor Xa. HANDBOOK OF PROTEOLYTIC ENZYMES 2013. [PMCID: PMC7149769 DOI: 10.1016/b978-0-12-382219-2.00642-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
The third edition of the Handbook of Proteolytic Enzymes aims to be a comprehensive reference work for the enzymes that cleave proteins and peptides, and contains over 800 chapters. Each chapter is organized into sections describing the name and history, activity and specificity, structural chemistry, preparation, biological aspects, and distinguishing features for a specific peptidase. The subject of Chapter 642 is Coagulation Factor Xa. Keywords Coagulation factor, prothrombin, thrombin, proconvertin, Stuart’s factor, Prower’s factor.
Collapse
|
32
|
Camire RM. Bioengineered factor Xa as a potential new strategy for hemophilia therapy. Expert Rev Hematol 2012; 5:121-3. [PMID: 22475278 DOI: 10.1586/ehm.12.13] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
33
|
A zymogen-like factor Xa variant corrects the coagulation defect in hemophilia. Nat Biotechnol 2011; 29:1028-33. [PMID: 22020385 PMCID: PMC4157830 DOI: 10.1038/nbt.1995] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2011] [Accepted: 09/07/2011] [Indexed: 11/17/2022]
Abstract
Effective therapies are needed to control excessive bleeding in a range of clinical conditions. We describe a surprisingly useful approach to improve hemostasis in vivo using a variant of coagulation factor Xa (FXaI16L). This conformationally pliant derivative is partially inactive due to a defect in transitioning from zymogen to protease 1,2. Using mouse models of hemophilia, we show that FXaI16L has a prolonged half-life, relative to wild-type FXa and does not cause excessive activation of coagulation. Once clotting mechanisms are activated to produce its cofactor FVa, FXaI16L is driven to the protease state and restores hemostasis in hemophilic animals upon vascular injury. Moreover, using human or murine analogs, we show that FXaI16L is more efficacious than FVIIa which is used to treat bleeding in hemophilia inhibitor patients3. Because of its underlying mechanism of action, FXaI16L may provide an effective strategy to enhance blood clot formation and act as a rapid pan-hemostatic agent for the treatment of bleeding conditions.
Collapse
|
34
|
Bunce MW, Toso R, Camire RM. Zymogen-like factor Xa variants restore thrombin generation and effectively bypass the intrinsic pathway in vitro. Blood 2011; 117:290-8. [PMID: 20864578 PMCID: PMC3037750 DOI: 10.1182/blood-2010-08-300756] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2010] [Accepted: 09/15/2010] [Indexed: 11/20/2022] Open
Abstract
Inhibitory antibodies to factors VIII or IX represent a serious complication for hemophilia patients. Treatment involves products that bypass the intrinsic pathway and promote thrombin generation. Direct infusion of factor Xa should also restore hemostasis; however, it has a short half-life in plasma and could activate systemic coagulation in an uncontrolled fashion. Here we show that factor Xa mutants with zymogen-like properties (FXa(I16L) and FXa(V17A)) circumvent these limitations. In the absence of factor Va, the FXa variants are poor enzymes for a range of physiological ligands and are resistant to inactivation by antithrombin III and tissue factor pathway inhibitor. Notably, assembly of FXa(I16L) and FXa(V17A) on activated platelets with factor Va to form prothrombinase completely restores biologic activity. In hemophilic plasma, FXa(I16L) and FXa(V17A) have prolonged half-lives compared with wild-type factor Xa (approximately 60 minutes vs approximately 1 minute) and promote robust thrombin generation that bypasses the intrinsic pathway. The variants require factor Va generated in situ for procoagulant function, and cofactor inactivation by the protein C pathway regulates their activity. The efficacy, extended half-life, and mechanism of action suggest that novel zymogen-like forms of factor Xa might prove useful as new therapeutic procoagulants to treat deficiencies upstream of the common pathway.
Collapse
Affiliation(s)
- Matthew W Bunce
- Department of Pediatrics, Division of Hematology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | | | | |
Collapse
|
35
|
Abstract
The following report will provide a brief overview of presentations provided during the Scientific Subcommittee on Hemostasis program at the 51st Annual Meeting of the American Society of Hematology, held in New Orleans (LA, USA) in December 2009. The topic of this year's subcommittee meeting was Hemophilia: Basic and Translational Science and was chaired by David Lillicrap from Queen's University, Canada. The session was held twice and three speakers covered a range of topics, including Factor VIII and the unfolded protein response, novel hemostatic bypassing molecules and wound healing in hemophilia.
Collapse
Affiliation(s)
- Rodney M Camire
- The Children's Hospital of Philadelphia, Division of Hematology, 3501 Civic Center Boulevard, Philadelphia, PA 19104, USA.
| |
Collapse
|
36
|
Guéguen P, Cherel G, Badirou I, Denis CV, Christophe OD. Two residues in the activation peptide domain contribute to the half-life of factor X in vivo. J Thromb Haemost 2010; 8:1651-3. [PMID: 20456752 DOI: 10.1111/j.1538-7836.2010.03905.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
|
37
|
Procoagulant adaptation of a blood coagulation prothrombinase-like enzyme complex in australian elapid venom. Toxins (Basel) 2010; 2:1554-67. [PMID: 21127733 PMCID: PMC2994417 DOI: 10.3390/toxins2061554] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2010] [Revised: 06/04/2010] [Accepted: 06/17/2010] [Indexed: 11/17/2022] Open
Abstract
The macromolecular enzyme complex prothrombinase serves an indispensable role in blood coagulation as it catalyzes the conversion of prothrombin to thrombin, a key regulatory enzyme in the formation of a blood clot. Interestingly, a virtually identical enzyme complex is found in the venom of some Australian elapid snakes, which is composed of a cofactor factor Va-component and a serine protease factor Xa-like subunit. This review will provide an overview of the identification and characterization of the venom prothrombinase complex and will discuss the rationale for its powerful procoagulant nature responsible for the potent hemostatic toxicity of the elapid venom.
Collapse
|
38
|
Buddai SK, Layzer JM, Lu G, Rusconi CP, Sullenger BA, Monroe DM, Krishnaswamy S. An anticoagulant RNA aptamer that inhibits proteinase-cofactor interactions within prothrombinase. J Biol Chem 2009; 285:5212-23. [PMID: 20022942 DOI: 10.1074/jbc.m109.049833] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The interaction of factor Xa with factor Va on membranes to form prothrombinase profoundly increases the rate of the proteolytic conversion of prothrombin to thrombin. We present the characterization of an RNA aptamer (RNA(11F7t)) selected from a combinatorial library based on its ability to bind factor Xa. We show that RNA(11F7t) inhibits thrombin formation catalyzed by prothrombinase without obscuring the active site of Xa within the enzyme complex. Selective inhibition of protein substrate cleavage arises from the ability of the aptamer to bind to factor Xa and exclude interactions between the proteinase and cofactor within prothrombinase. Competition for enzyme complex assembly results from the binding of RNA(11F7t) to factor Xa with nanomolar affinity in a Ca(2+)-dependent interaction. RNA(11F7t) binds equivalently to the zymogen factor X as well as derivatives lacking gamma-carboxyglutamic acid residues. We suggest that the ability of RNA(11F7t) to compete for the Xa-Va interaction with surprisingly high affinity likely reflects a significant contribution from its ability to indirectly impact regions of Xa that participate in the proteinase-cofactor interaction. Thus, despite the complexity of the macromolecular interactions that underlie the assembly of prothrombinase, efficient inhibition of enzyme complex assembly and thrombin formation can be achieved by tight binding ligands that target factor Xa in a discrete manner.
Collapse
Affiliation(s)
- Sai K Buddai
- Joseph Stokes Research Institute, Children's Hospital of Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | | | | | |
Collapse
|
39
|
Venom factor V from the common brown snake escapes hemostatic regulation through procoagulant adaptations. Blood 2009; 114:686-92. [PMID: 19365080 DOI: 10.1182/blood-2009-02-202663] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Venomous snakes produce an array of toxic compounds, including procoagulants to defend themselves and incapacitate prey. The Australian snake Pseudonaja textilis has a venom-derived prothrombin activator homologous to coagulation factors V (FV) and Xa (FXa). Here we show that the FV component (pt-FV) has unique biologic properties that subvert the normal regulatory restraints intended to restrict an unregulated procoagulant response. Unlike human FV, recombinant pt-FV is constitutively active and does not require proteolytic processing to function. Sequence comparisons show that it has shed a large portion of the central B-domain, including residues that stabilize the inactive procofactor state. Remarkably, pt-FV functions in the absence of anionic membranes as it binds snake-FXa with high affinity in solution. Furthermore, despite cleavage in the heavy chain, pt-FV is functionally resistant to activated protein C, an anticoagulant. We speculate this stability is the result of noncovalent interactions and/or a unique disulfide bond in pt-FV linking the heavy and light chains. Taken together, these findings provide a biochemical rationale for the strong procoagulant nature of venom prothrombinase. Furthermore, they illustrate how regulatory mechanisms designed to limit the hemostatic response can be uncoupled to provide a sustained, disseminated procoagulant stimulus for use as a biologic toxin.
Collapse
|