1
|
Thompson J, Boisvert F, Salsman J, Lévesque D, Dellaire G, Ridgway ND. The proximity interactome of PML isoforms I and II under fatty acid stress. FEBS Lett 2025; 599:682-699. [PMID: 39703998 PMCID: PMC11891419 DOI: 10.1002/1873-3468.15081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 11/01/2024] [Accepted: 11/25/2024] [Indexed: 12/21/2024]
Abstract
Promyelocytic leukemia (PML) protein forms the scaffold for PML nuclear bodies (PML NB) that reorganize into Lipid-Associated PML Structures (LAPS) under fatty acid stress. We determined how the fatty acid oleate alters the interactome of PMLI or PMLII by expressing fusions with the ascorbate peroxidase APEX2 in U2OS cells. The resultant interactome included ESCRT and COPII transport protein nodes. Proximity ligation assay (PLA) revealed that COPII proteins SEC23B, SEC24A and USO1 preferentially associated with PML NBs. Nuclear localization of USO1, but not SEC23B and SEC24A, was reduced in PML knockout cells and restored by PMLII expression. Thus, proximity-labelling methods identified COPII transport protein interactions with PML NBs that are disrupted by fatty acid stress.
Collapse
Affiliation(s)
- Jordan Thompson
- Department of Biochemistry & Molecular BiologyDalhousie UniversityHalifaxCanada
| | - François‐Michel Boisvert
- Department of Immunology and Cell Biology, Sherbrooke Cancer Research InstituteUniversité de SherbrookeCanada
| | - Jayme Salsman
- Department of PathologyDalhousie UniversityHalifaxCanada
| | - Dominique Lévesque
- Department of Immunology and Cell Biology, Sherbrooke Cancer Research InstituteUniversité de SherbrookeCanada
| | - Graham Dellaire
- Department of Biochemistry & Molecular BiologyDalhousie UniversityHalifaxCanada
- Department of PathologyDalhousie UniversityHalifaxCanada
| | - Neale D. Ridgway
- Department of Biochemistry & Molecular BiologyDalhousie UniversityHalifaxCanada
- Department of Pediatrics, Atlantic Research CentreDalhousie UniversityHalifaxCanada
| |
Collapse
|
2
|
Elgayar SAM, Hussein OA, Mubarak HA, Ismaiel AM, Gomaa AMS. Nicotine impact on rat substantia nigra compacta. Anat Cell Biol 2021; 54:112-123. [PMID: 33782217 PMCID: PMC8017450 DOI: 10.5115/acb.20.267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 12/13/2020] [Accepted: 12/22/2020] [Indexed: 12/02/2022] Open
Abstract
Nicotine neuronal interactions exert an adverse potential in some brain regions and a significant link has been established between tobacco smoke/nicotine and vascular impairment. This work addresses nicotine impact on various components of the substantia nigra compacta (SNc) in rat. Twenty adult male Albino rats were divided equally into two groups: Group I, vehicle-control group (received saline [1 ml/kg body weight intra peritoneally] for 11 days). Group II; nicotine group (received 1.5 mg/kg body weight/day Sc) for 11 days. Nicotine levels were detected in the serum. Specimens were taken from the mid brain, processed and examined using biochemical, immunohistochemical, ultrastructural and morphometric techniques. In nicotine group, biochemical analysis revealed reduction in total antioxidant capacity (TAC), decrease in dopamine and malondialdehyde (MDA) levels. The mean number of light cells, and the mean surface area of nerve cells/field were significantly reduced, with an increase of dark cells were found in nicotine group compared to control. Immunoreactivity in nicotine group revealed an increase in neuronal α-synuclein, reduction in tyrosine hydroxylase enzyme, an increase in caspase 3 and ultrastructure changes suggestive of neuronal apopto. The blood capillaries were markedly affected. Nicotine induced endothelial and pericytic apoptotic changes, irregular lumena and indistinct endothelial junctional complex. Nicotine administered subcutaneously in a small dose may have a deleterious effect on SNc, mainly involving dopaminergic neurons and blood capillaries. This effect seems to be secondary to an oxidative stress that might be produced by reduced TAC and increased MDA levels.
Collapse
Affiliation(s)
- Sanaa A M Elgayar
- Department of Histology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Ola A Hussein
- Department of Histology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Heba A Mubarak
- Department of Histology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Amany M Ismaiel
- Department of Histology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Asmaa M S Gomaa
- Department of Medical Physiology, Faculty of Medicine, Assiut University, Assiut, Egypt
| |
Collapse
|
3
|
Brown-Suedel AN, Bouchier-Hayes L. Caspase-2 Substrates: To Apoptosis, Cell Cycle Control, and Beyond. Front Cell Dev Biol 2020; 8:610022. [PMID: 33425918 PMCID: PMC7785872 DOI: 10.3389/fcell.2020.610022] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 12/03/2020] [Indexed: 01/12/2023] Open
Abstract
Caspase-2 belongs to the caspase family of proteins responsible for essential cellular functions including apoptosis and inflammation. Uniquely, caspase-2 has been identified as a tumor suppressor, but how it regulates this function is still unknown. For many years, caspase-2 has been considered an “orphan” caspase because, although it is able to induce apoptosis, there is an abundance of conflicting evidence that questions its necessity for apoptosis. Recent evidence supports that caspase-2 has non-apoptotic functions in the cell cycle and protection from genomic instability. It is unclear how caspase-2 regulates these opposing functions, which has made the mechanism of tumor suppression by caspase-2 difficult to determine. As a protease, caspase-2 likely exerts its functions by proteolytic cleavage of cellular substrates. This review highlights the known substrates of caspase-2 with a special focus on their functional relevance to caspase-2’s role as a tumor suppressor.
Collapse
Affiliation(s)
- Alexandra N Brown-Suedel
- Hematology-Oncology Section, Department of Pediatrics, Department of Molecular Cell Biology, Baylor College of Medicine, Houston, TX, United States.,William T. Shearer Center for Human Immunobiology, Texas Children's Hospital, Houston, TX, United States
| | - Lisa Bouchier-Hayes
- Hematology-Oncology Section, Department of Pediatrics, Department of Molecular Cell Biology, Baylor College of Medicine, Houston, TX, United States.,William T. Shearer Center for Human Immunobiology, Texas Children's Hospital, Houston, TX, United States
| |
Collapse
|
4
|
He Q, Liu H, Deng S, Chen X, Li D, Jiang X, Zeng W, Lu W. The Golgi Apparatus May Be a Potential Therapeutic Target for Apoptosis-Related Neurological Diseases. Front Cell Dev Biol 2020; 8:830. [PMID: 33015040 PMCID: PMC7493689 DOI: 10.3389/fcell.2020.00830] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 08/04/2020] [Indexed: 01/04/2023] Open
Abstract
Increasing evidence shows that, in addition to the classical function of protein processing and transport, the Golgi apparatus (GA) is also involved in apoptosis, one of the most common forms of cell death. The structure and the function of the GA is damaged during apoptosis. However, the specific effect of the GA on the apoptosis process is unclear; it may be involved in initiating or promoting apoptosis, or it may inhibit apoptosis. Golgi-related apoptosis is associated with a variety of neurological diseases including glioma, Alzheimer’s disease (AD), Parkinson’s disease (PD), and ischemic stroke. This review summarizes the changes and the possible mechanisms of Golgi structure and function during apoptosis. In addition, we also explore the possible mechanisms by which the GA regulates apoptosis and summarize the potential relationship between the Golgi and certain neurological diseases from the perspective of apoptosis. Elucidation of the interaction between the GA and apoptosis broadens our understanding of the pathological mechanisms of neurological diseases and provides new research directions for the treatment of these diseases. Therefore, we propose that the GA may be a potential therapeutic target for apoptosis-related neurological diseases.
Collapse
Affiliation(s)
- Qiang He
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Hui Liu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Shuwen Deng
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Xiqian Chen
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Dong Li
- State Key Laboratory of Virology, CAS Center for Excellence in Brain Science and Intelligence Technology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Xuan Jiang
- State Key Laboratory of Virology, CAS Center for Excellence in Brain Science and Intelligence Technology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Wenbo Zeng
- State Key Laboratory of Virology, CAS Center for Excellence in Brain Science and Intelligence Technology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Wei Lu
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
5
|
HDAC6 Inhibition Protects against OGDR-Induced Golgi Fragmentation and Apoptosis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:6507537. [PMID: 31354911 PMCID: PMC6636507 DOI: 10.1155/2019/6507537] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 12/09/2018] [Accepted: 05/15/2019] [Indexed: 12/21/2022]
Abstract
The Golgi apparatus (GA) is a pivotal organelle, and its fragmentation is an essential process in the development of apoptosis. GA is a potential target in the treatment of cerebral ischemia-reperfusion injury. Histone deacetylase 6 (HDAC6) catalyzes the removal of functional acetyl groups from proteins and plays an important role in cell homeostasis. In this study, the neuroprotective effects and the underlying mechanisms of HDAC6 inhibition were assessed in an ischemia-reperfusion injury model. Mouse neuroblastoma N2a cells and cultured neurons were subjected to oxygen-glucose deprivation/reperfusion (OGDR) insult. OGDR induces Golgi fragmentation and reduces tubulin acetylation in N2a cells and cultured neurons. Golgi fragmentation is prior to nuclear chromatin condensation after OGDR injury. Overexpression of GBF1 not only protects against OGDR-induced Golgi fragmentation but also protects against OGDR-induced apoptosis, suggesting that Golgi fragmentation is not secondary to apoptosis but plays a causal role for subsequent apoptosis. HDAC6 inhibition suppresses OGDR-induced tubulin deacetylation, p115 cleavage, and caspase 3 activation and protects against OGDR-induced Golgi fragmentation and apoptosis. This work opens a new avenue for potential clinical application of HDAC6 inhibitors for cerebral ischemia-reperfusion-related disorders.
Collapse
|
6
|
Rasika S, Passemard S, Verloes A, Gressens P, El Ghouzzi V. Golgipathies in Neurodevelopment: A New View of Old Defects. Dev Neurosci 2019; 40:396-416. [PMID: 30878996 DOI: 10.1159/000497035] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 01/16/2019] [Indexed: 11/19/2022] Open
Abstract
The Golgi apparatus (GA) is involved in a whole spectrum of activities, from lipid biosynthesis and membrane secretion to the posttranslational processing and trafficking of most proteins, the control of mitosis, cell polarity, migration and morphogenesis, and diverse processes such as apoptosis, autophagy, and the stress response. In keeping with its versatility, mutations in GA proteins lead to a number of different disorders, including syndromes with multisystem involvement. Intriguingly, however, > 40% of the GA-related genes known to be associated with disease affect the central or peripheral nervous system, highlighting the critical importance of the GA for neural function. We have previously proposed the term "Golgipathies" in relation to a group of disorders in which mutations in GA proteins or their molecular partners lead to consequences for brain development, in particular postnatal-onset microcephaly (POM), white-matter defects, and intellectual disability (ID). Here, taking into account the broader role of the GA in the nervous system, we refine and enlarge this emerging concept to include other disorders whose symptoms may be indicative of altered neurodevelopmental processes, from neurogenesis to neuronal migration and the secretory function critical for the maturation of postmitotic neurons and myelination.
Collapse
Affiliation(s)
- Sowmyalakshmi Rasika
- NeuroDiderot, INSERM UMR1141, Université Paris Diderot, Sorbonne Paris Cité, Paris, France.,AP HP, Hôpital Robert Debré, UF de Génétique Clinique, Paris, France
| | - Sandrine Passemard
- NeuroDiderot, INSERM UMR1141, Université Paris Diderot, Sorbonne Paris Cité, Paris, France.,AP HP, Hôpital Robert Debré, UF de Génétique Clinique, Paris, France
| | - Alain Verloes
- NeuroDiderot, INSERM UMR1141, Université Paris Diderot, Sorbonne Paris Cité, Paris, France.,AP HP, Hôpital Robert Debré, UF de Génétique Clinique, Paris, France
| | - Pierre Gressens
- NeuroDiderot, INSERM UMR1141, Université Paris Diderot, Sorbonne Paris Cité, Paris, France.,Centre for the Developing Brain, Division of Imaging Sciences and Biomedical Engineering, King's College London, King's Health Partners, St. Thomas' Hospital, London, United Kingdom
| | - Vincent El Ghouzzi
- NeuroDiderot, INSERM UMR1141, Université Paris Diderot, Sorbonne Paris Cité, Paris, France,
| |
Collapse
|
7
|
Abstract
The Golgi apparatus is a central intracellular membrane-bound organelle with key functions in trafficking, processing, and sorting of newly synthesized membrane and secretory proteins and lipids. To best perform these functions, Golgi membranes form a unique stacked structure. The Golgi structure is dynamic but tightly regulated; it undergoes rapid disassembly and reassembly during the cell cycle of mammalian cells and is disrupted under certain stress and pathological conditions. In the past decade, significant amount of effort has been made to reveal the molecular mechanisms that regulate the Golgi membrane architecture and function. Here we review the major discoveries in the mechanisms of Golgi structure formation, regulation, and alteration in relation to its functions in physiological and pathological conditions to further our understanding of Golgi structure and function in health and diseases.
Collapse
Affiliation(s)
- Jie Li
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Erpan Ahat
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Yanzhuang Wang
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA.
- Department of Neurology, University of Michigan School of Medicine, Ann Arbor, MI, USA.
| |
Collapse
|
8
|
Jin Y, Dai Z. USO1 promotes tumor progression via activating Erk pathway in multiple myeloma cells. Biomed Pharmacother 2016; 78:264-271. [DOI: 10.1016/j.biopha.2016.01.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 12/24/2015] [Accepted: 01/13/2016] [Indexed: 10/22/2022] Open
|
9
|
Sui J, Li X, Xing J, Cao F, Wang H, Gong H, Zhang W. Lentivirus-mediated silencing of USO1 inhibits cell proliferation and migration of human colon cancer cells. Med Oncol 2015; 32:218. [DOI: 10.1007/s12032-015-0658-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 06/15/2015] [Indexed: 12/18/2022]
|
10
|
Hsp20 Protects against Oxygen-Glucose Deprivation/Reperfusion-Induced Golgi Fragmentation and Apoptosis through Fas/FasL Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015. [PMID: 26199678 PMCID: PMC4495232 DOI: 10.1155/2015/606934] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Cerebral ischemia-reperfusion injury plays an important role in the development of tissue injury after acute ischemic stroke. Finding effective neuroprotective agents has become a priority in the treatment of ischemic stroke. The Golgi apparatus (GA) is a pivotal organelle and its protection is an attractive target in the treatment of cerebral ischemia-reperfusion injury. Protective effects of Hsp20, a potential cytoprotective agent due to its chaperone-like activity and involvement in regulation of many vital processes, on GA were assessed in an ischemia-reperfusion injury model. Mouse neuroblastoma Neuro2a (N2a) cells were subjected to oxygen-glucose deprivation/reperfusion (OGDR) insult. OGDR induces Golgi fragmentation, apoptosis, and p115 cleavage in N2a cells. However, transfection with Hsp20 significantly attenuates OGDR-induced Golgi fragmentation and apoptosis. Hsp20 interacts with Bax, decreases FasL and Bax expression, and inhibits caspases 3 and p115 cleavage in N2a cells exposed to OGDR. Our data demonstrate that increased Hsp20 expression protects against OGDR-induced Golgi fragmentation and apoptosis, likely through interaction with Bax and subsequent amelioration of the OGDR-induced elevation in p115 cleavage via the Fas/FasL signaling pathway. This neuroprotective potential of Hsp20 against OGDR insult and the underlying mechanism will pave the way for its potential clinical application for cerebral ischemia-reperfusion related disorders.
Collapse
|
11
|
Antiapoptotic activity of Coxiella burnetii effector protein AnkG is controlled by p32-dependent trafficking. Infect Immun 2014; 82:2763-71. [PMID: 24733095 DOI: 10.1128/iai.01204-13] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Intracellular bacterial pathogens frequently inhibit host cell apoptosis to ensure survival of their host, thereby allowing bacterial propagation. The obligate intracellular pathogen Coxiella burnetii displays antiapoptotic activity which depends on a functional type IV secretion system (T4SS). Accordingly, antiapoptotic T4SS effector proteins, like AnkG, have been identified. AnkG inhibits pathogen-induced apoptosis, possibly by binding to the host cell mitochondrial protein p32 (gC1qR). However, the molecular mechanism of AnkG activity remains unknown. Here, we demonstrate that ectopically expressed AnkG associates with mitochondria and traffics into the nucleus after apoptosis induction, although AnkG lacks a predicted nuclear localization signal. We identified the p32 interaction region in AnkG and constructed an AnkG mutant (AnkGR(22/23S)) unable to bind to p32. By using this mutant, we found that intracellular localization and trafficking of AnkG into the nucleus are dependent on binding to p32. Furthermore, we demonstrated that nuclear localization of AnkG but not binding to p32 is required for apoptosis inhibition. Thus, the antiapoptotic activity of AnkG is controlled by p32-mediated intracellular trafficking, which, in turn, seems to be regulated by host cell processes that sense stress.
Collapse
|
12
|
Chakrabarti R, Bhowmick D, Bhargava V, Bhar K, Siddhanta A. Nuclear pool of phosphatidylinositol 4 phosphate 5 kinase 1α is modified by polySUMO-2 during apoptosis. Biochem Biophys Res Commun 2013; 439:209-14. [PMID: 23994136 DOI: 10.1016/j.bbrc.2013.08.058] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Accepted: 08/19/2013] [Indexed: 11/17/2022]
Abstract
Phosphatidylinositol 4 phosphate 5 kinase 1α (PIP5K) is mainly localized in the cytosol and plasma membrane. Studies have also indicated its prominent association with nuclear speckles. The exact nature of this nuclear pool of PIP5K is not clear. Using biochemical and microscopic techniques, we have demonstrated that the nuclear pool of PIP5K is modified by SUMO-1 in HEK-293 cells stably expressing PIP5K. Moreover, this SUMOylated pool of PIP5K increased during apoptosis. PolySUMO-2 chain conjugated PIP5K was detected by pull-down experiment using affinity-tagged RNF4, a polySUMO-2 binding protein, during late apoptosis.
Collapse
|
13
|
Bentson LF, Agbor VA, Agbor LN, Lopez AC, Nfonsam LE, Bornstein SS, Handel MA, Linder CC. New point mutation in Golga3 causes multiple defects in spermatogenesis. Andrology 2013; 1:440-50. [PMID: 23495255 DOI: 10.1111/j.2047-2927.2013.00070.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Revised: 01/03/2013] [Accepted: 01/14/2013] [Indexed: 12/17/2022]
Abstract
Mice with repro27 exhibit fully penetrant male-specific infertility associated with a nonsense mutation in the golgin subfamily A member 3 gene (Golga3). GOLGA3 is a Golgi complex-associated protein implicated in protein trafficking, apoptosis, positioning of the Golgi and spermatogenesis. In repro27 mutant mice, a point mutation in exon 18 of the Golga3 gene that inserts a pre-mature termination codon leads to an absence of GOLGA3 protein expression. GOLGA3 protein was undetectable in the brain, heart and liver in both mutant and control mice. Although spermatogenesis in Golga3(repro27) mutant mice appears to initiate normally, development is disrupted in late meiosis during the first wave of spermatogenesis, leading to significant germ cell loss between 15 and 18 days post-partum (dpp). Terminal Deoxynucleotidyl Transferase dUTP-mediated Nick End Labeling analysis showed elevated DNA fragmentation in meiotic germ cells by 12 dpp, suggesting apoptosis as a mechanism of germ cell loss. The few surviving post-meiotic round spermatids exhibited abnormal spermiogenesis with defects in acrosome formation, head and tail development and extensive vacuolization in the seminiferous epithelium. Analysis of epididymal spermatozoa showed significantly low sperm concentration and motility and in vitro fertilization with mutant spermatozoa was unsuccessful. Golga3(repro27) mice lack GOLGA3 protein and thus provide an in vivo tool to aid in deciphering the role of GOLGA3 in Golgi complex positioning, cargo trafficking and apoptosis signalling in male germ cells.
Collapse
Affiliation(s)
- L F Bentson
- Department of Biology and Chemistry, New Mexico Highlands University, Las Vegas, NM 87701, USA
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Inactivation of ceramide transfer protein during pro-apoptotic stress by Golgi disassembly and caspase cleavage. Biochem J 2012; 442:391-401. [PMID: 22129459 DOI: 10.1042/bj20111461] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The mammalian Golgi apparatus is composed of multiple stacks of cisternal membranes organized laterally into a polarized ribbon. Furthermore, trans-Golgi membranes come in close apposition with ER (endoplasmic reticulum) membranes to form ER-trans-Golgi contact sites, which may facilitate transfer of newly synthesized ceramide from the ER to SM (sphingomyelin) synthase at the trans-Golgi via CERT (ceramide transfer protein). CERT interacts with both ER and Golgi membranes, and together with Golgi morphology contributes to efficient SM synthesis. In the present study, we show that Golgi disassembly during pro-apoptotic stress induced by TNFα (tumour necrosis factor α) and anisomycin results in decreased levels of CERT at the Golgi region. This is accompanied by a caspase-dependent loss of full-length CERT and reduction in de novo SM synthesis. In vitro, CERT is cleaved by caspases 2, 3 and 9. Truncated versions of CERT corresponding to fragments generated by caspase 2 cleavage at Asp213 were mislocalized and did not promote efficient de novo SM synthesis. Thus it is likely that during cellular stress, disassembly of Golgi structure together with inactivation of CERT by caspases causes a reduction in ceramide trafficking and SM synthesis, and could contribute to the cellular response to pro-apoptotic stress.
Collapse
|
15
|
Yessotoxin as an apoptotic inducer. Toxicon 2011; 57:947-58. [DOI: 10.1016/j.toxicon.2011.03.012] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2010] [Revised: 01/31/2011] [Accepted: 03/14/2011] [Indexed: 12/12/2022]
|
16
|
Radulescu AE, Mukherjee S, Shields D. The Golgi protein p115 associates with gamma-tubulin and plays a role in Golgi structure and mitosis progression. J Biol Chem 2011; 286:21915-26. [PMID: 21536679 DOI: 10.1074/jbc.m110.209460] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Golgi apparatus is a network of polarized cisternae localized to the perinuclear region in mammalian cells. It undergoes extensive vesiculation at the onset of mitosis and its reassembly requires factors that are in part segregated via the mitotic spindle. Here we show that unlike typical Golgi markers, the Golgi-protein p115 partitioned with the spindle poles throughout mitosis. An armadillo-fold in its N terminus mediated a novel interaction between p115 and γ-tubulin and functioned in its centrosomal targeting. Both the N- and C-terminal regions of p115 were required to maintain Golgi structure. Strikingly, p115 was essential for mitotic spindle function and the resolution of the cytokinetic bridge because its depletion resulted in spindle collapse, chromosome missegregation, and failed cytokinesis. We demonstrate that p115 plays a critical role in mitosis progression, implicating it as the only known golgin to regulate both mitosis and apoptosis.
Collapse
Affiliation(s)
- Andreea E Radulescu
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine of Yeshiva University, Bronx, New York 10461, USA.
| | | | | |
Collapse
|
17
|
Abstract
The Golgi apparatus in mammalian cells is positioned near the centrosome-based microtubule-organizing center (Fig. 1). Secretory cargo moves inward in membrane carriers for delivery to Golgi membranes in which it is processed and packaged for transport outward to the plasma membrane. Cytoplasmic dynein motor proteins (herein termed dynein) primarily mediate inward cargo carrier movement and Golgi positioning. These motors move along microtubules toward microtubule minus-ends embedded in centrosomes. Centripetal motility is controlled by a host of regulators whose precise functions remain to be determined. Significantly, a specific Golgi receptor for dynein has not been identified. This has impaired progress toward elucidation of membrane-motor-microtubule attachment in the periphery and, after inward movement, recycling of the motor for another round. Pericentrosomal positioning of the Golgi apparatus is dynamic. It is regulated during critical cellular processes such as mitosis, differentiation, cell polarization, and cell migration. Positioning is also important as it aligns the Golgi along an axis of cell polarity. In certain cell types, this promotes secretion directed to the proximal plasma membrane domain thereby maintaining specializations critical for diverse processes including wound healing, immunological synapse formation, and axon determination.
Collapse
Affiliation(s)
- Smita Yadav
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | | |
Collapse
|
18
|
Abstract
The eukaryotic Golgi apparatus is characterized by a stack of flattened cisternae that are surrounded by transport vesicles. The organization and function of the Golgi require Golgi matrix proteins, including GRASPs and golgins, which exist primarily as fiber-like bridges between Golgi cisternae or between cisternae and vesicles. In this review, we highlight recent findings on Golgi matrix proteins, including their roles in maintaining the Golgi structure, vesicle tethering, and novel, unexpected functions. These new discoveries further our understanding of the molecular mechanisms that maintain the structure and the function of the Golgi, as well as its relationship with other cellular organelles such as the centrosome.
Collapse
|
19
|
Woldemichael GM, Turbyville TJ, Linehan WM, McMahon JB. Carminomycin I is an apoptosis inducer that targets the Golgi complex in clear cell renal carcinoma cells. Cancer Res 2011; 71:134-42. [PMID: 21199801 DOI: 10.1158/0008-5472.can-10-0757] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Clear cell renal cell carcinoma (CCRCC) evolves due to mutations in the Von Hippel-Lindau (VHL) tumor suppressor gene. Although the loss of VHL enables survival and proliferation of CCRCC cells, it is also expected to introduce vulnerabilities that may be exploited for therapeutics discovery. To this end, we developed a high-throughput screen to identify small molecules derived from plants, microorganisms, and marine organisms to which CCRCC cells are sensitive. Screening over 8,000 compounds using this approach, we report here the identification of the microbially derived compound carminomycin I (CA) as an effective inhibitor of VHL-defective (VHL(-/-)) CCRCC cell proliferation. CA also induced apoptosis in CCRCC cells by a mechanism independent of p53 or hypoxia-inducible factor 2. We found that P-glycoprotein (P-gp) sequestered CA within the Golgi complex. Interestingly, Golgi sequestration was critical for the antiproliferative effects of CA and P-gp inhibitors abrogated this activity. Furthermore, CA induced cleavage of the Golgi protein p115 and the translocation of its C-terminal fragment to the nucleus. Finally, examination of the activity of the VHL-interacting Golgi protein, endoplasmic reticulum-Golgi intermediate compartment, ERGIC-53 showed that VHL could mediate protection from CA in CCRCC cells. Our natural product-based screening approach has revealed the P-gp-mediated localization of anticancer compounds within the Golgi in CCRCC cells as a potential strategy of targeting VHL-deficient CCRCC cells.
Collapse
Affiliation(s)
- Girma M Woldemichael
- Molecular Targets Laboratory, SAIC-Frederick, Inc., National Cancer Institute, Frederick, Maryland 21702, USA.
| | | | | | | |
Collapse
|
20
|
How PC, Shields D. Tethering function of the caspase cleavage fragment of Golgi protein p115 promotes apoptosis via a p53-dependent pathway. J Biol Chem 2010; 286:8565-8576. [PMID: 21147777 DOI: 10.1074/jbc.m110.175174] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Golgi apparatus undergoes extensive fragmentation during apoptosis due in part to caspase-mediated cleavage of its structural proteins. Significantly, the Golgi-vesicle-tethering protein p115 is cleaved at Asp(757) early during apoptosis and the nuclear translocation of its 205 amino acid C-terminal fragment (CTF) precedes observable Golgi fragmentation. Nuclear localization of the p115 CTF induces apoptosis. The regulation of CTF nuclear translocation and the mechanism of its apoptotic activity however, remain unknown. Here, we demonstrate that nuclear translocation of the CTF is regulated by SUMOylation. CTF-induced apoptosis is transcription dependent and mediated by the tumor suppressor, p53. Expression of the CTF led to the phosphorylation and stabilization of p53 and results in the expression of PUMA, a pro-apoptotic target of p53. CTF-induced stabilization of p53 is sensitive to the MEK/ERK inhibitor U0126. Co-immunoprecipitation studies indicate that the p115 CTF can bind to both p53 and ERK1. The CTF is also able to form dimers and its dimerization is dependent on residues 859-884, previously determined to be required for apoptosis. Indeed, CTF expression promotes p53-ERK interaction, which is diminished upon deletion of residues 859-884. Together, our results indicate a conserved tethering function of the Golgi protein p115 CTF which promotes p53-ERK interaction for the amplification of the apoptotic signal.
Collapse
Affiliation(s)
- Poh Choo How
- From the Departments of Developmental and Molecular Biology and.
| | - Dennis Shields
- From the Departments of Developmental and Molecular Biology and; Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, New York 10461
| |
Collapse
|
21
|
Geoditin A induces oxidative stress and apoptosis on human colon HT29 cells. Mar Drugs 2010; 8:80-90. [PMID: 20161972 PMCID: PMC2817924 DOI: 10.3390/md8010080] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2009] [Revised: 01/18/2010] [Accepted: 01/19/2010] [Indexed: 11/16/2022] Open
Abstract
Geoditin A, an isomalabaricane triterpene isolated from the marine sponge Geodia japonica, has been demonstrated to dissipate mitochondrial membrane potential, activate caspase 3, decrease cytoplasmic proliferating cell nuclear antigen (PCNA), and induce apoptosis of leukemia cells, but the underlying mechanism remains unclear [1]. In this study, we found fragmentation of Golgi structure, suppression of transferrin receptor expression, production of oxidants, and DNA fragmentation in human colon cancer HT29 cells after treatment with geoditin A for 24 h. This apoptosis was not abrogated by chelation of intracellular iron with salicylaldehyde isonicotinoyl hydrazone (SIH), but suppressed by N-acetylcysteine (NAC), a thiol antioxidant and GSH precursor, indicating that the cytotoxic effect of geoditin A is likely mediated by a NAC-inhibitable oxidative stress. Our results provide a better understanding of the apoptotic properties and chemotherapeutical potential of this marine triterpene.
Collapse
|
22
|
Golgins and GRASPs: holding the Golgi together. Semin Cell Dev Biol 2009; 20:770-9. [PMID: 19508854 DOI: 10.1016/j.semcdb.2009.03.011] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2009] [Revised: 03/16/2009] [Accepted: 03/17/2009] [Indexed: 12/28/2022]
Abstract
The GRASP and golgin families of proteins have emerged as key components of the Golgi apparatus, with major roles in both the structural organisation of this organelle and the trafficking that occurs there. Both types of protein participate in membrane tethering events that occur upstream of membrane fusion as well as contributing to the structural scaffold that defines Golgi architecture, referred to as the Golgi matrix. The importance of these proteins is highlighted by their targeting in mitosis, apoptosis, and pathogenic infections that cause dramatic structural and functional reorganisation of the Golgi apparatus. In this review we will discuss our current understanding of GRASP and golgin function, highlighting some of the common themes that have emerged as well as describing previously unsuspected roles for these proteins in various cellular processes.
Collapse
|
23
|
Coordination of the secretory compartments via inter-organelle signalling. Semin Cell Dev Biol 2009; 20:801-9. [DOI: 10.1016/j.semcdb.2009.04.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2009] [Revised: 04/01/2009] [Accepted: 04/03/2009] [Indexed: 11/18/2022]
|
24
|
Lee J, Reich R, Xu F, Sehgal PB. Golgi, trafficking, and mitosis dysfunctions in pulmonary arterial endothelial cells exposed to monocrotaline pyrrole and NO scavenging. Am J Physiol Lung Cell Mol Physiol 2009; 297:L715-28. [PMID: 19648287 DOI: 10.1152/ajplung.00086.2009] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Although the administration of monocrotaline (MCT) into experimental animals is in widespread use today in investigations of pulmonary arterial hypertension (PAH), the underlying cellular and subcellular mechanisms that culminate in vascular remodeling are incompletely understood. Bovine pulmonary arterial endothelial cells (PAECs) in culture exposed to monocrotaline pyrrole (MCTP) develop "megalocytosis" 18-24 h later characterized by enlarged hyperploid cells with enlarged Golgi, mislocalization of endothelial nitric oxide synthase away from the plasma membrane, decreased cell-surface/caveolar nitric oxide (NO), and hypo-S-nitrosylation of caveolin-1, clathrin heavy chain, and N-ethylmaleimide-sensitive factor. We investigated whether MCTP did in fact affect functional intracellular trafficking. The NO scavenger (4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (c-PTIO) and the NO donor diethylamine NONOate were used for comparison. Both MCTP and c-PTIO produced distinctive four- to fivefold enlarged PAECs within 24-48 h with markedly enlarged/dispersed Golgi, as visualized by immunostaining for the Golgi tethers/matrix proteins giantin, GM130, and p115. Live-cell uptake of the Golgi marker C(5) ceramide revealed a compact juxtanuclear Golgi in untreated PAECs, brightly labeled enlarged circumnuclear Golgi after MCTP, but minimally labeled Golgi elements after c-PTIO. These Golgi changes were reduced by NONOate. After an initial inhibition during the first day, both MCTP and c-PTIO markedly enhanced anterograde secretion of soluble cargo (exogenous vector-expressed recombinant horseradish peroxidase) over the next 4 days. Live-cell internalization assays using fluorescently tagged ligands showed that both MCTP and c-PTIO inhibited the retrograde uptake of acetylated low-density lipoprotein, transferrin, and cholera toxin B. Moreover, MCTP, and to a variable extent c-PTIO, reduced the cell-surface density of all receptors assayed (LDLR, TfnR, BMPR, Tie-2, and PECAM-1/CD31). In an important distinction, c-PTIO enhanced mitosis in PAECs but MCTP inhibited mitosis, even that due to c-PTIO, despite markedly exaggerated Golgi dispersal. Taken together, these data define a broad-spectrum Golgi and subcellular trafficking dysfunction syndrome in endothelial cells exposed to MCTP or NO scavenging.
Collapse
Affiliation(s)
- Jason Lee
- Dept. of Cell Biology and Anatomy, New York Medical College, Valhalla, NY 10595, USA
| | | | | | | |
Collapse
|