1
|
Nano M, Montell DJ. Apoptotic signaling: Beyond cell death. Semin Cell Dev Biol 2024; 156:22-34. [PMID: 37988794 DOI: 10.1016/j.semcdb.2023.11.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 11/02/2023] [Accepted: 11/04/2023] [Indexed: 11/23/2023]
Abstract
Apoptosis is the best described form of regulated cell death, and was, until relatively recently, considered irreversible once particular biochemical points-of-no-return were activated. In this manuscript, we examine the mechanisms cells use to escape from a self-amplifying death signaling module. We discuss the role of feedback, dynamics, propagation, and noise in apoptotic signaling. We conclude with a revised model for the role of apoptosis in animal development, homeostasis, and disease.
Collapse
Affiliation(s)
- Maddalena Nano
- Molecular, Cellular, and Developmental Biology Department, University of California, Santa Barbara, CA 93106, USA; Neuroscience Research Institute, University of California, Santa Barbara, CA 93106, USA.
| | - Denise J Montell
- Molecular, Cellular, and Developmental Biology Department, University of California, Santa Barbara, CA 93106, USA; Neuroscience Research Institute, University of California, Santa Barbara, CA 93106, USA.
| |
Collapse
|
2
|
Pollak N, Lindner A, Imig D, Kuritz K, Fritze JS, Decker L, Heinrich I, Stadager J, Eisler S, Stöhr D, Allgöwer F, Scheurich P, Rehm M. Cell cycle progression and transmitotic apoptosis resistance promote escape from extrinsic apoptosis. J Cell Sci 2021; 134:273757. [PMID: 34806752 DOI: 10.1242/jcs.258966] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 11/02/2021] [Indexed: 11/20/2022] Open
Abstract
Extrinsic apoptosis relies on TNF-family receptor activation by immune cells or receptor-activating drugs. Here, we monitored cell cycle progression at a resolution of minutes to relate apoptosis kinetics and cell-to-cell heterogeneities in death decisions to cell cycle phases. Interestingly, we found that cells in S phase delay TRAIL receptor-induced death in favour of mitosis, thereby passing on an apoptosis-primed state to their offspring. This translates into two distinct fates, apoptosis execution post mitosis or cell survival from inefficient apoptosis. Transmitotic resistance is linked to Mcl-1 upregulation and its increased accumulation at mitochondria from mid-S phase onwards, which allows cells to pass through mitosis with activated caspase-8, and with cells escaping apoptosis after mitosis sustaining sublethal DNA damage. Antagonizing Mcl-1 suppresses cell cycle-dependent delays in apoptosis, prevents apoptosis-resistant progression through mitosis and averts unwanted survival after apoptosis induction. Cell cycle progression therefore modulates signal transduction during extrinsic apoptosis, with Mcl-1 governing decision making between death, proliferation and survival. Cell cycle progression thus is a crucial process from which cell-to-cell heterogeneities in fates and treatment outcomes emerge in isogenic cell populations during extrinsic apoptosis. This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Nadine Pollak
- Institute of Cell Biology and Immunology, University of Stuttgart, Allmandring 31, 70569 Stuttgart, Germany.,Stuttgart Research Center Systems Biology, University of Stuttgart, Nobelstrasse 15, 70569 Stuttgart, Germany
| | - Aline Lindner
- Institute of Cell Biology and Immunology, University of Stuttgart, Allmandring 31, 70569 Stuttgart, Germany
| | - Dirke Imig
- Institute for Systems Theory and Automatic Control, University of Stuttgart, Pfaffenwaldring 9, 70569 Stuttgart, Germany
| | - Karsten Kuritz
- Institute for Systems Theory and Automatic Control, University of Stuttgart, Pfaffenwaldring 9, 70569 Stuttgart, Germany
| | - Jacques S Fritze
- Institute of Cell Biology and Immunology, University of Stuttgart, Allmandring 31, 70569 Stuttgart, Germany
| | - Lorena Decker
- Institute of Cell Biology and Immunology, University of Stuttgart, Allmandring 31, 70569 Stuttgart, Germany
| | - Isabel Heinrich
- Institute of Cell Biology and Immunology, University of Stuttgart, Allmandring 31, 70569 Stuttgart, Germany
| | - Jannis Stadager
- Institute of Cell Biology and Immunology, University of Stuttgart, Allmandring 31, 70569 Stuttgart, Germany
| | - Stephan Eisler
- Stuttgart Research Center Systems Biology, University of Stuttgart, Nobelstrasse 15, 70569 Stuttgart, Germany
| | - Daniela Stöhr
- Institute of Cell Biology and Immunology, University of Stuttgart, Allmandring 31, 70569 Stuttgart, Germany
| | - Frank Allgöwer
- Stuttgart Research Center Systems Biology, University of Stuttgart, Nobelstrasse 15, 70569 Stuttgart, Germany.,Institute for Systems Theory and Automatic Control, University of Stuttgart, Pfaffenwaldring 9, 70569 Stuttgart, Germany
| | - Peter Scheurich
- Institute of Cell Biology and Immunology, University of Stuttgart, Allmandring 31, 70569 Stuttgart, Germany
| | - Markus Rehm
- Institute of Cell Biology and Immunology, University of Stuttgart, Allmandring 31, 70569 Stuttgart, Germany.,Stuttgart Research Center Systems Biology, University of Stuttgart, Nobelstrasse 15, 70569 Stuttgart, Germany
| |
Collapse
|
3
|
Bozkurt E, Düssmann H, Salvucci M, Cavanagh BL, Van Schaeybroeck S, Longley DB, Martin SJ, Prehn JHM. TRAIL signaling promotes entosis in colorectal cancer. J Cell Biol 2021; 220:212649. [PMID: 34546352 PMCID: PMC8563286 DOI: 10.1083/jcb.202010030] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 07/14/2021] [Accepted: 08/31/2021] [Indexed: 11/22/2022] Open
Abstract
Entosis is a form of nonphagocytic cell-in-cell (CIC) interaction where a living cell enters into another. Tumors show evidence of entosis; however, factors controlling entosis remain to be elucidated. Here, we find that besides inducing apoptosis, TRAIL signaling is a potent activator of entosis in colon cancer cells. Initiation of both apoptosis and entosis requires TRAIL receptors DR4 and DR5; however, induction of apoptosis and entosis diverges at caspase-8 as its structural presence is sufficient for induction of entosis but not apoptosis. Although apoptosis and entosis are morphologically and biochemically distinct, knockout of Bax and Bak, or inhibition of caspases, also inhibits entotic cell death and promotes survival and release of inner cells. Analysis of colorectal cancer tumors reveals a significant association between TRAIL signaling and CIC structures. Finally, the presence of CIC structures in the invasive front regions of colorectal tumors shows a strong correlation with adverse patient prognosis.
Collapse
Affiliation(s)
- Emir Bozkurt
- Department of Physiology and Medical Physics, Centre for Systems Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland.,Department of Genetics and Bioengineering, Faculty of Engineering, Izmir University of Economics, Balcova, Izmir, Turkey
| | - Heiko Düssmann
- Department of Physiology and Medical Physics, Centre for Systems Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Manuela Salvucci
- Department of Physiology and Medical Physics, Centre for Systems Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Brenton L Cavanagh
- Cellular and Molecular Imaging Core, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Sandra Van Schaeybroeck
- Centre for Cancer Research and Cell Biology, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, UK
| | - Daniel B Longley
- Centre for Cancer Research and Cell Biology, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, UK
| | - Seamus J Martin
- Molecular Cell Biology Laboratory, Department of Genetics, The Smurfit Institute, Trinity College, Dublin, Ireland
| | - Jochen H M Prehn
- Department of Physiology and Medical Physics, Centre for Systems Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
| |
Collapse
|
4
|
Gong R, Wang D, Abbas G, Li S, Liu Q, Cui M, Zhang XE. A switch-on molecular biosensor for detection of caspase-3 and imaging of apoptosis of cells. SCIENCE CHINA-LIFE SCIENCES 2021; 65:540-549. [PMID: 34536207 PMCID: PMC8449214 DOI: 10.1007/s11427-021-1986-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 07/26/2021] [Indexed: 11/07/2022]
Abstract
Apoptosis is a form of programmed cell death that is essential for maintaining internal environmental stability. Disordered apoptosis can cause a variety of diseases; therefore, sensing apoptosis can provide help in study of mechanism of the relevant diseases and drug development. It is known that caspase-3 is a key enzyme involved in apoptosis and the expression of its activity is an indication of apoptosis. Here, we present a genetically encoded switch-on mNeonGreen2-based molecular biosensor. mNeonGreen2 is the brightest monomeric green fluorescent protein. The substrate of caspase-3, DEVD amino acid residues, is inserted in it, while cyclized by insertion of Nostoc punctiforme DnaE intein to abolish the fluorescence (inactive state). Caspase-3-catalyzed cleavage of DEVD linearizes mNeonGreen2 and rebuilds the natural barrel structure to restore the fluorescence (activated state). The characterization exhibited that the Caspase-3 biosensor has shortened response time, higher sensitivity, and prolonged functional shelf life in detection of caspase-3 amongst the existing counterparts. We also used the Caspase-3 biosensor to evaluate the effect of several drugs on the induction of apoptosis of HeLa and MCF-7 tumor cells and inhibition of Zika virus invasion.
Collapse
Affiliation(s)
- Rui Gong
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Dianbing Wang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Ghulam Abbas
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shimin Li
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qian Liu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Mengmeng Cui
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xian-En Zhang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China. .,Faculty of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
| |
Collapse
|
5
|
Proteasome inhibition triggers the formation of TRAIL receptor 2 platforms for caspase-8 activation that accumulate in the cytosol. Cell Death Differ 2021; 29:147-155. [PMID: 34354257 PMCID: PMC8738721 DOI: 10.1038/s41418-021-00843-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 07/19/2021] [Accepted: 07/25/2021] [Indexed: 11/24/2022] Open
Abstract
Cancer cells that are resistant to Bax/Bak-dependent intrinsic apoptosis can be eliminated by proteasome inhibition. Here, we show that proteasome inhibition induces the formation of high molecular weight platforms in the cytosol that serve to activate caspase-8. The activation complexes contain Fas-associated death domain (FADD) and receptor-interacting serine/threonine-protein kinase 1 (RIPK1). Furthermore, the complexes contain TRAIL-receptor 2 (TRAIL-R2) but not TRAIL-receptor 1 (TRAIL-R1). While RIPK1 inhibition or depletion did not affect proteasome inhibitor-induced cell death, TRAIL-R2 was found essential for efficient caspase-8 activation, since the loss of TRAIL-R2 expression abrogated caspase processing, significantly reduced cell death, and promoted cell re-growth after drug washout. Overall, our study provides novel insight into the mechanisms by which proteasome inhibition eliminates otherwise apoptosis-resistant cells, and highlights the crucial role of a ligand-independent but TRAIL-R2-dependent activation mechanism for caspase-8 in this scenario.
Collapse
|
6
|
Marizomib sensitizes primary glioma cells to apoptosis induced by a latest-generation TRAIL receptor agonist. Cell Death Dis 2021; 12:647. [PMID: 34168123 PMCID: PMC8225658 DOI: 10.1038/s41419-021-03927-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 05/28/2021] [Accepted: 06/07/2021] [Indexed: 12/26/2022]
Abstract
Due to the absence of curative treatments for glioblastoma (GBM), we assessed the efficacy of single and combination treatments with a translationally relevant 2nd generation TRAIL-receptor agonist (IZI1551) and the blood–brain barrier (BBB) permeant proteasome inhibitor marizomib in a panel of patient-derived glioblastoma cell lines. These cells were cultured using protocols that maintain the characteristics of primary tumor cells. IZI1551+marizomib combination treatments synergistically induced apoptotic cell death in the majority of cases, both in 2D, as well as in 3D spheroid cultures. In contrast, single-drug treatments largely failed to induce noticeable amounts of cell death. Kinetic analyses suggested that time-shifted drug exposure might further increase responsiveness, with marizomib pre-treatments indeed strongly enhancing cell death. Cell death responses upon the addition of IZI1551 could also be observed in GBM cells that were kept in a medium collected from the basolateral side of a human hCMEC/D3 BBB model that had been exposed to marizomib. Interestingly, the subset of GBM cell lines resistant to IZI1551+marizomib treatments expressed lower surface amounts of TRAIL death receptors, substantially lower amounts of procaspase-8, and increased amounts of cFLIP, suggesting that apoptosis initiation was likely too weak to initiate downstream apoptosis execution. Indeed, experiments in which the mitochondrial apoptosis threshold was lowered by antagonizing Mcl-1 re-established sensitivity to IZI1551+marizomib in otherwise resistant cells. Overall, our study demonstrates a high efficacy of combination treatments with a latest-generation TRAIL receptor agonist and the BBB permeant proteasome inhibitor marizomib in relevant GBM cell models, as well as strategies to further enhance responsiveness and to sensitize subgroups of otherwise resistant GBM cases.
Collapse
|
7
|
Hawkins CJ, Miles MA. Mutagenic Consequences of Sublethal Cell Death Signaling. Int J Mol Sci 2021; 22:ijms22116144. [PMID: 34200309 PMCID: PMC8201051 DOI: 10.3390/ijms22116144] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/03/2021] [Accepted: 06/05/2021] [Indexed: 02/06/2023] Open
Abstract
Many human cancers exhibit defects in key DNA damage response elements that can render tumors insensitive to the cell death-promoting properties of DNA-damaging therapies. Using agents that directly induce apoptosis by targeting apoptotic components, rather than relying on DNA damage to indirectly stimulate apoptosis of cancer cells, may overcome classical blocks exploited by cancer cells to evade apoptotic cell death. However, there is increasing evidence that cells surviving sublethal exposure to classical apoptotic signaling may recover with newly acquired genomic changes which may have oncogenic potential, and so could theoretically spur the development of subsequent cancers in cured patients. Encouragingly, cells surviving sublethal necroptotic signaling did not acquire mutations, suggesting that necroptosis-inducing anti-cancer drugs may be less likely to trigger therapy-related cancers. We are yet to develop effective direct inducers of other cell death pathways, and as such, data regarding the consequences of cells surviving sublethal stimulation of those pathways are still emerging. This review details the currently known mutagenic consequences of cells surviving different cell death signaling pathways, with implications for potential oncogenic transformation. Understanding the mechanisms of mutagenesis associated (or not) with various cell death pathways will guide us in the development of future therapeutics to minimize therapy-related side effects associated with DNA damage.
Collapse
Affiliation(s)
- Christine J. Hawkins
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC 3086, Australia;
| | - Mark A. Miles
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC 3086, Australia;
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3083, Australia
- Correspondence:
| |
Collapse
|
8
|
Kim H, Ju J, Lee HN, Chun H, Seong J. Genetically Encoded Biosensors Based on Fluorescent Proteins. SENSORS (BASEL, SWITZERLAND) 2021; 21:795. [PMID: 33504068 PMCID: PMC7865379 DOI: 10.3390/s21030795] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/21/2021] [Accepted: 01/22/2021] [Indexed: 02/06/2023]
Abstract
Genetically encoded biosensors based on fluorescent proteins (FPs) allow for the real-time monitoring of molecular dynamics in space and time, which are crucial for the proper functioning and regulation of complex cellular processes. Depending on the types of molecular events to be monitored, different sensing strategies need to be applied for the best design of FP-based biosensors. Here, we review genetically encoded biosensors based on FPs with various sensing strategies, for example, translocation, fluorescence resonance energy transfer (FRET), reconstitution of split FP, pH sensitivity, maturation speed, and so on. We introduce general principles of each sensing strategy and discuss critical factors to be considered if available, then provide representative examples of these FP-based biosensors. These will help in designing the best sensing strategy for the successful development of new genetically encoded biosensors based on FPs.
Collapse
Affiliation(s)
- Hyunbin Kim
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea; (H.K.); (J.J.); (H.N.L.); (H.C.)
- Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology, Seoul 02792, Korea
| | - Jeongmin Ju
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea; (H.K.); (J.J.); (H.N.L.); (H.C.)
- Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology, Seoul 02792, Korea
| | - Hae Nim Lee
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea; (H.K.); (J.J.); (H.N.L.); (H.C.)
- Department of Converging Science and Technology, Kyung Hee University, Seoul 02453, Korea
| | - Hyeyeon Chun
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea; (H.K.); (J.J.); (H.N.L.); (H.C.)
| | - Jihye Seong
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea; (H.K.); (J.J.); (H.N.L.); (H.C.)
- Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology, Seoul 02792, Korea
- Department of Converging Science and Technology, Kyung Hee University, Seoul 02453, Korea
| |
Collapse
|
9
|
Fichtner M, Bozkurt E, Salvucci M, McCann C, McAllister KA, Halang L, Düssmann H, Kinsella S, Crawford N, Sessler T, Longley DB, Prehn JHM. Molecular subtype-specific responses of colon cancer cells to the SMAC mimetic Birinapant. Cell Death Dis 2020; 11:1020. [PMID: 33257690 PMCID: PMC7705699 DOI: 10.1038/s41419-020-03232-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 11/07/2020] [Accepted: 11/10/2020] [Indexed: 12/24/2022]
Abstract
Colorectal cancer is a molecularly heterogeneous disease. Responses to genotoxic chemotherapy in the adjuvant or palliative setting vary greatly between patients, and colorectal cancer cells often resist chemotherapy by evading apoptosis. Antagonists of an inhibitor of apoptosis proteins (IAPs) can restore defective apoptosis signaling by degrading cIAP1 and cIAP2 proteins and by inhibition of XIAP. Due to the multiple molecular mechanisms-of-action of these targets, responses to IAP antagonist may differ between molecularly distinct colon cancer cells. In this study, responses to the IAP antagonist Birinapant and oxaliplatin/5-fluorouracil (5-FU) were investigated in 14 colon cancer cell lines, representing the consensus molecular subtypes (CMS). Treatment with Birinapant alone did not result in a substantial increase in apoptotic cells in this cell line panel. Annexin-V/PI assays quantified by flow cytometry and high-content screening showed that Birinapant increased responses of CMS1 and partially CMS3 cell lines to oxaliplatin/5-FU, whereas CMS2 cells were not effectively sensitized. FRET-based imaging of caspase-8 and -3 activation validated these differences at the single-cell level, with CMS1 cells displaying sustained activation of caspase-8-like activity during Birinapant and oxaliplatin/5-FU co-treatment, ultimately activating the intrinsic mitochondrial apoptosis pathway. In CMS2 cell lines, Birinapant exhibited synergistic effects in combination with TNFα, suggesting that Birinapant can restore extrinsic apoptosis signaling in the context of inflammatory signals in this subtype. To explore this further, we co-cultured CMS2 and CMS1 colon cancer cells with peripheral blood mononuclear cells. We observed increased cell death during Birinapant single treatment in these co-cultures, which was abrogated by anti-TNFα-neutralizing antibodies. Collectively, our study demonstrates that IAP inhibition is a promising modulator of response to oxaliplatin/5-FU in colorectal cancers of the CMS1 subtype, and may show promise as in the CMS2 subtype, suggesting that molecular subtyping may aid as a patient stratification tool for IAP antagonists in this disease.
Collapse
Affiliation(s)
- Michael Fichtner
- Department of Physiology and Medical Physics, Centre for Systems Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Emir Bozkurt
- Department of Physiology and Medical Physics, Centre for Systems Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland.,Department of Genetics and Bioengineering, Faculty of Engineering, Izmir University of Economics, Balcova, Izmir, Turkey
| | - Manuela Salvucci
- Department of Physiology and Medical Physics, Centre for Systems Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Christopher McCann
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, UK
| | | | - Luise Halang
- Department of Physiology and Medical Physics, Centre for Systems Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Heiko Düssmann
- Department of Physiology and Medical Physics, Centre for Systems Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Sinéad Kinsella
- Department of Physiology and Medical Physics, Centre for Systems Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland.,Program in Immunology, Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Nyree Crawford
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, UK
| | - Tamas Sessler
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, UK
| | - Daniel B Longley
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, UK
| | - Jochen H M Prehn
- Department of Physiology and Medical Physics, Centre for Systems Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland.
| |
Collapse
|
10
|
Zhong B, Liu M, Bai C, Ruan Y, Wang Y, Qiu L, Hong Y, Wang X, Li L, Li B. Caspase-8 Induces Lysosome-Associated Cell Death in Cancer Cells. Mol Ther 2020; 28:1078-1091. [PMID: 32053770 DOI: 10.1016/j.ymthe.2020.01.022] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 01/10/2020] [Accepted: 01/10/2020] [Indexed: 12/31/2022] Open
Abstract
Caspase-8, a well-characterized initiator of apoptosis, has also been found to play non-apoptotic roles in cells. In this study, we reveal that caspase-8 can induce cell death in a special way, which does not depend on activation of caspases and mitochondrial initiation. Instead, we prove that caspase-8 can cause lysosomal deacidification and thus lysosomal membrane permeabilization. V-ATPase is a multi-subunit proton pump that acidifies the lumen of lysosome. Our results demonstrate that caspase-8 can bind to the V0 domain of lysosomal Vacuolar H+-ATPase (V-ATPase), but not the V1 domain, to block the assembly of functional V-ATPase and alkalinize lysosomes. We further demonstrate that the C-terminal of caspase-8 is mainly responsible for the interaction with V-ATPase and can suffice to inhibit survival of cancer cells. Interestingly, regardless of the protein level, it is the expression rate of caspase-8 that is the major cause of cell death. Taken together, we identify a previously unrevealed caspase-8-mediated cell death pathway different form typical apoptosis, which could render caspase-8 a particular physiological function and may be potentially applied in treatments for apoptosis-resistant cancers.
Collapse
Affiliation(s)
- Benfu Zhong
- Department of Cancer Cell Biology, Tianjin's Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, P.R. China; Department of Biochemistry and Molecular Biology, Capital Medical University, Beijing 100069, P.R. China
| | - Miao Liu
- Department of Cancer Cell Biology, Tianjin's Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, P.R. China
| | - Changsen Bai
- Department of Cancer Cell Biology, Tianjin's Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, P.R. China
| | - Yuxia Ruan
- Department of Cancer Cell Biology, Tianjin's Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, P.R. China
| | - Yuanyuan Wang
- Department of Cancer Cell Biology, Tianjin's Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, P.R. China
| | - Li Qiu
- Department of Cancer Cell Biology, Tianjin's Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, P.R. China
| | - Yang Hong
- Department of Cancer Cell Biology, Tianjin's Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, P.R. China
| | - Xin Wang
- Department of Cancer Cell Biology, Tianjin's Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, P.R. China
| | - Lifang Li
- Department of Cancer Cell Biology, Tianjin's Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, P.R. China.
| | - Binghui Li
- Department of Cancer Cell Biology, Tianjin's Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, P.R. China; Department of Biochemistry and Molecular Biology, Capital Medical University, Beijing 100069, P.R. China.
| |
Collapse
|
11
|
Matveeva A, Fichtner M, McAllister K, McCann C, Sturrock M, Longley DB, Prehn JHM. Heterogeneous responses to low level death receptor activation are explained by random molecular assembly of the Caspase-8 activation platform. PLoS Comput Biol 2019; 15:e1007374. [PMID: 31553717 PMCID: PMC6779275 DOI: 10.1371/journal.pcbi.1007374] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 10/07/2019] [Accepted: 09/03/2019] [Indexed: 01/29/2023] Open
Abstract
Ligand binding to death receptors activates apoptosis in cancer cells. Stimulation of death receptors results in the formation of intracellular multiprotein platforms that either activate the apoptotic initiator Caspase-8 to trigger cell death, or signal through kinases to initiate inflammatory and cell survival signalling. Two of these platforms, the Death-Inducing Signalling Complex (DISC) and the RIPoptosome, also initiate necroptosis by building filamentous scaffolds that lead to the activation of mixed lineage kinase domain-like pseudokinase. To explain cell decision making downstream of death receptor activation, we developed a semi-stochastic model of DISC/RIPoptosome formation. The model is a hybrid of a direct Gillespie stochastic simulation algorithm for slow assembly of the RIPoptosome and a deterministic model of downstream caspase activation. The model explains how alterations in the level of death receptor-ligand complexes, their clustering properties and intrinsic molecular fluctuations in RIPoptosome assembly drive heterogeneous dynamics of Caspase-8 activation. The model highlights how kinetic proofreading leads to heterogeneous cell responses and results in fractional cell killing at low levels of receptor stimulation. It reveals that the noise in Caspase-8 activation-exclusively caused by the stochastic molecular assembly of the DISC/RIPoptosome platform-has a key function in extrinsic apoptotic stimuli recognition.
Collapse
Affiliation(s)
- Anna Matveeva
- Centre for Systems Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Michael Fichtner
- Centre for Systems Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Katherine McAllister
- Centre for Cancer Research and Cell Biology, Queen’s University, Belfast, United Kingdom
| | - Christopher McCann
- Centre for Cancer Research and Cell Biology, Queen’s University, Belfast, United Kingdom
| | - Marc Sturrock
- Centre for Systems Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Daniel B. Longley
- Centre for Cancer Research and Cell Biology, Queen’s University, Belfast, United Kingdom
| | - Jochen H. M. Prehn
- Centre for Systems Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland
- * E-mail:
| |
Collapse
|
12
|
TNF Family Cytokines Induce Distinct Cell Death Modalities in the A549 Human Lung Epithelial Cell Line when Administered in Combination with Ricin Toxin. Toxins (Basel) 2019; 11:toxins11080450. [PMID: 31374990 PMCID: PMC6723388 DOI: 10.3390/toxins11080450] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 07/19/2019] [Accepted: 07/28/2019] [Indexed: 01/10/2023] Open
Abstract
Ricin is a member of the ribosome-inactivating protein (RIP) family of toxins and is classified as a biothreat agent by the Centers for Disease Control and Prevention (CDC). Inhalation, the most potent route of toxicity, triggers an acute respiratory distress-like syndrome that coincides with near complete destruction of the lung epithelium. We previously demonstrated that the TNF-related apoptosis-inducing ligand (TRAIL; CD253) sensitizes human lung epithelial cells to ricin-induced death. Here, we report that ricin/TRAIL-mediated cell death occurs via apoptosis and involves caspases -3, -7, -8, and -9, but not caspase-6. In addition, we show that two other TNF family members, TNF-α and Fas ligand (FasL), also sensitize human lung epithelial cells to ricin-induced death. While ricin/TNF-α- and ricin/FasL-mediated killing of A549 cells was inhibited by the pan-caspase inhibitor, zVAD-fmk, evidence suggests that these pathways were not caspase-dependent apoptosis. We also ruled out necroptosis and pyroptosis. Rather, the combination of ricin plus TNF-α or FasL induced cathepsin-dependent cell death, as evidenced by the use of several pharmacologic inhibitors. We postulate that the effects of zVAD-fmk were due to the molecule’s known off-target effects on cathepsin activity. This work demonstrates that ricin-induced lung epithelial cell killing occurs by distinct cell death pathways dependent on the presence of different sensitizing cytokines, TRAIL, TNF-α, or FasL.
Collapse
|
13
|
Crawford N, Salvucci M, Hellwig CT, Lincoln FA, Mooney RE, O'Connor CL, Prehn JH, Longley DB, Rehm M. Simulating and predicting cellular and in vivo responses of colon cancer to combined treatment with chemotherapy and IAP antagonist Birinapant/TL32711. Cell Death Differ 2018; 25:1952-1966. [PMID: 29500433 DOI: 10.1038/s41418-018-0082-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 11/30/2017] [Accepted: 12/12/2017] [Indexed: 12/13/2022] Open
Abstract
Apoptosis resistance contributes to treatment failure in colorectal cancer (CRC). New treatments that reinstate apoptosis competency have potential to improve patient outcome but require predictive biomarkers to target them to responsive patient populations. Inhibitor of apoptosis proteins (IAPs) suppress apoptosis, contributing to drug resistance; IAP antagonists such as TL32711 have therefore been developed. We developed a systems biology approach for predicting response of CRC cells to chemotherapy and TL32711 combinations in vitro and in vivo. CRC cells responded poorly to TL32711 monotherapy in vitro; however, co-treatment with 5-fluorouracil (5-FU) and oxaliplatin enhanced TL32711-induced apoptosis. Notably, cells from genetically identical populations responded highly heterogeneously, with caspases being activated both upstream and downstream of mitochondrial outer membrane permeabilisation (MOMP). These data, combined with quantities of key apoptosis regulators were sufficient to replicate in vitro cell death profiles by mathematical modelling. In vivo, apoptosis protein expression was significantly altered, and mathematical modelling for these conditions predicted higher apoptosis resistance that could nevertheless be overcome by combination of chemotherapy and TL32711. Subsequent experimental observations agreed with these predictions, and the observed effects on tumour growth inhibition correlated robustly with apoptosis competency. We therefore obtained insights into intracellular signal transduction kinetics and their population-based heterogeneities for chemotherapy/TL32711 combinations and provide proof-of-concept that mathematical modelling of apoptosis competency can simulate and predict responsiveness in vivo. Being able to predict response to IAP antagonist-based treatments on the background of cell-to-cell heterogeneities in the future might assist in improving treatment stratification approaches for these emerging apoptosis-targeting agents.
Collapse
Affiliation(s)
- Nyree Crawford
- Cell Death & Drug Resistance Group, Centre for Cancer Research & Cell Biology, Queen's University Belfast, Belfast, UK
| | - Manuela Salvucci
- Department of Physiology & Medical Physics, Royal College of Surgeons in Ireland, Dublin 2, Ireland.,Centre for Systems Medicine, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - Christian T Hellwig
- Institute of Cell Biology and Immunology, University of Stuttgart, D-70569, Stuttgart, Germany.,Stuttgart Research Center Systems Biology, University of Stuttgart, D-70569, Stuttgart, Germany
| | - Frank A Lincoln
- Department of Physiology & Medical Physics, Royal College of Surgeons in Ireland, Dublin 2, Ireland.,Centre for Systems Medicine, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - Ruth E Mooney
- Department of Physiology & Medical Physics, Royal College of Surgeons in Ireland, Dublin 2, Ireland.,Centre for Systems Medicine, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - Carla L O'Connor
- Department of Physiology & Medical Physics, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - Jochen Hm Prehn
- Department of Physiology & Medical Physics, Royal College of Surgeons in Ireland, Dublin 2, Ireland.,Centre for Systems Medicine, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - Daniel B Longley
- Cell Death & Drug Resistance Group, Centre for Cancer Research & Cell Biology, Queen's University Belfast, Belfast, UK.
| | - Markus Rehm
- Department of Physiology & Medical Physics, Royal College of Surgeons in Ireland, Dublin 2, Ireland. .,Centre for Systems Medicine, Royal College of Surgeons in Ireland, Dublin 2, Ireland. .,Institute of Cell Biology and Immunology, University of Stuttgart, D-70569, Stuttgart, Germany. .,Stuttgart Research Center Systems Biology, University of Stuttgart, D-70569, Stuttgart, Germany.
| |
Collapse
|
14
|
Abstract
In this issue of Molecular Cell, Fu et al. (2016) present a detailed structural analysis of death-inducing signaling complex (DISC) assembly and regulation through flexible caspase-8 interactions with cFLIPL, cFLIPS, and the viral inhibitor MC159, thereby identifying novel apoptosis control mechanisms.
Collapse
Affiliation(s)
- Sinéad Kinsella
- Department of Physiology and Medical Physics and Centre for Systems Medicine, Royal College of Surgeons in Ireland, 123 St. Stephen's Green, Dublin 2, Ireland
| | - Jochen H M Prehn
- Department of Physiology and Medical Physics and Centre for Systems Medicine, Royal College of Surgeons in Ireland, 123 St. Stephen's Green, Dublin 2, Ireland.
| |
Collapse
|
15
|
Abstract
Apoptotic cell death is widely considered a positive process that both prevents and treats cancer. Although undoubtedly having a beneficial role, paradoxically, apoptosis can also cause unwanted effects that may even promote cancer. In this Opinion article we highlight some of the ways by which apoptosis can exert oncogenic functions. We argue that fully understanding this dark side will be required to optimally engage apoptosis, thereby maximizing tumour cell kill while minimizing unwanted pro-tumorigenic effects.
Collapse
Affiliation(s)
- Gabriel Ichim
- Cancer Research UK Beatson Institute and Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK
| | - Stephen W G Tait
- Cancer Research UK Beatson Institute and Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK
| |
Collapse
|
16
|
Jacob SF, Würstle ML, Delgado ME, Rehm M. An Analysis of the Truncated Bid- and ROS-dependent Spatial Propagation of Mitochondrial Permeabilization Waves during Apoptosis. J Biol Chem 2015; 291:4603-13. [PMID: 26699404 DOI: 10.1074/jbc.m115.689109] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Indexed: 01/07/2023] Open
Abstract
Apoptosis is a form of programmed cell death that is essential for the efficient elimination of surplus, damaged, and transformed cells during metazoan embryonic development and adult tissue homeostasis. Situated at the interface of apoptosis initiation and execution, mitochondrial outer membrane permeabilization (MOMP) represents one of the most fundamental processes during apoptosis signal transduction. It was shown that MOMP can spatiotemporally propagate through cells, in particular in response to extrinsic apoptosis induction. Based on apparently contradictory experimental evidence, two distinct molecular mechanisms have been proposed to underlie the propagation of MOMP signals, namely a reaction-diffusion mechanism governed by anisotropies in the production of the MOMP-inducer truncated Bid (tBid), or a process that drives the spatial propagation of MOMP by sequential bursts of reactive oxygen species. We therefore generated mathematical models for both scenarios and performed in silico simulations of spatiotemporal MOMP signaling to identify which one of the two mechanisms is capable of qualitatively and quantitatively reproducing the existing data. We found that the explanatory power of each model was limited in that only a subset of experimental findings could be replicated. However, the integration of both models into a combined mathematical description of spatiotemporal tBid and reactive oxygen species signaling accurately reproduced all available experimental data and furthermore, provided robustness to spatial MOMP propagation when mitochondria are spatially separated. Our study therefore provides a theoretical framework that is sufficient to describe and mechanistically explain the spatiotemporal propagation of one of the most fundamental processes during apoptotic cell death.
Collapse
Affiliation(s)
- Selma F Jacob
- From the Department of Physiology & Medical Physics and Centre for Systems Medicine, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - Maximilian L Würstle
- From the Department of Physiology & Medical Physics and Centre for Systems Medicine, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - M Eugenia Delgado
- From the Department of Physiology & Medical Physics and Centre for Systems Medicine, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - Markus Rehm
- From the Department of Physiology & Medical Physics and Centre for Systems Medicine, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| |
Collapse
|
17
|
Flusberg DA, Sorger PK. Surviving apoptosis: life-death signaling in single cells. Trends Cell Biol 2015; 25:446-58. [PMID: 25920803 PMCID: PMC4570028 DOI: 10.1016/j.tcb.2015.03.003] [Citation(s) in RCA: 106] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 03/19/2015] [Accepted: 03/19/2015] [Indexed: 12/16/2022]
Abstract
Tissue development and homeostasis are regulated by opposing pro-survival and pro-death signals. An interesting feature of the Tumor Necrosis Factor (TNF) family of ligands is that they simultaneously activate opposing signals within a single cell via the same ligand-receptor complex. The magnitude of pro-death events such as caspase activation and pro-survival events such as Nuclear Factor (NF)-κB activation vary not only from one cell type to the next but also among individual cells of the same type due to intrinsic and extrinsic noise. The molecules involved in these pro-survival and/or pro-death pathways, and the different phenotypes that result from their activities, have been recently reviewed. Here we focus on the impact of cell-to-cell variability in the strength of these opposing signals on shaping cell fate decisions.
Collapse
Affiliation(s)
- Deborah A Flusberg
- Laboratory of Systems Pharmacology, Department of Systems Biology, Harvard Medical School, 200 Longwood Avenue, Boston, MA 02115, USA
| | - Peter K Sorger
- Laboratory of Systems Pharmacology, Department of Systems Biology, Harvard Medical School, 200 Longwood Avenue, Boston, MA 02115, USA.
| |
Collapse
|
18
|
Roux J, Hafner M, Bandara S, Sims JJ, Hudson H, Chai D, Sorger PK. Fractional killing arises from cell-to-cell variability in overcoming a caspase activity threshold. Mol Syst Biol 2015; 11:803. [PMID: 25953765 PMCID: PMC4461398 DOI: 10.15252/msb.20145584] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
When cells are exposed to death ligands such as TRAIL, a fraction undergoes apoptosis and a fraction survives; if surviving cells are re-exposed to TRAIL, fractional killing is once again observed. Therapeutic antibodies directed against TRAIL receptors also cause fractional killing, even at saturating concentrations, limiting their effectiveness. Fractional killing arises from cell-to-cell fluctuations in protein levels (extrinsic noise), but how this results in a clean bifurcation between life and death remains unclear. In this paper, we identify a threshold in the rate and timing of initiator caspase activation that distinguishes cells that live from those that die; by mapping this threshold, we can predict fractional killing of cells exposed to natural and synthetic agonists alone or in combination with sensitizing drugs such as bortezomib. A phenomenological model of the threshold also quantifies the contributions of two resistance genes (c-FLIP and Bcl-2), providing new insight into the control of cell fate by opposing pro-death and pro-survival proteins and suggesting new criteria for evaluating the efficacy of therapeutic TRAIL receptor agonists.
Collapse
Affiliation(s)
- Jérémie Roux
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
| | - Marc Hafner
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
| | - Samuel Bandara
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
| | - Joshua J Sims
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
| | | | - Diana Chai
- Merrimack Pharmaceuticals, Cambridge, MA, USA
| | - Peter K Sorger
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
19
|
Vorobjev I, Barteneva NS. Temporal Heterogeneity Metrics in Apoptosis Induced by Anticancer Drugs. J Histochem Cytochem 2015; 63:494-510. [PMID: 25838469 DOI: 10.1369/0022155415583534] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Accepted: 03/20/2015] [Indexed: 01/16/2023] Open
Abstract
The apoptotic process is highly heterogeneous and asynchronous. A long-standing question is how many parameters define the time and reversibility of the apoptotic response at a single-cell level. We characterized at the single-cell and population levels the time sequence of apoptotic events in response to anti-cancer drugs using extrinsic and intrinsic apoptotic stimuli. We show that the temporal sequence of major apoptotic events is the same in response to all anti-cancer drugs studied: the apoptotic volume decrease and Na+ influx occur rapidly and are tightly coordinated with mitochondrial outer membrane depolarization (MOMP), mitochondrial inner membrane depolarization and a decrease in the production of reactive oxygen species (ROS). Phosphatidylserine externalization usually starts after MOMP and precedes caspase 3/7 activation. Activation of caspases 3/7 is a slow process that always starts after MOMP, with significant delay. Cell-to-cell variability of the MOMP onset is described by Gaussian distribution, whereas the γ-distribution model describes cellular variability in the duration of MOMP-to-caspase activation stages. Cells from the pre-MOMP stage to the after-caspase 3/7 activation stage coexist for many hours. We demonstrated by FACS that cells in the pre-MOMP stage can recover after apoptotic stimuli, rarely recover after MOMP but before caspase 3/7 activation, and are unable to recover after caspase 3/7 activation. We propose a double-stroke model for apoptosis execution.
Collapse
Affiliation(s)
- Ivan Vorobjev
- A.N. Belozersky Institute of Physico-Chemical Biology, Department of Cell Biology and Histology, Faculty of Biology, M.V. Lomonosov Moscow State University, Moscow, Russia (IV)
| | - Natasha S Barteneva
- Cellular and Molecular Medicine Program, Boston Children's Hospital, Department of Pediatrics, Harvard Medical School, Boston, Massachusetts (NSB)
| |
Collapse
|
20
|
Parsons MJ, Rehm M, Bouchier-Hayes L. Imaging-based methods for assessing caspase activity in single cells. Cold Spring Harb Protoc 2015; 2015:pdb.top070342. [PMID: 25561626 DOI: 10.1101/pdb.top070342] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Caspases, a family of proteases that are essential mediators of apoptosis, are divided into two groups: initiator caspases and executioner caspases. Each initiator caspase is activated at the apex of its respective pathway, which generally leads to the cleavage and activation of executioner caspases. Executioner caspases in turn cleave numerous substrates in the cell, leading to its demise. Initiator caspases are activated when inactive monomers undergo induced proximity to form an active caspase. In contrast, executioner caspases are activated by cleavage. Based on this key difference, different imaging techniques have been developed to measure caspase activation and activity on a single-cell basis. Bimolecular fluorescence complementation (BiFC) is used to measure induced proximity of initiator caspases, whereas Förster resonance energy transfer (FRET) permits the investigation of caspase-mediated substrate cleavage in real time. Because many of the events in apoptosis, including caspase activation, are asynchronous in nature, these single-cell imaging techniques have proven to be immensely powerful in ordering and dissecting caspase pathways. When coupled with parallel detection of additional hallmark events of apoptosis, they provide detailed and quantitative kinetic and positional insights into the signal transduction pathways that regulate cell death. Here we provide a brief introduction into BiFC- and FRET-based imaging of caspase activation and activity in single cells.
Collapse
Affiliation(s)
- Melissa J Parsons
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, Texas 77030 Department of Pediatrics-Hematology, Baylor College of Medicine, Houston, Texas 77030
| | - Markus Rehm
- Centre for Systems Medicine, Royal College of Surgeons in Ireland, Dublin 2, Ireland Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - Lisa Bouchier-Hayes
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, Texas 77030 Department of Pediatrics-Hematology, Baylor College of Medicine, Houston, Texas 77030
| |
Collapse
|
21
|
Rehm M, Parsons MJ, Bouchier-Hayes L. Measuring caspase activity by Förster resonance energy transfer. Cold Spring Harb Protoc 2015; 2015:pdb.prot082560. [PMID: 25561624 DOI: 10.1101/pdb.prot082560] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Förster resonance energy transfer (FRET) occurs across very short distances (in the nanometer range) between donor and acceptor fluorophores that overlap in their emission and absorption spectra. FRET-compatible green fluorescent protein (GFP) variants that are fused to short peptide linkers containing caspase cleavage sites can be used to measure caspase activity. In the intact probes, the donor and acceptor fluorophores are in close proximity, and FRET is highly efficient. On caspase activation, proteolysis of the linker occurs, and the donor is separated from the acceptor. This results in a disruption of resonance energy transfer and an increase in donor fluorescence quantum yield; this event is typically referred to as sensitized emission or donor unquenching. A number of highly sensitive FRET probes based on the cyan fluorescent protein-yellow fluorescent protein (CFP-YFP) pair, or improved variants thereof, have been developed to detect intracellular caspase activities. In this protocol we describe how to use FRET-based caspase substrates and time-lapse imaging to measure caspase activity in cells undergoing apoptosis.
Collapse
Affiliation(s)
- Markus Rehm
- Centre for Systems Medicine, Royal College of Surgeons in Ireland, Dublin 2, Ireland Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - Melissa J Parsons
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, Texas 77030 Department of Pediatrics-Hematology, Baylor College of Medicine, Houston, Texas 77030
| | - Lisa Bouchier-Hayes
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, Texas 77030 Department of Pediatrics-Hematology, Baylor College of Medicine, Houston, Texas 77030
| |
Collapse
|
22
|
Orzechowska EJ, Kozlowska E, Czubaty A, Kozlowski P, Staron K, Trzcinska-Danielewicz J. Controlled delivery of BID protein fused with TAT peptide sensitizes cancer cells to apoptosis. BMC Cancer 2014; 14:771. [PMID: 25326334 PMCID: PMC4210496 DOI: 10.1186/1471-2407-14-771] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Accepted: 10/11/2014] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Low cellular level of BID is critical for viability of numerous cancer cells. Sensitization of cells to anticancer agents by BID overexpression from adenovirus or pcDNA vectors is a proposed strategy for cancer therapy; however it does not provide any stringent control of cellular level of BID. The aim of this work was to examine whether a fusion of BID with TAT cell penetrating peptide (TAT-BID) may be used for controlled sensitization of cancer cells to anticancer agents acting through death receptors (TRAIL) or DNA damage (camptothecin). Prostate cancer PC3 and LNCaP, non-small human lung cancer A549, and cervix carcinoma HeLa cells were used in the study. METHODS Uptake of TAT-BID protein by cells was studied by quantitative Western blot analysis of cells extracts. Cells viability was monitored by MTT test. Apoptosis was detected by flow cytometry and cytochrome c release assay. RESULTS TAT-BID was delivered to all cancer cells in amounts depending on time, dose and the cell line. Recombinant BID sensitized PC3 cells to TRAIL or, to lesser extent, to camptothecin. Out of remaining cells, TAT-BID sensitized A549, and only slightly HeLa cells to TRAIL. None of the latter cell lines were sensitized to camptothecin. In all cases the mutant not phosphorylable by CK2 (TAT-BIDT59AS76A) was similarly efficient in sensitization as the wild type TAT-BID. CONCLUSIONS TAT-BID may be delivered to cancer cells in controlled manner and efficiently sensitizes PC3 and A549 cells to TRAIL. Therefore, it may be considered as a potential therapeutic agent that enhances the efficacy of TRAIL for the treatment of prostate and non-small human lung cancer.
Collapse
Affiliation(s)
- Emilia Joanna Orzechowska
- />Department of Molecular Biology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland
| | - Ewa Kozlowska
- />Department of Immunology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland
| | - Alicja Czubaty
- />Department of Molecular Biology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland
| | - Piotr Kozlowski
- />Department of Molecular Biology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland
| | - Krzysztof Staron
- />Department of Molecular Biology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland
| | - Joanna Trzcinska-Danielewicz
- />Department of Molecular Biology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland
| |
Collapse
|
23
|
Zhang J, Wang X, Cui W, Wang W, Zhang H, Liu L, Zhang Z, Li Z, Ying G, Zhang N, Li B. Visualization of caspase-3-like activity in cells using a genetically encoded fluorescent biosensor activated by protein cleavage. Nat Commun 2014; 4:2157. [PMID: 23857461 DOI: 10.1038/ncomms3157] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Accepted: 06/18/2013] [Indexed: 01/01/2023] Open
Abstract
Cytosolic caspase-3-like proteases, such as caspase-3 and caspase-7, have a central role in mediating the progress of apoptosis. Here to conveniently monitor caspase-3-like activity in the multicellular environment, we have developed genetically encoded switch-on fluorescence-base indicators that are cyclized chimeras containing a caspase-3 cleavage site as a switch. When cleaved by caspase-3-like proteases, the non-fluorescent indicator rapidly becomes fluorescent, and thus detects in real-time the activation of such caspases. We generate cultured cells constitutively expressing these chimeras, and all the healthy cells are non-fluorescent. When these cells are exposed to apoptotic stimuli, dead cells show strong fluorescence depending on caspase activation. With these tools, we monitor in real-time caspase-3-like activity in each cell under various conditions, and show for the first time that the environment of cancer cells affects their sensitivity to chemotherapeutic drugs in a modified soft agar assay. These biosensors should enable better understanding of the biological relevance of caspase-3-like proteases.
Collapse
Affiliation(s)
- Jiao Zhang
- Laboratory of Cancer Cell Biology, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Han Y, Park S, Kinyua AW, Andera L, Kim KW, Kim I. Emetine enhances the tumor necrosis factor-related apoptosis-inducing ligand-induced apoptosis of pancreatic cancer cells by downregulation of myeloid cell leukemia sequence-1 protein. Oncol Rep 2013; 31:456-62. [PMID: 24213797 DOI: 10.3892/or.2013.2838] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Accepted: 10/14/2013] [Indexed: 11/06/2022] Open
Abstract
Although the tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a promising cancer therapeutic agent, it shows limited efficacy in human pancreatic cancer cells. Protein synthesis inhibition has been reported to sensitize cancer cells to apoptosis-inducing agents, but the detailed mechanism by which protein synthesis inhibition sensitize cells to TRAIL has not been determined. To investigate the mechanism underlying pancreatic cancer cell resistance to TRAIL, we performed a small scale high-throughput compound screening in AsPC-1 pancreatic cancer cells using a bioactive small molecule library. We identified 8 compounds that reproducibly sensitize AsPC-1 cells to TRAIL-induced apoptosis. One of these compounds, emetine hydrochloride, when combined with subtoxic concentrations of TRAIL, induced massive apoptosis in AsPC-1 and BxPC-3 pancreatic cancer cells. Cell death analysis revealed that the sensitizing effects of emetine were specific to TRAIL. Emetine downregulated the expression of the TRAIL-related anti-apoptotic protein Mcl-1 in a dose- and time-dependent manner. Furthermore, specific knockdown of Mcl-1 using small interfering RNA without emetine treatment sensitized pancreatic cancer cells to TRAIL. Emetine sensitization of pancreatic cancer cells to TRAIL via Mcl-1 was confirmed under hypoxic conditions. Taken together, these findings strongly suggest that Mcl-1 is involved in pancreatic cancer cell resistance to TRAIL, and emetine facilitates the apoptosis of TRAIL-tolerant pancreatic cancer cells by specifically inhibiting Mcl-1 function.
Collapse
Affiliation(s)
- Yujeong Han
- Asan Institute for Life Sciences, Asan Medical Center, Seoul 138-736, Republic of Korea
| | | | | | | | | | | |
Collapse
|
25
|
Silica phagocytosis causes apoptosis and necrosis by different temporal and molecular pathways in alveolar macrophages. Apoptosis 2013; 18:271-85. [PMID: 23329178 DOI: 10.1007/s10495-012-0798-y] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Chronic inhalation of crystalline silica is an occupational hazard that results in silicosis due to the toxicity of silica particles to lung cells. Alveolar macrophages play an important role in clearance of these particles, and exposure of macrophages to silica particles causes cell death and induction of markers of apoptosis. Using time-lapse imaging of MH-S alveolar macrophages, a temporal sequence was established for key molecular events mediating cell death. The results demonstrate that 80 % of macrophages die by apoptosis and 20 % by necrosis by clearly distinguishable pathways. The earliest detectable cellular event is phago-lysosomal leakage, which occurs between 30 and 120 min after particle uptake in both modes of death. Between 3 and 6 h later, cells undergoing apoptosis showed a dramatic increase in mitochondrial transmembrane potential, closely correlated with activation of both caspase-3 and 9 and cell blebbing. Externalization of phosphatidyl serine and nuclear condensation occurred 30 min-2 h after the initiation of cell blebbing. Cells undergoing necrosis demonstrated mitochondrial membrane depolarization but not hyperpolarization and no caspase activation. Cell swelling followed the decrease in mitochondrial membrane potential, distinguishing necrosis from apoptosis. All cells undergoing apoptosis followed the same temporal sequence, but the time lag between phago-lysosomal leakage and the other events was highly variable from cell to cell. These results demonstrate that crystalline silica exposure can result in either apoptosis or necrosis and each occurs in a well-defined but temporally variable order. The long time gap between phago-lysosomal leakage and hyperpolarization is not consistent with a simple scenario of phago-lysosomal leakage leading directly to cell death. The results highlight the importance of using a cell by cell time-lapse analysis to investigate a complex pathway such as silica induced cell death.
Collapse
|
26
|
Delgado ME, Olsson M, Lincoln FA, Zhivotovsky B, Rehm M. Determining the contributions of caspase-2, caspase-8 and effector caspases to intracellular VDVADase activities during apoptosis initiation and execution. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1833:2279-92. [DOI: 10.1016/j.bbamcr.2013.05.025] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Revised: 05/15/2013] [Accepted: 05/28/2013] [Indexed: 10/26/2022]
|
27
|
Tokar T, Turcan Z, Ulicny J. Boolean network-based model of the Bcl-2 family mediated MOMP regulation. Theor Biol Med Model 2013; 10:40. [PMID: 23767791 PMCID: PMC3716804 DOI: 10.1186/1742-4682-10-40] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Accepted: 05/30/2013] [Indexed: 01/05/2023] Open
Abstract
Background Mitochondrial outer membrane permeabilization (MOMP) is one of the most important points in the majority of apoptotic signaling cascades and it is controlled by a network of interactions between the members of the Bcl-2 family. Methods To understand the role of individual members of this family within the MOMP regulation, we have constructed a Boolean network-based model of interactions between the Bcl-2 proteins. Results Computational simulations have revealed the existence of trapping states which, independently from the incoming stimuli, block the occurrence of MOMP. Our results emphasize the role of the antiapoptotic protein Mcl-1 in the majority of these configurations. We demonstrate here the importance of the Bid and Bim for activation of effectors Bax and Bak, and the irreversibility of this activation. The model further points to the antiapoptotic protein Bcl-w as a key factor preventing Bax activation. Conclusions In spite of relative simplicity, the Boolean network-based model provides useful insight into main functioning logic of the Bcl-2 switch, consistent with experimental findings.
Collapse
Affiliation(s)
- Tomas Tokar
- Department of Biophysics, University of PJ Safarik, Jesenna 5, 04001 Kosice, Slovakia
| | | | | |
Collapse
|
28
|
Flusberg DA, Sorger PK. Modulating cell-to-cell variability and sensitivity to death ligands by co-drugging. Phys Biol 2013; 10:035002. [PMID: 23735516 DOI: 10.1088/1478-3975/10/3/035002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
TRAIL (tumor necrosis factor-related apoptosis-inducing ligand) holds promise as an anti-cancer therapeutic but efficiently induces apoptosis in only a subset of tumor cell lines. Moreover, even in clonal populations of responsive lines, only a fraction of cells dies in response to TRAIL and individual cells exhibit cell-to-cell variability in the timing of cell death. Fractional killing in these cell populations appears to arise not from genetic differences among cells but rather from differences in gene expression states, fluctuations in protein levels and the extent to which TRAIL-induced death or survival pathways become activated. In this study, we ask how cell-to-cell variability manifests in cell types with different sensitivities to TRAIL, as well as how it changes when cells are exposed to combinations of drugs. We show that individual cells that survive treatment with TRAIL can regenerate the sensitivity and death-time distribution of the parental population, demonstrating that fractional killing is a stable property of cell populations. We also show that cell-to-cell variability in the timing and probability of apoptosis in response to treatment can be tuned using combinations of drugs that together increase apoptotic sensitivity compared to treatment with one drug alone. In the case of TRAIL, modulation of cell-to-cell variability by co-drugging appears to involve a reduction in the threshold for mitochondrial outer membrane permeabilization.
Collapse
Affiliation(s)
- Deborah A Flusberg
- Center for Cell Decision Processes, Department of Systems Biology, Harvard Medical School, 200 Longwood Ave, Boston, MA 02115, USA
| | | |
Collapse
|
29
|
Flusberg DA, Roux J, Spencer SL, Sorger PK. Cells surviving fractional killing by TRAIL exhibit transient but sustainable resistance and inflammatory phenotypes. Mol Biol Cell 2013; 24:2186-200. [PMID: 23699397 PMCID: PMC3708725 DOI: 10.1091/mbc.e12-10-0737] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Cells that survive fractional killing by TRAIL or FasR agonists enter a state of resistance accompanied by inflammatory phenotypes. This state is transient, decaying over the course of several days, but can be sustained by periodic TRAIL treatments. This finding has implications for optimal dosing strategies of extrinsic cell death agents. When clonal populations of human cells are exposed to apoptosis-inducing agents, some cells die and others survive. This fractional killing arises not from mutation but from preexisting, stochastic differences in the levels and activities of proteins regulating apoptosis. Here we examine the properties of cells that survive treatment with agonists of two distinct death receptors, tumor necrosis factor–related apoptosis-inducing ligand (TRAIL) and anti-FasR antibodies. We find that “survivor” cells are highly resistant to a second ligand dose applied 1 d later. Resistance is reversible, resetting after several days of culture in the absence of death ligand. “Reset” cells appear identical to drug-naive cells with respect to death ligand sensitivity and gene expression profiles. TRAIL survivors are cross-resistant to activators of FasR and vice versa and exhibit an NF-κB–dependent inflammatory phenotype. Remarkably, reversible resistance is induced in the absence of cell death when caspase inhibitors are present and can be sustained for 1 wk or more, also without cell death, by periodic ligand exposure. Thus stochastic differences in cell state can have sustained consequences for sensitivity to prodeath ligands and acquisition of proinflammatory phenotypes. The important role played by periodicity in TRAIL exposure for induction of opposing apoptosis and survival mechanisms has implications for the design of optimal therapeutic agents and protocols.
Collapse
Affiliation(s)
- Deborah A Flusberg
- Center for Cell Decision Processes, Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | |
Collapse
|
30
|
FRET-based evaluation of Bid cleavage in a single primary cultured neuron. Neurosci Lett 2013; 536:24-8. [DOI: 10.1016/j.neulet.2012.11.059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Revised: 11/25/2012] [Accepted: 11/28/2012] [Indexed: 11/18/2022]
|
31
|
Caspase-8 cleaves its substrates from the plasma membrane upon CD95-induced apoptosis. Cell Death Differ 2013; 20:599-610. [PMID: 23306557 DOI: 10.1038/cdd.2012.156] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Apoptosis occurs through a tightly regulated cascade of caspase activation. In the context of extrinsic apoptosis, caspase-8 is activated by dimerization inside a death receptor complex, cleaved by auto-proteolysis and subsequently released into the cytosol. This fully processed form of caspase-8 is thought to cleave its substrates BID and caspase-3. To test if the release is required for substrate cleavage, we developed a novel approach based on localization probes to quantitatively characterize the spatial-temporal activity of caspases in living single cells. Our study reveals that caspase-8 is significantly more active at the plasma membrane than within the cytosol upon CD95 activation. This differential activity is controlled by the cleavage of caspase-8 prodomain. As a consequence, targeting of caspase-8 substrates to the plasma membrane can significantly accelerate cell death. Subcellular compartmentalization of caspase-8 activity may serve to restrict enzymatic activity before mitochondrial pathway activation and offers new possibilities to interfere with apoptotic sensitivity of the cells.
Collapse
|
32
|
Kominami K, Nagai T, Sawasaki T, Tsujimura Y, Yashima K, Sunaga Y, Tsuchimochi M, Nishimura J, Chiba K, Nakabayashi J, Koyamada K, Endo Y, Yokota H, Miyawaki A, Manabe N, Sakamaki K. In vivo imaging of hierarchical spatiotemporal activation of caspase-8 during apoptosis. PLoS One 2012. [PMID: 23185580 PMCID: PMC3503975 DOI: 10.1371/journal.pone.0050218] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Background Activation of caspases is crucial for the execution of apoptosis. Although the caspase cascade associated with activation of the initiator caspase-8 (CASP8) has been investigated in molecular and biochemical detail, the dynamics of CASP8 activation are not fully understood. Methodology/Principal Findings We have established a biosensor based on fluorescence resonance energy transfer (FRET) for visualizing apoptotic signals associated with CASP8 activation at the single-cell level. Our dual FRET (dual-FRET) system, comprising a triple fusion fluorescent protein, enabled us to simultaneously monitor the activation of CASP8 and its downstream effector, caspase-3 (CASP3) in single live cells. With the dual-FRET-based biosensor, we detected distinct activation patterns of CASP8 and CASP3 in response to various apoptotic stimuli in mammalian cells, resulting in the positive feedback amplification of CASP8 activation. We reproduced these observations by in vitro reconstitution of the cascade, with a recombinant protein mixture that included procaspases. Furthermore, using a plasma membrane-bound FRET-based biosensor, we captured the spatiotemporal dynamics of CASP8 activation by the diffusion process, suggesting the focal activation of CASP8 is sufficient to propagate apoptotic signals through death receptors. Conclusions Our new FRET-based system visualized the activation process of both initiator and effector caspases in a single apoptotic cell and also elucidated the necessity of an amplification loop for full activation of CASP8.
Collapse
Affiliation(s)
- Katsuya Kominami
- Department of Animal Development and Physiology, Kyoto University, Kyoto, Japan
| | - Takeharu Nagai
- Laboratory for Cell Function Dynamics, Brain Science Institute, RIKEN, Wako, Saitama, Japan
- Laboratory for Nanosystems Physiology, Research Institute for Electronic Science, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Tatsuya Sawasaki
- Cell-Free Science and Technology Research Center, Ehime University, Matsuyama, Ehime, Japan
| | - Yuki Tsujimura
- Bio-research Infrastructure Construction Team, Advanced Science Institute, RIKEN, Wako, Saitama, Japan
| | - Kenta Yashima
- Meiji Institute for Advanced Study of Mathematical Sciences, Meiji University, Kawasaki, Kanagawa, Japan
| | - Yasuhiro Sunaga
- Cell Scale Team, Computational Science Research Program, RIKEN, Wako, Saitama, Japan
| | - Masateru Tsuchimochi
- Cell-Free Science and Technology Research Center, Ehime University, Matsuyama, Ehime, Japan
| | - Jun Nishimura
- Department of Electrical Engineering, Kyoto University, Kyoto, Japan
| | - Kumiko Chiba
- Department of Animal Development and Physiology, Kyoto University, Kyoto, Japan
| | - Jun Nakabayashi
- Department of Immunology, Yokohama City University, Yokohama, Kanagawa, Japan
| | - Koji Koyamada
- Institute for the Promotion of Excellence in High Education, Kyoto University, Kyoto, Japan
| | - Yaeta Endo
- Cell-Free Science and Technology Research Center, Ehime University, Matsuyama, Ehime, Japan
| | - Hideo Yokota
- Bio-research Infrastructure Construction Team, Advanced Science Institute, RIKEN, Wako, Saitama, Japan
- Cell Scale Team, Computational Science Research Program, RIKEN, Wako, Saitama, Japan
| | - Atsushi Miyawaki
- Laboratory for Cell Function Dynamics, Brain Science Institute, RIKEN, Wako, Saitama, Japan
| | - Noboru Manabe
- Research Unit for Animal Life Sciences, Animal Resource Science Center, The University of Tokyo, Kasama, Ibaraki, Japan
| | - Kazuhiro Sakamaki
- Department of Animal Development and Physiology, Kyoto University, Kyoto, Japan
- * E-mail:
| |
Collapse
|
33
|
Kominami K, Nakabayashi J, Nagai T, Tsujimura Y, Chiba K, Kimura H, Miyawaki A, Sawasaki T, Yokota H, Manabe N, Sakamaki K. The molecular mechanism of apoptosis upon caspase-8 activation: quantitative experimental validation of a mathematical model. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2012; 1823:1825-40. [PMID: 22801217 DOI: 10.1016/j.bbamcr.2012.07.003] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Revised: 06/29/2012] [Accepted: 07/06/2012] [Indexed: 12/22/2022]
Abstract
Caspase-8 (CASP8) is a cysteine protease that plays a pivotal role in the extrinsic apoptotic signaling pathway via death receptors. The kinetics, dynamics, and selectivity with which the pathway transmits apoptotic signals to downstream molecules upon CASP8 activation are not fully understood. We have developed a system for using high-sensitivity FRET-based biosensors to monitor the protease activity of CASP8 and its downstream effector, caspase-3, in living single cells. Using this system, we systematically investigated the caspase cascade by regulating the magnitude of extrinsic signals received by the cell. Furthermore, we determined the molar concentration of five caspases and Bid required for hierarchical transmission of apoptotic signals in a HeLa cell. Based on these quantitative experimental data, we validated a mathematical model suitable for estimation of the kinetics and dynamics of caspases, which predicts the minimal concentration of CASP8 required to act as an initiator. Consequently, we found that less than 1% of the total CASP8 proteins are sufficient to set the apoptotic program in motion if activated. Taken together, our findings demonstrate the precise cascade of CASP8-mediated apoptotic signals through the extrinsic pathway.
Collapse
Affiliation(s)
- Katsuya Kominami
- Department of Animal Development and Physiology, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Fadeev RS, Chekanov AV, Dolgikh NV, Akatov VS. Increase in resistance of A431 cancer cells to TRAIL-induced apoptosis in confluent cultures. Biophysics (Nagoya-shi) 2012. [DOI: 10.1134/s0006350912040045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
35
|
Florentin A, Arama E. Caspase levels and execution efficiencies determine the apoptotic potential of the cell. ACTA ACUST UNITED AC 2012; 196:513-27. [PMID: 22351928 PMCID: PMC3283987 DOI: 10.1083/jcb.201107133] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Differences in expression level of the effector caspases Drice and Dcp-1 and in their intrinsic abilities to induce apoptosis and to control the rate of cell death underlie the differential sensitivities of cells to apoptosis. Essentially, all metazoan cells can undergo apoptosis, but some cells are more sensitive than others to apoptotic stimuli. To date, it is unclear what determines the apoptotic potential of the cell. We set up an in vivo system for monitoring and comparing the activity levels of the two main effector caspases in Drosophila melanogaster, Drice and Dcp-1. Both caspases were activated by the apoptosome after irradiation. However, whereas each caspase alone could induce apoptosis, Drice was a more effective inducer of apoptosis than Dcp-1, which instead had a role in establishing the rate of cell death. These functional differences are attributed to their intrinsic properties rather than merely their tissue specificities. Significantly, the levels of the procaspases are directly proportional to their activity levels and play a key role in determining the cell’s sensitivity to apoptosis. Finally, we provide evidence for the existence of a cellular execution threshold of caspase activity, which must be reached to induce apoptosis.
Collapse
Affiliation(s)
- Anat Florentin
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | | |
Collapse
|
36
|
Abstract
Excitotoxicity resulting from excessive Ca(2+) influx through glutamate receptors contributes to neuronal injury after stroke, trauma, and seizures. Increased cytosolic Ca(2+) levels activate a family of calcium-dependent proteases with papain-like activity, the calpains. Here we investigated the role of calpain activation during NMDA-induced excitotoxic injury in embryonic (E16-E18) murine cortical neurons that (1) underwent excitotoxic necrosis, characterized by immediate deregulation of Ca(2+) homeostasis, a persistent depolarization of mitochondrial membrane potential (Δψ(m)), and insensitivity to bax-gene deletion, (2) underwent excitotoxic apoptosis, characterized by recovery of NMDA-induced cytosolic Ca(2+) increases, sensitivity to bax gene deletion, and delayed Δψ(m) depolarization and Ca(2+) deregulation, or (3) that were tolerant to excitotoxic injury. Interestingly, treatment with the calpain inhibitor calpeptin, overexpression of the endogenous calpain inhibitor calpastatin, or gene silencing of calpain protected neurons against excitotoxic apoptosis but did not influence excitotoxic necrosis. Calpeptin failed to exert a protective effect in bax-deficient neurons but protected bid-deficient neurons similarly to wild-type cells. To identify when calpains became activated during excitotoxic apoptosis, we monitored calpain activation dynamics by time-lapse fluorescence microscopy using a calpain-sensitive Förster resonance energy transfer probe. We observed a delayed calpain activation that occurred downstream of mitochondrial engagement and directly preceded neuronal death. In contrast, we could not detect significant calpain activity during excitotoxic necrosis or in neurons that were tolerant to excitotoxic injury. Oxygen/glucose deprivation-induced injury in organotypic hippocampal slice cultures confirmed that calpains were specifically activated during bax-dependent apoptosis and in this setting function as downstream cell-death executioners.
Collapse
|
37
|
Laussmann MA, Passante E, Hellwig CT, Tomiczek B, Flanagan L, Prehn JHM, Huber HJ, Rehm M. Proteasome inhibition can impair caspase-8 activation upon submaximal stimulation of apoptotic tumor necrosis factor-related apoptosis inducing ligand (TRAIL) signaling. J Biol Chem 2012; 287:14402-11. [PMID: 22408249 DOI: 10.1074/jbc.m111.304378] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Tumor necrosis factor-related apoptosis inducing ligand (TRAIL) can induce extrinsic apoptosis, resulting in caspase-8 activation, but may also initiate transcription-dependent prosurvival signaling. Proteasome inhibitors were suggested to promote TRAIL signal transduction through the death-inducing signaling complex (DISC) by modulating the relative abundance of core DISC components, thereby enhancing caspase-8 activation and apoptosis. To test this hypothesis, we quantified the changes in DISC protein levels as an early consequence of proteasome inhibition in HeLa cervical cancer cells and, based on these data, mathematically modeled the proapoptotic TRAIL signaling toward caspase-8 activation. Modeling results surprisingly suggested that caspase-8 activation might be delayed in presence of proteasome inhibitors, in particular at submaximal TRAIL doses. Subsequent FRET-based single cell time-lapse imaging at conditions where transcription dependent prosurvival signaling was blocked confirmed this hypothesis: caspase-8 activity was delayed by hours in the presence of proteasome inhibitors epoxomicin or bortezomib. Corresponding delays were detected for effector caspase processing and cell death. Contrary to current models, we therefore provide evidence that synergies between TRAIL and proteasome inhibitors do not result from changes in the levels of core DISC signaling proteins.
Collapse
Affiliation(s)
- Maike A Laussmann
- Department of Physiology & Medical Physics, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Szegezdi E, van der Sloot AM, Mahalingam D, O'Leary L, Cool RH, Muñoz IG, Montoya G, Quax WJ, de Jong S, Samali A, Serrano L. Kinetics in signal transduction pathways involving promiscuous oligomerizing receptors can be determined by receptor specificity: apoptosis induction by TRAIL. Mol Cell Proteomics 2012; 11:M111.013730. [PMID: 22213832 PMCID: PMC3316727 DOI: 10.1074/mcp.m111.013730] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Here we show by computer modeling that kinetics and outcome of signal transduction in case of hetero-oligomerizing receptors of a promiscuous ligand largely depend on the relative amounts of its receptors. Promiscuous ligands can trigger the formation of nonproductive receptor complexes, which slows down the formation of active receptor complexes and thus can block signal transduction. Our model predicts that increasing the receptor specificity of the ligand without changing its binding parameters should result in faster receptor activation and enhanced signaling. We experimentally validated this hypothesis using the cytokine tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) and its four membrane-bound receptors as an example. Bypassing ligand-induced receptor hetero-oligomerization by receptor-selective TRAIL variants enhanced the kinetics of receptor activation and augmented apoptosis. Our results suggest that control of signaling pathways by promiscuous ligands could result in apparent slow biological kinetics and blocking signal transmission. By modulating the relative amount of the different receptors for the ligand, signaling processes like apoptosis can be accelerated or decelerated and even inhibited. It also implies that more effective treatments using protein therapeutics could be achieved simply by altering specificity.
Collapse
Affiliation(s)
- Eva Szegezdi
- School of Natural Sciences, National University of Ireland, Galway, Ireland
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Neves SR. Modeling of spatially-restricted intracellular signaling. WILEY INTERDISCIPLINARY REVIEWS. SYSTEMS BIOLOGY AND MEDICINE 2012; 4:103-15. [PMID: 21766466 PMCID: PMC4108591 DOI: 10.1002/wsbm.155] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Understanding the signaling capabilities of a cell presents a major challenge, not only due to the number of molecules involved, but also because of the complex network connectivity of intracellular signaling. Recently, the proliferation of quantitative imaging techniques has led to the discovery of the vast spatial organization of intracellular signaling. Computational modeling has emerged as a powerful tool for understanding how inhomogeneous signaling originates and is maintained. This article covers the current imaging techniques used to obtain quantitative spatial data and the mathematical approaches used to model spatial cell biology. Modeling-derived hypotheses have been experimentally tested and the integration of modeling and imaging approaches has led to non-intuitive mechanistic insights.
Collapse
Affiliation(s)
- Susana R Neves
- Department of Pharmacology and System Therapeutics, Friedman Brain Institute, Systems Biology Center of New York, Mount Sinai School of Medicine, New York, NY, USA.
| |
Collapse
|
40
|
Henrich CJ, Thomas CL, Brooks AD, Booth NL, Lowery EM, Pompei RJ, McMahon JB, Sayers TJ. Effects of cucurbitacins on cell morphology are associated with sensitization of renal carcinoma cells to TRAIL-induced apoptosis. Apoptosis 2012; 17:79-89. [PMID: 21928090 PMCID: PMC3345813 DOI: 10.1007/s10495-011-0652-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Cucurbitacins B and D were among the compounds identified as sensitizers of cancer cells to TRAIL-mediated apoptosis in a high-throughput screen. Therefore a series of cucurbitacins was further investigated for TRAIL sensitization and possible mechanisms of action. A total of six cucurbitacins promoted TRAIL-induced apoptosis (B, I, E, C, D, and K) and one (P) was inactive. Sensitization of renal adenocarcinoma cells to TRAIL was apparent after as little as 1-4 h pretreatment and did not require continued presence of cucurbitacin. Active cucurbitacins induced caspase-8 activation only after subsequent TRAIL addition and caspase activation was required for apoptosis suggesting amplified proximal signaling from TRAIL death receptors. Cucurbitacin-sensitized TRAIL-induced cytotoxicity was inhibited by N-acetyl cysteine. Structure-activity relationship analysis in comparison to published studies suggests that TRAIL-sensitizing and general cytotoxic activities of cucurbitacins may be decoupled. Cucurbitacins are reported to be inhibitors of STAT3 activation. However, their TRAIL-sensitizing activity is STAT3-independent. Treatment of renal carcinoma cells with active cucurbitacins produced rapid and dramatic changes in cell morphology and cytoskeletal organization (also prevented by NAC). Therefore, cucurbitacins may be useful as tools for investigating the molecular mechanism(s) of action of TRAIL sensitizers, particularly with regard to temporal aspects of sensitization and modulation of TRAIL signaling by cell morphology, and could form the basis for future therapeutic development in combination with TRAIL death receptor agonists.
Collapse
Affiliation(s)
- Curtis J Henrich
- Molecular Targets Laboratory, NCI-Frederick, Frederick, MD, USA.
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Laussmann MA, Passante E, Düssmann H, Rauen JA, Würstle ML, Delgado ME, Devocelle M, Prehn JHM, Rehm M. Proteasome inhibition can induce an autophagy-dependent apical activation of caspase-8. Cell Death Differ 2011; 18:1584-97. [PMID: 21455219 PMCID: PMC3130899 DOI: 10.1038/cdd.2011.27] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2010] [Revised: 02/24/2011] [Accepted: 02/25/2011] [Indexed: 02/02/2023] Open
Abstract
Antiapoptotic Bcl-2 family proteins are often highly expressed in chemotherapy-resistant cancers and impair mitochondrial outer membrane permeabilisation (MOMP), an important requirement for caspase activation via the intrinsic apoptosis pathway. Interestingly, although Bcl-2 overexpression in HeLa cervical cancer cells abrogated caspase processing in response to intrinsic apoptosis induction by staurosporine, tunicamycin or etoposide, residual caspase processing was observed following proteasome inhibition by bortezomib ([(1R)-3-methyl-1-({(2S)-3-phenyl-2-[(pyrazin-2-ylcarbonyl)amino]propanoyl}amino)butyl]boronic acid), epoxomicin (N-acetyl-N-methyl-lisoleucyl-L-isoleucyl-N-[(1S)-3-methyl-1-[[(2R)-2-methyloxiranyl]carbonyl]butyl]-L-threoninamide) or MG-132 (N-(benzyloxycarbonyl)leucinylleucinylleucinal). Similar responses were found in Bcl-2-overexpressing H460 NSCLC cells and Bax/Bak-deficient mouse embyronic fibroblasts. Mild caspase processing resulted in low DEVDase activities, which were MOMP independent and persisted for long periods without evoking immediate cell death. Surprisingly, depletion of caspase-3 and experiments in caspase-7-depleted MCF-7-Bcl-2 cells indicated that the DEVDase activity did not originate from effector caspases. Instead, Fas-associated death domain (FADD)-dependent caspase-8 activation was the major contributor to the slow, incomplete substrate cleavage. Caspase-8 activation was independent of death ligands, but required the induction of autophagy and the presence of Atg5. Depletion of XIAP or addition of XIAP-antagonising peptides resulted in a switch towards efficient apoptosis execution, suggesting that the requirement for MOMP was bypassed by activating the caspase-8/caspase-3 axis. Combination treatments of proteasome inhibitors and XIAP antagonists therefore represent a promising strategy to eliminate highly resistant cancer cells, which overexpress antiapoptotic Bcl-2 family members.
Collapse
Affiliation(s)
- M A Laussmann
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - E Passante
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - H Düssmann
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - J A Rauen
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - M L Würstle
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - M E Delgado
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - M Devocelle
- Department of Pharmaceutical and Medicinal Chemistry, Centre for Synthesis and Chemical Biology, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - J H M Prehn
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - M Rehm
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland
| |
Collapse
|
42
|
Spencer SL, Sorger PK. Measuring and modeling apoptosis in single cells. Cell 2011; 144:926-39. [PMID: 21414484 PMCID: PMC3087303 DOI: 10.1016/j.cell.2011.03.002] [Citation(s) in RCA: 259] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2011] [Revised: 02/25/2011] [Accepted: 03/01/2011] [Indexed: 01/23/2023]
Abstract
Cell death plays an essential role in the development of tissues and organisms, the etiology of disease, and the responses of cells to therapeutic drugs. Here we review progress made over the last decade in using mathematical models and quantitative, often single-cell, data to study apoptosis. We discuss the delay that follows exposure of cells to prodeath stimuli, control of mitochondrial outer membrane permeabilization, switch-like activation of effector caspases, and variability in the timing and probability of death from one cell to the next. Finally, we discuss challenges facing the fields of biochemical modeling and systems pharmacology.
Collapse
Affiliation(s)
- Sabrina L. Spencer
- Center for Cell Decision Processes, Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Peter K. Sorger
- Center for Cell Decision Processes, Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
43
|
Rapid and efficient cancer cell killing mediated by high-affinity death receptor homotrimerizing TRAIL variants. Cell Death Dis 2010; 1:e83. [PMID: 21368856 PMCID: PMC3035906 DOI: 10.1038/cddis.2010.61] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
The tumour necrosis factor family member TNF-related apoptosis-inducing ligand (TRAIL) selectively induces apoptosis in a variety of cancer cells through the activation of death receptors 4 (DR4) and 5 (DR5) and is considered a promising anticancer therapeutic agent. As apoptosis seems to occur primarily via only one of the two death receptors in many cancer cells, the introduction of DR selectivity is thought to create more potent TRAIL agonists with superior therapeutic properties. By use of a computer-aided structure-based design followed by rational combination of mutations, we obtained variants that signal exclusively via DR4. Besides an enhanced selectivity, these TRAIL-DR4 agonists show superior affinity to DR4, and a high apoptosis-inducing activity against several TRAIL-sensitive and -resistant cancer cell lines in vitro. Intriguingly, combined treatment of the DR4-selective variant and a DR5-selective TRAIL variant in cancer cell lines signalling by both death receptors leads to a significant increase in activity when compared with wild-type rhTRAIL or each single rhTRAIL variant. Our results suggest that TRAIL induced apoptosis via high-affinity and rapid-selective homotrimerization of each DR represent an important step towards an efficient cancer treatment.
Collapse
|
44
|
Würstle ML, Laussmann MA, Rehm M. The caspase-8 dimerization/dissociation balance is a highly potent regulator of caspase-8, -3, -6 signaling. J Biol Chem 2010; 285:33209-33218. [PMID: 20702410 DOI: 10.1074/jbc.m110.113860] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Apoptosis is driven by positive feedback activation between aspartate-specific cysteinyl proteases (caspases). These feedback loops ensure the swift and efficient elimination of cells upon initiation of apoptosis execution. At the same time, the signaling network must be insensitive to erroneous, mild caspase activation to avoid unwanted, excessive cell death. Sublethal caspase activation in fact was shown to be a requirement for the differentiation of multiple cell types but might also occur accidentally during short, transient cellular stress conditions. Here we carried out an in silico comparison of the molecular mechanisms that so far have been identified to impair the amplification of caspase activities via the caspase-8, -3, -6 loop. In a systems model resembling HeLa cervical cancer cells, the dimerization/dissociation balance of caspase-8 potently suppressed the amplification of caspase responses, surprisingly outperforming or matching known caspase-8 and -3 inhibitors such as bifunctional apoptosis repressor or x-linked inhibitor of apoptosis protein. These findings were further substantiated in global sensitivity analyses based on combinations of protein concentrations from the sub- to superphysiological range to screen the full spectrum of biological variability that can be expected within cell populations and between distinct cell types. Additional modeling showed that the combined effects of x-linked inhibitor of apoptosis protein and caspase-8 dimerization/dissociation processes can also provide resistance to larger inputs of active caspases. Our study therefore highlights a central and so far underappreciated role of caspase-8 dimerization/dissociation in avoiding unwanted cell death by lethal amplification of caspase responses via the caspase-8, -3, -6 loop.
Collapse
Affiliation(s)
- Maximilian L Würstle
- From the Department of Physiology and Medical Physics, Dublin 2, Ireland; Systems Biology Group, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - Maike A Laussmann
- From the Department of Physiology and Medical Physics, Dublin 2, Ireland; Systems Biology Group, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - Markus Rehm
- From the Department of Physiology and Medical Physics, Dublin 2, Ireland; Systems Biology Group, Royal College of Surgeons in Ireland, Dublin 2, Ireland.
| |
Collapse
|
45
|
Ghali O, Chauveau C, Hardouin P, Broux O, Devedjian JC. TNF-alpha's effects on proliferation and apoptosis in human mesenchymal stem cells depend on RUNX2 expression. J Bone Miner Res 2010; 25:1616-26. [PMID: 20200969 DOI: 10.1002/jbmr.52] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
RUNX2 is a bone-specific transcription factor that plays a critical role in prenatal bone formation and postnatal bone development. It regulates the expression of genes that are important in committing cells into the osteoblast lineage. There is increasing evidence that RUNX2 is involved in osteoblast proliferation. RUNX2 expression increases during osteoblast differentiation, and recent data even suggest that it acts as a proapoptotic factor. The cytokine tumor necrosis factor alpha (TNF-alpha) is known to modulate osteoblast functions in a manner that depends on the differentiation stage. TNF-alpha affects the rate at which mesenchymal precursor cells differentiate into osteoblasts and induces apoptosis in mature osteoblasts. Thus we sought to establish whether or not the effects of TNF-alpha and fetal calf serum on proliferation and apoptosis in human mesenchymal stem cells (hMSCs) were dependent on RUNX2 level and activity. We transfected hMSCs with small interfering RNAs (siRNAs) directed against RUNX2 and found that they proliferated more quickly than control hMSCs transfected with a nonspecific siRNA. This increase in proliferation was accompanied by a rise in cyclin A1, B1, and E1 expression and a decrease in levels of the cyclin inhibitor p21. Moreover, we observed that RUNX2 silencing protected hMSCs from TNF-alpha's antiproliferative and apoptotic effects. This protection was accompanied by the inhibition of caspase-3 activity and Bax expression. Our results confirmed that RUNX2 is a critical link between cell fate, proliferation, and growth control. This study also suggested that, depending on the osteoblasts' differentiation stage, RUNX2 may control cell growth by regulating the expression of elements involved in hormone and cytokine sensitivity.
Collapse
Affiliation(s)
- Olfa Ghali
- Laboratoire de Recherche sur les Biomatériaux/Laboratoire de Biologie Cellulaire et Moléculaire, EA 2603, IFR 114, Université Lille Nord de France, Boulogne-sur-mer, France
| | | | | | | | | |
Collapse
|
46
|
Olfa G, Christophe C, Philippe L, Romain S, Khaled H, Pierre H, Odile B, Jean-Christophe D. RUNX2 regulates the effects of TNFalpha on proliferation and apoptosis in SaOs-2 cells. Bone 2010; 46:901-10. [PMID: 20053387 DOI: 10.1016/j.bone.2009.12.027] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2009] [Revised: 12/08/2009] [Accepted: 12/27/2009] [Indexed: 10/20/2022]
Abstract
The runt-related transcriptional factor RUNX2 is an essential mediator of the osteoblast phenotype and plays a pivotal role in the process of osteoblast differentiation. The involvement of RUNX2 includes the regulation of genes that are important in committing cells to the osteoblast lineage. Increasing evidences are consistent with a requirement of RUNX2 for stringent control of osteoblast proliferation and recent data even suggested that RUNX2 might act as a proapoptotic factor. Among the cytokines described as modulators of osteoblast functions, TNFalpha affects both apoptosis and the differentiation rate from mesenchymal precursor cells of osteoblast. Thus we evaluated on the human osteosarcoma cell line SaOs-2 stably transfected with a RUNX2 dominant negative construct (DeltaRUNX2) the effects of serum and TNFalpha on proliferation and apoptosis. In this study we showed that SaOs-2 clones expressing high levels of DeltaRUNX2 presented a higher proliferation rate than clones transfected with an empty vector. This increase in cell growth was accompanied by a rise in cyclins A1, B1 and E1 expression and a decrease in the cyclin inhibitor p21. Moreover we observed that the expression of the RUNX2 transgene protected the SaOs-2 cells from the antiproliferative and the apoptotic effects induced by TNFalpha. This was accompanied by the inhibition of Bax and activation of Bcl2 expression. Experiments done on SaOs-2 cells transiently transfected with siRNA confirmed that RUNX2 represents a critical link between cell fate, proliferation and growth control. This study also suggested that RUNX2 might control osteoblastic growth depending on the differentiation stage of the cells by regulating expression of elements involved in hormones and cytokines sensitivity.
Collapse
Affiliation(s)
- Ghali Olfa
- LR2B/LBCM - EA 2603 - IFR 114. Université Lille Nord de France. Boulogne-sur-mer. France
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Hellwig CT, Ludwig-Galezowska AH, Concannon CG, Litchfield DW, Prehn JHM, Rehm M. Activity of protein kinase CK2 uncouples Bid cleavage from caspase-8 activation. J Cell Sci 2010; 123:1401-6. [PMID: 20356928 DOI: 10.1242/jcs.061143] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
In the present study, we quantitatively analysed the interface between apoptosis initiation and execution by determining caspase-8 activation, Bid cleavage and mitochondrial engagement (onset of mitochondrial depolarisation) in individual HeLa cervical cancer cells following exposure to tumour-necrosis-factor-related apoptosis-inducing ligand (TRAIL). Employing resonance-energy-transfer probes containing either the caspase-8 recognition site IETD or full-length Bid, we observed a significant delay between the times of caspase-8 activation and Bid cleavage, suggesting the existence of control steps separating these two processes. Subsequent analyses suggested that the divergence of caspase-8 activation and Bid cleavage are critically controlled by kinase signalling: inhibiting protein kinase CK2 by using 5,6-dichloro-l-(beta-D-ribofuranosyl-1)-benzimidazole (DRB) or by overexpression of a dominant-negative CK2alpha catalytic subunit largely eliminated the lag time between caspase-8 activation and Bid cleavage. We conclude that caspase-8 activation and Bid cleavage are temporally uncoupled events, providing transient tolerance to caspase-8 activities.
Collapse
Affiliation(s)
- Christian T Hellwig
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, RCSI York House, York Street, Dublin 2, Ireland
| | | | | | | | | | | |
Collapse
|
48
|
Gill C, Dowling C, O'Neill AJ, Watson RWG. Effects of cIAP-1, cIAP-2 and XIAP triple knockdown on prostate cancer cell susceptibility to apoptosis, cell survival and proliferation. Mol Cancer 2009; 8:39. [PMID: 19549337 PMCID: PMC2706796 DOI: 10.1186/1476-4598-8-39] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2009] [Accepted: 06/23/2009] [Indexed: 11/16/2022] Open
Abstract
Background Manipulating apoptotic resistance represents an important strategy for the treatment of hormone refractory prostate cancer. We hypothesised that the Inhibitor of Apoptosis (IAP) Proteins may be mediating this resistance and knockdown of cIAP-1, cIAP-2 and XIAP would increase sensitivity to apoptosis. Methods cIAP-1, cIAP-2 and XIAP where knocked down either individually or in combination using siRNA in androgen independent prostate cancer PC-3 cells as confirmed by real-time PCR and western blotting. Cells were then treated with TRAIL, Etoposide, or Tunicamycin, and apoptosis assessed by PI DNA staining. Apoptosis was confirmed with Annexin V labelling and measurement of PARP cleavage, and was inhibited using the pan-caspase inhibitor, zVAD.fmk. Clonogenic assays and assessment of ID-1 expression by western blotting were used to measure recovery and proliferation. Results PC-3 are resistant to TRAIL induced apoptosis and have elevated expression of cIAP-1, cIAP-2 and XIAP. Combined knockdown sensitised PC-3 to TRAIL induced apoptosis, but not to Etoposide or Tunicmycin, with corresponding increases in caspase activity and PARP cleavage which was inhibited by ZVAD.fmk. Triple knock down decreased proliferation which was confirmed by decreased ID-1 expression. Conclusion Simultaneous knock down of the IAPs not only sensitised the PC-3 to TRAIL but also inhibited their proliferation rates and clonogenic survival. The inability to alter sensitivity to other triggers of apoptosis suggests that this effect is specific for death receptor pathways and knock down might facilitate immune-surveillance mechanisms to counter cancer progression and, in combination with therapeutic approaches using TRAIL, could represent an important treatment strategy.
Collapse
Affiliation(s)
- Catherine Gill
- UCD School of Medicine and Medical Science, University College Dublin, Dublin, Ireland.
| | | | | | | |
Collapse
|
49
|
Rehm M, Huber HJ, Hellwig CT, Anguissola S, Dussmann H, Prehn JHM. Dynamics of outer mitochondrial membrane permeabilization during apoptosis. Cell Death Differ 2009; 16:613-23. [PMID: 19136937 DOI: 10.1038/cdd.2008.187] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Individual cells within a population undergo apoptosis at distinct, apparently random time points. By analyzing cellular mitotic history, we identified that sibling HeLa cell pairs, in contrast to random cell pairs, underwent apoptosis synchronously. This allowed us to use high-speed cellular imaging to investigate mitochondrial outer membrane permeabilization (MOMP), a highly coordinated, rapid process during apoptosis, at a temporal resolution approximately 100 times higher than possible previously. We obtained new functional and mechanistic insight into the process of MOMP: We were able to determine the kinetics of pore formation in the outer mitochondrial membrane from the initiation phase of cytochrome-c-GFP redistribution, and showed differential pore formation kinetics in response to intrinsic or extrinsic apoptotic stimuli (staurosporine, tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)). We also detected that the onset of mitochondrial permeabilization frequently proceeded as a wave through the cytosol, and that the frequency of wave occurrence in response to TRAIL was reduced by inhibition of protein kinase CK2. Computational analysis by a partial differential equation model suggested that the spread of permeabilization signals could sufficiently be explained by diffusion-adsorption velocities of locally generated permeabilization inducers. Taken together, our study yielded the first comprehensive analysis of clonal cell-to-cell variability in apoptosis execution and allowed to visualize and explain the dynamics of MOMP in cells undergoing apoptosis.
Collapse
Affiliation(s)
- M Rehm
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin 2, Ireland.
| | | | | | | | | | | |
Collapse
|