1
|
Gnaien M, Maufrais C, Rebai Y, Kallel A, Ma L, Hamouda S, Khalsi F, Meftah K, Smaoui H, Khemiri M, Hadj Fredj S, Bachellier-Bassi S, Najjar I, Messaoud T, Boussetta K, Kallel K, Mardassi H, d’Enfert C, Bougnoux ME, Znaidi S. A gain-of-function mutation in zinc cluster transcription factor Rob1 drives Candida albicans adaptive growth in the cystic fibrosis lung environment. PLoS Pathog 2024; 20:e1012154. [PMID: 38603707 PMCID: PMC11037546 DOI: 10.1371/journal.ppat.1012154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 04/23/2024] [Accepted: 03/26/2024] [Indexed: 04/13/2024] Open
Abstract
Candida albicans chronically colonizes the respiratory tract of patients with Cystic Fibrosis (CF). It competes with CF-associated pathogens (e.g. Pseudomonas aeruginosa) and contributes to disease severity. We hypothesize that C. albicans undergoes specific adaptation mechanisms that explain its persistence in the CF lung environment. To identify the underlying genetic and phenotypic determinants, we serially recovered 146 C. albicans clinical isolates over a period of 30 months from the sputum of 25 antifungal-naive CF patients. Multilocus sequence typing analyses revealed that most patients were individually colonized with genetically close strains, facilitating comparative analyses between serial isolates. We strikingly observed differential ability to filament and form monospecies and dual-species biofilms with P. aeruginosa among 18 serial isolates sharing the same diploid sequence type, recovered within one year from a pediatric patient. Whole genome sequencing revealed that their genomes were highly heterozygous and similar to each other, displaying a highly clonal subpopulation structure. Data mining identified 34 non-synonymous heterozygous SNPs in 19 open reading frames differentiating the hyperfilamentous and strong biofilm-former strains from the remaining isolates. Among these, we detected a glycine-to-glutamate substitution at position 299 (G299E) in the deduced amino acid sequence of the zinc cluster transcription factor ROB1 (ROB1G299E), encoding a major regulator of filamentous growth and biofilm formation. Introduction of the G299E heterozygous mutation in a co-isolated weak biofilm-former CF strain was sufficient to confer hyperfilamentous growth, increased expression of hyphal-specific genes, increased monospecies biofilm formation and increased survival in dual-species biofilms formed with P. aeruginosa, indicating that ROB1G299E is a gain-of-function mutation. Disruption of ROB1 in a hyperfilamentous isolate carrying the ROB1G299E allele abolished hyperfilamentation and biofilm formation. Our study links a single heterozygous mutation to the ability of C. albicans to better survive during the interaction with other CF-associated microbes and illuminates how adaptive traits emerge in microbial pathogens to persistently colonize and/or infect the CF-patient airways.
Collapse
Affiliation(s)
- Mayssa Gnaien
- Institut Pasteur de Tunis, University of Tunis El Manar, Laboratoire de Microbiologie Moléculaire, Vaccinologie et Développement Biotechnologique (LR16IPT01), Tunis, Tunisia
| | - Corinne Maufrais
- Institut Pasteur, Université Paris Cité, INRAE USC2019A, Département Mycologie, Unité Biologie et Pathogénicité Fongiques, Paris, France
- Institut Pasteur, Université Paris Cité, Bioinformatics and Biostatistics Hub, F-75015 Paris, France
| | - Yasmine Rebai
- Institut Pasteur de Tunis, University of Tunis El Manar, Laboratoire de Microbiologie Moléculaire, Vaccinologie et Développement Biotechnologique (LR16IPT01), Tunis, Tunisia
| | - Aicha Kallel
- Institut Pasteur de Tunis, University of Tunis El Manar, Laboratoire de Microbiologie Moléculaire, Vaccinologie et Développement Biotechnologique (LR16IPT01), Tunis, Tunisia
- Hôpital La Rabta, Laboratoire de Parasitologie et de Mycologie, UR17SP03, Tunis, Tunisia
| | - Laurence Ma
- Institut Pasteur, Université Paris Cité, Biomics core facility, Centre de Ressources et Recherche Technologique (C2RT), Paris, France
| | - Samia Hamouda
- Hôpital d’Enfants Béchir Hamza de Tunis, Tunis, Tunisia
| | - Fatma Khalsi
- Hôpital d’Enfants Béchir Hamza de Tunis, Tunis, Tunisia
| | | | - Hanen Smaoui
- Hôpital d’Enfants Béchir Hamza de Tunis, Tunis, Tunisia
| | - Monia Khemiri
- Hôpital d’Enfants Béchir Hamza de Tunis, Tunis, Tunisia
| | | | - Sophie Bachellier-Bassi
- Institut Pasteur, Université Paris Cité, INRAE USC2019A, Département Mycologie, Unité Biologie et Pathogénicité Fongiques, Paris, France
| | - Imène Najjar
- Institut Pasteur, Université Paris Cité, Biomics core facility, Centre de Ressources et Recherche Technologique (C2RT), Paris, France
| | | | | | - Kalthoum Kallel
- Hôpital La Rabta, Laboratoire de Parasitologie et de Mycologie, UR17SP03, Tunis, Tunisia
| | - Helmi Mardassi
- Institut Pasteur de Tunis, University of Tunis El Manar, Laboratoire de Microbiologie Moléculaire, Vaccinologie et Développement Biotechnologique (LR16IPT01), Tunis, Tunisia
| | - Christophe d’Enfert
- Institut Pasteur, Université Paris Cité, INRAE USC2019A, Département Mycologie, Unité Biologie et Pathogénicité Fongiques, Paris, France
| | - Marie-Elisabeth Bougnoux
- Institut Pasteur, Université Paris Cité, INRAE USC2019A, Département Mycologie, Unité Biologie et Pathogénicité Fongiques, Paris, France
| | - Sadri Znaidi
- Institut Pasteur de Tunis, University of Tunis El Manar, Laboratoire de Microbiologie Moléculaire, Vaccinologie et Développement Biotechnologique (LR16IPT01), Tunis, Tunisia
- Institut Pasteur, Université Paris Cité, INRAE USC2019A, Département Mycologie, Unité Biologie et Pathogénicité Fongiques, Paris, France
| |
Collapse
|
2
|
Li M, Chu Y, Dong X, Ji H. General mechanisms of weak acid-tolerance and current strategies for the development of tolerant yeasts. World J Microbiol Biotechnol 2023; 40:49. [PMID: 38133718 DOI: 10.1007/s11274-023-03875-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 12/16/2023] [Indexed: 12/23/2023]
Abstract
Yeast cells are often subjected to various types of weak acid stress in the process of industrial production, food processing, and preservation, resulting in growth inhibition and reduced fermentation performance. Under acidic conditions, weak acids enter the near-neutral yeast cytoplasm and dissociate into protons and anions, leading to cytoplasmic acidification and cell damage. Although some yeast strains have developed the ability to survive weak acids, the complexity and diversity of stresses during industrial production still require the application of appropriate strategies for phenotypes improvement. In this review, we summarized current knowledge concerning weak acid stress response and resistance, which may suggest important targets for further construction of more robust strains. We also highlight current feasible strategies for improving the weak acid resistance of yeasts, such as adaptive laboratory evolution, transcription factors engineering, and cell membrane/wall engineering. Moreover, the challenges and perspectives associated with improving the competitiveness of industrial strains are also discussed. This review provides effective strategies for improving the industrial phenotypes of yeast from multiple dimensions in future studies.
Collapse
Affiliation(s)
- Mengmeng Li
- Institute of Life Sciences, College of Life and Environmental Science, Wenzhou University, Wenzhou, Zhejiang, 325035, PR China
- Biomedical Collaborative Innovation Center of Zhejiang Province & Engineering Laboratory of Zhejiang Province for Pharmaceutical Development of Growth Factors, Wenzhou University, Wenzhou, Zhejiang, 325035, PR China
| | - Yunfei Chu
- Institute of Life Sciences, College of Life and Environmental Science, Wenzhou University, Wenzhou, Zhejiang, 325035, PR China
- Biomedical Collaborative Innovation Center of Zhejiang Province & Engineering Laboratory of Zhejiang Province for Pharmaceutical Development of Growth Factors, Wenzhou University, Wenzhou, Zhejiang, 325035, PR China
| | - Xiameng Dong
- Department of Agriculture and Biotechnology, Wenzhou Vocational College of Science and Technology, Wenzhou, Zhejiang, 325006, PR China.
| | - Hao Ji
- Institute of Life Sciences, College of Life and Environmental Science, Wenzhou University, Wenzhou, Zhejiang, 325035, PR China.
- Biomedical Collaborative Innovation Center of Zhejiang Province & Engineering Laboratory of Zhejiang Province for Pharmaceutical Development of Growth Factors, Wenzhou University, Wenzhou, Zhejiang, 325035, PR China.
| |
Collapse
|
3
|
Bayer T, Hänel L, Husarcikova J, Kunzendorf A, Bornscheuer UT. In Vivo Detection of Low Molecular Weight Platform Chemicals and Environmental Contaminants by Genetically Encoded Biosensors. ACS OMEGA 2023; 8:23227-23239. [PMID: 37426270 PMCID: PMC10324065 DOI: 10.1021/acsomega.3c01741] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 06/08/2023] [Indexed: 07/11/2023]
Abstract
Genetically encoded biosensor systems operating in living cells are versatile, cheap, and transferable tools for the detection and quantification of a broad range of small molecules. This review presents state-of-the-art biosensor designs and assemblies, featuring transcription factor-, riboswitch-, and enzyme-coupled devices, highly engineered fluorescent probes, and emerging two-component systems. Importantly, (bioinformatic-assisted) strategies to resolve contextual issues, which cause biosensors to miss performance criteria in vivo, are highlighted. The optimized biosensing circuits can be used to monitor chemicals of low molecular mass (<200 g mol-1) and physicochemical properties that challenge conventional chromatographical methods with high sensitivity. Examples herein include but are not limited to formaldehyde, formate, and pyruvate as immediate products from (synthetic) pathways for the fixation of carbon dioxide (CO2), industrially important derivatives like small- and medium-chain fatty acids and biofuels, as well as environmental toxins such as heavy metals or reactive oxygen and nitrogen species. Lastly, this review showcases biosensors capable of assessing the biosynthesis of platform chemicals from renewable resources, the enzymatic degradation of plastic waste, or the bioadsorption of highly toxic chemicals from the environment. These applications offer new biosensor-based manufacturing, recycling, and remediation strategies to tackle current and future environmental and socioeconomic challenges including the wastage of fossil fuels, the emission of greenhouse gases like CO2, and the pollution imposed on ecosystems and human health.
Collapse
Affiliation(s)
- Thomas Bayer
- Department of Biotechnology
and Enzyme Catalysis, Institute of Biochemistry, University of Greifswald, Felix-Hausdorff-Strasse 4, 17487 Greifswald, Germany
| | - Luise Hänel
- Department of Biotechnology
and Enzyme Catalysis, Institute of Biochemistry, University of Greifswald, Felix-Hausdorff-Strasse 4, 17487 Greifswald, Germany
| | - Jana Husarcikova
- Department of Biotechnology
and Enzyme Catalysis, Institute of Biochemistry, University of Greifswald, Felix-Hausdorff-Strasse 4, 17487 Greifswald, Germany
| | - Andreas Kunzendorf
- Department of Biotechnology
and Enzyme Catalysis, Institute of Biochemistry, University of Greifswald, Felix-Hausdorff-Strasse 4, 17487 Greifswald, Germany
| | - Uwe T. Bornscheuer
- Department of Biotechnology
and Enzyme Catalysis, Institute of Biochemistry, University of Greifswald, Felix-Hausdorff-Strasse 4, 17487 Greifswald, Germany
| |
Collapse
|
4
|
Miyake R, Ling H, Foo JL, Fugono N, Chang MW. Transporter-Driven Engineering of a Genetic Biosensor for the Detection and Production of Short-Branched Chain Fatty Acids in Saccharomyces cerevisiae. Front Bioeng Biotechnol 2022; 10:838732. [PMID: 35372305 PMCID: PMC8975619 DOI: 10.3389/fbioe.2022.838732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 02/28/2022] [Indexed: 12/02/2022] Open
Abstract
Biosensors can be used for real-time monitoring of metabolites and high-throughput screening of producer strains. Use of biosensors has facilitated strain engineering to efficiently produce value-added compounds. Following our recent work on the production of short branched-chain fatty acids (SBCFAs) in engineered Saccharomyces cerevisiae, here we harnessed a weak organic acid transporter Pdr12p, engineered a whole-cell biosensor to detect exogenous and intracellular SBCFAs and optimized the biosensor’s performance by varying PDR12 expression. We firstly constructed the biosensor and evaluated its response to a range of short-chain carboxylic acids. Next, we optimized its sensitivity and operational range by deletion and overexpression of PDR12. We found that the biosensor responded to exogenous SBCFAs including isovaleric acid, isobutyric acid and 2-methylbutanoic acid. PDR12 deletion enhanced the biosensor’s sensitivity to isovaleric acid at a low concentration and PDR12 overexpression shifted the operational range towards a higher concentration. Lastly, the deletion of PDR12 improved the biosensor’s sensitivity to the SBCFAs produced in our previously engineered SBCFA-overproducing strain. To our knowledge, our work represents the first study on employing an ATP-binding-cassette transporter to engineer a transcription-factor-based genetic biosensor for sensing SBCFAs in S. cerevisiae. Our findings provide useful insights into SBCFA detection by a genetic biosensor that will facilitate the screening of SBCFA-overproducing strains.
Collapse
Affiliation(s)
- Ryoma Miyake
- NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, Singapore, Singapore
- Synthetic Biology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Science & Innovation Center, Mitsubishi Chemical Corporation, Yokohama, Japan
| | - Hua Ling
- NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, Singapore, Singapore
- Synthetic Biology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Jee Loon Foo
- NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, Singapore, Singapore
- Synthetic Biology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Nobutake Fugono
- Science & Innovation Center, Mitsubishi Chemical Corporation, Yokohama, Japan
| | - Matthew Wook Chang
- NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, Singapore, Singapore
- Synthetic Biology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- *Correspondence: Matthew Wook Chang,
| |
Collapse
|
5
|
Kumari S, Kumar M, Gaur NA, Prasad R. Multiple roles of ABC transporters in yeast. Fungal Genet Biol 2021; 150:103550. [PMID: 33675986 DOI: 10.1016/j.fgb.2021.103550] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 01/29/2021] [Accepted: 02/25/2021] [Indexed: 12/20/2022]
Abstract
The ATP binding cassette (ABC) transporters, first discovered as high-affinity nutrient importers in bacteria, rose to prominence when their ability to confer multidrug resistance (MDR) to cancer cells was realized. The most characterized human permeability glycoprotein (P-gp) is a dominant exporter of anti-cancer drugs and its overexpression is directly linked to MDR. The overexpression of drug efflux pumps belonging to the ABC superfamily is also a frequent cause of resistance to antifungals. Fungi has a battery of ABC proteins, but in variable numbers and at different subcellular locations. These proteins perform many critical functions, from serving as gatekeepers for xenobiotic cleansing to translocating various structurally unrelated cargoes, including lipids, fatty acids, ions, peptides, sterols, metabolites and toxins. Their emerging additional roles in cellular physiology and virulence call for attention to analyze and re-examine their divergent functions in yeast. In brief, this review traces the history of ABC transporters in yeast and discusses their typical physiological functions that go beyond their well-known role as antifungal drug efflux pumps.
Collapse
Affiliation(s)
- Sonam Kumari
- Yeast Biofuel Group, International Centre for Genetic Engineering and Biotechnology, New Delhi 110067, India
| | - Mohit Kumar
- Yeast Biofuel Group, International Centre for Genetic Engineering and Biotechnology, New Delhi 110067, India; Amity Institute of Integrative Science and Health, Amity Institute of Biotechnology, Amity University Gurgaon, 122413 Haryana, India
| | - Naseem A Gaur
- Yeast Biofuel Group, International Centre for Genetic Engineering and Biotechnology, New Delhi 110067, India.
| | - Rajendra Prasad
- Amity Institute of Integrative Science and Health, Amity Institute of Biotechnology, Amity University Gurgaon, 122413 Haryana, India.
| |
Collapse
|
6
|
Buechel ER, Pinkett HW. Transcription factors and ABC transporters: from pleiotropic drug resistance to cellular signaling in yeast. FEBS Lett 2020; 594:3943-3964. [PMID: 33089887 DOI: 10.1002/1873-3468.13964] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 09/07/2020] [Accepted: 10/15/2020] [Indexed: 12/24/2022]
Abstract
Budding yeast Saccharomyces cerevisiae survives in microenvironments utilizing networks of regulators and ATP-binding cassette (ABC) transporters to circumvent toxins and a variety of drugs. Our understanding of transcriptional regulation of ABC transporters in yeast is mainly derived from the study of multidrug resistance protein networks. Over the past two decades, this research has not only expanded the role of transcriptional regulators in pleiotropic drug resistance (PDR) but evolved to include the role that regulators play in cellular signaling and environmental adaptation. Inspection of the gene networks of the transcriptional regulators and characterization of the ABC transporters has clarified that they also contribute to environmental adaptation by controlling plasma membrane composition, toxic-metal sequestration, and oxidative stress adaptation. Additionally, ABC transporters and their regulators appear to be involved in cellular signaling for adaptation of S. cerevisiae populations to nutrient availability. In this review, we summarize the current understanding of the S. cerevisiae transcriptional regulatory networks and highlight recent work in other notable fungal organisms, underlining the expansion of the study of these gene networks across the kingdom fungi.
Collapse
Affiliation(s)
- Evan R Buechel
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA
| | - Heather W Pinkett
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA
| |
Collapse
|
7
|
Pereira R, Wei Y, Mohamed E, Radi M, Malina C, Herrgård MJ, Feist AM, Nielsen J, Chen Y. Adaptive laboratory evolution of tolerance to dicarboxylic acids in Saccharomyces cerevisiae. Metab Eng 2019; 56:130-141. [DOI: 10.1016/j.ymben.2019.09.008] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 09/19/2019] [Accepted: 09/19/2019] [Indexed: 11/16/2022]
|
8
|
Kim MS, Cho KH, Park KH, Jang J, Hahn JS. Activation of Haa1 and War1 transcription factors by differential binding of weak acid anions in Saccharomyces cerevisiae. Nucleic Acids Res 2019; 47:1211-1224. [PMID: 30476185 PMCID: PMC6379682 DOI: 10.1093/nar/gky1188] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 10/31/2018] [Accepted: 11/07/2018] [Indexed: 01/03/2023] Open
Abstract
In Saccharomyces cerevisiae, Haa1 and War1 transcription factors are involved in cellular adaptation against hydrophilic weak acids and lipophilic weak acids, respectively. However, it is unclear how these transcription factors are differentially activated depending on the identity of the weak acid. Using a field-effect transistor (FET)-type biosensor based on carbon nanofibers, in the present study we demonstrate that Haa1 and War1 directly bind to various weak acid anions with different affinities. Haa1 is most sensitive to acetate, followed by lactate, whereas War1 is most sensitive to benzoate, followed by sorbate, reflecting their differential activation during weak acid stresses. We show that DNA binding by Haa1 is induced in the presence of acetic acid and that the N-terminal Zn-binding domain is essential for this activity. Acetate binds to the N-terminal 150-residue region, and the transcriptional activation domain is located between amino acid residues 230 and 483. Our data suggest that acetate binding converts an inactive Haa1 to the active form, which is capable of DNA binding and transcriptional activation.
Collapse
Affiliation(s)
- Myung Sup Kim
- School of Chemical and Biological Engineering, Seoul National University, Institute of Chemical Processes, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Kyung Hee Cho
- School of Chemical and Biological Engineering, Seoul National University, Institute of Chemical Processes, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Kwang Hyun Park
- School of Chemical and Biological Engineering, Seoul National University, Institute of Chemical Processes, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Jyongsik Jang
- School of Chemical and Biological Engineering, Seoul National University, Institute of Chemical Processes, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Ji-Sook Hahn
- School of Chemical and Biological Engineering, Seoul National University, Institute of Chemical Processes, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| |
Collapse
|
9
|
Baumann L, Rajkumar AS, Morrissey JP, Boles E, Oreb M. A Yeast-Based Biosensor for Screening of Short- and Medium-Chain Fatty Acid Production. ACS Synth Biol 2018; 7:2640-2646. [PMID: 30338986 DOI: 10.1021/acssynbio.8b00309] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Short- and medium-chain fatty acids (SMCFA) are important platform chemicals currently produced from nonsustainable resources. The engineering of microbial cells to produce SMCFA, however, lacks high-throughput methods to screen for best performing cells. Here, we present the development of a whole-cell biosensor for easy and rapid detection of SMCFA. The biosensor is based on a multicopy yeast plasmid containing the SMCFA-responsive PDR12 promoter coupled to GFP as the reporter gene. The sensor detected hexanoic, heptanoic and octanoic acid over a linear range up to 2, 1.5, and 0.75 mM, respectively, but did not show a linear response to decanoic and dodecanoic acid. We validated the functionality of the biosensor with culture supernatants of a previously engineered Saccharomyces cerevisiae octanoic acid producer strain and derivatives thereof. The biosensor signal correlated strongly with the octanoic acid concentrations as determined by gas chromatography. Thus, this biosensor enables the high-throughput screening of SMCFA producers and has the potential to drastically speed up the engineering of diverse SMCFA producing cell factories.
Collapse
Affiliation(s)
- Leonie Baumann
- Institute of Molecular Biosciences, Faculty of Biological Sciences, Goethe University Frankfurt, Max-von-Laue Straße 9, 60438 Frankfurt am Main, Germany
| | - Arun S. Rajkumar
- School of Microbiology, Centre for Synthetic Biology and Biotechnology, Environmental Research Institute, APC Microbiome Institute, University College Cork, Cork T12 YN60, Ireland
| | - John P. Morrissey
- School of Microbiology, Centre for Synthetic Biology and Biotechnology, Environmental Research Institute, APC Microbiome Institute, University College Cork, Cork T12 YN60, Ireland
| | - Eckhard Boles
- Institute of Molecular Biosciences, Faculty of Biological Sciences, Goethe University Frankfurt, Max-von-Laue Straße 9, 60438 Frankfurt am Main, Germany
| | - Mislav Oreb
- Institute of Molecular Biosciences, Faculty of Biological Sciences, Goethe University Frankfurt, Max-von-Laue Straße 9, 60438 Frankfurt am Main, Germany
| |
Collapse
|
10
|
Cunha JT, Romaní A, Costa CE, Sá-Correia I, Domingues L. Molecular and physiological basis of Saccharomyces cerevisiae tolerance to adverse lignocellulose-based process conditions. Appl Microbiol Biotechnol 2018; 103:159-175. [PMID: 30397768 DOI: 10.1007/s00253-018-9478-3] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 10/19/2018] [Accepted: 10/22/2018] [Indexed: 11/27/2022]
Abstract
Lignocellulose-based biorefineries have been gaining increasing attention to substitute current petroleum-based refineries. Biomass processing requires a pretreatment step to break lignocellulosic biomass recalcitrant structure, which results in the release of a broad range of microbial inhibitors, mainly weak acids, furans, and phenolic compounds. Saccharomyces cerevisiae is the most commonly used organism for ethanol production; however, it can be severely distressed by these lignocellulose-derived inhibitors, in addition to other challenging conditions, such as pentose sugar utilization and the high temperatures required for an efficient simultaneous saccharification and fermentation step. Therefore, a better understanding of the yeast response and adaptation towards the presence of these multiple stresses is of crucial importance to design strategies to improve yeast robustness and bioconversion capacity from lignocellulosic biomass. This review includes an overview of the main inhibitors derived from diverse raw material resultants from different biomass pretreatments, and describes the main mechanisms of yeast response to their presence, as well as to the presence of stresses imposed by xylose utilization and high-temperature conditions, with a special emphasis on the synergistic effect of multiple inhibitors/stressors. Furthermore, successful cases of tolerance improvement of S. cerevisiae are highlighted, in particular those associated with other process-related physiologically relevant conditions. Decoding the overall yeast response mechanisms will pave the way for the integrated development of sustainable yeast cell-based biorefineries.
Collapse
Affiliation(s)
- Joana T Cunha
- Centre of Biological Engineering (CEB), University of Minho, 4710-057, Braga, Portugal
| | - Aloia Romaní
- Centre of Biological Engineering (CEB), University of Minho, 4710-057, Braga, Portugal
| | - Carlos E Costa
- Centre of Biological Engineering (CEB), University of Minho, 4710-057, Braga, Portugal
| | - Isabel Sá-Correia
- Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001, Lisbon, Portugal
| | - Lucília Domingues
- Centre of Biological Engineering (CEB), University of Minho, 4710-057, Braga, Portugal.
| |
Collapse
|
11
|
Williams TC, Xu X, Ostrowski M, Pretorius IS, Paulsen IT. Positive-feedback, ratiometric biosensor expression improves high-throughput metabolite-producer screening efficiency in yeast. Synth Biol (Oxf) 2017; 2:ysw002. [PMID: 32995501 PMCID: PMC7513737 DOI: 10.1093/synbio/ysw002] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 11/14/2016] [Accepted: 11/29/2016] [Indexed: 11/23/2022] Open
Abstract
Biosensors are valuable and versatile tools in synthetic biology that are used to modulate gene expression in response to a wide range of stimuli. Ligand responsive transcription factors are a class of biosensor that can be used to couple intracellular metabolite concentration with gene expression to enable dynamic regulation and high-throughput metabolite producer screening. We have established the Saccharomyces cerevisiae WAR1 transcriptional regulator and PDR12 promoter as an organic acid biosensor that can be used to detect varying levels of para-hydroxybenzoic acid (PHBA) production from the shikimate pathway and output green fluorescent protein (GFP) expression in response. The dynamic range of GFP expression in response to PHBA was dramatically increased by engineering positive-feedback expression of the WAR1 transcriptional regulator from its target PDR12 promoter. In addition, the noise in GFP expression at the population-level was controlled by normalising GFP fluorescence to constitutively expressed mCherry fluorescence within each cell. These biosensor modifications increased the high-throughput screening efficiency of yeast cells engineered to produce PHBA by 5,000-fold, enabling accurate fluorescence activated cell sorting isolation of producer cells that were mixed at a ratio of 1 in 10,000 with non-producers. Positive-feedback, ratiometric transcriptional regulator expression is likely applicable to many other transcription-factor/promoter pairs used in synthetic biology and metabolic engineering for both dynamic regulation and high-throughput screening applications.
Collapse
Affiliation(s)
- Thomas C Williams
- Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, NSW, Australia
| | - Xin Xu
- Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, NSW, Australia
| | - Martin Ostrowski
- Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, NSW, Australia
| | - Isak S Pretorius
- Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, NSW, Australia
| | - Ian T Paulsen
- Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, NSW, Australia
| |
Collapse
|
12
|
Shah MV, van Mastrigt O, Heijnen JJ, van Gulik WM. Transport and metabolism of fumaric acid in Saccharomyces cerevisiae in aerobic glucose-limited chemostat culture. Yeast 2016; 33:145-61. [PMID: 26683700 DOI: 10.1002/yea.3148] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Revised: 12/11/2015] [Accepted: 12/11/2015] [Indexed: 11/08/2022] Open
Abstract
Currently, research is being focused on the industrial-scale production of fumaric acid and other relevant organic acids from renewable feedstocks via fermentation, preferably at low pH for better product recovery. However, at low pH a large fraction of the extracellular acid is present in the undissociated form, which is lipophilic and can diffuse into the cell. There have been no studies done on the impact of high extracellular concentrations of fumaric acid under aerobic conditions in S. cerevisiae, which is a relevant issue to study for industrial-scale production. In this work we studied the uptake and metabolism of fumaric acid in S. cerevisiae in glucose-limited chemostat cultures at a cultivation pH of 3.0 (pH < pK). Steady states were achieved with different extracellular levels of fumaric acid, obtained by adding different amounts of fumaric acid to the feed medium. The experiments were carried out with the wild-type S. cerevisiae CEN.PK 113-7D and an engineered S. cerevisiae ADIS 244 expressing a heterologous dicarboxylic acid transporter (DCT-02) from Aspergillus niger, to examine whether it would be capable of exporting fumaric acid. We observed that fumaric acid entered the cells most likely via passive diffusion of the undissociated form. Approximately two-thirds of the fumaric acid in the feed was metabolized together with glucose. From metabolic flux analysis, an increased ATP dissipation was observed only at high intracellular concentrations of fumarate, possibly due to the export of fumarate via an ABC transporter. The implications of our results for the industrial-scale production of fumaric acid are discussed.
Collapse
Affiliation(s)
- Mihir V Shah
- Department of Biotechnology, Delft University of Technology, The Netherlands
| | | | - Joseph J Heijnen
- Department of Biotechnology, Delft University of Technology, The Netherlands
| | - Walter M van Gulik
- Department of Biotechnology, Delft University of Technology, The Netherlands
| |
Collapse
|
13
|
Casal M, Queirós O, Talaia G, Ribas D, Paiva S. Carboxylic Acids Plasma Membrane Transporters in Saccharomyces cerevisiae. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 892:229-251. [PMID: 26721276 DOI: 10.1007/978-3-319-25304-6_9] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
This chapter covers the functionally characterized plasma membrane carboxylic acids transporters Jen1, Ady2, Fps1 and Pdr12 in the yeast Saccharomyces cerevisiae, addressing also their homologues in other microorganisms, as filamentous fungi and bacteria. Carboxylic acids can either be transported into the cells, to be used as nutrients, or extruded in response to acid stress conditions. The secondary active transporters Jen1 and Ady2 can mediate the uptake of the anionic form of these substrates by a H(+)-symport mechanism. The undissociated form of carboxylic acids is lipid-soluble, crossing the plasma membrane by simple diffusion. Furthermore, acetic acid can also be transported by facilitated diffusion via Fps1 channel. At the cytoplasmic physiological pH, the anionic form of the acid prevails and it can be exported by the Pdr12 pump. This review will highlight the mechanisms involving carboxylic acids transporters, and the way they operate according to the yeast cell response to environmental changes, as carbon source availability, extracellular pH and acid stress conditions.
Collapse
Affiliation(s)
- Margarida Casal
- CBMA-Centre of Molecular and Environmental Biology, Department of Biology, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal.
| | - Odília Queirós
- CBMA-Centre of Molecular and Environmental Biology, Department of Biology, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
- CESPU, Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde, Rua Central de Gandra, 1317, 4585-116, Gandra, PRD, Portugal
| | - Gabriel Talaia
- CBMA-Centre of Molecular and Environmental Biology, Department of Biology, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | - David Ribas
- CBMA-Centre of Molecular and Environmental Biology, Department of Biology, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | - Sandra Paiva
- CBMA-Centre of Molecular and Environmental Biology, Department of Biology, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| |
Collapse
|
14
|
Mota S, Vieira N, Barbosa S, Delaveau T, Torchet C, Le Saux A, Garcia M, Pereira A, Lemoine S, Coulpier F, Darzacq X, Benard L, Casal M, Devaux F, Paiva S. Role of the DHH1 gene in the regulation of monocarboxylic acids transporters expression in Saccharomyces cerevisiae. PLoS One 2014; 9:e111589. [PMID: 25365506 PMCID: PMC4218774 DOI: 10.1371/journal.pone.0111589] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Accepted: 09/26/2014] [Indexed: 01/05/2023] Open
Abstract
Previous experiments revealed that DHH1, a RNA helicase involved in the regulation of mRNA stability and translation, complemented the phenotype of a Saccharomyces cerevisiae mutant affected in the expression of genes coding for monocarboxylic-acids transporters, JEN1 and ADY2 (Paiva S, Althoff S, Casal M, Leao C. FEMS Microbiol Lett, 1999, 170:301-306). In wild type cells, JEN1 expression had been shown to be undetectable in the presence of glucose or formic acid, and induced in the presence of lactate. In this work, we show that JEN1 mRNA accumulates in a dhh1 mutant, when formic acid was used as sole carbon source. Dhh1 interacts with the decapping activator Dcp1 and with the deadenylase complex. This led to the hypothesis that JEN1 expression is post-transcriptionally regulated by Dhh1 in formic acid. Analyses of JEN1 mRNAs decay in wild-type and dhh1 mutant strains confirmed this hypothesis. In these conditions, the stabilized JEN1 mRNA was associated to polysomes but no Jen1 protein could be detected, either by measurable lactate carrier activity, Jen1-GFP fluorescence detection or western blots. These results revealed the complexity of the expression regulation of JEN1 in S. cerevisiae and evidenced the importance of DHH1 in this process. Additionally, microarray analyses of dhh1 mutant indicated that Dhh1 plays a large role in metabolic adaptation, suggesting that carbon source changes triggers a complex interplay between transcriptional and post-transcriptional effects.
Collapse
Affiliation(s)
- Sandra Mota
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Campus de Gualtar, Braga, Portugal
- Centre of Health and Environmental Research (CISA), School of Allied Health Sciences, Polytechnic Institute of Porto, Vila Nova de Gaia, Portugal
| | - Neide Vieira
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Campus de Gualtar, Braga, Portugal
| | - Sónia Barbosa
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Campus de Gualtar, Braga, Portugal
| | - Thierry Delaveau
- Sorbonne Universités, Université Pierre et Marie Curie, UMR7238, Laboratoire de Biologie computationnelle et quantitative, Paris, France
- CNRS, UMR7238, Laboratoire de Biologie computationnelle et quantitative, Paris, France
| | - Claire Torchet
- CNRS, UMR8226, Laboratoire de Biologie Moléculaire et Cellulaire des Eucaryotes, Institut de Biologie Physico-Chimique, Paris, France
- Sorbonne Universités, Université Pierre et Marie Curie UPMC, UMR8226, Laboratoire de Biologie Moléculaire et Cellulaire des Eucaryotes, Institut de Biologie Physico-Chimique, Paris, France
| | - Agnès Le Saux
- CNRS, FRE3630, Laboratoire de l’Expression Génétique Microbienne, Institut de Biologie Physico-Chimique, Paris, France
| | - Mathilde Garcia
- Sorbonne Universités, Université Pierre et Marie Curie, UMR7238, Laboratoire de Biologie computationnelle et quantitative, Paris, France
- CNRS, UMR7238, Laboratoire de Biologie computationnelle et quantitative, Paris, France
| | - Ana Pereira
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Campus de Gualtar, Braga, Portugal
| | - Sophie Lemoine
- École normale supérieure, Institut de Biologie de l’ENS, IBENS, Paris, France
- Inserm, U1024, Paris, France
- CNRS, UMR 8197, Paris, France
| | - Fanny Coulpier
- École normale supérieure, Institut de Biologie de l’ENS, IBENS, Paris, France
- Inserm, U1024, Paris, France
- CNRS, UMR 8197, Paris, France
| | - Xavier Darzacq
- École normale supérieure, Institut de Biologie de l’ENS, IBENS, Paris, France
- Inserm, U1024, Paris, France
- CNRS, UMR 8197, Paris, France
| | - Lionel Benard
- CNRS, UMR8226, Laboratoire de Biologie Moléculaire et Cellulaire des Eucaryotes, Institut de Biologie Physico-Chimique, Paris, France
- Sorbonne Universités, Université Pierre et Marie Curie UPMC, UMR8226, Laboratoire de Biologie Moléculaire et Cellulaire des Eucaryotes, Institut de Biologie Physico-Chimique, Paris, France
| | - Margarida Casal
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Campus de Gualtar, Braga, Portugal
| | - Frédéric Devaux
- Sorbonne Universités, Université Pierre et Marie Curie, UMR7238, Laboratoire de Biologie computationnelle et quantitative, Paris, France
- CNRS, UMR7238, Laboratoire de Biologie computationnelle et quantitative, Paris, France
| | - Sandra Paiva
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Campus de Gualtar, Braga, Portugal
| |
Collapse
|
15
|
Mojzita D, Oja M, Rintala E, Wiebe M, Penttilä M, Ruohonen L. Transcriptome of Saccharomyces cerevisiae during production of D-xylonate. BMC Genomics 2014; 15:763. [PMID: 25192596 PMCID: PMC4176587 DOI: 10.1186/1471-2164-15-763] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Accepted: 08/29/2014] [Indexed: 11/24/2022] Open
Abstract
Background Production of D-xylonate by the yeast S. cerevisiae provides an example of bioprocess development for sustainable production of value-added chemicals from cheap raw materials or side streams. Production of D-xylonate may lead to considerable intracellular accumulation of D-xylonate and to loss of viability during the production process. In order to understand the physiological responses associated with D-xylonate production, we performed transcriptome analyses during D-xylonate production by a robust recombinant strain of S. cerevisiae which produces up to 50 g/L D-xylonate. Results Comparison of the transcriptomes of the D-xylonate producing and the control strain showed considerably higher expression of the genes controlled by the cell wall integrity (CWI) pathway and of some genes previously identified as up-regulated in response to other organic acids in the D-xylonate producing strain. Increased phosphorylation of Slt2 kinase in the D-xylonate producing strain also indicated that D-xylonate production caused stress to the cell wall. Surprisingly, genes encoding proteins involved in translation, ribosome structure and RNA metabolism, processes which are commonly down-regulated under conditions causing cellular stress, were up-regulated during D-xylonate production, compared to the control. The overall transcriptional responses were, therefore, very dissimilar to those previously reported as being associated with stress, including stress induced by organic acid treatment or production. Quantitative PCR analyses of selected genes supported the observations made in the transcriptomic analysis. In addition, consumption of ethanol was slower and the level of trehalose was lower in the D-xylonate producing strain, compared to the control. Conclusions The production of organic acids has a major impact on the physiology of yeast cells, but the transcriptional responses to presence or production of different acids differs considerably, being much more diverse than responses to other stresses. D-Xylonate production apparently imposed considerable stress on the cell wall. Transcriptional data also indicated that activation of the PKA pathway occurred during D-xylonate production, leaving cells unable to adapt normally to stationary phase. This, together with intracellular acidification, probably contributes to cell death. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-763) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Dominik Mojzita
- VTT Technical Research Centre of Finland, P,O, Box 1000, Espoo FI-02044 VTT, Finland.
| | | | | | | | | | | |
Collapse
|
16
|
Sawaki Y, Kobayashi Y, Kihara-Doi T, Nishikubo N, Kawazu T, Kobayashi M, Kobayashi Y, Iuchi S, Koyama H, Sato S. Identification of a STOP1-like protein in Eucalyptus that regulates transcription of Al tolerance genes. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2014; 223:8-15. [PMID: 24767110 DOI: 10.1016/j.plantsci.2014.02.011] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Revised: 02/18/2014] [Accepted: 02/24/2014] [Indexed: 05/06/2023]
Abstract
Tolerance to soil acidity is an important trait for eucalyptus clones that are introduced to commercial forestry plantations in pacific Asian countries, where acidic soil is dominant in many locations. A conserved transcription factor regulating aluminum (Al) and proton (H⁺) tolerance in land-plant species, STOP1 (SENSITIVE TOPROTON RHIZOTOXICITY 1)-like protein, was isolated by polymerase chain reaction-based cloning, and then suppressed by RNA interference in hairy roots produced by Agrobacterium rhizogenes-mediated transformation. Eucalyptus STOP1-like protein complemented proton tolerance in an Arabidopsis thaliana stop1-mutant, and localized to the nucleus in a transient assay of a green fluorescent protein fusion protein expressed in tobacco leaves by Agrobacterium tumefaciens-mediated transformation. Genes encoding a citrate transporting MULTIDRUGS AND TOXIC COMPOUND EXTRUSION protein and an orthologue of ALUMINUM SENSITIVE 3 were suppressed in transgenic hairy roots in which the STOP1 orthologue was knocked down. In summary, we identified a series of genes for Al-tolerance in eucalyptus, including a gene for STOP1-like protein and the Al-tolerance genes it regulates. These genes may be useful for molecular breeding and genomic selection of elite clones to introduce into acid soil regions.
Collapse
Affiliation(s)
- Yoshiharu Sawaki
- Forestry Research Institute, Oji Paper Co., Ltd., 24-9 Nobono-Cho, Kameyama, Mie 519-0212, Japan
| | - Yuriko Kobayashi
- Forestry Research Institute, Oji Paper Co., Ltd., 24-9 Nobono-Cho, Kameyama, Mie 519-0212, Japan; Laboratory of Plant Cell Technology, Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Tomonori Kihara-Doi
- Forest Technology Laboratories, Research & Development Division, Oji Paper Co., Ltd., 1-10-6 Shinonome, Koto-ku, Tokyo 135-8558, Japan
| | - Nobuyuki Nishikubo
- Forest Technology Laboratories, Research & Development Division, Oji Paper Co., Ltd., 1-10-6 Shinonome, Koto-ku, Tokyo 135-8558, Japan
| | - Tetsu Kawazu
- Forest Technology Laboratories, Research & Development Division, Oji Paper Co., Ltd., 1-10-6 Shinonome, Koto-ku, Tokyo 135-8558, Japan
| | - Masatomo Kobayashi
- BioResources Center, RIKEN, 3-1-1 Koyadai, Tsukuba, Ibaraki 305-0074, Japan
| | - Yasufumi Kobayashi
- Laboratory of Plant Cell Technology, Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Satoshi Iuchi
- BioResources Center, RIKEN, 3-1-1 Koyadai, Tsukuba, Ibaraki 305-0074, Japan
| | - Hiroyuki Koyama
- Laboratory of Plant Cell Technology, Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Shigeru Sato
- Forest Technology Laboratories, Research & Development Division, Oji Paper Co., Ltd., 1-10-6 Shinonome, Koto-ku, Tokyo 135-8558, Japan.
| |
Collapse
|
17
|
Yeast ABC proteins involved in multidrug resistance. Cell Mol Biol Lett 2013; 19:1-22. [PMID: 24297686 PMCID: PMC6275743 DOI: 10.2478/s11658-013-0111-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Accepted: 11/27/2013] [Indexed: 01/03/2023] Open
Abstract
Pleiotropic drug resistance is a complex phenomenon that involves many proteins that together create a network. One of the common mechanisms of multidrug resistance in eukaryotic cells is the active efflux of a broad range of xenobiotics through ATP-binding cassette (ABC) transporters. Saccharomyces cerevisiae is often used as a model to study such activity because of the functional and structural similarities of its ABC transporters to mammalian ones. Numerous ABC transporters are found in humans and some are associated with the resistance of tumors to chemotherapeutics. Efflux pump modulators that change the activity of ABC proteins are the most promising candidate drugs to overcome such resistance. These modulators can be chemically synthesized or isolated from natural sources (e.g., plant alkaloids) and might also be used in the treatment of fungal infections. There are several generations of synthetic modulators that differ in specificity, toxicity and effectiveness, and are often used for other clinical effects.
Collapse
|
18
|
Jandric Z, Gregori C, Klopf E, Radolf M, Schüller C. Sorbic acid stress activates the Candida glabrata high osmolarity glycerol MAP kinase pathway. Front Microbiol 2013; 4:350. [PMID: 24324463 PMCID: PMC3840799 DOI: 10.3389/fmicb.2013.00350] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Accepted: 11/04/2013] [Indexed: 12/27/2022] Open
Abstract
Weak organic acids such as sorbic acid are important food preservatives and powerful fungistatic agents. These compounds accumulate in the cytosol and disturb the cellular pH and energy homeostasis. Candida glabrata is in many aspects similar to Saccharomyces cerevisiae. However, with regard to confrontation to sorbic acid, two of the principal response pathways behave differently in C. glabrata. In yeast, sorbic acid stress causes activation of many genes via the transcription factors Msn2 and Msn4. The C. glabrata homologs CgMsn2 and CgMsn4 are apparently not activated by sorbic acid. In contrast, in C. glabrata the high osmolarity glycerol (HOG) pathway is activated by sorbic acid. Here we show that the MAP kinase of the HOG pathway, CgHog1, becomes phosphorylated and has a function for weak acid stress resistance. Transcript profiling of weak acid treated C. glabrata cells suggests a broad and very similar response pattern of cells lacking CgHog1 compared to wild type which is over lapping with but distinct from S. cerevisiae. The PDR12 gene was the highest induced gene in both species and it required CgHog1 for full expression. Our results support flexibility of the response cues for general stress signaling pathways, even between closely related yeasts, and functional extension of a specific response pathway.
Collapse
Affiliation(s)
- Zeljkica Jandric
- Department of Applied Genetics and Cell Biology (DAGZ), University of Natural Resources and Life Sciences Vienna, Austria
| | | | | | | | | |
Collapse
|
19
|
Abstract
All fungal genomes harbour numerous ABC (ATP-binding cassette) proteins located in various cellular compartments such as the plasma membrane, vacuoles, peroxisomes and mitochondria. Most of them have initially been discovered through their ability to confer resistance to a multitude of drugs, a phenomenon called PDR (pleiotropic drug resistance) or MDR (multidrug resistance). Studying the mechanisms underlying PDR/MDR in yeast is of importance in two ways: first, ABC proteins can confer drug resistance on pathogenic fungi such as Candida spp., Aspergillus spp. or Cryptococcus neoformans; secondly, the well-established genetic, biochemical and cell biological tractability of Saccharomyces cerevisiae makes it an ideal tool to study basic mechanisms of drug transport by ABC proteins. In the past, knowledge from yeast has complemented work on human ABC transporters involved in anticancer drug resistance or genetic diseases. Interestingly, increasing evidence available from yeast and other organisms suggests that ABC proteins play a physiological role in membrane homoeostasis and lipid distribution, although this is being intensely debated in the literature.
Collapse
|
20
|
Mollapour M, Piper PW. Activity of the yeast zinc-finger transcription factor War1 is lost with alanine mutation of two putative phosphorylation sites in the activation domain. Yeast 2011; 29:39-44. [DOI: 10.1002/yea.1915] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2011] [Accepted: 10/10/2011] [Indexed: 11/06/2022] Open
Affiliation(s)
- Mehdi Mollapour
- Department of Molecular Biology and Biotechnology; University of Sheffield; UK
| | - Peter W. Piper
- Department of Molecular Biology and Biotechnology; University of Sheffield; UK
| |
Collapse
|
21
|
Mira NP, Henriques SF, Keller G, Teixeira MC, Matos RG, Arraiano CM, Winge DR, Sá-Correia I. Identification of a DNA-binding site for the transcription factor Haa1, required for Saccharomyces cerevisiae response to acetic acid stress. Nucleic Acids Res 2011; 39:6896-907. [PMID: 21586585 PMCID: PMC3167633 DOI: 10.1093/nar/gkr228] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The transcription factor Haa1 is the main player in reprogramming yeast genomic expression in response to acetic acid stress. Mapping of the promoter region of one of the Haa1-activated genes, TPO3, allowed the identification of an acetic acid responsive element (ACRE) to which Haa1 binds in vivo. The in silico analysis of the promoter regions of the genes of the Haa1-regulon led to the identification of an Haa1-responsive element (HRE) 5'-GNN(G/C)(A/C)(A/G)G(A/G/C)G-3'. Using surface plasmon resonance experiments and electrophoretic mobility shift assays it is demonstrated that Haa1 interacts with high affinity (K(D) of 2 nM) with the HRE motif present in the ACRE region of TPO3 promoter. No significant interaction was found between Haa1 and HRE motifs having adenine nucleotides at positions 6 and 8 (K(D) of 396 and 6780 nM, respectively) suggesting that Haa1p does not recognize these motifs in vivo. A lower affinity of Haa1 toward HRE motifs having mutations in the guanine nucleotides at position 7 and 9 (K(D) of 21 and 119 nM, respectively) was also observed. Altogether, the results obtained indicate that the minimal functional binding site of Haa1 is 5'-(G/C)(A/C)GG(G/C)G-3'. The Haa1-dependent transcriptional regulatory network active in yeast response to acetic acid stress is proposed.
Collapse
Affiliation(s)
- Nuno P Mira
- IBB, Instituto Biotecnologia e Bioengenharia, Center for Biological and Chemical Engineering, Instituto Superior Técnico, Avenida Rovisco Pais, 1049-001 Lisbon, Portugal
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Kofla G, Turner V, Schulz B, Storch U, Froelich D, Rognon B, Coste AT, Sanglard D, Ruhnke M. Doxorubicin induces drug efflux pumps inCandida albicans. Med Mycol 2011; 49:132-42. [DOI: 10.3109/13693786.2010.512022] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
|
23
|
Mira NP, Teixeira MC, Sá-Correia I. Adaptive response and tolerance to weak acids in Saccharomyces cerevisiae: a genome-wide view. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2011; 14:525-40. [PMID: 20955006 DOI: 10.1089/omi.2010.0072] [Citation(s) in RCA: 209] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Weak acids are widely used as food preservatives (e.g., acetic, propionic, benzoic, and sorbic acids), herbicides (e.g., 2,4-dichlorophenoxyacetic acid), and as antimalarial (e.g., artesunic and artemisinic acids), anticancer (e.g., artesunic acid), and immunosuppressive (e.g., mycophenolic acid) drugs, among other possible applications. The understanding of the mechanisms underlying the adaptive response and resistance to these weak acids is a prerequisite to develop more effective strategies to control spoilage yeasts, and the emergence of resistant weeds, drug resistant parasites or cancer cells. Furthermore, the identification of toxicity mechanisms and resistance determinants to weak acid-based pharmaceuticals increases current knowledge on their cytotoxic effects and may lead to the identification of new drug targets. This review integrates current knowledge on the mechanisms of toxicity and tolerance to weak acid stress obtained in the model eukaryote Saccharomyces cerevisiae using genome-wide approaches and more detailed gene-by-gene analysis. The major features of the yeast response to weak acids in general, and the more specific responses and resistance mechanisms towards a specific weak acid or a group of weak acids, depending on the chemical nature of the side chain R group (R-COOH), are highlighted. The involvement of several transcriptional regulatory networks in the genomic response to different weak acids is discussed, focusing on the regulatory pathways controlled by the transcription factors Msn2p/Msn4p, War1p, Haa1p, Rim101p, and Pdr1p/Pdr3p, which are known to orchestrate weak acid stress response in yeast. The extrapolation of the knowledge gathered in yeast to other eukaryotes is also attempted.
Collapse
Affiliation(s)
- Nuno P Mira
- Institute for Biotechnology and Bioengineering, Centre for Biological and Chemical Engineering, Instituto Superior Técnico, Technical University of Lisbon, Lisboa, Portugal
| | | | | |
Collapse
|
24
|
Resistance of yeasts to weak organic acid food preservatives. ADVANCES IN APPLIED MICROBIOLOGY 2011; 77:97-113. [PMID: 22050823 DOI: 10.1016/b978-0-12-387044-5.00004-2] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Carboxylate weak acids are invaluable for large-scale food and beverage preservation. However, in response to safety concerns, there is now desire to reduce the use of these additives. The resistance to these compounds displayed by spoilage yeasts and fungi is a major reason why these preservatives often have to be used in millimolar levels. This chapter summarizes the mechanisms whereby yeasts are rendered resistant to acetate, propionate, sorbate, and benzoate. In baker's yeast (Saccharomyces cerevisiae), resistance to high acetic acid is acquired partly by loss of the plasma membrane aquaglyceroporin that facilitates the passive diffusional entry of undissociated acid into cells (Fps1), and partly through a transcriptional response mediated by the transcription factor Haa1. Other carboxylate preservatives are too large to enter cells through the Fps1 channel but instead penetrate at appreciable rates by passive diffusion across the plasma membrane. In Saccharomyces and Candida albicans though not, it seems, in the Zygosaccharomyces, resistance to the latter acids involves activation of the War1 transcription factor, which in turn generates strong induction of a specific plasma membrane ATP-binding cassette transporter (Pdr12). The latter actively pumps the preservative anion from the cell. Other contributors to weak acid resistance include enzymes that allow preservative degradation, members of the Tpo family of major facilitator superfamily transporters, and changes to the cell envelope that minimize the diffusional entry of the preservative into the cell.
Collapse
|
25
|
Frohner IE, Gregori C, Anrather D, Roitinger E, Schüller C, Ammerer G, Kuchler K. Weak Organic Acid Stress Triggers Hyperphosphorylation of the Yeast Zinc-Finger Transcription Factor War1 and Dampens Stress Adaptation. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2010; 14:575-86. [DOI: 10.1089/omi.2010.0032] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Ingrid E. Frohner
- Medical University Vienna, Max F. Perutz Laboratories, Department of Medical Biochemistry, Vienna, Austria
| | - Christa Gregori
- Medical University Vienna, Max F. Perutz Laboratories, Department of Medical Biochemistry, Vienna, Austria
| | - Dorothea Anrather
- University of Vienna, Max F. Perutz Laboratories, Christien Doppler Laboratory for Proteomics, Department of Molecular and Cell Biology, Vienna, Austria
| | - Elisabeth Roitinger
- University of Vienna, Max F. Perutz Laboratories, Christien Doppler Laboratory for Proteomics, Department of Molecular and Cell Biology, Vienna, Austria
| | - Christoph Schüller
- University of Vienna, Max F. Perutz Laboratories, Christien Doppler Laboratory for Proteomics, Department of Molecular and Cell Biology, Vienna, Austria
| | - Gustav Ammerer
- University of Vienna, Max F. Perutz Laboratories, Christien Doppler Laboratory for Proteomics, Department of Molecular and Cell Biology, Vienna, Austria
| | - Karl Kuchler
- Medical University Vienna, Max F. Perutz Laboratories, Department of Medical Biochemistry, Vienna, Austria
| |
Collapse
|
26
|
Activation of two different resistance mechanisms in Saccharomyces cerevisiae upon exposure to octanoic and decanoic acids. Appl Environ Microbiol 2010; 76:7526-35. [PMID: 20851956 DOI: 10.1128/aem.01280-10] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Medium-chain fatty acids (octanoic and decanoic acids) are well known as fermentation inhibitors. During must fermentation, the toxicity of these fatty acids is enhanced by ethanol and low pH, which favors their entrance in the cell, resulting in a decrease of internal pH. We present here the characterization of the mechanisms involved in the establishment of the resistance to these fatty acids. The analysis of the transcriptome response to the exposure to octanoic and decanoic acids revealed that two partially overlapping mechanisms are activated; both responses share many genes with an oxidative stress response, but some key genes were activated differentially. The transcriptome response to octanoic acid stress can be described mainly as a weak acid response, and it involves Pdr12p as the main transporter. The phenotypic analysis of knocked-out strains confirmed the role of the Pdr12p transporter under the control of WAR1 but also revealed the involvement of the Tpo1p major facilitator superfamily proteins (MFS) transporter in octanoic acid expulsion. In contrast, the resistance to decanoic acid is composite. It also involves the transporter Tpo1p and includes the activation of several genes of the beta-oxidation pathway and ethyl ester synthesis. Indeed, the induction of FAA1 and EEB1, coding for a long-chain fatty acyl coenzyme A synthetase and an alcohol acyltransferase, respectively, suggests a detoxification pathway through the production of decanoate ethyl ester. These results are confirmed by the sensitivity of strains bearing deletions for the transcription factors encoded by PDR1, STB5, OAF1, and PIP2 genes.
Collapse
|
27
|
Current awareness on yeast. Yeast 2009. [DOI: 10.1002/yea.1619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
28
|
|