1
|
Ruszczycky MW, Liu HW. Initiation, Propagation, and Termination in the Chemistry of Radical SAM Enzymes. Biochemistry 2024; 63:3161-3183. [PMID: 39626071 PMCID: PMC11878213 DOI: 10.1021/acs.biochem.4c00518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
Radical S-adenosyl-l-methionine (SAM) enzymes catalyze radical mediated chemical transformations notable for their diversity. The radical mediated reactions that take place in their catalytic cycles can be characterized with respect to one or more phases of initiation, propagation, and termination. Mechanistic models abound regarding these three phases of catalysis being regularly informed and updated by new discoveries that offer insights into their detailed workings. However, questions continue to be raised that touch on fundamental aspects of their mechanistic enzymology. Radical SAM enzymes are consequently far from fully understood, and this Perspective aims to outline some of the current models of radical SAM chemistry with an emphasis on lines of investigation that remain to be explored.
Collapse
Affiliation(s)
- Mark W Ruszczycky
- Division of Chemical Biology & Medicinal Chemistry, College of Pharmacy, University of Texas at Austin, Austin, Texas 78712, United States
| | - Hung-Wen Liu
- Division of Chemical Biology & Medicinal Chemistry, College of Pharmacy, University of Texas at Austin, Austin, Texas 78712, United States
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
2
|
Nerber HN, Baloh M, Brehm JN, Sorg JA. The small acid-soluble proteins of Clostridioides difficile regulate sporulation in a SpoIVB2-dependent manner. PLoS Pathog 2024; 20:e1012507. [PMID: 39213448 PMCID: PMC11392383 DOI: 10.1371/journal.ppat.1012507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 09/12/2024] [Accepted: 08/14/2024] [Indexed: 09/04/2024] Open
Abstract
Clostridioides difficile is a pathogen whose transmission relies on the formation of dormant endospores. Spores are highly resilient forms of bacteria that resist environmental and chemical insults. In recent work, we found that C. difficile SspA and SspB, two small acid-soluble proteins (SASPs), protect spores from UV damage and, interestingly, are necessary for the formation of mature spores. Here, we build upon this finding and show that C. difficile sspA and sspB are required for the formation of the spore cortex layer. Moreover, using an EMS mutagenesis selection strategy, we identified mutations that suppressed the defect in sporulation of C. difficile SASP mutants. Many of these strains contained mutations in CDR20291_0714 (spoIVB2) revealing a connection between the SpoIVB2 protease and the SASPs in the sporulation pathway. This work builds upon the hypothesis that the small acid-soluble proteins can regulate gene expression.
Collapse
Affiliation(s)
- Hailee N Nerber
- Department of Biology, Texas A&M University, College Station, Texas, United States of America
| | - Marko Baloh
- Department of Biology, Texas A&M University, College Station, Texas, United States of America
| | - Joshua N Brehm
- Department of Biology, Texas A&M University, College Station, Texas, United States of America
| | - Joseph A Sorg
- Department of Biology, Texas A&M University, College Station, Texas, United States of America
| |
Collapse
|
3
|
Nerber HN, Baloh M, Brehm JN, Sorg JA. The small acid-soluble proteins of Clostridioides difficile regulate sporulation in a SpoIVB2-dependent manner. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.05.17.541253. [PMID: 37292792 PMCID: PMC10245694 DOI: 10.1101/2023.05.17.541253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Clostridioides difficile is a pathogen whose transmission relies on the formation of dormant endospores. Spores are highly resilient forms of bacteria that resist environmental and chemical insults. In recent work, we found that C. difficile SspA and SspB, two small acid-soluble proteins (SASPs), protect spores from UV damage and, interestingly, are necessary for the formation of mature spores. Here, we build upon this finding and show that C. difficile sspA and sspB are required for the formation of the spore cortex layer. Moreover, using an EMS mutagenesis selection strategy, we identified mutations that suppressed the defect in sporulation of C. difficile SASP mutants. Many of these strains contained mutations in CDR20291_0714 (spoIVB2) revealing a connection between the SpoIVB2 protease and the SASPs in the sporulation pathway. This work builds upon the hypothesis that the small acid-soluble proteins can regulate gene expression.
Collapse
Affiliation(s)
- Hailee N. Nerber
- Department of Biology, Texas A&M University, College Station, TX 77845
| | - Marko Baloh
- Department of Biology, Texas A&M University, College Station, TX 77845
| | - Joshua N. Brehm
- Department of Biology, Texas A&M University, College Station, TX 77845
| | - Joseph A. Sorg
- Department of Biology, Texas A&M University, College Station, TX 77845
| |
Collapse
|
4
|
Nerber HN, Sorg JA. The small acid-soluble proteins of spore-forming organisms: similarities and differences in function. Anaerobe 2024; 87:102844. [PMID: 38582142 PMCID: PMC11976030 DOI: 10.1016/j.anaerobe.2024.102844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/22/2024] [Accepted: 03/27/2024] [Indexed: 04/08/2024]
Abstract
The small acid-soluble proteins are found in all endospore-forming organisms and are a major component of spores. Through their DNA binding capabilities, the SASPs shield the DNA from outside insults (e.g., UV and genotoxic chemicals). The absence of the major SASPs results in spores with reduced viability when exposed to UV light and, in at least one case, the inability to complete sporulation. While the SASPs have been characterized for decades, some evidence suggests that using newer technologies to revisit the roles of the SASPs could reveal novel functions in spore regulation.
Collapse
Affiliation(s)
- Hailee N Nerber
- Department of Biology, Texas A&M University, College Station, TX, United States
| | - Joseph A Sorg
- Department of Biology, Texas A&M University, College Station, TX, United States.
| |
Collapse
|
5
|
Revealing intrinsic changes of DNA induced by spore photoproduct lesion through computer simulation. Biophys Chem 2023; 296:106992. [PMID: 36933500 DOI: 10.1016/j.bpc.2023.106992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 02/14/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023]
Abstract
In bacterial endospores, a cross-linked thymine dimer, 5-thyminyl-5,6-dihydrothymine, commonly referred to as the spore photoproduct (SP), is found as the dominant DNA photo lesion under UV radiation. During spore germination, SP is faithfully repaired by the spore photoproduct lyase (SPL) for normal DNA replication to resume. Despite this general mechanism, the exact way in which SP modifies the duplex DNA structure so that the damaged site can be recognized by SPL to initiate the repair process is still unclear. A previous X-ray crystallographic study, which used a reverse transcriptase as a DNA host template, captured a protein-bound duplex oligonucleotide containing two SP lesions; the study showed shortened hydrogen bonds between the AT base pairs involved in the lesions and widened minor grooves near the damaged sites. However, it remains to be determined whether the results accurately reflect the conformation of SP-containing DNA (SP-DNA) in its fully hydrated pre-repair form. To uncover the intrinsic changes in DNA conformation caused by SP lesions, we performed molecular dynamics (MD) simulations of SP-DNA duplexes in aqueous solution, using the nucleic acid portion of the previously determined crystal structure as a template. After MD relaxation, our simulated SP-DNAs showed weakened hydrogen bonds at the damaged sites compared to those in the undamaged DNA. Our analyses of the MD trajectories revealed a range of local and global structural distortions of DNA induced by SP. Specifically, the SP region displays a greater tendency to adopt an A-like-DNA conformation, and curvature analysis revealed an increase in the global bending compared to the canonical B-DNA. Although these SP-induced DNA conformational changes are relatively minor, they may provide a sufficient structural basis for SP to be recognized by SPL during the lesion repair process.
Collapse
|
6
|
Dikec J, Pacheco M, Lavaud M, Winckler P, Perrier-Cornet JM. Uptake of UVc induced photoproducts of dipicolinic acid by Bacillus subtilis spores - Effects on the germination and UVc resistance of the spores. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2022; 236:112569. [PMID: 36152351 DOI: 10.1016/j.jphotobiol.2022.112569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/05/2022] [Accepted: 09/14/2022] [Indexed: 06/16/2023]
Abstract
Dipicolinic acid (DPA) is a specific molecule of bacterial spores which is essential to their resistance to various stresses such as ultraviolet (UV) exposure and to their germination. DPA has a particular photochemistry that remains imperfectly understood. In particular, due to its ability to absorb UVc radiation, it is likely to form in vitro a wide variety of photoproducts (DPAp) of which only about ten have been recently identified. The photochemical reactions resulting in DPAp, especially those inside the spores, are still poorly understood. Only one of these DPAp, which probably acts as a photosensitizer of DNA upon exposure to UVc, has been identified as having an impact on spores. However, as UVc is required to form DPAp, it is difficult to decouple the overall effect of UVc exposure from the possible effects of DPAp alone. In this study, DPAp were artificially introduced into the spores of the FB122 mutant strain of Bacillus subtilis, one that does not produce DPA. These experiments revealed that some DPAp may play a positive role for the spore. These benefits are visible in an improvement in spore germination rate and kinetics, as well as in an increase in their resistance to UVc exposure.
Collapse
Affiliation(s)
- J Dikec
- UMR Procédés Alimentaires et Microbiologiques, L'Institut Agro Dijon, Université de Bourgogne Franche-Comté, 1, Esplanade Erasme, 21000 Dijon, France
| | - M Pacheco
- UMR Procédés Alimentaires et Microbiologiques, L'Institut Agro Dijon, Université de Bourgogne Franche-Comté, 1, Esplanade Erasme, 21000 Dijon, France
| | - M Lavaud
- UMR Procédés Alimentaires et Microbiologiques, L'Institut Agro Dijon, Université de Bourgogne Franche-Comté, 1, Esplanade Erasme, 21000 Dijon, France; Dimacell Imaging Facility, L'Institut Agro Dijon, Université de Bourgogne Franche-Comté, 1 Esplanade Erasme, 21000 Dijon, France
| | - P Winckler
- UMR Procédés Alimentaires et Microbiologiques, L'Institut Agro Dijon, Université de Bourgogne Franche-Comté, 1, Esplanade Erasme, 21000 Dijon, France; Dimacell Imaging Facility, L'Institut Agro Dijon, Université de Bourgogne Franche-Comté, 1 Esplanade Erasme, 21000 Dijon, France
| | - J M Perrier-Cornet
- UMR Procédés Alimentaires et Microbiologiques, L'Institut Agro Dijon, Université de Bourgogne Franche-Comté, 1, Esplanade Erasme, 21000 Dijon, France; Dimacell Imaging Facility, L'Institut Agro Dijon, Université de Bourgogne Franche-Comté, 1 Esplanade Erasme, 21000 Dijon, France.
| |
Collapse
|
7
|
Dikec J, Bechoua N, Winckler P, Perrier-Cornet JM. Effects of pulsed near infrared light (NIR) on Bacillus subtilis spores. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2022; 234:112530. [PMID: 35930949 DOI: 10.1016/j.jphotobiol.2022.112530] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 07/13/2022] [Accepted: 07/20/2022] [Indexed: 06/15/2023]
Abstract
In this study, we develop a characterization of bacterial spore resistance to NIR pulsed light under modalities traditionally used in multiphoton microscopy. Energy dose and laser power are both key parameters in spore and bacterial cell inactivation. Surprisingly, spores and vegetative cells seem to show a similar sensitivity to pulsed NIR, spores being only 2-fold more resistant than their vegetative counterparts. This work enables us to eliminate certain hypotheses concerning the main driver of spore inactivation processes. Our findings suggest that damage leading to inactivation is mainly caused by photochemical reactions characterized by multiple possible pathways, including DNA damage or oxidation processes.
Collapse
Affiliation(s)
- J Dikec
- UMR Procédés Alimentaires et Microbiologiques, L'Institut Agro Dijon, Université de Bourgogne Franche-Comté, 1, Esplanade Erasme, 21000 Dijon, France
| | - N Bechoua
- UMR Procédés Alimentaires et Microbiologiques, L'Institut Agro Dijon, Université de Bourgogne Franche-Comté, 1, Esplanade Erasme, 21000 Dijon, France
| | - P Winckler
- UMR Procédés Alimentaires et Microbiologiques, L'Institut Agro Dijon, Université de Bourgogne Franche-Comté, 1, Esplanade Erasme, 21000 Dijon, France; Dimacell Imaging Facility, L'Institut Agro Dijon, Université de Bourgogne Franche-Comté, 1 Esplanade Erasme, 21000 Dijon, France
| | - J M Perrier-Cornet
- UMR Procédés Alimentaires et Microbiologiques, L'Institut Agro Dijon, Université de Bourgogne Franche-Comté, 1, Esplanade Erasme, 21000 Dijon, France; Dimacell Imaging Facility, L'Institut Agro Dijon, Université de Bourgogne Franche-Comté, 1 Esplanade Erasme, 21000 Dijon, France.
| |
Collapse
|
8
|
Small Prokaryotic DNA-Binding Proteins Protect Genome Integrity throughout the Life Cycle. Int J Mol Sci 2022; 23:ijms23074008. [PMID: 35409369 PMCID: PMC8999374 DOI: 10.3390/ijms23074008] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 03/27/2022] [Accepted: 04/01/2022] [Indexed: 12/17/2022] Open
Abstract
Genomes of all organisms are persistently threatened by endogenous and exogenous assaults. Bacterial mechanisms of genome maintenance must provide protection throughout the physiologically distinct phases of the life cycle. Spore-forming bacteria must also maintain genome integrity within the dormant endospore. The nucleoid-associated proteins (NAPs) influence nucleoid organization and may alter DNA topology to protect DNA or to alter gene expression patterns. NAPs are characteristically multifunctional; nevertheless, Dps, HU and CbpA are most strongly associated with DNA protection. Archaea display great variety in genome organization and many inhabit extreme environments. As of yet, only MC1, an archaeal NAP, has been shown to protect DNA against thermal denaturation and radiolysis. ssDNA are intermediates in vital cellular processes, such as DNA replication and recombination. Single-stranded binding proteins (SSBs) prevent the formation of secondary structures but also protect the hypersensitive ssDNA against chemical and nuclease degradation. Ionizing radiation upregulates SSBs in the extremophile Deinococcus radiodurans.
Collapse
|
9
|
McLean JT, Benny A, Nolan MD, Swinand G, Scanlan EM. Cysteinyl radicals in chemical synthesis and in nature. Chem Soc Rev 2021; 50:10857-10894. [PMID: 34397045 DOI: 10.1039/d1cs00254f] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Nature harnesses the unique properties of cysteinyl radical intermediates for a diverse range of essential biological transformations including DNA biosynthesis and repair, metabolism, and biological photochemistry. In parallel, the synthetic accessibility and redox chemistry of cysteinyl radicals renders them versatile reactive intermediates for use in a vast array of synthetic applications such as lipidation, glycosylation and fluorescent labelling of proteins, peptide macrocyclization and stapling, desulfurisation of peptides and proteins, and development of novel therapeutics. This review provides the reader with an overview of the role of cysteinyl radical intermediates in both chemical synthesis and biological systems, with a critical focus on mechanistic details. Direct insights from biological systems, where applied to chemical synthesis, are highlighted and potential avenues from nature which are yet to be explored synthetically are presented.
Collapse
Affiliation(s)
- Joshua T McLean
- Trinity Biomedical Sciences Institute, Trinity College Dublin, The University of Dublin, 152-160 Pearse St., Dublin, D02 R590, Ireland.
| | - Alby Benny
- Trinity Biomedical Sciences Institute, Trinity College Dublin, The University of Dublin, 152-160 Pearse St., Dublin, D02 R590, Ireland.
| | - Mark D Nolan
- Trinity Biomedical Sciences Institute, Trinity College Dublin, The University of Dublin, 152-160 Pearse St., Dublin, D02 R590, Ireland.
| | - Glenna Swinand
- Trinity Biomedical Sciences Institute, Trinity College Dublin, The University of Dublin, 152-160 Pearse St., Dublin, D02 R590, Ireland.
| | - Eoin M Scanlan
- Trinity Biomedical Sciences Institute, Trinity College Dublin, The University of Dublin, 152-160 Pearse St., Dublin, D02 R590, Ireland.
| |
Collapse
|
10
|
Nerber HN, Sorg JA. The small acid-soluble proteins of Clostridioides difficile are important for UV resistance and serve as a check point for sporulation. PLoS Pathog 2021; 17:e1009516. [PMID: 34496003 PMCID: PMC8452069 DOI: 10.1371/journal.ppat.1009516] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 09/20/2021] [Accepted: 09/01/2021] [Indexed: 12/17/2022] Open
Abstract
Clostridioides difficile is a nosocomial pathogen which causes severe diarrhea and colonic inflammation. C. difficile causes disease in susceptible patients when endospores germinate into the toxin-producing vegetative form. The action of these toxins results in diarrhea and the spread of spores into the hospital and healthcare environments. Thus, the destruction of spores is imperative to prevent disease transmission between patients. However, spores are resilient and survive extreme temperatures, chemical exposure, and UV treatment. This makes their elimination from the environment difficult and perpetuates their spread between patients. In the model spore-forming organism, Bacillus subtilis, the small acid-soluble proteins (SASPs) contribute to these resistances. The SASPs are a family of small proteins found in all endospore-forming organisms, C. difficile included. Although these proteins have high sequence similarity between organisms, the role(s) of the proteins differ. Here, we investigated the role of the main α/β SASPs, SspA and SspB, and two annotated putative SASPs, CDR20291_1130 and CDR20291_3080, in protecting C. difficile spores from environmental insults. We found that SspA is necessary for conferring spore UV resistance, SspB minorly contributes, and the annotated putative SASPs do not contribute to UV resistance. In addition, the SASPs minorly contribute to the resistance of nitrous acid. Surprisingly, the combined deletion of sspA and sspB prevented spore formation. Overall, our data indicate that UV resistance of C. difficile spores is dependent on SspA and that SspA and SspB regulate/serve as a checkpoint for spore formation, a previously unreported function of SASPs.
Collapse
Affiliation(s)
- Hailee N. Nerber
- Department of Biology, Texas A&M University, College Station, Texas, United States of America
| | - Joseph A. Sorg
- Department of Biology, Texas A&M University, College Station, Texas, United States of America
- * E-mail:
| |
Collapse
|
11
|
Yin Y, Ji X, Zhang Q. The Promiscuous Activity of the Radical
SAM
Enzyme
NosL
toward Two Unnatural Substrates. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202100304] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Yue Yin
- Department of Chemistry Fudan University Shanghai 200433 China
| | - Xinjian Ji
- Department of Chemistry Fudan University Shanghai 200433 China
| | - Qi Zhang
- Department of Chemistry Fudan University Shanghai 200433 China
| |
Collapse
|
12
|
Cheng J, Ji W, Ma S, Ji X, Deng Z, Ding W, Zhang Q. Characterization and Mechanistic Study of the Radical SAM Enzyme ArsS Involved in Arsenosugar Biosynthesis. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202015177] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Jinduo Cheng
- Department of Chemistry Fudan University Shanghai 200433 China
| | - Wenjuan Ji
- Department of Chemistry Fudan University Shanghai 200433 China
| | - Suze Ma
- Department of Chemistry Fudan University Shanghai 200433 China
| | - Xinjian Ji
- Department of Chemistry Fudan University Shanghai 200433 China
| | - Zixin Deng
- State Key Laboratory of Microbial Metabolism School of Life Sciences & Biotechnology Shanghai Jiao Tong University Shanghai 200240 China
| | - Wei Ding
- State Key Laboratory of Microbial Metabolism School of Life Sciences & Biotechnology Shanghai Jiao Tong University Shanghai 200240 China
| | - Qi Zhang
- Department of Chemistry Fudan University Shanghai 200433 China
| |
Collapse
|
13
|
Cheng J, Ji W, Ma S, Ji X, Deng Z, Ding W, Zhang Q. Characterization and Mechanistic Study of the Radical SAM Enzyme ArsS Involved in Arsenosugar Biosynthesis. Angew Chem Int Ed Engl 2021; 60:7570-7575. [PMID: 33427387 DOI: 10.1002/anie.202015177] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 01/07/2021] [Indexed: 12/18/2022]
Abstract
Arsenosugars are a group of arsenic-containing ribosides that are found predominantly in marine algae but also in terrestrial organisms. It has been proposed that arsenosugar biosynthesis involves a key intermediate 5'-deoxy-5'-dimethylarsinoyl-adenosine (DDMAA), but how DDMAA is produced remains elusive. Now, we report characterization of ArsS as a DDMAA synthase, which catalyzes a radical S-adenosylmethionine (SAM)-mediated alkylation (adenosylation) of dimethylarsenite (DMAsIII ) to produce DDMAA. This radical-mediated reaction is redox neutral, and multiple turnover can be achieved without external reductant. Phylogenomic and biochemical analyses revealed that DDMAA synthases are widespread in distinct bacterial phyla with similar catalytic efficiencies; these enzymes likely originated from cyanobacteria. This study reveals a key step in arsenosugar biosynthesis and also a new paradigm in radical SAM chemistry, highlighting the catalytic diversity of this superfamily of enzymes.
Collapse
Affiliation(s)
- Jinduo Cheng
- Department of Chemistry, Fudan University, Shanghai, 200433, China
| | - Wenjuan Ji
- Department of Chemistry, Fudan University, Shanghai, 200433, China
| | - Suze Ma
- Department of Chemistry, Fudan University, Shanghai, 200433, China
| | - Xinjian Ji
- Department of Chemistry, Fudan University, Shanghai, 200433, China
| | - Zixin Deng
- State Key Laboratory of Microbial Metabolism, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Wei Ding
- State Key Laboratory of Microbial Metabolism, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Qi Zhang
- Department of Chemistry, Fudan University, Shanghai, 200433, China
| |
Collapse
|
14
|
Nardi G, Lineros-Rosa M, Palumbo F, Miranda MA, Lhiaubet-Vallet V. Spectroscopic characterization of dipicolinic acid and its photoproducts as thymine photosensitizers. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 245:118898. [PMID: 32927302 DOI: 10.1016/j.saa.2020.118898] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 08/21/2020] [Accepted: 08/26/2020] [Indexed: 06/11/2023]
Abstract
Dipicolinic acid (DPA), present in large amount in bacterial spores, has been proposed to act as an endogenous photosensitizer in spore photoproduct formation. The proposed mechanism involves a triplet-triplet energy transfer from DPA to thymine. However, up to now, no spectroscopic studies have been performed to determine the interaction between the endogenous compound and the nucleobase, probably due to its photolability in aqueous solutions. Here, triplet excited state properties of DPA are reported together with its bimolecular quenching rate constant by thymidine, kq of ca. 5.3 × 109 M-1 s-1. To run more reliable studies, a stable methyl ester derivative of DPA, which exhibits the same spectroscopic properties as the parent compound, is also described. Finally, DPA photoproducts are characterized. Studies of their triplet excited state properties have demonstrated that, interestingly, one of them is able to photosensitize thymidine triplet excited state formation.
Collapse
Affiliation(s)
- Giacomo Nardi
- Instituto Universitario Mixto de Tecnología Química, Universitat Politècnica de València, Consejo Superior de Investigaciones Científicas, Avenida de los Naranjos s/n, 46022, Valencia, Spain
| | - Mauricio Lineros-Rosa
- Instituto Universitario Mixto de Tecnología Química, Universitat Politècnica de València, Consejo Superior de Investigaciones Científicas, Avenida de los Naranjos s/n, 46022, Valencia, Spain
| | - Fabrizio Palumbo
- Instituto Universitario Mixto de Tecnología Química, Universitat Politècnica de València, Consejo Superior de Investigaciones Científicas, Avenida de los Naranjos s/n, 46022, Valencia, Spain
| | - Miguel A Miranda
- Instituto Universitario Mixto de Tecnología Química, Universitat Politècnica de València, Consejo Superior de Investigaciones Científicas, Avenida de los Naranjos s/n, 46022, Valencia, Spain.
| | - Virginie Lhiaubet-Vallet
- Instituto Universitario Mixto de Tecnología Química, Universitat Politècnica de València, Consejo Superior de Investigaciones Científicas, Avenida de los Naranjos s/n, 46022, Valencia, Spain.
| |
Collapse
|
15
|
Handler F. Predicting Inactivation of Bacillus subtilis Spores Exposed to Broadband and Solar Ultraviolet Light. ENVIRONMENTAL ENGINEERING SCIENCE 2019; 36:667-680. [PMID: 31236005 PMCID: PMC6588126 DOI: 10.1089/ees.2018.0404] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 11/20/2018] [Indexed: 05/12/2023]
Abstract
This study develops general predictive models for the ultraviolet (UV) radiation dose-response behavior of Bacillus subtilis spores to solar UV irradiation that occurs in the environment and broadband UV irradiation used in water disinfection systems. The approach is demonstrated using previously obtained experimental survival rates for B. subtilis spores deposited on dry surfaces as well as in water and exposed to both narrow band UV radiation as well as broadband UV irradiation from solar exposure and disinfectant lamps. Results are modeled to derive predicted survival rates for spores as a function of irradiance intensity and wavelength, capability for repair, and depletion of available sites for UV damage. The essential features of the approach are expression of the inactivation action spectrum in terms of the probability of an incident photon being absorbed and forming a dimer lesion, and expression of the spore survival as a cumulative binomial distribution for damage. The results provide increased accuracy in estimating dispersed biological hazards, and evaluating the effectiveness of UV air and water disinfectant systems. In addition, the approach for the first time explains the observed reduced inactivation rate in a repair-capable strain compared with a sensitive, repair-deficient strain by accounting for the depletion of available lesion-forming sites due to increasing DNA damage.
Collapse
|
16
|
Role of DNA Repair and Protective Components in Bacillus subtilis Spore Resistance to Inactivation by 400-nm-Wavelength Blue Light. Appl Environ Microbiol 2018; 84:AEM.01604-18. [PMID: 30054368 DOI: 10.1128/aem.01604-18] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Accepted: 07/24/2018] [Indexed: 11/20/2022] Open
Abstract
The high intrinsic decontamination resistance of Firmicutes spores is important medically (disease) and commercially (food spoilage). Effective methods of spore eradication would be of considerable interest in the health care and medical product industries, particularly if the decontamination method effectively killed spores while remaining benign to both humans and sensitive equipment. Intense blue light at a ∼400 nm wavelength is one such treatment that has drawn significant interest. This work has determined the resistance of spores to blue light in an extensive panel of Bacillus subtilis strains, including wild-type strains and mutants that (i) lack protective components such as the spore coat and its pigment(s) or the DNA protective α/β-type small, acid-soluble spore proteins (SASP); (ii) have an elevated spore core water content; or (iii) lack enzymes involved in DNA repair, including those for homologous recombination and nonhomologous end joining (HR and NHEJ), apurinic/apyrimidinic endonucleases, nucleotide and base excision repair (NER and BER), translesion synthesis (TLS) by Y-family DNA polymerases, and spore photoproduct (SP) removal by SP lyase (SPL). The most important factors in spore blue light resistance were determined to be spore coats/pigmentation, α/β-type SASP, NER, BER, TLS, and SP repair. A major conclusion from this work is that blue light kills spores by DNA damage, and the results in this work indicate at least some of the specific DNA damage. It appears that high-intensity blue light could be a significant addition to the agents used to kill bacterial spores in applied settings.IMPORTANCE Effective methods of spore inactivation would be of considerable interest in the health care and medical products industries, particularly if the decontamination method effectively killed spores while remaining benign to both humans and sensitive equipment. Intense blue light radiation is one such treatment that has drawn significant interest. In this work, all known spore-protective features, as well as universal and spore-specific DNA repair mechanisms, were tested in a systematic fashion for their contribution to the resistance of spores to blue light radiation.
Collapse
|
17
|
Holliday GL, Akiva E, Meng EC, Brown SD, Calhoun S, Pieper U, Sali A, Booker SJ, Babbitt PC. Atlas of the Radical SAM Superfamily: Divergent Evolution of Function Using a "Plug and Play" Domain. Methods Enzymol 2018; 606:1-71. [PMID: 30097089 DOI: 10.1016/bs.mie.2018.06.004] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The radical SAM superfamily contains over 100,000 homologous enzymes that catalyze a remarkably broad range of reactions required for life, including metabolism, nucleic acid modification, and biogenesis of cofactors. While the highly conserved SAM-binding motif responsible for formation of the key 5'-deoxyadenosyl radical intermediate is a key structural feature that simplifies identification of superfamily members, our understanding of their structure-function relationships is complicated by the modular nature of their structures, which exhibit varied and complex domain architectures. To gain new insight about these relationships, we classified the entire set of sequences into similarity-based subgroups that could be visualized using sequence similarity networks. This superfamily-wide analysis reveals important features that had not previously been appreciated from studies focused on one or a few members. Functional information mapped to the networks indicates which members have been experimentally or structurally characterized, their known reaction types, and their phylogenetic distribution. Despite the biological importance of radical SAM chemistry, the vast majority of superfamily members have never been experimentally characterized in any way, suggesting that many new reactions remain to be discovered. In addition to 20 subgroups with at least one known function, we identified additional subgroups made up entirely of sequences of unknown function. Importantly, our results indicate that even general reaction types fail to track well with our sequence similarity-based subgroupings, raising major challenges for function prediction for currently identified and new members that continue to be discovered. Interactive similarity networks and other data from this analysis are available from the Structure-Function Linkage Database.
Collapse
Affiliation(s)
- Gemma L Holliday
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA, United States.
| | - Eyal Akiva
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA, United States
| | - Elaine C Meng
- Resource for Biocomputing, Visualization, and Informatics, Department of Pharmaceutical Chemistry, School of Pharmacy, University of California, San Francisco, CA, United States
| | - Shoshana D Brown
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA, United States
| | - Sara Calhoun
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA, United States; Graduate Program in Biophysics, University of California, San Francisco, CA, United States
| | - Ursula Pieper
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA, United States
| | - Andrej Sali
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA, United States; Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA, United States; Quantitative Biosciences Institute, University of California, San Francisco, CA, United States
| | - Squire J Booker
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, United States; Department of Chemistry, The Pennsylvania State University, University Park, PA, United States; The Howard Hughes Medical Institute, The Pennsylvania State University, University Park, PA, United States
| | - Patricia C Babbitt
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA, United States; Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA, United States; Quantitative Biosciences Institute, University of California, San Francisco, CA, United States.
| |
Collapse
|
18
|
White RH. Identification and Biosynthesis of 1-Mercaptoethanesulfonic Acid (1-MES), an Analogue of Coenzyme M, Found Widely in the Methanogenic Archaea. Biochemistry 2017; 56:6137-6144. [PMID: 29064676 DOI: 10.1021/acs.biochem.7b00971] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Here I report on the identification of 1-mercaptoethanesulfonic acid (1-MES), an analogue of 2-mercaptoethanesulfonic acid (coenzyme M, HSCoM). 1-MES and HSCoM were both present in the growth media of eight different methanogens at concentrations ranging from ∼1 to 100 μM. In an effort to determine a chemical origin of 1-MES, several plausible chemical routes were examined each assuming that HSCoM was the precursor. In all examined routes, no 1-MES was formed. However, 1-MES was formed when a solution of vinylsulfonic acid and sulfide were exposed to ultraviolet light. On the basis of these results, I conclude 1-MES is formed enzymatically. This was confirmed by growing a culture of Methanococcus maripaludis S2 in the presence of [1,1',2,2'-2H4]HSCoM and measuring the incorporation of deuterium into 1-MES. 1-MES incorporated three of the four deuteriums from the fed HSCoM. This result is consistent with the abstraction of a C-2 deuterium of the HSCoM, likely by a 5'-dAdoCH2• radical, followed by a radical rearrangement in which the sulfonic acid moves to position C-1, followed by abstraction of a H• likely from 5'-dAdoCH2D. At present, the reason for the production of 1-MES is not clear. This is the first report of the occurrence of 1-MES in Nature.
Collapse
Affiliation(s)
- Robert H White
- Department of Biochemistry, Virginia Polytechnic Institute and State University , Blacksburg, Virginia 24061, United States
| |
Collapse
|
19
|
Yang L, Li L. Insights into the Activity Change of Spore Photoproduct Lyase Induced by Mutations at a Peripheral Glycine Residue. Front Chem 2017; 5:14. [PMID: 28401144 PMCID: PMC5368176 DOI: 10.3389/fchem.2017.00014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 02/28/2017] [Indexed: 12/19/2022] Open
Abstract
UV radiation triggers the formation of 5-thyminyl-5,6-dihydrothymine, i.e., the spore photoproduct (SP), in the genomic DNA of bacterial endospores. These SPs, if not repaired in time, may lead to genome instability and cell death. SP is mainly repaired by spore photoproduct lyase (SPL) during spore outgrowth via an unprecedented protein-harbored radical transfer pathway that is composed of at least a cysteine and two tyrosine residues. This mechanism is consistent with the recently solved SPL structure that shows all three residues are located in proximity and thus able to participate in the radical transfer process during the enzyme catalysis. In contrast, an earlier in vivo mutational study identified a glycine to arginine mutation at the position 168 on the B. subtilis SPL that is >15 Å away from the enzyme active site. This mutation appears to abolish the enzyme activity because endospores carrying this mutant were sensitive to UV light. To understand the molecular basis for this rendered enzyme activity, we constructed two SPL mutations G168A and G168R, examined their repair of dinucleotide SP TpT, and found that both mutants exhibit reduced enzyme activity. Comparing with the wildtype (WT) SPL enzyme, the G168A mutant slows down the SP TpT repair by 3~4-fold while the G168R mutant by ~ 80-fold. Both mutants exhibit a smaller apparent (DV) kinetic isotope effect (KIE) but a bigger competitive (DV/K) KIE than that by the WT SPL. Moreover, the G168R mutant also produces a large portion of the abortive repair product TpT-[Formula: see text]; the formation of which indicates that cysteine 141 is no longer well positioned as the H-donor to the thymine allylic radical intermediate. All these data imply that the mutation at the remote glycine 168 residue alters the enzyme 3D structure, subsequently reducing the SPL activity by changing the positions of the essential amino acids involved in the radical transfer process.
Collapse
Affiliation(s)
- Linlin Yang
- Department of Chemistry and Chemical Biology, Indiana University-Purdue University IndianapolisIndianapolis, IN, USA
| | - Lei Li
- Department of Chemistry and Chemical Biology, Indiana University-Purdue University IndianapolisIndianapolis, IN, USA
- Department of Dermatology, Indiana University School of MedicineIndianapolis, IN, USA
| |
Collapse
|
20
|
Yang L, Jian Y, Setlow P, Li L. Spore photoproduct within DNA is a surprisingly poor substrate for its designated repair enzyme-The spore photoproduct lyase. DNA Repair (Amst) 2017; 53:31-42. [PMID: 28320593 DOI: 10.1016/j.dnarep.2016.11.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 05/23/2016] [Accepted: 11/15/2016] [Indexed: 12/15/2022]
Abstract
DNA repair enzymes typically recognize their substrate lesions with high affinity to ensure efficient lesion repair. In UV irradiated endospores, a special thymine dimer, 5-thyminyl-5,6-dihydrothymine, termed the spore photoproduct (SP), is the dominant DNA photolesion, which is rapidly repaired during spore outgrowth mainly by spore photoproduct lyase (SPL) using an unprecedented protein-harbored radical transfer process. Surprisingly, our in vitro studies using SP-containing short oligonucleotides, pUC 18 plasmid DNA, and E. coli genomic DNA found that they are all poor substrates for SPL in general, exhibiting turnover numbers of 0.01-0.2min-1. The faster turnover numbers are reached under single turnover conditions, and SPL activity is low with oligonucleotide substrates at higher concentrations. Moreover, SP-containing oligonucleotides do not go past one turnover. In contrast, the dinucleotide SP TpT exhibits a turnover number of 0.3-0.4min-1, and the reaction may reach up to 10 turnovers. These observations distinguish SPL from other specialized DNA repair enzymes. To the best of our knowledge, SPL represents an unprecedented example of a major DNA repair enzyme that cannot effectively repair its substrate lesion within the normal DNA conformation adopted in growing cells. Factors such as other DNA binding proteins, helicases or an altered DNA conformation may cooperate with SPL to enable efficient SP repair in germinating spores. Therefore, both SP formation and SP repair are likely to be tightly controlled by the unique cellular environment in dormant and outgrowing spore-forming bacteria, and thus SP repair may be extremely slow in non-spore-forming organisms.
Collapse
Affiliation(s)
- Linlin Yang
- Department of Chemistry and Chemical Biology, Indiana University-Purdue University Indianapolis (IUPUI), 402 North Blackford Street, Indianapolis, IN 46202, United States
| | - Yajun Jian
- Department of Chemistry and Chemical Biology, Indiana University-Purdue University Indianapolis (IUPUI), 402 North Blackford Street, Indianapolis, IN 46202, United States
| | - Peter Setlow
- Department of Molecular Biology and Biophysics, UConn Health, Farmington, CT 06030, United States
| | - Lei Li
- Department of Chemistry and Chemical Biology, Indiana University-Purdue University Indianapolis (IUPUI), 402 North Blackford Street, Indianapolis, IN 46202, United States; Department of Dermatology, Indiana University School of Medicine, Indianapolis, IN 46202, United States.
| |
Collapse
|
21
|
Berteau O, Benjdia A. DNA Repair by the Radical SAM Enzyme Spore Photoproduct Lyase: From Biochemistry to Structural Investigations. Photochem Photobiol 2017; 93:67-77. [DOI: 10.1111/php.12702] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 12/19/2016] [Indexed: 10/20/2022]
Affiliation(s)
- Olivier Berteau
- Micalis Institute; INRA; ChemSyBio; AgroParisTech; Université Paris-Saclay; Jouy-en-Josas France
| | - Alhosna Benjdia
- Micalis Institute; INRA; ChemSyBio; AgroParisTech; Université Paris-Saclay; Jouy-en-Josas France
| |
Collapse
|
22
|
Yang L, Adhikari J, Gross ML, Li L. Kinetic Isotope Effects and Hydrogen/Deuterium Exchange Reveal Large Conformational Changes During the Catalysis of the Clostridium acetobutylicum Spore Photoproduct Lyase. Photochem Photobiol 2017; 93:331-342. [PMID: 27992649 PMCID: PMC5315627 DOI: 10.1111/php.12697] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 11/29/2016] [Indexed: 11/30/2022]
Abstract
Spore photoproduct lyase (SPL) catalyzes the direct reversal of a thymine dimer 5-thyminyl-5,6-dihydrothymine (i.e. the spore photoproduct (SP)) to two thymine residues in germinating endospores. Previous studies suggest that SPL from the bacterium Bacillus subtilis (Bs) harbors an unprecedented radical-transfer pathway starting with cysteine 141 proceeding through tyrosine 99. However, in SPL from the bacterium Clostridium acetobutylicum (Ca), the cysteine (at position 74) and the tyrosine are located on the opposite sides of a substrate-binding pocket that has to collapse to bring the two residues into proximity, enabling the C→Y radical passage as implied in SPL(Bs) . To test this hypothesis, we adopted hydrogen/deuterium exchange mass spectrometry (HDX-MS) to show that C74(Ca) is located at a highly flexible region. The repair of dinucleotide SP TpT by SPL(Ca) is eight-fold to 10-fold slower than that by SPL(Bs) ; the process also generates a large portion of the aborted product TpTSO2- . SPL(Ca) exhibits apparent (D V) kinetic isotope effects (KIEs) of ~6 and abnormally large competitive (D V/K) KIEs (~20), both of which are much larger than the KIEs observed for SPL(Bs) . All these observations indicate that SPL(Ca) possesses a flexible active site and readily undergoes conformational changes during catalysis.
Collapse
Affiliation(s)
- Linlin Yang
- Department of Chemistry and Chemical Biology, Indiana University-Purdue University Indianapolis (IUPUI), 402 North Blackford Street, Indianapolis, Indiana, 46202, USA
| | - Jagat Adhikari
- Department of Chemistry, Washington University in St. Louis, One Brookings Dr., St. Louis, MO 63130, USA
| | - Michael L. Gross
- Department of Chemistry, Washington University in St. Louis, One Brookings Dr., St. Louis, MO 63130, USA
| | - Lei Li
- Department of Chemistry and Chemical Biology, Indiana University-Purdue University Indianapolis (IUPUI), 402 North Blackford Street, Indianapolis, Indiana, 46202, USA
- Department of Biochemistry and Molecular Biology & Department of Dermatology, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA
| |
Collapse
|
23
|
Heidinger L, Kneuttinger AC, Kashiwazaki G, Weber S, Carell T, Schleicher E. Direct observation of a deoxyadenosyl radical in an active enzyme environment. FEBS Lett 2016; 590:4489-4494. [PMID: 27878994 DOI: 10.1002/1873-3468.12498] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 11/16/2016] [Accepted: 11/17/2016] [Indexed: 11/11/2022]
Abstract
5'-deoxyadenosyl radicals have been proposed as the first common intermediate in the molecular reaction mechanism of the family of radical S-adenosyl-l-methionine (SAM) enzymes. However, this radical species has not yet been directly observed in a catalytically active enzyme environment. In a reduced and SAM-containing C140A mutant of the spore photoproduct lyase from Geobacillus thermodenitrificans, a mutant with altered catalytic activity, we were able to identify an organic radical with pronounced hyperfine structure using electron paramagnetic resonance spectroscopy. Guided by quantum-chemical computations at the density functional theory level of theory, this radical could be tentatively assigned to a deoxyadenosyl radical, which provides first experimental evidence for this intermediate in the reaction mechanism of radical SAM enzymes.
Collapse
Affiliation(s)
- Lorenz Heidinger
- Institut für Physikalische Chemie, Albert-Ludwigs-Universität Freiburg, Germany
| | - Andrea C Kneuttinger
- Department für Chemie, Ludwig-Maximilians-Universität München, Germany.,Institute of Biophysics and Physical Biochemistry, University of Regensburg, Germany
| | - Gengo Kashiwazaki
- Department für Chemie, Ludwig-Maximilians-Universität München, Germany
| | - Stefan Weber
- Institut für Physikalische Chemie, Albert-Ludwigs-Universität Freiburg, Germany
| | - Thomas Carell
- Department für Chemie, Ludwig-Maximilians-Universität München, Germany
| | - Erik Schleicher
- Institut für Physikalische Chemie, Albert-Ludwigs-Universität Freiburg, Germany
| |
Collapse
|
24
|
Hayes EC, Jian Y, Li L, Stoll S. EPR Study of UV-Irradiated Thymidine Microcrystals Supports Radical Intermediates in Spore Photoproduct Formation. J Phys Chem B 2016; 120:10923-10931. [DOI: 10.1021/acs.jpcb.6b06587] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Ellen C. Hayes
- Department
of Chemistry, Box 351700, University of Washington, Seattle, Washington 98195, United States
| | - Yajun Jian
- Department
of Chemistry and Chemical Biology, 402 N. Blackford Street, LD 326, Indiana University—Purdue University Indianapolis, Indianapolis, Indiana 46202, United States
| | - Lei Li
- Department
of Chemistry and Chemical Biology, 402 N. Blackford Street, LD 326, Indiana University—Purdue University Indianapolis, Indianapolis, Indiana 46202, United States
| | - Stefan Stoll
- Department
of Chemistry, Box 351700, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
25
|
Adhikari S, Lin G, Li L. Reversible Hydrolysis Reaction with the Spore Photoproduct under Alkaline Conditions. J Org Chem 2016; 81:8570-6. [PMID: 27537985 DOI: 10.1021/acs.joc.6b01846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
DNA lesions may reduce the electron density at the nucleobases, making them prone to further modifications upon the alkaline treatment. The dominant DNA photolesion found in UV-irradiated bacterial endospores is a thymine dimer, 5-thyminyl-5,6-dihydrothymine, i.e., the spore photoproduct (SP). Here we report a stepwise addition/elimination reaction in the SP hydrolysis product under strong basic conditions where a ureido group is added to the carboxyl moiety to form a cyclic amide, regenerating SP after eliminating a hydroxide ion. Direct amidation of carboxylic acids by reaction with amines in the presence of a catalyst is well documented; however, it is very rare for an amidation reaction to occur without activation. This uncatalyzed SP reverse reaction in aqueous solution is even more surprising because the carboxyl moiety is not a good electrophile due to the negative charge it carries. Examination of the base-catalyzed hydrolyses of two other saturated pyrimidine lesions, 5,6-dihydro-2'-deoxyuridine and pyrimidine (6-4) pyrimidone photoproduct, reveals that neither reaction is reversible even though all three hydrolysis reactions may share the same gem-diol intermediate. Therefore, the SP structure where the two thymine residues maintain a stacked conformation likely provides the needed framework enabling this highly unusual carboxyl addition/elimination reaction.
Collapse
Affiliation(s)
- Surya Adhikari
- Department of Chemistry and Chemical Biology, Indiana University-Purdue University Indianapolis (IUPUI) , 402 North Blackford Street, Indianapolis, Indiana, 46202, United States
| | - Gengjie Lin
- Department of Chemistry and Chemical Biology, Indiana University-Purdue University Indianapolis (IUPUI) , 402 North Blackford Street, Indianapolis, Indiana, 46202, United States
| | - Lei Li
- Department of Chemistry and Chemical Biology, Indiana University-Purdue University Indianapolis (IUPUI) , 402 North Blackford Street, Indianapolis, Indiana, 46202, United States.,Department of Biochemistry and Molecular Biology & Department of Dermatology, Indiana University School of Medicine , Indianapolis, Indiana 46202, United States
| |
Collapse
|
26
|
Ji X, Li Y, Xie L, Lu H, Ding W, Zhang Q. Expanding Radical SAM Chemistry by Using Radical Addition Reactions and SAM Analogues. Angew Chem Int Ed Engl 2016; 55:11845-8. [DOI: 10.1002/anie.201605917] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2016] [Revised: 08/11/2016] [Indexed: 12/12/2022]
Affiliation(s)
- Xinjian Ji
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations; School of Life Sciences; Lanzhou University; Lanzhou 730000 China
- Department of Chemistry; Fudan University; Shanghai 200433 China
| | - Yongzhen Li
- Department of Chemistry; Fudan University; Shanghai 200433 China
| | - Liqi Xie
- Department of Chemistry; Fudan University; Shanghai 200433 China
| | - Haojie Lu
- Department of Chemistry; Fudan University; Shanghai 200433 China
| | - Wei Ding
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations; School of Life Sciences; Lanzhou University; Lanzhou 730000 China
| | - Qi Zhang
- Department of Chemistry; Fudan University; Shanghai 200433 China
| |
Collapse
|
27
|
Ji X, Li Y, Xie L, Lu H, Ding W, Zhang Q. Expanding Radical SAM Chemistry by Using Radical Addition Reactions and SAM Analogues. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201605917] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Xinjian Ji
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations; School of Life Sciences; Lanzhou University; Lanzhou 730000 China
- Department of Chemistry; Fudan University; Shanghai 200433 China
| | - Yongzhen Li
- Department of Chemistry; Fudan University; Shanghai 200433 China
| | - Liqi Xie
- Department of Chemistry; Fudan University; Shanghai 200433 China
| | - Haojie Lu
- Department of Chemistry; Fudan University; Shanghai 200433 China
| | - Wei Ding
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations; School of Life Sciences; Lanzhou University; Lanzhou 730000 China
| | - Qi Zhang
- Department of Chemistry; Fudan University; Shanghai 200433 China
| |
Collapse
|
28
|
Ding W, Ji X, Li Y, Zhang Q. Catalytic Promiscuity of the Radical S-adenosyl-L-methionine Enzyme NosL. Front Chem 2016; 4:27. [PMID: 27446906 PMCID: PMC4916742 DOI: 10.3389/fchem.2016.00027] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 06/09/2016] [Indexed: 12/19/2022] Open
Abstract
Catalytic promiscuity plays a key role in enzyme evolution and the acquisition of novel biological functions. Because of the high reactivity of radical species, in our view enzymes involving radical-mediated mechanisms could intrinsically be more prone to catalytic promiscuity. This mini-review summarizes the recent advances in the study of NosL, a radical S-adenosyl-L-methionine (SAM)-dependent L-tryptophan (L-Trp) lyase. We demonstrate here the interesting chemistry and remarkable catalytic promiscuity of NosL, and attempt to highlight the high evolvability of radical SAM enzymes and the potential to engineer these enzymes for novel and improved activities.
Collapse
Affiliation(s)
- Wei Ding
- Department of Chemistry, Fudan University Shanghai, China
| | - Xinjian Ji
- Department of Chemistry, Fudan University Shanghai, China
| | - Yongzhen Li
- Department of Chemistry, Fudan University Shanghai, China
| | - Qi Zhang
- Department of Chemistry, Fudan University Shanghai, China
| |
Collapse
|
29
|
Ding W, Li Q, Jia Y, Ji X, Qianzhu H, Zhang Q. Emerging Diversity of the Cobalamin-Dependent Methyltransferases Involving Radical-Based Mechanisms. Chembiochem 2016; 17:1191-7. [PMID: 27028019 DOI: 10.1002/cbic.201600107] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Indexed: 11/10/2022]
Abstract
Cobalamins comprise a group of cobalt-containing organometallic cofactors that play important roles in cellular metabolism. Although many cobalamin-dependent methyltransferases (e.g., methionine synthase MetH) have been extensively studied, a new group of methyltransferases that are cobalamin-dependent and utilize radical chemistry in catalysis is just beginning to be appreciated. In this Concept article, we summarize recent advances in the understanding of the radical-based and cobalamin-dependent methyltransferases and discuss the functional and mechanistic diversity of this emerging class of enzymes.
Collapse
Affiliation(s)
- Wei Ding
- Key Laboratory of Cell Activities and Stress Adaptations, (Ministry of Education), School of Life Sciences, Lanzhou University, Lanzhou, 730000, China.,Department of Chemistry, Fudan University, Shanghai, 200433, China
| | - Qien Li
- Key Laboratory of Cell Activities and Stress Adaptations, (Ministry of Education), School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Youli Jia
- Key Laboratory of Cell Activities and Stress Adaptations, (Ministry of Education), School of Life Sciences, Lanzhou University, Lanzhou, 730000, China.,Department of Chemistry, Fudan University, Shanghai, 200433, China
| | - Xinjian Ji
- Department of Chemistry, Fudan University, Shanghai, 200433, China
| | - Haocheng Qianzhu
- Department of Chemistry, Fudan University, Shanghai, 200433, China
| | - Qi Zhang
- Department of Chemistry, Fudan University, Shanghai, 200433, China.
| |
Collapse
|
30
|
Setlow P, Li L. Photochemistry and Photobiology of the Spore Photoproduct: A 50-Year Journey. Photochem Photobiol 2015; 91:1263-90. [PMID: 26265564 PMCID: PMC4631623 DOI: 10.1111/php.12506] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 07/21/2015] [Indexed: 02/06/2023]
Abstract
Fifty years ago, a new thymine dimer was discovered as the dominant DNA photolesion in UV-irradiated bacterial spores [Donnellan, J. E. & Setlow R. B. (1965) Science, 149, 308-310], which was later named the spore photoproduct (SP). Formation of SP is due to the unique environment in the spore core that features low hydration levels favoring an A-DNA conformation, high levels of calcium dipicolinate that acts as a photosensitizer, and DNA saturation with small, acid-soluble proteins that alters DNA structure and reduces side reactions. In vitro studies reveal that any of these factors alone can promote SP formation; however, SP formation is usually accompanied by the production of other DNA photolesions. Therefore, the nearly exclusive SP formation in spores is due to the combined effects of these three factors. Spore photoproduct photoreaction is proved to occur via a unique H-atom transfer mechanism between the two involved thymine residues. Successful incorporation of SP into an oligonucleotide has been achieved via organic synthesis, which enables structural studies that reveal minor conformational changes in the SP-containing DNA. Here, we review the progress on SP photochemistry and photobiology in the past 50 years, which indicates a very rich SP photobiology that may exist beyond endospores.
Collapse
Affiliation(s)
- Peter Setlow
- Department of Molecular Biology and Biophysics, UConn Health, Farmington, Connecticut, USA
| | - Lei Li
- Department of Chemistry and Chemical Biology, Indiana University-Purdue University Indianapolis (IUPUI), Indianapolis, Indiana, 46202
- Department of Biochemistry and Molecular Biology & Department of Dermatology, Indiana University School of Medicine, Indianapolis, Indiana 46202
| |
Collapse
|
31
|
Lundin D, Berggren G, Logan DT, Sjöberg BM. The origin and evolution of ribonucleotide reduction. Life (Basel) 2015; 5:604-36. [PMID: 25734234 PMCID: PMC4390871 DOI: 10.3390/life5010604] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Revised: 02/04/2015] [Accepted: 02/06/2015] [Indexed: 11/16/2022] Open
Abstract
Ribonucleotide reduction is the only pathway for de novo synthesis of deoxyribonucleotides in extant organisms. This chemically demanding reaction, which proceeds via a carbon-centered free radical, is catalyzed by ribonucleotide reductase (RNR). The mechanism has been deemed unlikely to be catalyzed by a ribozyme, creating an enigma regarding how the building blocks for DNA were synthesized at the transition from RNA- to DNA-encoded genomes. While it is entirely possible that a different pathway was later replaced with the modern mechanism, here we explore the evolutionary and biochemical limits for an origin of the mechanism in the RNA + protein world and suggest a model for a prototypical ribonucleotide reductase (protoRNR). From the protoRNR evolved the ancestor to modern RNRs, the urRNR, which diversified into the modern three classes. Since the initial radical generation differs between the three modern classes, it is difficult to establish how it was generated in the urRNR. Here we suggest a model that is similar to the B12-dependent mechanism in modern class II RNRs.
Collapse
Affiliation(s)
- Daniel Lundin
- Department of Biochemistry and Biophysics, Arrhenius Laboratories, Stockholm University, SE-106 91 Stockholm, Sweden.
| | - Gustav Berggren
- Department of Biochemistry and Biophysics, Arrhenius Laboratories, Stockholm University, SE-106 91 Stockholm, Sweden.
| | - Derek T Logan
- Department of Biochemistry and Structural Biology, Lund University, Box 124, SE-221 00 Lund, Sweden.
| | - Britt-Marie Sjöberg
- Department of Biochemistry and Biophysics, Arrhenius Laboratories, Stockholm University, SE-106 91 Stockholm, Sweden.
| |
Collapse
|
32
|
Banerjee R. Introduction to the thematic minireview series on radical S-adenosylmethionine (SAM) enzymes. J Biol Chem 2014; 290:3962-3. [PMID: 25477525 DOI: 10.1074/jbc.r114.630251] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In the early days, radical enzyme reactions that use S-adenosylmethionine (SAM) coordinated to an Fe-S cluster, which Perry Frey described as a "poor man's coenzyme B12," were believed to be relatively rare chemical curiosities. Today, bioinformatics analyses have revealed the wide prevalence and sheer numbers of radical SAM enzymes, conferring superfamily status. In this thematic minireview series, the JBC presents six articles on radical SAM enzymes that accomplish wide-ranging chemical transformations. We learn that despite the diversity of the reactions catalyzed, family members share some common structural and mechanistic themes. Still in its infancy, continued explorations promise to be fertile grounds for discoveries that will undoubtedly further broaden our understanding of the catalytic repertoire and deepen our understanding of the chemical strategies used by radical SAM enzymes.
Collapse
Affiliation(s)
- Ruma Banerjee
- From the Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan 48109-0600
| |
Collapse
|