1
|
Guédet C, Tagougui S, Gauthier AC, Thivel D, Mathieu ME. The impact of exercise timing on energy intake: A systematic review and meta-analysis of diurnal and meal timing effects. Appetite 2025; 204:107752. [PMID: 39521351 DOI: 10.1016/j.appet.2024.107752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 10/28/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024]
Abstract
This systematic review and meta-analysis examine the literature (up to August 2nd, 2024) on the influence of exercise timing on energy intake in both children and adults. A comprehensive search was conducted using MEDLINE, EMBASE, Cochrane Library, SPORTDiscus, and Web of Science Core Collection, following PRISMA guidelines. The review was registered in Prospero (CRD42024553381) and evaluated using QUADAS-2. From an initial 3276 articles, a meta-analysis (six studies) revealed that daily energy intake was not significantly lower when exercise was performed in the morning versus the afternoon/evening: mean difference of 64 ± 77 kcal (95% CI: 86 to 215 kcal; p = 0.403). A meta-analysis (three studies, all with children) comparing lunch energy intake before versus after exercise showed a significant difference in energy intake when exercise was performed post-meal: (-39 ± 13 kcal, 95% CI: 63 to -14 kcal; p = 0.002). For the meta-analysis of delayed lunch (five studies), where exercise ended 15 min to 4 h before the meal, and the delay between the start of each exercise condition within the same study was typically around 2 h, no significant difference in energy intake was found (-2±67 kcal; 95% CI: 134 to 130 kcal; p = 0.977). Regarding chronic exercise, a decrease in energy intake was observed with evening exercise (one study), morning exercise (two studies) or independently of exercise timing (two studies). In conclusion, findings suggest acute exercise may reduce intake in children and adolescents, but this effect is dependent on the timing of exercise.
Collapse
Affiliation(s)
- Capucine Guédet
- Université de Lille, Université d'Artois, Université du Littoral Côte d'Opale, ULR 7369 - URePSSS - Unité de Recherche Pluridisciplinaire Sport, Santé, Société (URePSSS), Lille, France; Montreal Clinical Research Institute (IRCM), Montreal, Canada
| | - Sémah Tagougui
- Université de Lille, Université d'Artois, Université du Littoral Côte d'Opale, ULR 7369 - URePSSS - Unité de Recherche Pluridisciplinaire Sport, Santé, Société (URePSSS), Lille, France; Montreal Clinical Research Institute (IRCM), Montreal, Canada.
| | | | - David Thivel
- Université Clermont Auvergne, CRNH, AME2P, Clermont-Ferrand, France
| | - Marie-Eve Mathieu
- School of Kinesiology and Physical Activity Sciences, Université de Montréal, Montreal, QC, Canada; CHU Sainte-Justine Azrieli Research Center, Montreal, QC, Canada.
| |
Collapse
|
2
|
Sasai M. Role of the reaction-structure coupling in temperature compensation of the KaiABC circadian rhythm. PLoS Comput Biol 2022; 18:e1010494. [PMID: 36067222 PMCID: PMC9481178 DOI: 10.1371/journal.pcbi.1010494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 09/16/2022] [Accepted: 08/17/2022] [Indexed: 11/19/2022] Open
Abstract
When the mixture solution of cyanobacterial proteins, KaiA, KaiB, and KaiC, is incubated with ATP in vitro, the phosphorylation level of KaiC shows stable oscillations with the temperature-compensated circadian period. Elucidating this temperature compensation is essential for understanding the KaiABC circadian clock, but its mechanism has remained a mystery. We analyzed the KaiABC temperature compensation by developing a theoretical model describing the feedback relations among reactions and structural transitions in the KaiC molecule. The model showed that the reduced structural cooperativity should weaken the negative feedback coupling among reactions and structural transitions, which enlarges the oscillation amplitude and period, explaining the observed significant period extension upon single amino-acid residue substitution. We propose that an increase in thermal fluctuations similarly attenuates the reaction-structure feedback, explaining the temperature compensation in the KaiABC clock. The model explained the experimentally observed responses of the oscillation phase to the temperature shift or the ADP-concentration change and suggested that the ATPase reactions in the CI domain of KaiC affect the period depending on how the reaction rates are modulated. The KaiABC clock provides a unique opportunity to analyze how the reaction-structure coupling regulates the system-level synchronized oscillations of molecules.
Collapse
Affiliation(s)
- Masaki Sasai
- Department of Applied Physics, Nagoya University, Nagoya, Japan
- Department of Complex Systems Science, Nagoya University, Nagoya, Japan
- Fukui Institute for Fundamental Chemistry, Kyoto University, Kyoto, Japan
- * E-mail:
| |
Collapse
|
3
|
Mechanism of autonomous synchronization of the circadian KaiABC rhythm. Sci Rep 2021; 11:4713. [PMID: 33633230 PMCID: PMC7907350 DOI: 10.1038/s41598-021-84008-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 02/11/2021] [Indexed: 11/28/2022] Open
Abstract
The cyanobacterial circadian clock can be reconstituted by mixing three proteins, KaiA, KaiB, and KaiC, in vitro. In this protein mixture, oscillations of the phosphorylation level of KaiC molecules are synchronized to show the coherent oscillations of the ensemble of many molecules. However, the molecular mechanism of this synchronization has not yet been fully elucidated. In this paper, we explain a theoretical model that considers the multifold feedback relations among the structure and reactions of KaiC. The simulated KaiC hexamers show stochastic switch-like transitions at the level of single molecules, which are synchronized in the ensemble through the sequestration of KaiA into the KaiC–KaiB–KaiA complexes. The proposed mechanism quantitatively reproduces the synchronization that was observed by mixing two solutions oscillating in different phases. The model results suggest that biochemical assays with varying concentrations of KaiA or KaiB can be used to test this hypothesis.
Collapse
|
4
|
Seo DY, Yoon CS, Dizon LA, Lee SR, Youm JB, Yang WS, Kwak HB, Ko TH, Kim HK, Han J, McGregor RA. Circadian modulation of the cardiac proteome underpins differential adaptation to morning and evening exercise training: an LC-MS/MS analysis. Pflugers Arch 2020; 472:259-269. [PMID: 32025886 DOI: 10.1007/s00424-020-02350-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 01/09/2020] [Accepted: 01/16/2020] [Indexed: 12/11/2022]
Abstract
All living beings on earth are influenced by the circadian rhythm, the rising and the setting of the sun. The ubiquitous effect of exercise is widely believed to maximize health benefits but has not been formally investigated for cardiac responses in the exercise-induced circadian rhythms. We hypothesized that the exercise-related proteome is differentially influenced by circadian rhythm and analyzed the differences between the effects of morning and evening exercise. Twenty-four Sprague-Dawley rats were randomly divided into four groups (n = 6 per group): morning control, morning exercise, evening control, and evening exercise groups. The exercise groups were subjected to 12-week treadmill exercise (5 days/week) performed either during daytime or nighttime. After 12 weeks, the physiological characteristics (e.g., body weight, heart weight, visceral fat, and blood metabolites), cardiovascular capacity (ejection fraction (%) and fractional shortening (%)), circadian gene expression levels (clock, ball1, per1, per2, cry1, and cry2), and the proteomic data were obtained and subjected to univariate and multivariate analysis. The mRNA levels of per1 and cry2 increased in the evening group compared with those in the morning group. We also found that per2 decreased and cry2 increased in the evening exercise groups. The evening exercise groups showed more decreased triacylglycerides and increased blood insulin levels than the morning exercise group. The principal component analysis, partial least squares discriminant analysis, and orthogonal partial least squares discriminant analysis indicated that the circadian rhythm differently influenced the protein networks of the exercise groups. In the morning exercise group, the transcription-translation feedback loop (TTFL) (clock, per1, per2, cry1, and cry2) formed a protein-protein interaction network with Nme2, Hint1, Ddt, Ndufb8, Ldha, and Eef1a2. In contrast, the TTFL group appeared close to Maoa, Hist2h4, and Macrod1 in the evening exercise group. Interestingly, the evening exercise group decreased the mRNA level of per2 but not per1. Per1 and Per2 are known to transport Cry1 and Cry2 into the nucleus. Taken together, we summarized the characteristics of enriched proteins in the aspect of their molecular function, cellular component, and biological process. Our results might provide a better understanding of the circadian effect on exercise-related proteins.
Collapse
Affiliation(s)
- Dae Yun Seo
- National Research Laboratory for Mitochondrial Signaling, Department of Physiology, Department of Health Sciences and Technology, BK21 Project Team, College of Medicine, Cardiovascular and Metabolic Disease Center, Inje University, Bokji-ro 75, Busanjin-gu, Busan, 47392, South Korea
| | - Chang Shin Yoon
- National Research Laboratory for Mitochondrial Signaling, Department of Physiology, Department of Health Sciences and Technology, BK21 Project Team, College of Medicine, Cardiovascular and Metabolic Disease Center, Inje University, Bokji-ro 75, Busanjin-gu, Busan, 47392, South Korea
| | - Louise Anne Dizon
- National Research Laboratory for Mitochondrial Signaling, Department of Physiology, Department of Health Sciences and Technology, BK21 Project Team, College of Medicine, Cardiovascular and Metabolic Disease Center, Inje University, Bokji-ro 75, Busanjin-gu, Busan, 47392, South Korea
| | - Sung Ryul Lee
- National Research Laboratory for Mitochondrial Signaling, Department of Physiology, Department of Health Sciences and Technology, BK21 Project Team, College of Medicine, Cardiovascular and Metabolic Disease Center, Inje University, Bokji-ro 75, Busanjin-gu, Busan, 47392, South Korea
| | - Jae Boum Youm
- National Research Laboratory for Mitochondrial Signaling, Department of Physiology, Department of Health Sciences and Technology, BK21 Project Team, College of Medicine, Cardiovascular and Metabolic Disease Center, Inje University, Bokji-ro 75, Busanjin-gu, Busan, 47392, South Korea
| | - Won Suk Yang
- Medicinal Bioconvergence Research Center, College of Pharmacy, Seoul National University, Seoul, 151-742, South Korea
| | - Hyo-Bum Kwak
- Department of Kinesiology, Inha University, 100 Inha-ro, Michuhol-gu, Incheon, 22212, South Korea
| | - Tae Hee Ko
- National Research Laboratory for Mitochondrial Signaling, Department of Physiology, Department of Health Sciences and Technology, BK21 Project Team, College of Medicine, Cardiovascular and Metabolic Disease Center, Inje University, Bokji-ro 75, Busanjin-gu, Busan, 47392, South Korea
| | - Hyoung Kyu Kim
- National Research Laboratory for Mitochondrial Signaling, Department of Physiology, Department of Health Sciences and Technology, BK21 Project Team, College of Medicine, Cardiovascular and Metabolic Disease Center, Inje University, Bokji-ro 75, Busanjin-gu, Busan, 47392, South Korea
| | - Jin Han
- National Research Laboratory for Mitochondrial Signaling, Department of Physiology, Department of Health Sciences and Technology, BK21 Project Team, College of Medicine, Cardiovascular and Metabolic Disease Center, Inje University, Bokji-ro 75, Busanjin-gu, Busan, 47392, South Korea.
| | - Robin A McGregor
- National Research Laboratory for Mitochondrial Signaling, Department of Physiology, Department of Health Sciences and Technology, BK21 Project Team, College of Medicine, Cardiovascular and Metabolic Disease Center, Inje University, Bokji-ro 75, Busanjin-gu, Busan, 47392, South Korea
| |
Collapse
|
5
|
Sasai M. Effects of Stochastic Single-Molecule Reactions on Coherent Ensemble Oscillations in the KaiABC Circadian Clock. J Phys Chem B 2019; 123:702-713. [PMID: 30629448 DOI: 10.1021/acs.jpcb.8b10584] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
How do many constituent molecules in a biochemical system synchronize, giving rise to coherent system-level oscillations? One system that is particularly suitable for use in studying this problem is a mixture solution of three cyanobacterial proteins, KaiA, KaiB, and KaiC: the phosphorylation level of KaiC shows stable oscillations with a period of approximately 24 h when these three Kai proteins are incubated with ATP in vitro. Here, we analyze the mechanism behind synchronization in the KaiABC system theoretically by enhancing a model previously developed by the present author. Our simulation results suggest that positive feedback between stochastic ATP hydrolysis and the allosteric structural transitions in KaiC molecules drives oscillations of individual molecules and promotes synchronization of oscillations of many KaiC molecules. Our simulations also show that the ATPase activity of KaiC is correlated with the oscillation frequency of an ensemble of KaiC molecules. These results suggest that stochastic ATP hydrolysis in each KaiC molecule plays an important role in regulating the coherent system-level oscillations. This property is robust against changes in the binding and unbinding rate constants for KaiA to/from KaiC or KaiB, but the oscillations are sensitive to the rate constants of the KaiC phosphorylation and dephosphorylation reactions.
Collapse
Affiliation(s)
- Masaki Sasai
- Department of Applied Physics , Nagoya University , Nagoya 464-8603 , Japan
| |
Collapse
|
6
|
Wong DCS, O’Neill JS. Non-transcriptional processes in circadian rhythm generation. CURRENT OPINION IN PHYSIOLOGY 2018; 5:117-132. [PMID: 30596188 PMCID: PMC6302373 DOI: 10.1016/j.cophys.2018.10.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
'Biological clocks' orchestrate mammalian biology to a daily rhythm. Whilst 'clock gene' transcriptional circuits impart rhythmic regulation to myriad cellular systems, our picture of the biochemical mechanisms that determine their circadian (∼24 hour) period is incomplete. Here we consider the evidence supporting different models for circadian rhythm generation in mammalian cells in light of evolutionary factors. We find it plausible that the circadian timekeeping mechanism in mammalian cells is primarily protein-based, signalling biological timing information to the nucleus by the post-translational regulation of transcription factor activity, with transcriptional feedback imparting robustness to the oscillation via hysteresis. We conclude by suggesting experiments that might distinguish this model from competing paradigms.
Collapse
|
7
|
Das S, Terada TP, Sasai M. Single-molecular and ensemble-level oscillations of cyanobacterial circadian clock. Biophys Physicobiol 2018; 15:136-150. [PMID: 29955565 PMCID: PMC6018440 DOI: 10.2142/biophysico.15.0_136] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 04/10/2018] [Indexed: 01/15/2023] Open
Abstract
When three cyanobacterial proteins, KaiA, KaiB, and KaiC, are incubated with ATP in vitro, the phosphorylation level of KaiC hexamers shows stable oscillation with approximately 24 h period. In order to understand this KaiABC clockwork, we need to analyze both the macroscopic synchronization of a large number of KaiC hexamers and the microscopic reactions and structural changes in individual KaiC molecules. In the present paper, we explain two coarse-grained theoretical models, the many-molecule (MM) model and the single-molecule (SM) model, to bridge the gap between macroscopic and microscopic understandings. In the simulation results with these models, ATP hydrolysis in the CI domain of KaiC hexamers drives oscillation of individual KaiC hexamers and the ATP hydrolysis is necessary for synchronizing oscillations of a large number of KaiC hexamers. Sensitive temperature dependence of the lifetime of the ADP bound state in the CI domain makes the oscillation period temperature insensitive. ATPase activity is correlated to the frequency of phosphorylation oscillation in the single molecule of KaiC hexamer, which should be the origin of the observed ensemble-level correlation between the ATPase activity and the frequency of phosphorylation oscillation. Thus, the simulation results with the MM and SM models suggest that ATP hydrolysis stochastically occurring in each CI domain of individual KaiC hexamers is a key process for oscillatory behaviors of the ensemble of many KaiC hexamers.
Collapse
Affiliation(s)
- Sumita Das
- Department of Computational Science and Engineering and Department of Applied Physics, Nagoya University, Nagoya, Aichi 464-8603, Japan
| | - Tomoki P Terada
- Department of Computational Science and Engineering and Department of Applied Physics, Nagoya University, Nagoya, Aichi 464-8603, Japan
| | - Masaki Sasai
- Department of Computational Science and Engineering and Department of Applied Physics, Nagoya University, Nagoya, Aichi 464-8603, Japan
| |
Collapse
|
8
|
Das S, Terada TP, Sasai M. Role of ATP Hydrolysis in Cyanobacterial Circadian Oscillator. Sci Rep 2017; 7:17469. [PMID: 29234156 PMCID: PMC5727317 DOI: 10.1038/s41598-017-17717-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 11/29/2017] [Indexed: 12/11/2022] Open
Abstract
A cyanobacterial protein KaiC shows a stable oscillation in its phosphorylation level with approximately one day period when three proteins, KaiA, KaiB, and KaiC, are incubated in the presence of ATP in vitro. During this oscillation, KaiC hydrolyzes more ATP molecules than required for phosphorylation. Here, in this report, a theoretical model of the KaiABC oscillator is developed to elucidate the role of this ATP consumption by assuming multifold feedback relations among reactions and structural transition in each KaiC molecule and the structure-dependent binding reactions among Kai proteins. Results of numerical simulation showed that ATP hydrolysis is a driving mechanism of the phosphorylation oscillation in the present model, and that the frequency of ATP hydrolysis in individual KaiC molecules is correlated to the frequency of oscillation in the ensemble of many Kai molecules, which indicates that the coherent oscillation is generated through the coupled microscopic intramolecular and ensemble-level many-molecular regulations.
Collapse
Affiliation(s)
- Sumita Das
- Department of Computational Science and Engineering, Nagoya University, Nagoya, 464-8603, Japan
| | - Tomoki P Terada
- Department of Computational Science and Engineering, Nagoya University, Nagoya, 464-8603, Japan.,Department of Applied Physics, Nagoya University, Nagoya, 464-8603, Japan
| | - Masaki Sasai
- Department of Computational Science and Engineering, Nagoya University, Nagoya, 464-8603, Japan. .,Department of Applied Physics, Nagoya University, Nagoya, 464-8603, Japan.
| |
Collapse
|
9
|
Egli M. Architecture and mechanism of the central gear in an ancient molecular timer. J R Soc Interface 2017; 14:rsif.2016.1065. [PMID: 28330987 DOI: 10.1098/rsif.2016.1065] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Accepted: 02/27/2017] [Indexed: 12/16/2022] Open
Abstract
Molecular clocks are the product of natural selection in organisms from bacteria to human and their appearance early in evolution such as in the prokaryotic cyanobacterium Synechococcus elongatus suggests that these timers served a crucial role in genetic fitness. Thus, a clock allows cyanobacteria relying on photosynthesis and nitrogen fixation to temporally space the two processes and avoid exposure of nitrogenase carrying out fixation to high levels of oxygen produced during photosynthesis. Fascinating properties of molecular clocks are the long time constant, their precision and temperature compensation. Although these are hallmarks of all circadian oscillators, the actual cogs and gears that control clocks vary widely between organisms, indicating that circadian timers evolved convergently multiple times, owing to the selective pressure of an environment with a daily light/dark cycle. In S. elongatus, the three proteins KaiA, KaiB and KaiC in the presence of ATP constitute a so-called post-translational oscillator (PTO). The KaiABC PTO can be reconstituted in an Eppendorf tube and keeps time in a temperature-compensated manner. The ease by which the KaiABC clock can be studied in vitro has made it the best-investigated molecular clock system. Over the last decade, structures of all three Kai proteins and some of their complexes have emerged and mechanistic aspects have been analysed in considerable detail. This review focuses on the central gear of the S. elongatus clock and only enzyme among the three proteins: KaiC. Our determination of the three-dimensional structure of KaiC early in the quest for a better understanding of the inner workings of the cyanobacterial timer revealed its unusual architecture and conformational differences and unique features of the two RecA-like domains constituting KaiC. The structure also pinpointed phosphorylation sites and differential interactions with ATP molecules at subunit interfaces, and helped guide experiments to ferret out mechanistic aspects of the ATPase, auto-phosphorylation and auto-dephosphorylation reactions catalysed by the homo-hexamer. Comparisons between the structure of KaiC and those of nanomachines such as F1-ATPase and CaMKII also exposed shared architectural features (KaiC/ATPase), mechanistic principles (KaiC/CaMKII) and phenomena, such as subunit exchange between hexameric particles critical for function (clock synchronization, KaiABC; memory-storage, CaMKII).
Collapse
Affiliation(s)
- Martin Egli
- Department of Biochemistry, Vanderbilt University, Nashville, TN 37232, USA
| |
Collapse
|
10
|
Snijder J, Schuller JM, Wiegard A, Lössl P, Schmelling N, Axmann IM, Plitzko JM, Förster F, Heck AJR. Structures of the cyanobacterial circadian oscillator frozen in a fully assembled state. Science 2017; 355:1181-1184. [PMID: 28302852 DOI: 10.1126/science.aag3218] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 02/13/2017] [Indexed: 01/18/2023]
Abstract
Cyanobacteria have a robust circadian oscillator, known as the Kai system. Reconstituted from the purified protein components KaiC, KaiB, and KaiA, it can tick autonomously in the presence of adenosine 5'-triphosphate (ATP). The KaiC hexamers enter a natural 24-hour reaction cycle of autophosphorylation and assembly with KaiB and KaiA in numerous diverse forms. We describe the preparation of stoichiometrically well-defined assemblies of KaiCB and KaiCBA, as monitored by native mass spectrometry, allowing for a structural characterization by single-particle cryo-electron microscopy and mass spectrometry. Our data reveal details of the interactions between the Kai proteins and provide a structural basis to understand periodic assembly of the protein oscillator.
Collapse
Affiliation(s)
- Joost Snijder
- Biomolecular Mass Spectrometry and Proteomics and Netherlands Proteomics Center, Bijvoet Center for Biomolecular Research, and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH, Utrecht, Netherlands
| | - Jan M Schuller
- Max Planck Institute of Biochemistry, Department of Molecular Structural Biology, D-82152 Martinsried, Germany
| | - Anika Wiegard
- Institute for Synthetic Microbiology, Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich Heine University Düsseldorf, D-40225 Düsseldorf, Germany
| | - Philip Lössl
- Biomolecular Mass Spectrometry and Proteomics and Netherlands Proteomics Center, Bijvoet Center for Biomolecular Research, and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH, Utrecht, Netherlands
| | - Nicolas Schmelling
- Institute for Synthetic Microbiology, Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich Heine University Düsseldorf, D-40225 Düsseldorf, Germany
| | - Ilka M Axmann
- Institute for Synthetic Microbiology, Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich Heine University Düsseldorf, D-40225 Düsseldorf, Germany
| | - Jürgen M Plitzko
- Max Planck Institute of Biochemistry, Department of Molecular Structural Biology, D-82152 Martinsried, Germany
| | - Friedrich Förster
- Max Planck Institute of Biochemistry, Department of Molecular Structural Biology, D-82152 Martinsried, Germany. .,Cryo-electron Microscopy, Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, 3584 CH, Utrecht, Netherlands
| | - Albert J R Heck
- Biomolecular Mass Spectrometry and Proteomics and Netherlands Proteomics Center, Bijvoet Center for Biomolecular Research, and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH, Utrecht, Netherlands.
| |
Collapse
|
11
|
Mora-García S, de Leone MJ, Yanovsky M. Time to grow: circadian regulation of growth and metabolism in photosynthetic organisms. CURRENT OPINION IN PLANT BIOLOGY 2017; 35:84-90. [PMID: 27912128 DOI: 10.1016/j.pbi.2016.11.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 11/10/2016] [Accepted: 11/11/2016] [Indexed: 05/21/2023]
Abstract
Circadian clocks are molecular devices that help adjust organisms to periodic environmental changes. Although formally described as self-sustaining oscillators that are synchronized by external cues and produce defined outputs, it is increasingly clear that physiological processes not only are regulated by, but also regulate the function of the clock. We discuss three recent examples of the intimate relationships between the function of the clock, growth and metabolism in photosynthetic organisms: the daily tracking of sun by sunflowers, the fine computations plants and cyanobacteria perform to manage carbon reserves and prevent starvation, and the changes in clock parameters that went along with domestication of tomato.
Collapse
Affiliation(s)
- Santiago Mora-García
- Fundación Instituto Leloir, Av. Patricias Argentinas 435, 1405 Buenos Aires, Argentina.
| | - María José de Leone
- Fundación Instituto Leloir, Av. Patricias Argentinas 435, 1405 Buenos Aires, Argentina
| | - Marcelo Yanovsky
- Fundación Instituto Leloir, Av. Patricias Argentinas 435, 1405 Buenos Aires, Argentina.
| |
Collapse
|
12
|
Dong P, Fan Y, Sun J, Lv M, Yi M, Tan X, Liu S. A dynamic interaction process between KaiA and KaiC is critical to the cyanobacterial circadian oscillator. Sci Rep 2016; 6:25129. [PMID: 27113386 PMCID: PMC4844972 DOI: 10.1038/srep25129] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 04/12/2016] [Indexed: 11/09/2022] Open
Abstract
The core circadian oscillator of cyanobacteria consists of three proteins, KaiA, KaiB, and KaiC. This circadian oscillator could be functionally reconstituted in vitro with these three proteins, and therefore has been a very important model in circadian rhythm research. KaiA can bind to KaiC and then stimulate its phosphorylation, but their interaction mechanism remains elusive. In this study, we followed the "second-site suppressor" strategy to investigate the interaction mechanism of KaiA and KaiC. Using protein sequence analyses, we showed that there exist co-varying residues in the binding interface of KaiA and KaiC. The followed mutagenesis study verified that these residues are important to the functions of KaiA and KaiC, but their roles could not be fully explained by the reported complex structures of KaiA and KaiC derived peptides. Combining our data with previous reports, we suggested a dynamic interaction mechanism in KaiA-KaiC interaction, in which both KaiA and the intrinsically disordered tail of KaiC undergo significant structural changes through conformational selection and induced fit during the binding process. At last, we presented a mathematic model to support this hypothesis and explained the importance of this interaction mechanism for the KaiABC circadian oscillator.
Collapse
Affiliation(s)
- Pei Dong
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang 443002, China.,College of Medical Science, China Three Gorges University, Yichang 443002, China
| | - Ying Fan
- College of Medical Science, China Three Gorges University, Yichang 443002, China
| | - Jianqiang Sun
- School of Statistics, Shandong Institute of Business and Technology, Yantai, 264005, China
| | - Mengting Lv
- College of Medical Science, China Three Gorges University, Yichang 443002, China
| | - Ming Yi
- Department of Physics, College of Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiao Tan
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang 443002, China.,College of Medical Science, China Three Gorges University, Yichang 443002, China
| | - Sen Liu
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang 443002, China.,College of Medical Science, China Three Gorges University, Yichang 443002, China
| |
Collapse
|
13
|
Abstract
Life on earth is subject to daily and predictable fluctuations in light intensity, temperature, and humidity created by rotation of the earth. Circadian rhythms, generated by a circadian clock, control temporal programs of cellular physiology to facilitate adaptation to daily environmental changes. Circadian rhythms are nearly ubiquitous and are found in both prokaryotic and eukaryotic organisms. Here we introduce the molecular mechanism of the circadian clock in the model cyanobacterium Synechococcus elongatus PCC 7942. We review the current understanding of the cyanobacterial clock, emphasizing recent work that has generated a more comprehensive understanding of how the circadian oscillator becomes synchronized with the external environment and how information from the oscillator is transmitted to generate rhythms of biological activity. These results have changed how we think about the clock, shifting away from a linear model to one in which the clock is viewed as an interactive network of multifunctional components that are integrated into the context of the cell in order to pace and reset the oscillator. We conclude with a discussion of how this basic timekeeping mechanism differs in other cyanobacterial species and how information gleaned from work in cyanobacteria can be translated to understanding rhythmic phenomena in other prokaryotic systems.
Collapse
|
14
|
Shultzaberger RK, Boyd JS, Diamond S, Greenspan RJ, Golden SS. Giving Time Purpose: The Synechococcus elongatus Clock in a Broader Network Context. Annu Rev Genet 2015; 49:485-505. [PMID: 26442846 DOI: 10.1146/annurev-genet-111212-133227] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Early research on the cyanobacterial clock focused on characterizing the genes needed to keep, entrain, and convey time within the cell. As the scope of assays used in molecular genetics has expanded to capture systems-level properties (e.g., RNA-seq, ChIP-seq, metabolomics, high-throughput screening of genetic variants), so has our understanding of how the clock fits within and influences a broader cellular context. Here we review the work that has established a global perspective of the clock, with a focus on (a) an emerging network-centric view of clock architecture, (b) mechanistic insights into how temporal and environmental cues are transmitted and integrated within this network,
Collapse
Affiliation(s)
- Ryan K Shultzaberger
- Center for Circadian Biology, University of California San Diego, La Jolla, USA, 92093.,Kavli Institute for Brain and Mind, University of California San Diego, La Jolla, USA, 92093
| | - Joseph S Boyd
- Center for Circadian Biology, University of California San Diego, La Jolla, USA, 92093.,Division of Biological Sciences, University of California San Diego, La Jolla, USA, 92093
| | - Spencer Diamond
- Center for Circadian Biology, University of California San Diego, La Jolla, USA, 92093.,Division of Biological Sciences, University of California San Diego, La Jolla, USA, 92093
| | - Ralph J Greenspan
- Center for Circadian Biology, University of California San Diego, La Jolla, USA, 92093.,Kavli Institute for Brain and Mind, University of California San Diego, La Jolla, USA, 92093
| | - Susan S Golden
- Center for Circadian Biology, University of California San Diego, La Jolla, USA, 92093.,Division of Biological Sciences, University of California San Diego, La Jolla, USA, 92093
| |
Collapse
|
15
|
Pattanayek R, Egli M. Protein-Protein Interactions in the Cyanobacterial Circadian Clock: Structure of KaiA Dimer in Complex with C-Terminal KaiC Peptides at 2.8 Å Resolution. Biochemistry 2015. [PMID: 26200123 DOI: 10.1021/acs.biochem.5b00694] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In the cyanobacterial circadian clock, the KaiA, -B, and -C proteins with ATP constitute a post-translational oscillator. KaiA stimulates the KaiC autokinase, and KaiB antagonizes KaiA action. KaiA contacts the intrinsically disordered C-terminal regions of KaiC hexamer to promote phosphorylation across subunit interfaces. The crystal structure of KaiA dimer from Synechococcus elongatus with two KaiC C-terminal 20mer peptides bound reveals that the latter adopt an α-helical conformation and contact KaiA α-helical bundles via mostly hydrophobic interactions. This complex and the crystal structure of KaiC hexamer with truncated C-terminal tails can be fit into the electron microscopy (EM) density of the KaiA:KaiC complex. The hybrid model helps rationalize clock phenotypes of KaiA and KaiC mutants.
Collapse
Affiliation(s)
- Rekha Pattanayek
- Department of Biochemistry, Vanderbilt University, School of Medicine, Nashville, Tennessee 37232, United States
| | - Martin Egli
- Department of Biochemistry, Vanderbilt University, School of Medicine, Nashville, Tennessee 37232, United States
| |
Collapse
|
16
|
Affiliation(s)
- Martin Egli
- Department
of Biochemistry, Vanderbilt University,
School of Medicine, Nashville, Tennessee 37232, United States
| | - Carl H. Johnson
- Department
of Biological Sciences, College of Arts and Science, Vanderbilt University, Nashville, Tennessee 37235, United States
| |
Collapse
|
17
|
Abstract
Structural approaches have provided insight into the mechanisms of circadian clock oscillators. This review focuses upon the myriad structural methods that have been applied to the molecular architecture of cyanobacterial circadian proteins, their interactions with each other, and the mechanism of the KaiABC posttranslational oscillator. X-ray crystallography and solution NMR were deployed to gain an understanding of the three-dimensional structures of the three proteins KaiA, KaiB, and KaiC that make up the inner timer in cyanobacteria. A hybrid structural biology approach including crystallography, electron microscopy, and solution scattering has shed light on the shapes of binary and ternary Kai protein complexes. Structural studies of the cyanobacterial oscillator demonstrate both the strengths and the limitations of the divide-and-conquer strategy. Thus, investigations of complexes involving domains and/or peptides have afforded valuable information into Kai protein interactions. However, high-resolution structural data are still needed at the level of complexes between the 360-kDa KaiC hexamer that forms the heart of the clock and its KaiA and KaiB partners.
Collapse
|