1
|
Yeh MC, Hsu NH, Chu HY, Yang CH, Hsu PH, Chou CC, Shie JT, Lee WM, Ho MC, Lo KY. Dual protection by Bcp1 and Rkm1 ensures incorporation of uL14 into pre-60S ribosomal subunits. J Cell Biol 2024; 223:e202306117. [PMID: 39007857 PMCID: PMC11248248 DOI: 10.1083/jcb.202306117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 02/13/2024] [Accepted: 04/19/2024] [Indexed: 07/16/2024] Open
Abstract
Eukaryotic ribosomal proteins contain extended regions essential for translation coordination. Dedicated chaperones stabilize the associated ribosomal proteins. We identified Bcp1 as the chaperone of uL14 in Saccharomyces cerevisiae. Rkm1, the lysine methyltransferase of uL14, forms a ternary complex with Bcp1 and uL14 to protect uL14. Rkm1 is transported with uL14 by importins to the nucleus, and Bcp1 disassembles Rkm1 and importin from uL14 simultaneously in a RanGTP-independent manner. Molecular docking, guided by crosslinking mass spectrometry and validated by a low-resolution cryo-EM map, reveals the correlation between Bcp1, Rkm1, and uL14, demonstrating the protection model. In addition, the ternary complex also serves as a surveillance point, whereas incorrect uL14 is retained on Rkm1 and prevented from loading to the pre-60S ribosomal subunits. This study reveals the molecular mechanism of how uL14 is protected and quality checked by serial steps to ensure its safe delivery from the cytoplasm until its incorporation into the 60S ribosomal subunit.
Collapse
Affiliation(s)
- Min-Chi Yeh
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Ning-Hsiang Hsu
- Department of Agricultural Chemistry, College of Bioresources and Agriculture, National Taiwan University, Taipei, Taiwan
| | - Hao-Yu Chu
- Department of Agricultural Chemistry, College of Bioresources and Agriculture, National Taiwan University, Taipei, Taiwan
| | - Cheng-Han Yang
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Pang-Hung Hsu
- Department of Bioscience and Biotechnology, College of Life Science, National Taiwan Ocean University, Keelung, Taiwan
- Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung, Taiwan
| | - Chi-Chi Chou
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Jing-Ting Shie
- Department of Agricultural Chemistry, College of Bioresources and Agriculture, National Taiwan University, Taipei, Taiwan
| | - Wei-Ming Lee
- Department of Agricultural Chemistry, College of Bioresources and Agriculture, National Taiwan University, Taipei, Taiwan
| | - Meng-Chiao Ho
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
- Institute of Biochemical Sciences, College of Life Science, National Taiwan University, Taipei, Taiwan
- Institute of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Kai-Yin Lo
- Department of Agricultural Chemistry, College of Bioresources and Agriculture, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
2
|
Labbaoui H, Bogliolo S, Ghugtyal V, Solis NV, Filler SG, Arkowitz RA, Bassilana M. Role of Arf GTPases in fungal morphogenesis and virulence. PLoS Pathog 2017; 13:e1006205. [PMID: 28192532 PMCID: PMC5325608 DOI: 10.1371/journal.ppat.1006205] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 02/24/2017] [Accepted: 01/29/2017] [Indexed: 12/30/2022] Open
Abstract
Virulence of the human fungal pathogen Candida albicans depends on the switch from budding to filamentous growth, which requires sustained membrane traffic and polarized growth. In many organisms, small GTPases of the Arf (ADP-ribosylation factor) family regulate membrane/protein trafficking, yet little is known about their role in fungal filamentous growth. To investigate these GTPases in C. albicans, we generated loss of function mutants in all 3 Arf proteins, Arf1-Arf3, and 2 Arf-like proteins, Arl1 and Arl3. Our results indicate that of these proteins, Arf2 is required for viability and sensitivity to antifungal drugs. Repressible ARF2 expression results in defects in filamentous growth, cell wall integrity and virulence, likely due to alteration of the Golgi. Arl1 is also required for invasive filamentous growth and, although arl1/arl1 cells can initiate hyphal growth, hyphae are substantially shorter than that of the wild-type, due to the inability of this mutant to maintain hyphal growth at a single site. We show that this defect does not result from an alteration of phospholipid distribution and is unlikely to result from the sole Golgin Imh1 mislocalization, as Imh1 is not required for invasive filamentous growth. Rather, our results suggest that the arl1/arl1 hyphal growth defect results from increased secretion in this mutant. Strikingly, the arl1/arl1 mutant is drastically reduced in virulence during oropharyngeal candidiasis. Together, our results highlight the importance of Arl1 and Arf2 as key regulators of hyphal growth and virulence in C. albicans and identify a unique function of Arl1 in secretion.
Collapse
Affiliation(s)
- Hayet Labbaoui
- Université Côte d’Azur, CNRS, INSERM, iBV, Parc Valrose, Nice, France
| | | | - Vikram Ghugtyal
- Université Côte d’Azur, CNRS, INSERM, iBV, Parc Valrose, Nice, France
| | - Norma V. Solis
- Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA, United States of America
| | - Scott G. Filler
- Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA, United States of America
| | | | - Martine Bassilana
- Université Côte d’Azur, CNRS, INSERM, iBV, Parc Valrose, Nice, France
| |
Collapse
|
3
|
Ishida M, E Oguchi M, Fukuda M. Multiple Types of Guanine Nucleotide Exchange Factors (GEFs) for Rab Small GTPases. Cell Struct Funct 2016; 41:61-79. [PMID: 27246931 DOI: 10.1247/csf.16008] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Rab small GTPases are highly conserved master regulators of membrane traffic in all eukaryotes. The same as the activation and inactivation of other small GTPases, the activation and inactivation of Rabs are tightly controlled by specific GEFs (guanine nucleotide exchange factors) and GAPs (GTPase-activating proteins), respectively. Although almost all Rab-GAPs reported thus far have a TBC (Tre-2/Bub2/Cdc16)/Rab-GAP domain in common, recent accumulating evidence has indicated the existence of a number of structurally unrelated types of Rab-GEFs, including DENN proteins, VPS9 proteins, Sec2 proteins, TRAPP complexes, heterodimer GEFs (Mon1-Ccz1, HPS1-HPS4 (BLOC-3 complex), Ric1-Rgp1 and Rab3GAP1/2), and other GEFs (e.g., REI-1 and RPGR). In this review article we provide an up-to-date overview of the structures and functions of all putative Rab-GEFs in mammals, with a special focus on their substrate Rabs, interacting proteins, associations with genetic diseases, and intracellular localizations.
Collapse
Affiliation(s)
- Morié Ishida
- Laboratory of Membrane Trafficking Mechanisms, Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University
| | | | | |
Collapse
|
4
|
Snf1/AMP-activated protein kinase activates Arf3p to promote invasive yeast growth via a non-canonical GEF domain. Nat Commun 2015. [PMID: 26198097 PMCID: PMC4525183 DOI: 10.1038/ncomms8840] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Active GTP-bound Arf GTPases promote eukaryotic cell membrane trafficking and cytoskeletal remodelling. Arf activation is accelerated by guanine nucleotide-exchange factors (GEFs) using the critical catalytic glutamate in all known Sec7 domain sequences. Yeast Arf3p, a homologue of mammalian Arf6, is required for yeast invasive responses to glucose depletion. Here we identify Snf1p as a GEF that activates Arf3p when energy is limited. SNF1 is the yeast homologue of AMP-activated protein kinase (AMPK), which is a key regulator of cellular energy homeostasis. As activation of Arf3p does not depend on the Snf1p kinase domain, assay of regulatory domain fragments yield evidence that the C-terminal hydrophobic α-helix core of Snf1p is a non-canonical GEF for Arf3p activation. Thus, our study reveals a novel mechanism for regulating cellular responses to energy deprivation, in particular invasive cell growth, through direct Arf activation by Snf1/AMPK.
Collapse
|
5
|
Davis D, Yaveroğlu ÖN, Malod-Dognin N, Stojmirovic A, Pržulj N. Topology-function conservation in protein-protein interaction networks. Bioinformatics 2015; 31:1632-9. [PMID: 25609797 PMCID: PMC4426845 DOI: 10.1093/bioinformatics/btv026] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Revised: 12/05/2014] [Accepted: 01/11/2015] [Indexed: 12/30/2022] Open
Abstract
MOTIVATION Proteins underlay the functioning of a cell and the wiring of proteins in protein-protein interaction network (PIN) relates to their biological functions. Proteins with similar wiring in the PIN (topology around them) have been shown to have similar functions. This property has been successfully exploited for predicting protein functions. Topological similarity is also used to guide network alignment algorithms that find similarly wired proteins between PINs of different species; these similarities are used to transfer annotation across PINs, e.g. from model organisms to human. To refine these functional predictions and annotation transfers, we need to gain insight into the variability of the topology-function relationships. For example, a function may be significantly associated with specific topologies, while another function may be weakly associated with several different topologies. Also, the topology-function relationships may differ between different species. RESULTS To improve our understanding of topology-function relationships and of their conservation among species, we develop a statistical framework that is built upon canonical correlation analysis. Using the graphlet degrees to represent the wiring around proteins in PINs and gene ontology (GO) annotations to describe their functions, our framework: (i) characterizes statistically significant topology-function relationships in a given species, and (ii) uncovers the functions that have conserved topology in PINs of different species, which we term topologically orthologous functions. We apply our framework to PINs of yeast and human, identifying seven biological process and two cellular component GO terms to be topologically orthologous for the two organisms.
Collapse
Affiliation(s)
- Darren Davis
- California Institute of Telecommunications and Technology (Calit2), University of California Irvine, Irvine, CA, USA, Department of Computing, Imperial College London, London, UK, National Center for Biotechnology Information (NCBI), Bethesda, MD, USA and Janssen Research and Development, LLC, Spring House, PA, USA
| | - Ömer Nebil Yaveroğlu
- California Institute of Telecommunications and Technology (Calit2), University of California Irvine, Irvine, CA, USA, Department of Computing, Imperial College London, London, UK, National Center for Biotechnology Information (NCBI), Bethesda, MD, USA and Janssen Research and Development, LLC, Spring House, PA, USA California Institute of Telecommunications and Technology (Calit2), University of California Irvine, Irvine, CA, USA, Department of Computing, Imperial College London, London, UK, National Center for Biotechnology Information (NCBI), Bethesda, MD, USA and Janssen Research and Development, LLC, Spring House, PA, USA
| | - Noël Malod-Dognin
- California Institute of Telecommunications and Technology (Calit2), University of California Irvine, Irvine, CA, USA, Department of Computing, Imperial College London, London, UK, National Center for Biotechnology Information (NCBI), Bethesda, MD, USA and Janssen Research and Development, LLC, Spring House, PA, USA
| | - Aleksandar Stojmirovic
- California Institute of Telecommunications and Technology (Calit2), University of California Irvine, Irvine, CA, USA, Department of Computing, Imperial College London, London, UK, National Center for Biotechnology Information (NCBI), Bethesda, MD, USA and Janssen Research and Development, LLC, Spring House, PA, USA California Institute of Telecommunications and Technology (Calit2), University of California Irvine, Irvine, CA, USA, Department of Computing, Imperial College London, London, UK, National Center for Biotechnology Information (NCBI), Bethesda, MD, USA and Janssen Research and Development, LLC, Spring House, PA, USA
| | - Nataša Pržulj
- California Institute of Telecommunications and Technology (Calit2), University of California Irvine, Irvine, CA, USA, Department of Computing, Imperial College London, London, UK, National Center for Biotechnology Information (NCBI), Bethesda, MD, USA and Janssen Research and Development, LLC, Spring House, PA, USA
| |
Collapse
|
6
|
Bühligen F, Rüdinger P, Fetzer I, Stahl F, Scheper T, Harms H, Müller S. Sustainability of industrial yeast serial repitching practice studied by gene expression and correlation analysis. J Biotechnol 2013; 168:718-28. [DOI: 10.1016/j.jbiotec.2013.09.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Revised: 09/12/2013] [Accepted: 09/13/2013] [Indexed: 12/24/2022]
|
7
|
Hsu JW, Lee FJS. Arf3p GTPase is a key regulator of Bud2p activation for invasive growth in Saccharomyces cerevisiae. Mol Biol Cell 2013; 24:2328-39. [PMID: 23783029 PMCID: PMC3727926 DOI: 10.1091/mbc.e13-03-0136] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The regulation and signaling pathways involved in the invasive growth of yeast have been studied extensively because of their general applicability to fungal pathogenesis. Bud2p, which functions as a GTPase-activating protein (GAP) for Bud1p/Rsr1p, is required for appropriate budding patterns and filamentous growth. The regulatory mechanisms leading to Bud2p activation, however, are poorly understood. In this study, we report that ADP-ribosylation factor 3p (Arf3p) acts as a regulator of Bud2p activation during invasive growth. Arf3p binds directly to the N-terminal region of Bud2p and promotes its GAP activity both in vitro and in vivo. Genetic analysis shows that deletion of BUD1 suppresses the defect of invasive growth in arf3Δ or bud2Δ cells. Lack of Arf3p, like that of Bud2p, causes the intracellular accumulation of Bud1p-GTP. The Arf3p-Bud2p interaction is important for invasive growth and facilitates the Bud2p-Bud1p association in vivo. Finally, we show that under glucose depletion-induced invasion conditions in yeast, more Arf3p is activated to the GTP-bound state, and the activation is independent of Arf3p guanine nucleotide-exchange factor Yel1p. Thus we demonstrate that a novel spatial activation of Arf3p plays a role in regulating Bud2p activation during glucose depletion-induced invasive growth.
Collapse
Affiliation(s)
- Jia-Wei Hsu
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | | |
Collapse
|
8
|
Levine TP, Daniels RD, Wong LH, Gatta AT, Gerondopoulos A, Barr FA. Discovery of new Longin and Roadblock domains that form platforms for small GTPases in Ragulator and TRAPP-II. Small GTPases 2013; 4:62-9. [PMID: 23511850 PMCID: PMC3747258 DOI: 10.4161/sgtp.24262] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Guanine nucleotide exchange factors (GEFs) control the site and extent of GTPase activity. Longin domains (LDs) are found in many Rab-GEFs, including DENNs, MON1/CCZ1, BLOC-3 and the TRAPP complex. Other GEFs, including Ragulator, contain roadblock domains (RDs), the structure of which is closely related to LDs. Other GTPase regulators, including mglB, SRX and Rags, use LDs or RDs as platforms for GTPases. Here, we review the conserved relationship between GTPases and LD/RDs, showing how LD/RD dimers act as adaptable platforms for GTPases. To extend our knowledge of GEFs, we used a highly sensitive sequence alignment tool to predict the existence of new LD/RDs. We discovered two yeast Ragulator subunits, and also a new LD in TRAPPC10 that may explain the Rab11-GEF activity ascribed to TRAPP-II.
Collapse
|
9
|
Levine TP, Daniels RD, Gatta AT, Wong LH, Hayes MJ. The product of C9orf72, a gene strongly implicated in neurodegeneration, is structurally related to DENN Rab-GEFs. ACTA ACUST UNITED AC 2013; 29:499-503. [PMID: 23329412 PMCID: PMC3570213 DOI: 10.1093/bioinformatics/bts725] [Citation(s) in RCA: 271] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Motivation: Fronto-temporal dementia (FTD) and amyotrophic lateral sclerosis (ALS, also called motor neuron disease, MND) are severe neurodegenerative diseases that show considerable overlap at the clinical and cellular level. The most common single mutation in families with FTD or ALS has recently been mapped to a non-coding repeat expansion in the uncharacterized gene C9ORF72. Although a plausible mechanism for disease is that aberrant C9ORF72 mRNA poisons splicing, it is important to determine the cellular function of C9ORF72, about which nothing is known. Results: Sensitive homology searches showed that C9ORF72 is a full-length distant homologue of proteins related to Differentially Expressed in Normal and Neoplasia (DENN), which is a GDP/GTP exchange factor (GEF) that activates Rab-GTPases. Our results suggest that C9ORF72 is likely to regulate membrane traffic in conjunction with Rab-GTPase switches, and we propose to name the gene and its product DENN-like 72 (DENNL72). Supplementary information:Supplementary data are available at Bioinformatics online. Contact:tim.levine@ucl.ac.uk
Collapse
Affiliation(s)
- Timothy P Levine
- Department of Cell Biology, UCL Institute of Ophthalmology, Bath St, London EC1V 9EL, UK.
| | | | | | | | | |
Collapse
|
10
|
Zhang D, Iyer LM, He F, Aravind L. Discovery of Novel DENN Proteins: Implications for the Evolution of Eukaryotic Intracellular Membrane Structures and Human Disease. Front Genet 2012; 3:283. [PMID: 23248642 PMCID: PMC3521125 DOI: 10.3389/fgene.2012.00283] [Citation(s) in RCA: 193] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Accepted: 11/20/2012] [Indexed: 12/14/2022] Open
Abstract
The tripartite DENN module, comprised of a N-terminal longin domain, followed by DENN, and d-DENN domains, is a GDP-GTP exchange factor (GEFs) for Rab GTPases, which are regulators of practically all membrane trafficking events in eukaryotes. Using sequence and structure analysis we identify multiple novel homologs of the DENN module, many of which can be traced back to the ancestral eukaryote. These findings provide unexpected leads regarding key cellular processes such as autophagy, vesicle-vacuole interactions, chromosome segregation, and human disease. Of these, SMCR8, the folliculin interacting protein-1 and 2 (FNIP1 and FNIP2), nitrogen permease regulator 2 (NPR2), and NPR3 are proposed to function in recruiting Rab GTPases during different steps of autophagy, fusion of autophagosomes with the vacuole and regulation of cellular metabolism. Another novel DENN protein identified in this study is C9ORF72; expansions of the hexanucleotide GGGGCC in its first intron have been recently implicated in amyotrophic lateral sclerosis (ALS) and fronto-temporal dementia (FTD). While this mutation is proposed to cause a RNA-level defect, the identification of C9ORF72 as a potential DENN-type GEF raises the possibility that at least part of the pathology might relate to a specific Rab-dependent vesicular trafficking process, as has been observed in the case of some other neurological conditions with similar phenotypes. We present evidence that the longin domain, such as those found in the DENN module, are likely to have been ultimately derived from the related domains found in prokaryotic GTPase-activating proteins of MglA-like GTPases. Thus, the origin of the longin domains from this ancient GTPase-interacting domain, concomitant with the radiation of GTPases, especially of the Rab clade, played an important role in the dynamics of eukaryotic intracellular membrane systems.
Collapse
Affiliation(s)
- Dapeng Zhang
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health Bethesda, MD, USA
| | | | | | | |
Collapse
|
11
|
Chen KY, Tsai PC, Hsu JW, Hsu HC, Fang CY, Chang LC, Tsai YT, Yu CJ, Lee FJS. Syt1p promotes activation of Arl1p at the late Golgi to recruit Imh1p. J Cell Sci 2010; 123:3478-89. [PMID: 20841378 DOI: 10.1242/jcs.074237] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In yeast, Arl3p recruits Arl1p GTPase to regulate Golgi function and structure. However, the molecular mechanism involved in regulating activation of Arl1p at the Golgi is unknown. Here, we show that Syt1p promoted activation of Arl1p and recruitment of a golgin protein, Imh1p, to the Golgi. Deletion of SYT1 resulted in the majority of Arl1p being distributed diffusely throughout the cytosol. Overexpression of Syt1p increased Arl1p-GTP production in vivo and the Syt1-Sec7 domain promoted nucleotide exchange on Arl1p in vitro. Syt1p function required the N-terminal region, Sec7 and PH domains. Arl1p, but not Arl3p, interacted with Syt1p. Localization of Syt1p to the Golgi did not require Arl3p. Unlike arl1Δ or arl3Δ mutants, syt1Δ did not show defects in Gas1p transport, cell wall integrity or vacuolar structure. These findings reveal that activation of Arl1p is regulated in part by Syt1p, and imply that Arl1p activation, by using more than one GEF, exerts distinct biological activities at the Golgi compartment.
Collapse
Affiliation(s)
- Kuan-Yu Chen
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, and Department of Medical Research, National Taiwan University Hospital, Taipei 100, Taiwan
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
van der Vaart A, Griffith J, Reggiori F. Exit from the Golgi is required for the expansion of the autophagosomal phagophore in yeast Saccharomyces cerevisiae. Mol Biol Cell 2010; 6:800-1. [PMID: 20444982 PMCID: PMC2893990 DOI: 10.1091/mbc.e09-04-0345] [Citation(s) in RCA: 159] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The delivery of proteins and organelles to the vacuole by autophagy involves membrane rearrangements that result in the formation of autophagosomes. We have investigated the role of the Golgi in autophagy and found that, in yeast, this organelle plays a crucial role in supplying lipid bilayers necessary for autophagosome biogenesis. The delivery of proteins and organelles to the vacuole by autophagy involves membrane rearrangements that result in the formation of large vesicles called autophagosomes. The mechanism underlying autophagosome biogenesis and the origin of the membranes composing these vesicles remains largely unclear. We have investigated the role of the Golgi complex in autophagy and have determined that in yeast, activation of ADP-ribosylation factor (Arf)1 and Arf2 GTPases by Sec7, Gea1, and Gea2 is essential for this catabolic process. The two main events catalyzed by these components, the biogenesis of COPI- and clathrin-coated vesicles, do not play a critical role in autophagy. Analysis of the sec7 strain under starvation conditions revealed that the autophagy machinery is correctly assembled and the precursor membrane cisterna of autophagosomes, the phagophore, is normally formed. However, the expansion of the phagophore into an autophagosome is severely impaired. Our data show that the Golgi complex plays a crucial role in supplying the lipid bilayers necessary for the biogenesis of double-membrane vesicles possibly through a new class of transport carriers or a new mechanism.
Collapse
Affiliation(s)
- Aniek van der Vaart
- Department of Cell Biology and Institute of Biomembranes, University Medical Center Utrecht, Utrecht 3584, The Netherlands
| | | | | |
Collapse
|
13
|
Imanishi Y, Jindamorakot S, Limtong S, Nakase T. Mode of vegetative reproduction of the bipolar budding yeast species Wickerhamomyces pijperi and related strains. MICROBIOLOGY-SGM 2009; 155:3142-3148. [PMID: 19497951 DOI: 10.1099/mic.0.029231-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
To clarify the budding pattern of Wickerhamomyces pijperi, the vegetative cells were observed by scanning electron microscopy. The cells grew by bipolar budding, but cells that budded from the shoulder of a mother cell were occasionally observed. We examined the cell morphology and phylogeny of five strains of Wickerhamomyces sp. isolated in Thailand as well as seven W. pijperi and three Wickerhamomyces sp. strains that were preserved in culture collections. Phylogenetic analysis based on three different nucleotide sequences (D1/D2 domain of 26S rDNA, the actin gene ACT1 and the elongation factor 2 gene EF2) indicated that all the strains belonged to the genus Wickerhamomyces and were neighbours of the type strain W. pijperi NBRC 1290(T). The strains fell into two groups in this analysis. The budding patterns of the strains were carefully observed by staining the bud scars, and these patterns were categorized into three groups: types I-III. Type I included cells that grew by bipolar budding and formed multiple scars, type III included cells that grew by multilateral budding and formed a single scar, and type II included cells that exhibited a mixture of type I and type III patterns. Among the 15 strains, 12 strains, including W. pijperi NBRC 1290(T), mainly exhibited type I or type II budding patterns; these strains belonged to group 1 of the phylogenetic analysis. The remaining three strains, which belonged to group 2, exhibited either type II or type III patterns. Thus the phylogenetic relationship and budding patterns are related. Moreover, some cells also exhibited budding characteristics that were intermediate between bipolar and multilateral budding.
Collapse
Affiliation(s)
- Yumi Imanishi
- NITE Biological Resource Center (NBRC), National Institute of Technology and Evaluation (NITE), 2-5-8, Kazusakamatari, Kisarazu-shi, Chiba 292-0818, Japan
| | - Sasitorn Jindamorakot
- National Center for Genetic Engineering and Biotechnology (BIOTEC) NSTDA, Thailand Science Park, 113 Phaholyothin Rd, Klong 1, Klong Luang, Pathumthani 12120, Thailand
| | - Savitree Limtong
- Department of Microbiology, Faculty of Science, Kasetsart University, 50 Phaholyothin Rd, Bangkok 10900, Thailand
| | - Takashi Nakase
- National Center for Genetic Engineering and Biotechnology (BIOTEC) NSTDA, Thailand Science Park, 113 Phaholyothin Rd, Klong 1, Klong Luang, Pathumthani 12120, Thailand.,NITE Biological Resource Center (NBRC), National Institute of Technology and Evaluation (NITE), 2-5-8, Kazusakamatari, Kisarazu-shi, Chiba 292-0818, Japan
| |
Collapse
|