1
|
Ems-McClung SC, Cassity M, Prasannajith A, Walczak CE. The Kinesin-14 tail: Dual microtubule binding domains drive spindle morphogenesis through tight microtubule cross-linking and robust sliding. Mol Biol Cell 2025; 36:ar72. [PMID: 40327372 DOI: 10.1091/mbc.e25-02-0083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2025] Open
Abstract
Proper spindle assembly requires the Kinesin-14 (K-14) family of motors to organize microtubules (MT) into the bipolar spindle by cross-linking and sliding antiparallel and parallel MTs through their motor and tail domains. How they mediate these different activities is unclear. We identified two MT-binding domains (MBD1 and MBD2) within the Xenopus K-14 XCTK2 tail and found that MBD1 MT affinity was weaker than MBD2. Comparable with full-length GFP-XCTK2 wild-type protein (GX-WT), GFP-XCTK2 containing the MBD1 mutations (GX-MBD1mut) stimulated spindle assembly, localized moderately on the spindle, and formed narrow spindles. In contrast, GX-MBD2mut only partially stimulated spindle assembly, localized weakly on the spindle, and formed shorter spindles. Biochemical reconstitution of MT cross-linking and sliding demonstrated that GX-MBD2mut slid antiparallel MTs faster than GX-WT and GX-MBD1mut. However, GX-WT and GX-MBD1mut statically cross-linked the majority of parallel MTs, whereas GX-MBD2mut equally slid and statically cross-linked parallel MTs without affecting their sliding velocity. These results provide a mechanism by which the two different MBDs in the K-14 tail balance antiparallel MT sliding velocity (MBD1) and tight parallel MT cross-linking (MBD2), which are important for spindle assembly and localization, and provide a basis for characterizing how molecular motors organize MTs within the spindle.
Collapse
|
2
|
Ems-McClung SC, Cassity M, Prasannajith A, Walczak CE. The Kinesin-14 Tail: Dual microtubule binding domains drive spindle morphogenesis through tight microtubule cross-linking and robust sliding. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.25.640188. [PMID: 40060502 PMCID: PMC11888285 DOI: 10.1101/2025.02.25.640188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/05/2025]
Abstract
Proper spindle assembly requires the Kinesin-14 family of motors to organize microtubules (MTs) into the bipolar spindle by cross-linking and sliding anti-parallel and parallel MTs through their motor and tail domains. How they mediate these different activities is unclear. We identified two MT binding domains (MBD1 and MBD2) within the Xenopus Kinesin-14 XCTK2 tail and found that MBD1 MT affinity was weaker than MBD2. Comparable to full-length GFP-XCTK2 wild-type protein (GX-WT), GFP-XCTK2 containing the MBD1 mutations (GX-MBD1mut) stimulated spindle assembly, localized moderately on the spindle, and formed narrow spindles. In contrast, GX-MBD2mut only partially stimulated spindle assembly, localized weakly on the spindle, and formed shorter spindles. Biochemical reconstitution of MT cross-linking and sliding demonstrated that GX-MBD2mut slid anti-parallel MTs faster than GX-WT and GX-MBD1mut. However, GX-WT and GX-MBD1mut statically cross-linked the majority of parallel MTs, whereas GX-MBD2mut equally slid and statically cross-linked parallel MTs without affecting their sliding velocity. These results provide a mechanism by which the two different MT binding domains in the Kinesin-14 tail balance anti-parallel MT sliding velocity (MBD1) and tight parallel MT cross-linking (MBD2), which are important for spindle assembly and localization, and provide a basis for characterizing how molecular motors organize MTs within the spindle.
Collapse
|
3
|
Yildiz A. Mechanism and regulation of kinesin motors. Nat Rev Mol Cell Biol 2025; 26:86-103. [PMID: 39394463 DOI: 10.1038/s41580-024-00780-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/04/2024] [Indexed: 10/13/2024]
Abstract
Kinesins are a diverse superfamily of microtubule-based motors that perform fundamental roles in intracellular transport, cytoskeletal dynamics and cell division. These motors share a characteristic motor domain that powers unidirectional motility and force generation along microtubules, and they possess unique tail domains that recruit accessory proteins and facilitate oligomerization, regulation and cargo recognition. The location, direction and timing of kinesin-driven processes are tightly regulated by various cofactors, adaptors, microtubule tracks and microtubule-associated proteins. This Review focuses on recent structural and functional studies that reveal how members of the kinesin superfamily use the energy of ATP hydrolysis to transport cargoes, depolymerize microtubules and regulate microtubule dynamics. I also survey how accessory proteins and post-translational modifications regulate the autoinhibition, cargo binding and motility of some of the best-studied kinesins. Despite much progress, the mechanism and regulation of kinesins are still emerging, and unresolved questions can now be tackled using newly developed approaches in biophysics and structural biology.
Collapse
Affiliation(s)
- Ahmet Yildiz
- Physics Department, University of California at Berkeley, Berkeley, CA, USA.
- Department of Molecular and Cellular Biology, University of California at Berkeley, Berkeley, CA, USA.
| |
Collapse
|
4
|
Kita T, Sasaki K, Niwa S. Biased movement of monomeric kinesin-3 KLP-6 explained by a symmetric Brownian ratchet model. Biophys J 2025; 124:205-214. [PMID: 39604259 PMCID: PMC11739925 DOI: 10.1016/j.bpj.2024.11.3312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/22/2024] [Accepted: 11/22/2024] [Indexed: 11/29/2024] Open
Abstract
Most kinesin molecular motors dimerize to move processively and efficiently along microtubules; however, some can maintain processivity even in a monomeric state. Previous studies have suggested that asymmetric potentials between the motor domain and microtubules underlie this motility. In this study, we demonstrate that the kinesin-3 family motor protein KLP-6 can move forward along microtubules as a monomer upon release of autoinhibition. This motility can be explained by a change in length between the head and tail, rather than by asymmetric potentials. Using mass photometry and single-molecule assays, we confirmed that activated full-length KLP-6 is monomeric both in solution and on microtubules. KLP-6 possesses a microtubule-binding tail domain, and its motor domain does not exhibit biased movement, indicating that the tail domain is crucial for the processive movement of monomeric KLP-6. We developed a mathematical model to explain the biased Brownian movements of monomeric KLP-6. Our model concludes that a slight conformational change driven by neck-linker docking in the motor domain enables the monomeric kinesin to move forward if a second microtubule-binding domain exists.
Collapse
Affiliation(s)
- Tomoki Kita
- Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi, Japan
| | - Kazuo Sasaki
- Department of Applied Physics, Graduate School of Engineering, Tohoku University, Sendai, Miyagi, Japan
| | - Shinsuke Niwa
- Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi, Japan; Frontier Research Institute for Interdisciplinary Sciences (FRIS), Tohoku University, Aramaki-Aoba 6-3, Sendai, Miyagi, Japan.
| |
Collapse
|
5
|
Liu X, Rao L, Qiu W, Berger F, Gennerich A. Kinesin-14 HSET and KlpA are non-processive microtubule motors with load-dependent power strokes. Nat Commun 2024; 15:6564. [PMID: 39095439 PMCID: PMC11297315 DOI: 10.1038/s41467-024-50990-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 07/25/2024] [Indexed: 08/04/2024] Open
Abstract
Accurate chromosome segregation during cell division relies on coordinated actions of microtubule (MT)-based motor proteins in the mitotic spindle. Kinesin-14 motors play vital roles in spindle assembly and maintenance by crosslinking antiparallel MTs at the spindle midzone and anchoring spindle MTs' minus ends at the poles. In this study, we investigate the force generation and motility of the Kinesin-14 motors HSET and KlpA. Our findings reveal that both motors are non-processive, producing single load-dependent power strokes per MT encounter, with estimated load-free power strokes of ~30 and ~35 nm, respectively. Each homodimeric motor generates forces of ~0.5 pN, but when assembled in teams, they cooperate to generate forces of 1 pN or more. Notably, the cooperative activity among multiple motors leads to increased MT-sliding velocities. These results quantitatively elucidate the structure-function relationship of Kinesin-14 motors and underscore the significance of cooperative behavior in their cellular functions.
Collapse
Affiliation(s)
- Xinglei Liu
- Department of Biochemistry and Gruss Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Lu Rao
- Department of Biochemistry and Gruss Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Weihong Qiu
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, CH, Utrecht, The Netherlands
| | - Florian Berger
- Department of Biochemistry & Biophysics and Department of Physics, Oregon State University, Corvallis, OR, USA.
| | - Arne Gennerich
- Department of Biochemistry and Gruss Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
6
|
Li L, Ran J. Regulation of ciliary homeostasis by intraflagellar transport-independent kinesins. Cell Death Dis 2024; 15:47. [PMID: 38218748 PMCID: PMC10787775 DOI: 10.1038/s41419-024-06428-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 12/20/2023] [Accepted: 01/02/2024] [Indexed: 01/15/2024]
Abstract
Cilia are highly conserved eukaryotic organelles that protrude from the cell surface and are involved in sensory perception, motility, and signaling. Their proper assembly and function rely on the bidirectional intraflagellar transport (IFT) system, which involves motor proteins, including antegrade kinesins and retrograde dynein. Although the role of IFT-mediated transport in cilia has been extensively studied, recent research has highlighted the contribution of IFT-independent kinesins in ciliary processes. The coordinated activities and interplay between IFT kinesins and IFT-independent kinesins are crucial for maintaining ciliary homeostasis. In this comprehensive review, we aim to delve into the specific contributions and mechanisms of action of the IFT-independent kinesins in cilia. By shedding light on their involvement, we hope to gain a more holistic perspective on ciliogenesis and ciliopathies.
Collapse
Affiliation(s)
- Lin Li
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, 250014, China
| | - Jie Ran
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, 250014, China.
| |
Collapse
|
7
|
Liu X, Rao L, Qiu W, Gennerich A. Kinesin-14 HSET and KlpA are non-processive microtubule motors with load-dependent power strokes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.09.544415. [PMID: 37333225 PMCID: PMC10274885 DOI: 10.1101/2023.06.09.544415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Accurate chromosome segregation during cell division relies on coordinated actions of microtubule (MT)-based motor proteins in the mitotic spindle. Kinesin-14 motors play vital roles in spindle assembly and maintenance by crosslinking antiparallel MTs at the spindle midzone and anchoring spindle MTs' minus ends at the poles. We investigate the force generation and motility of the Kinesin-14 motors HSET and KlpA, revealing that both motors function as non-processive motors under load, producing single power strokes per MT encounter. Each homodimeric motor generates forces of ∼0.5 pN, but when assembled in teams, they cooperate to generate forces of 1 pN or more. Importantly, cooperative activity among multiple motors leads to increased MT-sliding velocities. Our findings deepen our understanding of the structure-function relationship of Kinesin-14 motors and underscore the significance of cooperative behavior in their cellular functions.
Collapse
|
8
|
How Essential Kinesin-5 Becomes Non-Essential in Fission Yeast: Force Balance and Microtubule Dynamics Matter. Cells 2020; 9:cells9051154. [PMID: 32392819 PMCID: PMC7290485 DOI: 10.3390/cells9051154] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 05/01/2020] [Accepted: 05/04/2020] [Indexed: 12/13/2022] Open
Abstract
The bipolar mitotic spindle drives accurate chromosome segregation by capturing the kinetochore and pulling each set of sister chromatids to the opposite poles. In this review, we describe recent findings on the multiple pathways leading to bipolar spindle formation in fission yeast and discuss these results from a broader perspective. The roles of three mitotic kinesins (Kinesin-5, Kinesin-6 and Kinesin-14) in spindle assembly are depicted, and how a group of microtubule-associated proteins, sister chromatid cohesion and the kinetochore collaborate with these motors is shown. We have paid special attention to the molecular pathways that render otherwise essential Kinesin-5 to become non-essential: how cells build bipolar mitotic spindles without the need for Kinesin-5 and where the alternate forces come from are considered. We highlight the force balance for bipolar spindle assembly and explain how outward and inward forces are generated by various ways, in which the proper fine-tuning of microtubule dynamics plays a crucial role. Overall, these new pathways have illuminated the remarkable plasticity and adaptability of spindle mechanics. Kinesin molecules are regarded as prospective targets for cancer chemotherapy and many specific inhibitors have been developed. However, several hurdles have arisen against their clinical implementation. This review provides insight into possible strategies to overcome these challenges.
Collapse
|
9
|
Amin MA, Agarwal S, Varma D. Mapping the kinetochore MAP functions required for stabilizing microtubule attachments to chromosomes during metaphase. Cytoskeleton (Hoboken) 2019; 76:398-412. [PMID: 31454167 DOI: 10.1002/cm.21559] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 08/07/2019] [Accepted: 08/22/2019] [Indexed: 12/24/2022]
Abstract
In mitosis, faithful chromosome segregation is orchestrated by the dynamic interactions between the spindle microtubules (MTs) emanating from the opposite poles and the kinetochores of the chromosomes. However, the precise mechanism that coordinates the coupling of the kinetochore components to dynamic MTs has been a long-standing question. Microtubule-associated proteins (MAPs) regulate MT nucleation and dynamics, MT-mediated transport and MT cross-linking in cells. During mitosis, MAPs play an essential role not only in determining spindle length, position, and orientation but also in facilitating robust kinetochore-microtubule (kMT) attachments by linking the kinetochores to spindle MTs efficiently. The stability of MTs imparted by the MAPs is critical to ensure accurate chromosome segregation. This review primarily focuses on the specific function of nonmotor kinetochore MAPs, their recruitment to kinetochores and their MT-binding properties. We also attempt to synthesize and strengthen our understanding of how these MAPs work in coordination with the kinetochore-bound Ndc80 complex (the key component at the MT-binding interface in metaphase and anaphase) to establish stable kMT attachments and control accurate chromosome segregation during mitosis.
Collapse
Affiliation(s)
- Mohammed A Amin
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Shivangi Agarwal
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Dileep Varma
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| |
Collapse
|
10
|
Winters L, Ban I, Prelogović M, Kalinina I, Pavin N, Tolić IM. Pivoting of microtubules driven by minus-end-directed motors leads to spindle assembly. BMC Biol 2019; 17:42. [PMID: 31122217 PMCID: PMC6533735 DOI: 10.1186/s12915-019-0656-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 04/16/2019] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND At the beginning of mitosis, the cell forms a spindle made of microtubules and associated proteins to segregate chromosomes. An important part of spindle architecture is a set of antiparallel microtubule bundles connecting the spindle poles. A key question is how microtubules extending at arbitrary angles form an antiparallel interpolar bundle. RESULTS Here, we show in fission yeast that microtubules meet at an oblique angle and subsequently rotate into antiparallel alignment. Our live-cell imaging approach provides a direct observation of interpolar bundle formation. By combining experiments with theory, we show that microtubules from each pole search for those from the opposite pole by performing random angular movement. Upon contact, two microtubules slide sideways along each other in a directed manner towards the antiparallel configuration. We introduce the contour length of microtubules as a measure of activity of motors that drive microtubule sliding, which we used together with observation of Cut7/kinesin-5 motors and our theory to reveal the minus-end-directed motility of this motor in vivo. CONCLUSION Random rotational motion helps microtubules from the opposite poles to find each other and subsequent accumulation of motors allows them to generate forces that drive interpolar bundle formation.
Collapse
Affiliation(s)
- Lora Winters
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstr. 108, 01307, Dresden, Germany
| | - Ivana Ban
- Department of Physics, Faculty of Science, University of Zagreb, Bijenička cesta 32, 10000, Zagreb, Croatia
| | - Marcel Prelogović
- Department of Physics, Faculty of Science, University of Zagreb, Bijenička cesta 32, 10000, Zagreb, Croatia
| | - Iana Kalinina
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstr. 108, 01307, Dresden, Germany
| | - Nenad Pavin
- Department of Physics, Faculty of Science, University of Zagreb, Bijenička cesta 32, 10000, Zagreb, Croatia.
| | - Iva M Tolić
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstr. 108, 01307, Dresden, Germany.
- Division of Molecular Biology, Ruđer Bošković Institute, Bijenička cesta 54, 10000, Zagreb, Croatia.
| |
Collapse
|
11
|
Suppressor Analysis Uncovers That MAPs and Microtubule Dynamics Balance with the Cut7/Kinesin-5 Motor for Mitotic Spindle Assembly in Schizosaccharomyces pombe. G3-GENES GENOMES GENETICS 2019; 9:269-280. [PMID: 30463883 PMCID: PMC6325904 DOI: 10.1534/g3.118.200896] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The Kinesin-5 motor Cut7 in Schizosaccharomyces pombe plays essential roles in spindle pole separation, leading to the assembly of bipolar spindle. In many organisms, simultaneous inactivation of Kinesin-14s neutralizes Kinesin-5 deficiency. To uncover the molecular network that counteracts Kinesin-5, we have conducted a genetic screening for suppressors that rescue the cut7-22 temperature sensitive mutation, and identified 10 loci. Next generation sequencing analysis reveals that causative mutations are mapped in genes encoding α-, β-tubulins and the microtubule plus-end tracking protein Mal3/EB1, in addition to the components of the Pkl1/Kinesin-14 complex. Moreover, the deletion of various genes required for microtubule nucleation/polymerization also suppresses the cut7 mutant. Intriguingly, Klp2/Kinesin-14 levels on the spindles are significantly increased in cut7 mutants, whereas these increases are negated by suppressors, which may explain the suppression by these mutations/deletions. Consistent with this notion, mild overproduction of Klp2 in these double mutant cells confers temperature sensitivity. Surprisingly, treatment with a microtubule-destabilizing drug not only suppresses cut7 temperature sensitivity but also rescues the lethality resulting from the deletion of cut7, though a single klp2 deletion per se cannot compensate for the loss of Cut7. We propose that microtubule assembly and/or dynamics antagonize Cut7 functions, and that the orchestration between these two factors is crucial for bipolar spindle assembly.
Collapse
|
12
|
Yukawa M, Yamada Y, Yamauchi T, Toda T. Two spatially distinct kinesin-14 proteins, Pkl1 and Klp2, generate collaborative inward forces against kinesin-5 Cut7 in S. pombe. J Cell Sci 2018; 131:jcs.210740. [PMID: 29167352 DOI: 10.1242/jcs.210740] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2017] [Accepted: 11/16/2017] [Indexed: 01/15/2023] Open
Abstract
Kinesin motors play central roles in bipolar spindle assembly. In many eukaryotes, spindle pole separation is driven by kinesin-5, which generates outward force. This outward force is balanced by antagonistic inward force elicited by kinesin-14 and/or dynein. In fission yeast, two kinesin-14 proteins, Pkl1 and Klp2, play an opposing role against the kinesin-5 motor protein Cut7. However, how the two kinesin-14 proteins coordinate individual activities remains elusive. Here, we show that although deletion of either pkl1 or klp2 rescues temperature-sensitive cut7 mutants, deletion of only pkl1 can bypass the lethality caused by cut7 deletion. Pkl1 is tethered to the spindle pole body, whereas Klp2 is localized along the spindle microtubule. Forced targeting of Klp2 to the spindle pole body, however, compensates for Pkl1 functions, indicating that cellular localizations, rather than individual motor specificities, differentiate between the two kinesin-14 proteins. Interestingly, human kinesin-14 (KIFC1 or HSET) can replace either Pkl1 or Klp2. Moreover, overproduction of HSET induces monopolar spindles, reminiscent of the phenotype of Cut7 inactivation. Taken together, this study has uncovered the biological mechanism whereby two different Kinesin-14 motor proteins exert their antagonistic roles against kinesin-5 in a spatially distinct manner.
Collapse
Affiliation(s)
- Masashi Yukawa
- Hiroshima Research Center for Healthy Aging, and Laboratory of Molecular and Chemical Cell Biology, Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8530, Japan
| | - Yusuke Yamada
- Hiroshima Research Center for Healthy Aging, and Laboratory of Molecular and Chemical Cell Biology, Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8530, Japan
| | - Tomoaki Yamauchi
- Hiroshima Research Center for Healthy Aging, and Laboratory of Molecular and Chemical Cell Biology, Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8530, Japan
| | - Takashi Toda
- Hiroshima Research Center for Healthy Aging, and Laboratory of Molecular and Chemical Cell Biology, Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8530, Japan
| |
Collapse
|
13
|
She ZY, Yang WX. Molecular mechanisms of kinesin-14 motors in spindle assembly and chromosome segregation. J Cell Sci 2017; 130:2097-2110. [DOI: 10.1242/jcs.200261] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
ABSTRACT
During eukaryote cell division, molecular motors are crucial regulators of microtubule organization, spindle assembly, chromosome segregation and intracellular transport. The kinesin-14 motors are evolutionarily conserved minus-end-directed kinesin motors that occur in diverse organisms from simple yeasts to higher eukaryotes. Members of the kinesin-14 motor family can bind to, crosslink or slide microtubules and, thus, regulate microtubule organization and spindle assembly. In this Commentary, we present the common subthemes that have emerged from studies of the molecular kinetics and mechanics of kinesin-14 motors, particularly with regard to their non-processive movement, their ability to crosslink microtubules and interact with the minus- and plus-ends of microtubules, and with microtubule-organizing center proteins. In particular, counteracting forces between minus-end-directed kinesin-14 and plus-end-directed kinesin-5 motors have recently been implicated in the regulation of microtubule nucleation. We also discuss recent progress in our current understanding of the multiple and fundamental functions that kinesin-14 motors family members have in important aspects of cell division, including the spindle pole, spindle organization and chromosome segregation.
Collapse
Affiliation(s)
- Zhen-Yu She
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Wan-Xi Yang
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
14
|
The mitotic kinesin-14 KlpA contains a context-dependent directionality switch. Nat Commun 2017; 8:13999. [PMID: 28051135 PMCID: PMC5216134 DOI: 10.1038/ncomms13999] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 11/17/2016] [Indexed: 12/26/2022] Open
Abstract
Kinesin-14s are commonly known as nonprocessive minus end-directed microtubule motors that function mainly for mitotic spindle assembly. Here we show using total internal reflection fluorescence microscopy that KlpA—a kinesin-14 from Aspergillus nidulans—is a context-dependent bidirectional motor. KlpA exhibits plus end-directed processive motility on single microtubules, but reverts to canonical minus end-directed motility when anchored on the surface in microtubule-gliding experiments or interacting with a pair of microtubules in microtubule-sliding experiments. Plus end-directed processive motility of KlpA on single microtubules depends on its N-terminal nonmotor microtubule-binding tail, as KlpA without the tail is nonprocessive and minus end-directed. We suggest that the tail is a de facto directionality switch for KlpA motility: when the tail binds to the same microtubule as the motor domain, KlpA is a plus end-directed processive motor; in contrast, when the tail detaches from the microtubule to which the motor domain binds, KlpA becomes minus end-directed. Kinesin-14s are commonly considered to be minus end-directed microtubule motor proteins. Here the authors show that KlpA, a fungal kinesin-14 orthologue, relies on its N-terminal nonmotor microtubule-binding tail to achieve context-dependent bidirectional motility.
Collapse
|
15
|
Shapira O, Gheber L. Motile properties of the bi-directional kinesin-5 Cin8 are affected by phosphorylation in its motor domain. Sci Rep 2016; 6:25597. [PMID: 27216310 PMCID: PMC4877575 DOI: 10.1038/srep25597] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 04/20/2016] [Indexed: 12/25/2022] Open
Abstract
The Saccharomyces cerevisiae kinesin-5 Cin8 performs essential mitotic functions in spindle assembly and anaphase B spindle elongation. Recent work has shown that Cin8 is a bi-directional motor which moves towards the minus-end of microtubules (MTs) under high ionic strength (IS) conditions and changes directionality in low IS conditions and when bound between anti-parallel microtubules. Previous work from our laboratory has also indicated that Cin8 is differentially phosphorylated during late anaphase at cyclin-dependent kinase 1 (Cdk1)-specific sites located in its motor domain. In vivo, such phosphorylation causes Cin8 detachment from spindles and reduces the spindle elongation rate, while maintaining proper spindle morphology. To study the effect of phosphorylation on Cin8 motor function, we examined in vitro motile properties of wild type Cin8, as well as its phosphorylation using phospho-deficient and phospho-mimic variants, in a single molecule fluorescence motility assay. Analysis was performed on whole cell extracts and on purified Cin8 samples. We found that addition of negative charges in the phospho-mimic mutant weakened the MT-motor interaction, increased motor velocity and promoted minus-end-directed motility. These results indicate that phosphorylation in the catalytic domain of Cin8 regulates its motor function.
Collapse
Affiliation(s)
- Ofer Shapira
- Department of Chemistry and Ilse Katz Institute for Nanoscale Science and Technology, Ben Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Larisa Gheber
- Department of Chemistry and Ilse Katz Institute for Nanoscale Science and Technology, Ben Gurion University of the Negev, Beer Sheva 84105, Israel
| |
Collapse
|
16
|
Syrovatkina V, Tran PT. Loss of kinesin-14 results in aneuploidy via kinesin-5-dependent microtubule protrusions leading to chromosome cut. Nat Commun 2015; 6:7322. [PMID: 26031557 PMCID: PMC4720966 DOI: 10.1038/ncomms8322] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Accepted: 04/27/2015] [Indexed: 11/11/2022] Open
Abstract
Aneuploidy – chromosome instability leading to incorrect chromosome number in dividing cells – can arise from defects in centrosome duplication, bipolar spindle formation, kinetochore-microtubule attachment, chromatid cohesion, mitotic checkpoint monitoring, or cytokinesis. As most tumors show some degree of aneuploidy, mechanistic understanding of these pathways has been an intense area of research to provide potential therapeutics. Here, we present a mechanism for aneuploidy in fission yeast based on spindle pole microtubule defocusing by loss of kinesin-14 Pkl1, leading to kinesin-5 Cut7-dependent aberrant long spindle microtubule minus end protrusions that push the properly segregated chromosomes to the site of cell division, resulting in chromosome cut at cytokinesis. Pkl1 localization and function at the spindle pole is mutually dependent on spindle pole-associated protein Msd1. This mechanism of aneuploidy bypasses the known spindle assembly checkpoint that monitors chromosome segregation.
Collapse
Affiliation(s)
- Viktoriya Syrovatkina
- Department of Cell and Developmental Biology, University of Pennsylvania, 421 Curie Boulevard, Room 1145, Philadelphia, Pennsylvania 19104, USA
| | - Phong T Tran
- 1] Department of Cell and Developmental Biology, University of Pennsylvania, 421 Curie Boulevard, Room 1145, Philadelphia, Pennsylvania 19104, USA [2] Institut Curie, PSL Research University, Paris F-75248, France [3] Centre National de la Recherche Scientifique, Unite Mixte de Recherche 144, Paris F-75248, France
| |
Collapse
|
17
|
Yukawa M, Ikebe C, Toda T. The Msd1-Wdr8-Pkl1 complex anchors microtubule minus ends to fission yeast spindle pole bodies. ACTA ACUST UNITED AC 2015; 209:549-62. [PMID: 25987607 PMCID: PMC4442821 DOI: 10.1083/jcb.201412111] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 04/16/2015] [Indexed: 12/26/2022]
Abstract
Msd1–Wdr8 are delivered by Pkl1 to mitotic spindle pole bodies, where the Msd1–Wdr8–Pkl1 complex anchors the minus ends of spindle microtubules and antagonizes the outward-pushing forces generated by Cut7/kinesin-5 in fission yeast. The minus ends of spindle microtubules are anchored to a microtubule-organizing center. The conserved Msd1/SSX2IP proteins are localized to the spindle pole body (SPB) and the centrosome in fission yeast and humans, respectively, and play a critical role in microtubule anchoring. In this paper, we show that fission yeast Msd1 forms a ternary complex with another conserved protein, Wdr8, and the minus end–directed Pkl1/kinesin-14. Individual deletion mutants displayed the identical spindle-protrusion phenotypes. Msd1 and Wdr8 were delivered by Pkl1 to mitotic SPBs, where Pkl1 was tethered through Msd1–Wdr8. The spindle-anchoring defect imposed by msd1/wdr8/pkl1 deletions was suppressed by a mutation of the plus end–directed Cut7/kinesin-5, which was shown to be mutual. Intriguingly, Pkl1 motor activity was not required for its anchoring role once targeted to the SPB. Therefore, spindle anchoring through Msd1–Wdr8–Pkl1 is crucial for balancing the Cut7/kinesin-5–mediated outward force at the SPB. Our analysis provides mechanistic insight into the spatiotemporal regulation of two opposing kinesins to ensure mitotic spindle bipolarity.
Collapse
Affiliation(s)
- Masashi Yukawa
- The Francis Crick Institute, Lincoln's Inn Fields Laboratory, London WC2A 3LY, England, UK Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, Higashi-Hiroshima 739-8530, Japan
| | - Chiho Ikebe
- The Francis Crick Institute, Lincoln's Inn Fields Laboratory, London WC2A 3LY, England, UK
| | - Takashi Toda
- The Francis Crick Institute, Lincoln's Inn Fields Laboratory, London WC2A 3LY, England, UK
| |
Collapse
|
18
|
Olmsted ZT, Colliver AG, Riehlman TD, Paluh JL. Kinesin-14 and kinesin-5 antagonistically regulate microtubule nucleation by γ-TuRC in yeast and human cells. Nat Commun 2014; 5:5339. [PMID: 25348260 PMCID: PMC4220466 DOI: 10.1038/ncomms6339] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Accepted: 09/20/2014] [Indexed: 02/07/2023] Open
Abstract
Bipolar spindle assembly is a critical control point for initiation of mitosis through nucleation and organization of spindle microtubules and is regulated by kinesin-like proteins. In fission yeast, the kinesin-14 Pkl1 binds the γ-tubulin ring complex (γ-TuRC) microtubule-organizing centre at spindle poles and can alter its structure and function. Here we show that kinesin-14 blocks microtubule nucleation in yeast and reveal that this inhibition is countered by the kinesin-5 protein, Cut7. Furthermore, we demonstrate that Cut7 binding to γ-TuRC and the Cut7 BimC domain are both required for inhibition of Pkl1. We also demonstrate that a yeast kinesin-14 peptide blocks microtubule nucleation in two human breast cancer cell lines, suggesting that this mechanism is evolutionarily conserved. In conclusion, using genetic, biochemical and cell biology approaches we uncover antagonistic control of microtubule nucleation at γ-TuRC by two kinesin-like proteins, which may represent an attractive anti-mitotic target for cancer therapies. Mitotic spindle assembly requires strict control of microtubule nucleation by γ-tubulin ring complexes. Olmsted et al. report that the kinesin-like proteins Pkl1 and Cut7 antagonistically regulate nucleation in fission yeast, and show that a Pkl1 peptide blocks spindle assembly in human cancer cells.
Collapse
Affiliation(s)
- Zachary T Olmsted
- State University of New York Polytechnic Institute, College of Nanoscale Science, Nanobioscience Constellation, Albany, New York 12203, USA
| | - Andrew G Colliver
- State University of New York Polytechnic Institute, College of Nanoscale Science, Nanobioscience Constellation, Albany, New York 12203, USA
| | - Timothy D Riehlman
- State University of New York Polytechnic Institute, College of Nanoscale Science, Nanobioscience Constellation, Albany, New York 12203, USA
| | - Janet L Paluh
- State University of New York Polytechnic Institute, College of Nanoscale Science, Nanobioscience Constellation, Albany, New York 12203, USA
| |
Collapse
|
19
|
Olmsted ZT, Riehlman TD, Branca CN, Colliver AG, Cruz LO, Paluh JL. Kinesin-14 Pkl1 targets γ-tubulin for release from the γ-tubulin ring complex (γ-TuRC) . Cell Cycle 2013; 12:842-8. [PMID: 23388459 PMCID: PMC3610732 DOI: 10.4161/cc.23822] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The γ-tubulin ring complex (γ-TuRC) is a key part of microtubule-organizing centers (MTOCs) that control microtubule polarity, organization and dynamics in eukaryotes. Understanding regulatory mechanisms of γ-TuRC function is of fundamental importance, as this complex is central to many cellular processes, including chromosome segregation, fertility, neural development, T-cell cytotoxicity and respiration. The fission yeast microtubule motor kinesin-14 Pkl1 regulates mitosis by binding to the γ-tubulin small complex (γ-TuSC), a subunit of γ-TuRC. Here we investigate the binding mechanism of Pkl1 to γ-TuSC and its functional consequences using genetics, biochemistry, peptide assays and cell biology approaches in vivo and in vitro. We identify two critical elements in the Tail domain of Pkl1 that mediate γ-TuSC binding and trigger release of γ-tubulin from γ-TuRC. Such action disrupts the MTOC and results in failed mitotic spindle assembly. This study is the first demonstration that a motor protein directly affects the structural composition of the γ-TuRC, and we provide details of this mechanism that may be of broad biological importance.
Collapse
Affiliation(s)
- Zachary T Olmsted
- Nanobioscience Constellation, College of Nanoscale Science and Engineering, University at Albany, State University of New York (SUNY), Albany, NY, USA
| | | | | | | | | | | |
Collapse
|
20
|
Hinrichs MH, Jalal A, Brenner B, Mandelkow E, Kumar S, Scholz T. Tau protein diffuses along the microtubule lattice. J Biol Chem 2012; 287:38559-68. [PMID: 23019339 DOI: 10.1074/jbc.m112.369785] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Current models for the intracellular transport of Tau protein suggest motor protein-dependent co-transport with microtubule fragments and diffusion of Tau in the cytoplasm, whereas Tau is believed to be stationary while bound to microtubules and in equilibrium with free diffusion in the cytosol. Observations that members of the microtubule-dependent kinesin family show Brownian motion along microtubules led us to hypothesize that diffusion along microtubules could also be relevant in the case of Tau. We used single-molecule total internal reflection fluorescence microscopy to probe for diffusion of individual fluorescently labeled Tau molecules along microtubules. This allowed us to avoid the problem that microtubule-dependent diffusion could be masked by excess of labeled Tau in solution that might occur in in vivo overexpression experiments. We found that approximately half of the individually detected Tau molecules moved bidirectionally along microtubules over distances up to several micrometers. Diffusion parameters such as diffusion coefficient, interaction time, and scanned microtubule length did not change with Tau concentration. Tau binding and diffusion along the microtubule lattice, however, were sensitive to ionic strength and pH and drastically reduced upon enzymatic removal of the negatively charged C termini of tubulin. We propose one-dimensional Tau diffusion guided by the microtubule lattice as one possible additional mechanism for Tau distribution. By such one-dimensional microtubule lattice diffusion, Tau could be guided to both microtubule ends, i.e. the sites where Tau is needed during microtubule polymerization, independently of directed motor-dependent transport. This could be important in conditions where active transport along microtubules might be compromised.
Collapse
Affiliation(s)
- Maike H Hinrichs
- Institute for Molecular and Cell Physiology, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany
| | | | | | | | | | | |
Collapse
|
21
|
Shibata K, Miura M, Watanabe Y, Saito K, Nishimura A, Furuta K, Toyoshima YY. A single protofilament is sufficient to support unidirectional walking of dynein and kinesin. PLoS One 2012; 7:e42990. [PMID: 22900078 PMCID: PMC3416812 DOI: 10.1371/journal.pone.0042990] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2012] [Accepted: 07/16/2012] [Indexed: 12/24/2022] Open
Abstract
Cytoplasmic dynein and kinesin are two-headed microtubule motor proteins that move in opposite directions on microtubules. It is known that kinesin steps by a 'hand-over-hand' mechanism, but it is unclear by which mechanism dynein steps. Because dynein has a completely different structure from that of kinesin and its head is massive, it is suspected that dynein uses multiple protofilaments of microtubules for walking. One way to test this is to ask whether dynein can step along a single protofilament. Here, we examined dynein and kinesin motility on zinc-induced tubulin sheets (zinc-sheets) which have only one protofilament available as a track for motor proteins. Single molecules of both dynein and kinesin moved at similar velocities on zinc-sheets compared to microtubules, clearly demonstrating that dynein and kinesin can walk on a single protofilament and multiple rows of parallel protofilaments are not essential for their motility. Considering the size and the motile properties of dynein, we suggest that dynein may step by an inchworm mechanism rather than a hand-over-hand mechanism.
Collapse
Affiliation(s)
- Keitaro Shibata
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Meguro-ku, Tokyo, Japan
| | - Michi Miura
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Meguro-ku, Tokyo, Japan
| | - Yuta Watanabe
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Meguro-ku, Tokyo, Japan
| | - Kei Saito
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Meguro-ku, Tokyo, Japan
| | - Atsuko Nishimura
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Meguro-ku, Tokyo, Japan
| | - Ken'ya Furuta
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Meguro-ku, Tokyo, Japan
| | - Yoko Y. Toyoshima
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Meguro-ku, Tokyo, Japan
- * E-mail:
| |
Collapse
|
22
|
Regulation of mitochondrial transport and inter-microtubule spacing by tau phosphorylation at the sites hyperphosphorylated in Alzheimer's disease. J Neurosci 2012; 32:2430-41. [PMID: 22396417 DOI: 10.1523/jneurosci.5927-11.2012] [Citation(s) in RCA: 149] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The microtubule-associated protein Tau is a major component of the neurofibrillary tangles that serve as a neuropathological hallmark of Alzheimer's disease. Tau is a substrate for protein phosphorylation at multiple sites and occurs in tangles in a hyperphosphorylated state. However, the physiological functions of Tau phosphorylation or how it may contribute mechanistically to Alzheimer's pathophysiology are not completely understood. Here, we examined the function of human Tau phosphorylation at three sites, Ser199, Ser202, and Thr205, which together comprise the AT8 sites that mark abnormal phosphorylation in Alzheimer's disease. Overexpression of wild-type Tau or mutated forms in which these sites had been changed to either unphosphorylatable alanines or phosphomimetic aspartates inhibited mitochondrial movement in the neurite processes of PC12 cells as well as the axons of mouse brain cortical neurons. However, the greatest effects on mitochondrial translocation were induced by phosphomimetic mutations. These mutations also caused expansion of the space between microtubules in cultured cells when membrane tension was reduced by disrupting actin filaments. Thus, Tau phosphorylation at the AT8 sites may have meaningful effects on mitochondrial movement, likely by controlling microtubule spacing. Hyperphosphorylation of the AT8 sites may contribute to axonal degeneration by disrupting mitochondrial transport in Alzheimer's disease.
Collapse
|
23
|
Friel CT, Howard J. Coupling of kinesin ATP turnover to translocation and microtubule regulation: one engine, many machines. J Muscle Res Cell Motil 2012; 33:377-83. [PMID: 22447431 PMCID: PMC3521643 DOI: 10.1007/s10974-012-9289-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Accepted: 03/08/2012] [Indexed: 12/20/2022]
Abstract
The cycle of ATP turnover is integral to the action of motor proteins. Here we discuss how variation in this cycle leads to variation of function observed amongst members of the kinesin superfamily of microtubule associated motor proteins. Variation in the ATP turnover cycle among superfamily members can tune the characteristic kinesin motor to one of the range of microtubule-based functions performed by kinesins. The speed at which ATP is hydrolysed affects the speed of translocation. The ratio of rate constants of ATP turnover in relation to association and dissociation from the microtubule influence the processivity of translocation. Variation in the rate-limiting step of the cycle can reverse the way in which the motor domain interacts with the microtubule producing non-motile kinesins. Because the ATP turnover cycle is not fully understood for the majority of kinesins, much work remains to show how the kinesin engine functions in such a wide variety of molecular machines.
Collapse
Affiliation(s)
- Claire T Friel
- School of Biomedical Sciences, University of Nottingham, Medical School, Queen's Medical Centre, Nottingham, NG7 2UH, UK.
| | | |
Collapse
|
24
|
Toba S, Fox LA, Sakakibara H, Porter ME, Oiwa K, Sale WS. Distinct roles of 1alpha and 1beta heavy chains of the inner arm dynein I1 of Chlamydomonas flagella. Mol Biol Cell 2010; 22:342-53. [PMID: 21148301 PMCID: PMC3031465 DOI: 10.1091/mbc.e10-10-0806] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
We took advantage of Chlmaydomonas flagellar mutant strains lacking either the 1α or 1β motor domain in I1 dynein to distinguish the functional role of each. The 1β motor domain is an effective motor required for control of microtubule sliding, whereas the 1α motor domain may restrain microtubule sliding driven by other dyneins. The Chlamydomonas I1 dynein is a two-headed inner dynein arm important for the regulation of flagellar bending. Here we took advantage of mutant strains lacking either the 1α or 1β motor domain to distinguish the functional role of each motor domain. Single- particle electronic microscopic analysis confirmed that both the I1α and I1β complexes are single headed with similar ringlike, motor domain structures. Despite similarity in structure, however, the I1β complex has severalfold higher ATPase activity and microtubule gliding motility compared to the I1α complex. Moreover, in vivo measurement of microtubule sliding in axonemes revealed that the loss of the 1β motor results in a more severe impairment in motility and failure in regulation of microtubule sliding by the I1 dynein phosphoregulatory mechanism. The data indicate that each I1 motor domain is distinct in function: The I1β motor domain is an effective motor required for wild-type microtubule sliding, whereas the I1α motor domain may be responsible for local restraint of microtubule sliding.
Collapse
Affiliation(s)
- Shiori Toba
- Kobe Advanced ICT Research Center, National Institute of Information and Communications Technology, Kobe, Japan
| | | | | | | | | | | |
Collapse
|
25
|
Hjelm RP, Stone DB, Fletterick RJ, Mendelson RA. Decoration of microtubules in solution by the kinesin-14, Ncd. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2010; 66:1218-23. [PMID: 21041940 PMCID: PMC4983869 DOI: 10.1107/s0907444910021323] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2010] [Accepted: 06/03/2010] [Indexed: 11/11/2022]
Abstract
The kinesin-14, Ncd, is a cellular motor involved in microtubule spindle assembly and contraction during mitosis and meiosis. Like other members of the kinesin superfamily, Ncd consists of two motor heads connected by a linker and a long cargo-carrying stalk. The motor heads hydrolyze ATP to ADP to provide the power stroke that moves them and the cargo along the microtubule. Whereas conventional kinesins move processively along the sense of the microtubule right-handed helix, Ncd moves in the opposite direction, apparently using a different motive mechanism. According to the current model, the microtubule-binding state of Ncd is bound by one head and then released during the motive cycle. This is distinguished from the binding states of conventional kinesins, in which the motor heads are always bound in the motive cycle with alternating one-head and two-head binding. The objective was to determine the extent of binding, the binding states of Ncd in the presence of an ATP analogue, AMPPNP, and whether the binding is cooperative. Small-angle neutron scattering (SANS) of microtubules decorated with a deuterated Ncd construct, Ncd281, in solution containing 42% D(2)O was used. These conditions render the microtubule `invisible' to SANS, while amplifying the SANS from the Ncd constructs. In the presence of AMPPNP, 75% of Ncd281 was not bound. The remainder was bound cooperatively by one of its motor heads to the microtubule.
Collapse
Affiliation(s)
- Rex P Hjelm
- Los Alamos Neutron Science Center, Los Alamos National Laboratory, Los Alamos, NM 87545, USA.
| | | | | | | |
Collapse
|
26
|
Torisawa T, Nakayama A, Furuta K, Yamada M, Hirotsune S, Toyoshima YY. Functional dissection of LIS1 and NDEL1 towards understanding the molecular mechanisms of cytoplasmic dynein regulation. J Biol Chem 2010; 286:1959-65. [PMID: 21036906 DOI: 10.1074/jbc.m110.169847] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
LIS1 and NDEL1 are known to be essential for the activity of cytoplasmic dynein in living cells. We previously reported that LIS1 and NDEL1 directly regulated the motility of cytoplasmic dynein in an in vitro motility assay. LIS1 suppressed dynein motility and inhibited the translocation of microtubules (MTs), while NDEL1 dissociated dynein from MTs and restored dynein motility following suppression by LIS1. However, the molecular mechanisms and detailed interactions of dynein, LIS1, and NDEL1 remain unknown. In this study, we dissected the regulatory effects of LIS1 and NDEL1 on dynein motility using full-length or truncated recombinant fragments of LIS1 or NDEL1. The C-terminal fragment of NDEL1 dissociated dynein from MTs, whereas its N-terminal fragment restored dynein motility following suppression by LIS1, demonstrating that the two functions of NDEL1 localize to different parts of the NDEL1 molecule, and that restoration from LIS1 suppression is caused by the binding of NDEL1 to LIS1, rather than to dynein. The truncated monomeric form of LIS1 had little effect on dynein motility, but an artificial dimer of truncated LIS1 suppressed dynein motility, which was restored by the N-terminal fragment of NDEL1. This suggests that LIS1 dimerization is essential for its regulatory function. These results shed light on the molecular interactions between dynein, LIS1, and NDEL1, and the mechanisms of cytoplasmic dynein regulation.
Collapse
Affiliation(s)
- Takayuki Torisawa
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo 153-8902, Japan
| | | | | | | | | | | |
Collapse
|
27
|
Hiyama S, Moritani Y, Gojo R, Takeuchi S, Sutoh K. Biomolecular-motor-based autonomous delivery of lipid vesicles as nano- or microscale reactors on a chip. LAB ON A CHIP 2010; 10:2741-8. [PMID: 20714497 DOI: 10.1039/c004615a] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
We aimed to create an autonomous on-chip system that performs targeted delivery of lipid vesicles (liposomes) as nano- or microscale reactors using machinery from biological systems. Reactor-liposomes would be ideal model cargoes to realize biomolecular-motor-based biochemical analysis chips; however, there are no existing systems that enable targeted delivery of cargo-liposomes in an autonomous manner. By exploiting biomolecular-motor-based motility and DNA hybridization, we demonstrate that single-stranded DNA (ssDNA)-labeled microtubules (MTs), gliding on kinesin-coated surfaces, acted as cargo transporters and that ssDNA-labeled cargo-liposomes were loaded/unloaded onto/from gliding MTs without bursting at loading reservoirs/micropatterned unloading sites specified by DNA base sequences. Our results contribute to the development of an alternative strategy to pressure-driven or electrokinetic flow-based microfluidic devices.
Collapse
Affiliation(s)
- Satoshi Hiyama
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan.
| | | | | | | | | |
Collapse
|
28
|
Hentrich C, Surrey T. Microtubule organization by the antagonistic mitotic motors kinesin-5 and kinesin-14. J Cell Biol 2010; 189:465-80. [PMID: 20439998 PMCID: PMC2867311 DOI: 10.1083/jcb.200910125] [Citation(s) in RCA: 116] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
During cell division, different molecular motors act synergistically to rearrange microtubules. Minus end-directed motors are thought to have a dual role: focusing microtubule ends to poles and establishing together with plus end-directed motors a balance of force between antiparallel microtubules in the spindle. We study here the competing action of Xenopus laevis kinesin-14 and -5 in vitro in situations in which these motors with opposite directionality cross-link and slide microtubules. We find that full-length kinesin-14 can form microtubule asters without additional factors, whereas kinesin-5 does not, likely reflecting an adaptation to mitotic function. A stable balance of force is not established between two antiparallel microtubules with these motors. Instead, directional instability is generated, promoting efficient motor and microtubule sorting. A nonmotor microtubule cross-linker can suppress directional instability but also impedes microtubule sorting, illustrating a conflict between stability and dynamicity of organization. These results establish the basic organizational properties of these antagonistic mitotic motors and a microtubule bundler.
Collapse
Affiliation(s)
- Christian Hentrich
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | | |
Collapse
|
29
|
Kinesin's light chains inhibit the head- and microtubule-binding activity of its tail. Proc Natl Acad Sci U S A 2010; 107:11781-6. [PMID: 20547877 DOI: 10.1073/pnas.1005854107] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Kinesin-1 is a microtubule-based motor comprising two heavy chains (KHCs) and two light chains (KLCs). Motor activity is precisely regulated to avoid futile ATP consumption and to ensure proper intracellular localization of kinesin-1 and its cargoes. The KHC tail inhibits ATPase activity by interacting with the enzymatic KHC heads, and the tail also binds microtubules. Here, we present a role for the KLCs in regulating both the head- and microtubule-binding activities of the kinesin-1 tail. We show that KLCs reduce the affinity of the head-tail interaction over tenfold and concomitantly repress the tail's regulatory activity. We also show that KLCs inhibit tail-microtubule binding by a separate mechanism. Inhibition of head-tail binding requires steric and electrostatic factors. Inhibition of tail-microtubule binding is largely electrostatic, pH dependent, and mediated partly by a highly negatively charged linker region between the KHC-interacting and cargo-binding domains of the KLCs. Our data support a model wherein KLCs promote activation of kinesin-1 for cargo transport by simultaneously suppressing tail-head and tail-microtubule interactions. KLC-mediated inhibition of tail-microtubule binding may also influence diffusional movement of kinesin-1 on microtubules, and kinesin-1's role in microtubule transport/sliding.
Collapse
|
30
|
Hutterer A, Glotzer M, Mishima M. Clustering of centralspindlin is essential for its accumulation to the central spindle and the midbody. Curr Biol 2009; 19:2043-9. [PMID: 19962307 DOI: 10.1016/j.cub.2009.10.050] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2009] [Revised: 09/25/2009] [Accepted: 10/16/2009] [Indexed: 12/29/2022]
Abstract
Cytokinesis in animal cells requires the central spindle and midbody, which contain prominent microtubule bundles. Centralspindlin, a heterotetrameric complex consisting of kinesin-6 and RhoGAP (Rho-family GTPase-activating protein) subunits, is essential for the formation of these structures. Centralspindlin becomes precisely localized to the central spindle, where it promotes the equatorial recruitment of important cytokinetic regulators. These include ECT2, the activator of the small GTPase RhoA, which controls cleavage furrow formation and ingression. Centralspindlin's own RhoGAP domain also contributes to furrow ingression. Finally, centralspindlin facilitates recruitment of the chromosome passenger complex and factors that control abscission. Despite the importance of localized accumulation of centralspindlin, the mechanism by which this motor protein complex suddenly concentrates to the center of interpolar microtubule bundles during anaphase is unclear. Here, we show that centralspindlin travels along central spindle microtubules as higher-order clusters. Clustering of centralspindlin is critical for microtubule bundling and motility along microtubules in vitro and for midbody formation in vivo. These data support a positive feedback loop of centralspindlin clustering and microtubule organization that may underlie its distinctive localization during cytokinesis.
Collapse
Affiliation(s)
- Andrea Hutterer
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, UK
| | | | | |
Collapse
|
31
|
|
32
|
Verhey KJ, Hammond JW. Traffic control: regulation of kinesin motors. Nat Rev Mol Cell Biol 2009; 10:765-77. [PMID: 19851335 DOI: 10.1038/nrm2782] [Citation(s) in RCA: 398] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Kinesins are a family of molecular motors that use the energy of ATP hydrolysis to move along the surface of, or destabilize, microtubule filaments. Much progress has been made in understanding the mechanics and functions of the kinesin motors that play important parts in cell division, cell motility, intracellular trafficking and ciliary function. How kinesins are regulated in cells to ensure the temporal and spatial fidelity of their microtubule-based activities is less well understood. Recent work has revealed molecular mechanisms that control kinesin autoinhibition and subsequent activation, binding to cargos and microtubule tracks, and localization at specific sites of action.
Collapse
Affiliation(s)
- Kristen J Verhey
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan 48109-2200, USA.
| | | |
Collapse
|
33
|
Lu H, Ali MY, Bookwalter CS, Warshaw DM, Trybus KM. Diffusive movement of processive kinesin-1 on microtubules. Traffic 2009; 10:1429-38. [PMID: 19682327 DOI: 10.1111/j.1600-0854.2009.00964.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The processive motor kinesin-1 moves unidirectionally toward the plus end of microtubules. This process can be visualized by total internal reflection fluorescence microscopy of kinesin bound to a carboxylated quantum dot (Qdot), which acts both as cargo and label. Surprisingly, when kinesin is bound to an anti-HIS Qdot, it shows diffusive movement on microtubules, which decreased in favor of processive runs with increasing salt concentration. This observation implies that kinesin movement on microtubules is governed by its conformation, as it is well established that kinesin undergoes a salt-dependent transition from a folded (inactive) to an extended (active) molecule. A truncated kinesin lacking the last 75 amino acids (kinesin-Delta C) showed both processive and diffusive movement on microtubules. The extent of each behavior depends on the relative amounts of ADP and ATP, with purely diffusive movement occurring in ADP alone. Taken together, these data imply that folded kinesin.ADP can exist in a state that diffuses along the microtubule lattice without expending energy. This mechanism may facilitate the ability of kinesin to pick up cargo, and/or allow the kinesin/cargo complex to stay bound after encountering obstacles.
Collapse
Affiliation(s)
- Hailong Lu
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, VT 05405, USA
| | | | | | | | | |
Collapse
|
34
|
|