1
|
Cornelis MC, Fazlollahi A, Bennett DA, Schneider JA, Ayton S. Genetic Markers of Postmortem Brain Iron. J Neurochem 2025; 169:e16309. [PMID: 39918201 PMCID: PMC11804167 DOI: 10.1111/jnc.16309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 12/26/2024] [Accepted: 01/02/2025] [Indexed: 02/11/2025]
Abstract
Brain iron (Fe) dyshomeostasis is implicated in neurodegenerative diseases. Genome-wide association studies (GWAS) have identified plausible loci correlated with peripheral levels of Fe. Systemic organs and the brain share several Fe regulatory proteins but there likely exist different homeostatic pathways. We performed the first GWAS of inductively coupled plasma mass spectrometry measures of postmortem brain Fe from 635 Rush Memory and Aging Project (MAP) participants. Sixteen single nucleotide polymorphisms (SNPs) associated with Fe in at least one of four brain regions were measured (p < 5 × 10-8). Promising SNPs (p < 5 × 10-6) were followed up for replication in published GWAS of blood, spleen, and brain imaging Fe traits and mapped to candidate genes for targeted cortical transcriptomic and epigenetic analysis of postmortem Fe in MAP. Results for SNPs previously associated with other Fe traits were also examined. Ninety-eight SNPs associated with postmortem brain Fe were at least nominally (p < 0.05) associated with one or more related Fe traits. Most novel loci identified had no direct links to Fe regulatory pathways but rather endoplasmic reticulum-Golgi trafficking (SORL1, SORCS2, MARCH1, CLTC), heparan sulfate (HS3ST4, HS3ST1), and coenzyme A (SLC5A6, PANK3); supported by nearest gene function and omic analyses. We replicated (p < 0.05) several previously published Fe loci mapping to candidate genes in cellular and systemic Fe regulation. Finally, novel loci (BMAL, COQ5, SLC25A11) and replication of prior loci (PINK1, PPIF, LONP1) lend support to the role of circadian rhythms and mitochondria function in Fe regulation more generally. In summary, we provide support for novel loci linked to pathways that may have greater relevance to brain Fe accumulation; some of which are implicated in neurodegeneration. However, replication of a subset of prior loci for blood Fe suggests that genetic determinants or biological pathways underlying Fe accumulation in the brain are not completely distinct from those of Fe circulating in the periphery.
Collapse
Affiliation(s)
- Marilyn C. Cornelis
- Department of Preventive MedicineNorthwestern University Feinberg School of MedicineChicagoIllinoisUSA
| | - Amir Fazlollahi
- Department of Radiology, Royal Melbourne HospitalUniversity of MelbourneMelbourneVictoriaAustralia
- Queensland Brain InstituteThe University of QueenslandBrisbaneQueenslandAustralia
| | | | | | - Scott Ayton
- The Florey Institute of Neuroscience and Mental HealthMelbourneVictoriaAustralia
- Florey Department of Neuroscience and Mental HealthThe University of MelbourneMelbourneVictoriaAustralia
| |
Collapse
|
2
|
Currie D, Wong N, Zane I, Rix T, Vardakastanis M, Claxton A, Ong KKV, Macmorland W, Poivet A, Brooks A, Niola P, Huntley D, Montano X. A Potential Prognostic Gene Signature Associated with p53-Dependent NTRK1 Activation and Increased Survival of Neuroblastoma Patients. Cancers (Basel) 2024; 16:722. [PMID: 38398114 PMCID: PMC10886603 DOI: 10.3390/cancers16040722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/02/2024] [Accepted: 02/05/2024] [Indexed: 02/25/2024] Open
Abstract
Neuroblastoma is the most common extracranial solid tumour in children, comprising close to 10% of childhood cancer-related deaths. We have demonstrated that activation of NTRK1 by TP53 repression of PTPN6 expression is significantly associated with favourable survival in neuroblastoma. The molecular mechanisms by which this activation elicits cell molecular changes need to be determined. This is critical to identify dependable biomarkers for the early detection and prognosis of tumours, and for the development of personalised treatment. In this investigation we have identified and validated a gene signature for the prognosis of neuroblastoma using genes differentially expressed upon activation of the NTRK1-PTPN6-TP53 module. A random survival forest model was used to construct a gene signature, which was then assessed across validation datasets using Kaplan-Meier analysis and ROC curves. The analysis demonstrated that high BASP1, CD9, DLG2, FNBP1, FRMD3, IL11RA, ISGF10, IQCE, KCNQ3, and TOX2, and low BSG/CD147, CCDC125, GABRB3, GNB2L1/RACK1 HAPLN4, HEBP2, and HSD17B12 expression was significantly associated with favourable patient event-free survival (EFS). The gene signature was associated with favourable tumour histology and NTRK1-PTPN6-TP53 module activation. Importantly, all genes were significantly associated with favourable EFS in an independent manner. Six of the signature genes, BSG/CD147, GNB2L1/RACK1, TXNDC5, FNPB1, B3GAT1, and IGSF10, play a role in cell differentiation. Our findings strongly suggest that the identified gene signature is a potential prognostic biomarker and therapeutic target for neuroblastoma patients and that it is associated with neuroblastoma cell differentiation through the activation of the NTRK1-PTPN6-TP53 module.
Collapse
Affiliation(s)
- David Currie
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK; (D.C.); (N.W.); (I.Z.); (T.R.); (M.V.); (A.P.); (D.H.)
| | - Nicole Wong
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK; (D.C.); (N.W.); (I.Z.); (T.R.); (M.V.); (A.P.); (D.H.)
| | - Isabelle Zane
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK; (D.C.); (N.W.); (I.Z.); (T.R.); (M.V.); (A.P.); (D.H.)
| | - Tom Rix
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK; (D.C.); (N.W.); (I.Z.); (T.R.); (M.V.); (A.P.); (D.H.)
| | - Marios Vardakastanis
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK; (D.C.); (N.W.); (I.Z.); (T.R.); (M.V.); (A.P.); (D.H.)
| | - Amelia Claxton
- Innovation Hub, Comprehensive Cancer Centre, King’s College London, Great Maze Pond, London SE1 9RT, UK; (A.C.); (K.K.V.O.)
| | - Karine K. V. Ong
- Innovation Hub, Comprehensive Cancer Centre, King’s College London, Great Maze Pond, London SE1 9RT, UK; (A.C.); (K.K.V.O.)
| | - William Macmorland
- Tumour Immunology Group, School of Cancer and Pharmaceutical Sciences, King’s College London, London SE1 1UL, UK;
| | - Arthur Poivet
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK; (D.C.); (N.W.); (I.Z.); (T.R.); (M.V.); (A.P.); (D.H.)
| | - Anthony Brooks
- Zayed Centre for Research into Rare Disease in Children, UCL Genomics, London WC1N 1DZ, UK;
| | | | - Derek Huntley
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK; (D.C.); (N.W.); (I.Z.); (T.R.); (M.V.); (A.P.); (D.H.)
| | - Ximena Montano
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK; (D.C.); (N.W.); (I.Z.); (T.R.); (M.V.); (A.P.); (D.H.)
- Innovation Hub, Comprehensive Cancer Centre, King’s College London, Great Maze Pond, London SE1 9RT, UK; (A.C.); (K.K.V.O.)
- School of Life Sciences, University of Westminster, London W1W 6UW, UK
| |
Collapse
|
3
|
Trimarco JD, Nelson SL, Chaparian RR, Wells AI, Murray NB, Azadi P, Coyne CB, Heaton NS. Cellular glycan modification by B3GAT1 broadly restricts influenza virus infection. Nat Commun 2022; 13:6456. [PMID: 36309510 PMCID: PMC9617049 DOI: 10.1038/s41467-022-34111-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 10/13/2022] [Indexed: 12/25/2022] Open
Abstract
Communicable respiratory viral infections pose both epidemic and pandemic threats and broad-spectrum antiviral strategies could improve preparedness for these events. To discover host antiviral restriction factors that may act as suitable targets for the development of host-directed antiviral therapies, we here conduct a whole-genome CRISPR activation screen with influenza B virus (IBV). A top hit from our screen, beta-1,3-glucuronyltransferase 1 (B3GAT1), effectively blocks IBV infection. Subsequent studies reveal that B3GAT1 activity prevents cell surface sialic acid expression. Due to this mechanism of action, B3GAT1 expression broadly restricts infection with viruses that require sialic acid for entry, including Victoria and Yamagata lineage IBVs, H1N1/H3N2 influenza A viruses (IAVs), and the unrelated enterovirus D68. To understand the potential utility of B3GAT1 induction as an antiviral strategy in vivo, we specifically express B3GAT1 in the murine respiratory epithelium and find that overexpression is not only well-tolerated, but also protects female mice from a lethal viral challenge with multiple influenza viruses, including a pandemic-like H1N1 IAV. Thus, B3GAT1 may represent a host-directed broad-spectrum antiviral target with utility against clinically relevant respiratory viruses.
Collapse
Affiliation(s)
- Joseph D Trimarco
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, USA
| | - Sarah L Nelson
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, USA
| | - Ryan R Chaparian
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, USA
| | - Alexandra I Wells
- Department of Pediatrics, Division of Infectious Diseases, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA
| | - Nathan B Murray
- Complex Carbohydrate Research Center, The University of Georgia, Athens, GA, USA
| | - Parastoo Azadi
- Complex Carbohydrate Research Center, The University of Georgia, Athens, GA, USA
| | - Carolyn B Coyne
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, USA
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
| | - Nicholas S Heaton
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, USA.
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA.
| |
Collapse
|
4
|
Kitano M, Kizuka Y, Sobajima T, Nakano M, Nakajima K, Misaki R, Itoyama S, Harada Y, Harada A, Miyoshi E, Taniguchi N. Rab11-mediated post-Golgi transport of the sialyltransferase ST3GAL4 suggests a new mechanism for regulating glycosylation. J Biol Chem 2021; 296:100354. [PMID: 33524390 PMCID: PMC7949161 DOI: 10.1016/j.jbc.2021.100354] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 01/20/2021] [Accepted: 01/27/2021] [Indexed: 02/06/2023] Open
Abstract
Glycosylation, the most common posttranslational modification of proteins, is a stepwise process that relies on tight regulation of subcellular glycosyltransferase location to control the addition of each monosaccharide. Glycosyltransferases primarily reside and function in the endoplasmic reticulum (ER) and the Golgi apparatus; whether and how they traffic beyond the Golgi, how this trafficking is controlled, and how it impacts glycosylation remain unclear. Our previous work identified a connection between N-glycosylation and Rab11, a key player in the post-Golgi transport that connects recycling endosomes and other compartments. To learn more about the specific role of Rab11, we knocked down Rab11 in HeLa cells. Our findings indicate that Rab11 knockdown results in a dramatic enhancement in the sialylation of N-glycans. Structural analyses of glycans using lectins and LC-MS revealed that α2,3-sialylation is selectively enhanced, suggesting that an α2,3-sialyltransferase that catalyzes the sialyation of glycoproteins is activated or upregulated as the result of Rab11 knockdown. ST3GAL4 is the major α2,3-sialyltransferase that acts on N-glycans; we demonstrated that the localization of ST3GAL4, but not the levels of its mRNA, protein, or donor substrate, was altered by Rab11 depletion. In knockdown cells, ST3GAL4 is densely distributed in the trans-Golgi network, compared with the wider distribution in the Golgi and in other peripheral puncta in control cells, whereas the α2,6-sialyltransferase ST6GAL1 is predominantly localized to the Golgi regardless of Rab11 knockdown. This indicates that Rab11 may negatively regulate α2,3-sialylation by transporting ST3GAL4 to post-Golgi compartments (PGCs), which is a novel mechanism of glycosyltransferase regulation.
Collapse
Affiliation(s)
- Masato Kitano
- Department of Glyco-Oncology and Medical Biochemistry, Osaka International Cancer Institute, Otemae, Chuo-ku, Osaka, Japan; Department of Molecular Biochemistry and Clinical Investigation, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Yasuhiko Kizuka
- Department of Glyco-Oncology and Medical Biochemistry, Osaka International Cancer Institute, Otemae, Chuo-ku, Osaka, Japan; Center for Highly Advanced Integration of Nano and Life Sciences (G-CHAIN), Gifu University, Gifu, Japan; Institute for Glyco-core Research (iGCORE), Gifu University, Gifu, Japan
| | - Tomoaki Sobajima
- Department of Molecular Biochemistry and Clinical Investigation, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Miyako Nakano
- Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
| | | | - Ryo Misaki
- International Center for Biotechnology, Osaka University, Osaka, Japan
| | - Saki Itoyama
- Department of Molecular Biochemistry and Clinical Investigation, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Yoichiro Harada
- Department of Glyco-Oncology and Medical Biochemistry, Osaka International Cancer Institute, Otemae, Chuo-ku, Osaka, Japan
| | - Akihiro Harada
- Department of Cell Biology, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Eiji Miyoshi
- Department of Molecular Biochemistry and Clinical Investigation, Graduate School of Medicine, Osaka University, Osaka, Japan.
| | - Naoyuki Taniguchi
- Department of Glyco-Oncology and Medical Biochemistry, Osaka International Cancer Institute, Otemae, Chuo-ku, Osaka, Japan.
| |
Collapse
|
5
|
Region-specific upregulation of HNK-1 glycan in the PRMT1-deficient brain. Biochim Biophys Acta Gen Subj 2020; 1864:129509. [DOI: 10.1016/j.bbagen.2019.129509] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 12/06/2019] [Accepted: 12/25/2019] [Indexed: 02/08/2023]
|
6
|
Groux-Degroote S, Schulz C, Cogez V, Noël M, Portier L, Vicogne D, Solorzano C, Dall'Olio F, Steenackers A, Mortuaire M, Gonzalez-Pisfil M, Henry M, Foulquier F, Héliot L, Harduin-Lepers A. The extended cytoplasmic tail of the human B4GALNT2 is critical for its Golgi targeting and post-Golgi sorting. FEBS J 2018; 285:3442-3463. [PMID: 30067891 DOI: 10.1111/febs.14621] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 06/15/2018] [Accepted: 07/31/2018] [Indexed: 11/25/2022]
Abstract
The Sda /Cad antigen reported on glycoconjugates of human tissues has an increasingly recognized wide impact on the physio-pathology of different biological systems. The last step of its biosynthesis relies on the enzymatic activity of the β1,4-N-acetylgalactosaminyltransferase-II (B4GALNT2), which shows the highest expression level in healthy colon. Previous studies reported the occurrence in human colonic cells of two B4GALNT2 protein isoforms that differ in the length of their cytoplasmic tail, the long isoform showing an extended 66-amino acid tail. We examined here, the subcellular distribution of the two B4GALNT2 protein isoforms in stably transfected colonic LS174T cells and in transiently transfected HeLa cells using fluorescence microscopy. While a similar subcellular distribution at the trans-Golgi cisternae level was observed for the two isoforms, our study pointed to an atypical subcellular localization of the long B4GALNT2 isoform into dynamic vesicles. We demonstrated a critical role of its extended cytoplasmic tail for its Golgi targeting and post-Golgi sorting and highlighted the existence of a newly described post-Golgi sorting signal as well as a previously undescribed fate of a Golgi glycosyltransferase. DATABASE The proteins β1,4GalNAcT II, β1,4-GalT1, FucT I, FucT VI and ST3Gal IV are noted B4GALNT2, B4GALT1, FUT1, FUT6 and ST3GAL4, whereas the corresponding human genes are noted B4GALNT2, B4GALT1, FUT1, FUT6 and ST3GAL4 according to the HUGO nomenclature.
Collapse
Affiliation(s)
- Sophie Groux-Degroote
- Univ. Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| | - Céline Schulz
- Univ. Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France.,Univ. Lille, CNRS, UMR 8523 - PhLAM - Laboratoire de Physique des Lasers, Atomes, Molécules, Lille, France
| | - Virginie Cogez
- Univ. Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| | - Maxence Noël
- Univ. Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| | - Lucie Portier
- Univ. Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| | - Dorothée Vicogne
- Univ. Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| | - Carlos Solorzano
- Univ. Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| | - Fabio Dall'Olio
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Italy
| | - Agata Steenackers
- Univ. Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| | - Marlène Mortuaire
- Univ. Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| | - Mariano Gonzalez-Pisfil
- Univ. Lille, CNRS, UMR 8523 - PhLAM - Laboratoire de Physique des Lasers, Atomes, Molécules, Lille, France
| | - Mélanie Henry
- Univ. Lille, CNRS, UMR 8523 - PhLAM - Laboratoire de Physique des Lasers, Atomes, Molécules, Lille, France
| | - François Foulquier
- Univ. Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| | - Laurent Héliot
- Univ. Lille, CNRS, UMR 8523 - PhLAM - Laboratoire de Physique des Lasers, Atomes, Molécules, Lille, France
| | - Anne Harduin-Lepers
- Univ. Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| |
Collapse
|
7
|
Structure and mechanism of cancer-associated N-acetylglucosaminyltransferase-V. Nat Commun 2018; 9:3380. [PMID: 30140003 PMCID: PMC6107550 DOI: 10.1038/s41467-018-05931-w] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 07/31/2018] [Indexed: 12/31/2022] Open
Abstract
N-acetylglucosaminyltransferase-V (GnT-V) alters the structure of specific N-glycans by modifying α1-6-linked mannose with a β1-6-linked N-acetylglucosamine branch. β1-6 branch formation on cell surface receptors accelerates cancer metastasis, making GnT-V a promising target for drug development. However, the molecular basis of GnT-V's catalytic mechanism and substrate specificity are not fully understood. Here, we report crystal structures of human GnT-V luminal domain with a substrate analog. GnT-V luminal domain is composed of a GT-B fold and two accessary domains. Interestingly, two aromatic rings sandwich the α1-6 branch of the acceptor N-glycan and restrain the global conformation, partly explaining the fine branch specificity of GnT-V. In addition, interaction of the substrate N-glycoprotein with GnT-V likely contributes to protein-selective and site-specific glycan modification. In summary, the acceptor-GnT-V complex structure suggests a catalytic mechanism, explains the previously observed inhibition of GnT-V by branching enzyme GnT-III, and provides a basis for the rational design of drugs targeting N-glycan branching.
Collapse
|
8
|
Morise J, Takematsu H, Oka S. The role of human natural killer-1 (HNK-1) carbohydrate in neuronal plasticity and disease. Biochim Biophys Acta Gen Subj 2017; 1861:2455-2461. [PMID: 28709864 DOI: 10.1016/j.bbagen.2017.06.025] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 06/01/2017] [Accepted: 06/17/2017] [Indexed: 11/15/2022]
Abstract
BACKGROUND The human natural killer-1 (HNK-1) carbohydrate, a unique trisaccharide possessing sulfated glucuronic acid in a non-reducing terminus (HSO3-3GlcAß1-3Galß1-4GlcNAc-), is highly expressed in the nervous system and its spatiotemporal expression is strictly regulated. Mice deficient in the gene encoding a key enzyme, GlcAT-P, of the HNK-1 biosynthetic pathway exhibit almost complete disappearance of the HNK-1 epitope in the brain, significant reduction of long-term potentiation, and aberration of spatial learning and memory formation. In addition to its physiological roles in higher brain function, the HNK-1 carbohydrate has attracted considerable attention as an autoantigen associated with peripheral demyelinative neuropathy, which relates to IgM paraproteinemia, because of high immunogenicity. It has been suggested, however, that serum autoantibodies in IgM anti-myelin-associated glycoprotein (MAG) antibody-associated neuropathy patients show heterogeneous reactivity to the HNK-1 epitope. SCOPE OF REVIEW We have found that structurally distinct HNK-1 epitopes are expressed in specific proteins in the nervous system. Here, we overview the current knowledge of the involvement of these HNK-1 epitopes in the regulation of neural plasticity and discuss the impact of different HNK-1 antigens of anti-MAG neuropathy patients. MAJOR CONCLUSIONS We identified the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid-type glutamate receptor subunit GluA2 and aggrecan as HNK-1 carrier proteins. The HNK-1 epitope on GluA2 and aggrecan regulates neural plasticity in different ways. Furthermore, we found the clinical relationship between reactivity of autoantibodies to the different HNK-1 epitopes and progression of anti-MAG neuropathy. GENERAL SIGNIFICANCE The HNK-1 epitope is indispensable for the acquisition of normal neuronal function and can be a good target for the establishment of diagnostic criteria for anti-MAG neuropathy.
Collapse
Affiliation(s)
- Jyoji Morise
- Department of Biological Chemistry, Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Hiromu Takematsu
- Department of Biological Chemistry, Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Shogo Oka
- Department of Biological Chemistry, Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan.
| |
Collapse
|
9
|
Kizuka Y. Expression of Neural Glycans and Their Role in Disease. TRENDS GLYCOSCI GLYC 2017. [DOI: 10.4052/tigg.1613.2j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
10
|
Kizuka Y. Expression of Neural Glycans and Their Role in Disease. TRENDS GLYCOSCI GLYC 2017. [DOI: 10.4052/tigg.1613.2e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
11
|
Kizuka Y, Nakano M, Miura Y, Taniguchi N. Epigenetic regulation of neuralN-glycomics. Proteomics 2016; 16:2854-2863. [DOI: 10.1002/pmic.201600053] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 05/18/2016] [Accepted: 06/08/2016] [Indexed: 12/18/2022]
Affiliation(s)
- Yasuhiko Kizuka
- Disease Glycomics Team, Systems Glycobiology Research Group, RIKEN-Max Planck Joint Research Center for Systems Chemical Biology, Global Research Cluster; RIKEN; Wako Japan
| | - Miyako Nakano
- Graduate School of Advanced Sciences of Matter; Hiroshima University; Higashihiroshima Japan
| | - Yuki Miura
- Graduate School of Advanced Sciences of Matter; Hiroshima University; Higashihiroshima Japan
| | - Naoyuki Taniguchi
- Disease Glycomics Team, Systems Glycobiology Research Group, RIKEN-Max Planck Joint Research Center for Systems Chemical Biology, Global Research Cluster; RIKEN; Wako Japan
| |
Collapse
|
12
|
Kizuka Y, Kitazume S, Sato K, Taniguchi N. Clec4g (LSECtin) interacts with BACE1 and suppresses Aβ generation. FEBS Lett 2015; 589:1418-22. [PMID: 25957769 DOI: 10.1016/j.febslet.2015.04.060] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Revised: 04/16/2015] [Accepted: 04/30/2015] [Indexed: 12/21/2022]
Abstract
β-Site amyloid precursor protein cleaving enzyme-1 (BACE1) is a central molecule in Alzheimer's disease (AD). It cleaves amyloid precursor protein (APP) to produce the toxic amyloid-β (Aβ) peptides. Thus, a novel BACE1 modulator could offer a new therapeutic strategy for AD. We report that C-type lectin-like domain family 4, member g (Clec4g, also designated as LSECtin) interacts with BACE1 in mouse brain and cultured cells. Overexpression of Clec4g suppressed BACE1-mediated Aβ generation, and affected the intracellular distribution of BACE1 but not its catalytic activity. These results highlight a novel role of Clec4g in negatively regulating BACE1 function.
Collapse
Affiliation(s)
- Yasuhiko Kizuka
- Disease Glycomics Team, Systems Glycobiology Research Group, RIKEN-Max Planck Joint Research Center for Systems Chemical Biology, Global Research Cluster, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Shinobu Kitazume
- Disease Glycomics Team, Systems Glycobiology Research Group, RIKEN-Max Planck Joint Research Center for Systems Chemical Biology, Global Research Cluster, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Keiko Sato
- Disease Glycomics Team, Systems Glycobiology Research Group, RIKEN-Max Planck Joint Research Center for Systems Chemical Biology, Global Research Cluster, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Naoyuki Taniguchi
- Disease Glycomics Team, Systems Glycobiology Research Group, RIKEN-Max Planck Joint Research Center for Systems Chemical Biology, Global Research Cluster, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.
| |
Collapse
|
13
|
Morise J, Kizuka Y, Yabuno K, Tonoyama Y, Hashii N, Kawasaki N, Manya H, Miyagoe-Suzuki Y, Takeda S, Endo T, Maeda N, Takematsu H, Oka S. Structural and biochemical characterization of O-mannose-linked human natural killer-1 glycan expressed on phosphacan in developing mouse brains. Glycobiology 2013; 24:314-24. [DOI: 10.1093/glycob/cwt116] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|
14
|
Kizuka Y, Oka S. Regulated expression and neural functions of human natural killer-1 (HNK-1) carbohydrate. Cell Mol Life Sci 2012; 69:4135-47. [PMID: 22669261 PMCID: PMC11114532 DOI: 10.1007/s00018-012-1036-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Revised: 05/15/2012] [Accepted: 05/16/2012] [Indexed: 12/23/2022]
Abstract
Human natural killer-1 (HNK-1) carbohydrate, comprising a unique trisaccharide HSO(3)-3GlcAβ1-3Galβ1-4GlcNAc, shows well-regulated expression and unique functions in the nervous system. Recent studies have revealed sophisticated and complicated expression mechanisms for HNK-1 glycan. Activities of biosynthetic enzymes are controlled through the formation of enzyme-complexes and regulation of subcellular localization. Functional aspects of HNK-1 carbohydrate were examined by overexpression, knockdown, and knockout studies of these enzymes. HNK-1 is involved in several neural functions such as synaptic plasticity, learning and memory, and the underlying molecular mechanisms have been illustrated upon identification of the target carrier glycoproteins of HNK-1 such as the glutamate receptor subunit GluA2 or tenascin-R. In this review, we describe recent findings about HNK-1 carbohydrate that provide further insights into the mechanism of its expression and function in the nervous system.
Collapse
Affiliation(s)
- Yasuhiko Kizuka
- Disease Glycomics Team, Systems Glycobiology Research Group, Advanced Science Institute, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.
| | | |
Collapse
|
15
|
Fujiwara M, Kobayashi M, Hoshino H, Uchimura K, Nakada T, Masumoto J, Sakai Y, Fukuda M, Nakayama J. Expression of long-form N-acetylglucosamine-6-O-sulfotransferase 1 in human high endothelial venules. J Histochem Cytochem 2012; 60:397-407. [PMID: 22260995 PMCID: PMC3351234 DOI: 10.1369/0022155412437613] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2011] [Accepted: 01/09/2012] [Indexed: 01/02/2023] Open
Abstract
Two members of the N-acetylglucosamine-6-O-sulfotransferase (GlcNAc6ST) family, GlcNAc6ST-1 and GlcNAc6ST-2, function in the biosynthesis of 6-sulfo sialyl Lewis X-capped glycoproteins expressed on high endothelial venules (HEVs) in secondary lymphoid organs. Thus, both enzymes play a critical role in L-selectin-expressing lymphocyte homing. Human GlcNAc6ST-1 is encoded by a 1593-bp open reading frame exhibiting two 5' in-frame methionine codons spaced 141 bp apart. Both resemble the consensus sequence for translation initiation. Thus, it has been hypothesized that both long and short forms of GlcNAc6ST-1 may be present, although endogenous expression of either form has not been confirmed in humans. Here, the authors developed an antibody recognizing amino acid residues between the first two human GlcNAc6ST-1 methionines. This antibody specifically recognizes the long form of the enzyme, a finding validated by Western blot analysis and immunofluorescence cytochemistry of HeLa cells misexpressing long and/or short forms of human GlcNAc6ST-1. Using this antibody, the authors carried out immunofluorescence histochemistry of human lymph node tissue sections and found endogenous expression of the long form of the enzyme in human tissue, predominantly in the trans-Golgi network of endothelial cells that form HEVs.
Collapse
Affiliation(s)
- Maiko Fujiwara
- Department of Molecular Pathology, Shinshu University Graduate School of Medicine, Matsumoto, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Pandey R, Blanco J, Udolph G. The glucuronyltransferase GlcAT-P is required for stretch growth of peripheral nerves in Drosophila. PLoS One 2011; 6:e28106. [PMID: 22132223 PMCID: PMC3223219 DOI: 10.1371/journal.pone.0028106] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2011] [Accepted: 11/01/2011] [Indexed: 12/29/2022] Open
Abstract
During development, the growth of the animal body is accompanied by a concomitant elongation of the peripheral nerves, which requires the elongation of integrated nerve fibers and the axons projecting therein. Although this process is of fundamental importance to almost all organisms of the animal kingdom, very little is known about the mechanisms regulating this process. Here, we describe the identification and characterization of novel mutant alleles of GlcAT-P, the Drosophila ortholog of the mammalian glucuronyltransferase b3gat1. GlcAT-P mutants reveal shorter larval peripheral nerves and an elongated ventral nerve cord (VNC). We show that GlcAT-P is expressed in a subset of neurons in the central brain hemispheres, in some motoneurons of the ventral nerve cord as well as in central and peripheral nerve glia. We demonstrate that in GlcAT-P mutants the VNC is under tension of shorter peripheral nerves suggesting that the VNC elongates as a consequence of tension imparted by retarded peripheral nerve growth during larval development. We also provide evidence that for growth of peripheral nerve fibers GlcAT-P is critically required in hemocytes; however, glial cells are also important in this process. The glial specific repo gene acts as a modifier of GlcAT-P and loss or reduction of repo function in a GlcAT-P mutant background enhances VNC elongation. We propose a model in which hemocytes are required for aspects of glial cell biology which in turn affects the elongation of peripheral nerves during larval development. Our data also identifies GlcAT-P as a first candidate gene involved in growth of integrated peripheral nerves and therefore establishes Drosophila as an amenable in-vivo model system to study this process at the cellular and molecular level in more detail.
Collapse
Affiliation(s)
- Rahul Pandey
- Neural Development and Repair, Institute of Medical Biology, Singapore, Singapore
| | - Jorge Blanco
- Neural Development and Repair, Institute of Medical Biology, Singapore, Singapore
| | - Gerald Udolph
- Neural Development and Repair, Institute of Medical Biology, Singapore, Singapore
- * E-mail:
| |
Collapse
|
17
|
Kouno T, Kizuka Y, Nakagawa N, Yoshihara T, Asano M, Oka S. Specific enzyme complex of beta-1,4-galactosyltransferase-II and glucuronyltransferase-P facilitates biosynthesis of N-linked human natural killer-1 (HNK-1) carbohydrate. J Biol Chem 2011; 286:31337-46. [PMID: 21771787 DOI: 10.1074/jbc.m111.233353] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Human natural killer-1 (HNK-1) carbohydrate is highly expressed in the nervous system and is involved in synaptic plasticity and dendritic spine maturation. This unique carbohydrate, consisting of a sulfated trisaccharide (HSO(3)-3GlcAβ1-3Galβ1-4GlcNAc-), is biosynthesized by the successive actions of β-1,4-galactosyltransferase (β4GalT), glucuronyltransferase (GlcAT-P and GlcAT-S), and sulfotransferase (HNK-1ST). A previous study showed that mice lacking β4GalT-II, one of seven β4GalTs, exhibited a dramatic loss of HNK-1 expression in the brain, although β4GalT-I-deficient mice did not. Here, we investigated the underlying molecular mechanism of the regulation of HNK-1 expression. First, focusing on a major HNK-1 carrier, neural cell adhesion molecule, we found that reduced expression of an N-linked HNK-1 carbohydrate caused by a deficiency of β4GalT-II is not likely due to a general loss of the β1,4-galactose residue as an acceptor for GlcAT-P. Instead, we demonstrated by co-immunoprecipitation and endoplasmic reticulum-retention analyses using Neuro2a (N2a) cells that β4GalT-II physically and specifically associates with GlcAT-P. In addition, we revealed by pulldown assay that Golgi luminal domains of β4GalT-II and GlcAT-P are sufficient for the complex to form. With an in vitro assay system, we produced the evidence that the kinetic efficiency k(cat)/K(m) of GlcAT-P in the presence of β4GalT-II was increased about 2.5-fold compared with that in the absence of β4GalT-II. Finally, we showed that co-expression of β4GalT-II and GlcAT-P increased HNK-1 expression on various glycoproteins in N2a cells, including neural cell adhesion molecule. These results indicate that the specific enzyme complex of β4GalT-II with GlcAT-P plays an important role in the biosynthesis of HNK-1 carbohydrate.
Collapse
Affiliation(s)
- Tetsuya Kouno
- Department of Biological Chemistry, Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | | | | | | | | | | |
Collapse
|
18
|
Kizuka Y, Oka S. Regulation of HNK-1 (Human Natural Killer-1) Carbohydrate Expression: Multiple Control Mechanisms of Biosynthetic Enzyme Activity. TRENDS GLYCOSCI GLYC 2010. [DOI: 10.4052/tigg.22.194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|