1
|
Kaya VO, Adebali O. UV-induced reorganization of 3D genome mediates DNA damage response. Nat Commun 2025; 16:1376. [PMID: 39910043 PMCID: PMC11799157 DOI: 10.1038/s41467-024-55724-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 12/20/2024] [Indexed: 02/07/2025] Open
Abstract
While it is well-established that UV radiation threatens genomic integrity, the precise mechanisms by which cells orchestrate DNA damage response and repair within the context of 3D genome architecture remain unclear. Here, we address this gap by investigating the UV-induced reorganization of the 3D genome and its critical role in mediating damage response. Employing temporal maps of contact matrices and transcriptional profiles, we illustrate the immediate and holistic changes in genome architecture post-irradiation, emphasizing the significance of this reconfiguration for effective DNA repair processes. We demonstrate that UV radiation triggers a comprehensive restructuring of the 3D genome organization at all levels, including loops, topologically associating domains and compartments. Through the analysis of DNA damage and excision repair maps, we uncover a correlation between genome folding, gene regulation, damage formation probability, and repair efficacy. We show that adaptive reorganization of the 3D genome is a key mediator of the damage response, providing new insights into the complex interplay of genomic structure and cellular defense mechanisms against UV-induced damage, thereby advancing our understanding of cellular resilience.
Collapse
Affiliation(s)
- Veysel Oğulcan Kaya
- Molecular Biology, Genetics and Bioengineering Program, Sabanci University, Istanbul, Türkiye
| | - Ogün Adebali
- Molecular Biology, Genetics and Bioengineering Program, Sabanci University, Istanbul, Türkiye.
| |
Collapse
|
2
|
Guneri-Sozeri PY, Adebali O. Transcription factors, nucleotide excision repair, and cancer: A review of molecular interplay. Int J Biochem Cell Biol 2025; 179:106724. [PMID: 39672502 DOI: 10.1016/j.biocel.2024.106724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 12/05/2024] [Accepted: 12/07/2024] [Indexed: 12/15/2024]
Abstract
Bulky DNA adducts are mostly formed by external factors such as UV irradiation, smoking or treatment with DNA crosslinking agents. If such DNA adducts are not removed by nucleotide excision repair, they can lead to formation of driver mutations that contribute to cancer formation. Transcription factors (TFs) may critically affect both DNA adduct formation and repair efficiency at the binding site to DNA. For example, "hotspot" mutations in melanoma coincide with UV-induced accumulated cyclobutane pyrimidine dimer (CPD) adducts and/or inhibited repair at the binding sites of some TFs. Similarly, anticancer treatment with DNA cross-linkers may additionally generate DNA adducts leading to secondary mutations and the formation of malignant subclones. In addition, some TFs are overexpressed in response to UV irradiation or chemotherapeutic treatment, activating oncogenic and anti-oncogenic pathways independently of nucleotide excision repair itself. This review focuses on the interplay between TFs and nucleotide excision repair during cancer development and progression.
Collapse
Affiliation(s)
| | - Ogün Adebali
- Faculty of Engineering and Natural Sciences, Sabancı University, Istanbul 34956, Türkiye.
| |
Collapse
|
3
|
Wu Y, Adeel M, Xia D, Sancar A, Li W. Nucleotide excision repair of aflatoxin-induced DNA damage within the 3D human genome organization. Nucleic Acids Res 2024; 52:11704-11719. [PMID: 39258558 PMCID: PMC11514448 DOI: 10.1093/nar/gkae755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 08/13/2024] [Accepted: 08/20/2024] [Indexed: 09/12/2024] Open
Abstract
Aflatoxin B1 (AFB1), a potent mycotoxin, is one of the environmental risk factors that cause liver cancer. In the liver, the bioactivated AFB1 intercalates into the DNA double helix to form a bulky DNA adduct which will lead to mutation if left unrepaired. Here, we adapted the tXR-seq method to measure the nucleotide excision repair of AFB1-induced DNA adducts at single-nucleotide resolution on a genome-wide scale, and compared it with repair data obtained from conventional UV-damage XR-seq. Our results showed that transcription-coupled repair plays a major role in the damage removal process. We further analyzed the distribution of nucleotide excision repair sites for AFB1-induced DNA adducts within the 3D human genome organization. Our analysis revealed a heterogeneous AFB1-dG repair across four different organization levels, including chromosome territories, A/B compartments, TADs, and chromatin loops. We found that chromosomes positioned closer to the nuclear center and regions within A compartments have higher levels of nucleotide excision repair. Notably, we observed high repair activity around both TAD boundaries and loop anchors. These findings provide insights into the complex interplay between AFB1-induced DNA damage repair, transcription, and 3D genome organization, shedding light on the mechanisms underlying AFB1-induced mutagenesis.
Collapse
Affiliation(s)
- Yiran Wu
- Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, GA 30602, USA
| | - Muhammad Muzammal Adeel
- Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, GA 30602, USA
| | - Dian Xia
- Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, GA 30602, USA
| | - Aziz Sancar
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Wentao Li
- Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
4
|
Ayalew LE, Mekuria ZH, Despres B, Saab ME, Ojha S. Genome Sequence Comparisons between Small and Large Colony Phenotypes of Equine Clinical Isolates of Arcanobacterium hippocoleae. Animals (Basel) 2024; 14:1609. [PMID: 38891657 PMCID: PMC11171008 DOI: 10.3390/ani14111609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 05/23/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024] Open
Abstract
Arcanobacterium hippocoleae is a Gram-positive fastidious bacterium and is occasionally isolated from the reproductive tract of apparently healthy mares (Equus caballus) or from mares with reproductive tract abnormalities. Apart from a few 16S rRNA gene-based GenBank sequences and one recent report on complete genome assembly, detailed genomic sequence and clinical experimental data are not available on the bacterium. Recently, we observed an unusual increase in the detection of the organism from samples associated with mare reproductive failures in Atlantic Canada. Two colony morphotypes (i.e., small, and large) were detected in culture media, which were identified as A. hippocoleae by MALDI-TOF mass spectrometry and 16S rRNA gene sequencing. Here, we report the whole genome sequencing and characterization of the morphotype variants. The genome length of the large phenotypes was between 2.42 and 2.43, and the small phenotype was 1.99 Mbs. The orthologous nucleotide identity between the large colony phenotypes was ~99%, and the large and small colony phenotypes was between 77.86 and 78.52%, which may warrant the classification of the two morphotypes into different species. Phylogenetic analysis based on 16S rRNA genes or concatenated housekeeping genes grouped the small and large colony variants into two different genotypic clusters. The UvrA protein, which is part of the nucleotide excision repair (NER) system, and 3-isopropoylmalate dehydratase small subunit protein expressed by the leuD gene were identified as potential virulence factors in the large and small colony morphotypes, respectively. However, detailed functional studies will be required to determine the exact roles of these and other identified hypothetical proteins in the cellular metabolism and potential pathogenicity of A. hippocoleae in mares.
Collapse
Affiliation(s)
- Lisanework E. Ayalew
- Atlantic Veterinary College, University of Prince Edward Island (UPEI), 550 University Ave, Charlottetown, PE C1A 4P3, Canada
| | - Zelalem H. Mekuria
- Global One Health Initiative (GOHI), The Ohio State University (OSU), Columbus, OH 43210, USA;
- Department of Veterinary Preventative Medicine, College of Veterinary Medicine, The Ohio State University (OSU), Columbus, OH 43210, USA
| | - Beatrice Despres
- Atlantic Veterinary College, University of Prince Edward Island (UPEI), 550 University Ave, Charlottetown, PE C1A 4P3, Canada
| | - Matthew E. Saab
- Atlantic Veterinary College, University of Prince Edward Island (UPEI), 550 University Ave, Charlottetown, PE C1A 4P3, Canada
| | - Shivani Ojha
- Atlantic Veterinary College, University of Prince Edward Island (UPEI), 550 University Ave, Charlottetown, PE C1A 4P3, Canada
| |
Collapse
|
5
|
Tian N, Schmidt LC, Lameiro MJA, Polo-López MI, Marín ML, Boscá F, González IDC, Lehmann AH, Giannakis S. Why is HSO 5- so effective against bacteria? Insights into the mechanisms of Escherichia coli disinfection by unactivated peroxymonosulfate. WATER RESEARCH 2024; 254:121441. [PMID: 38479173 DOI: 10.1016/j.watres.2024.121441] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 03/05/2024] [Accepted: 03/07/2024] [Indexed: 04/06/2024]
Abstract
This study examined the antimicrobial efficacy of peroxymonosulfate (PMS) against bacteria, using Escherichia coli (E. coli) as a model organism. Our investigation delineates the complex mechanisms exerted by unactivated PMS. Thus, an initial redox reaction between PMS and the target biomolecules of bacteria generates SO4•- as the pivotal reactive species for bacterial inactivation; to a lesser extent, •OH, 1O2, or O2•- may also participate. Damage generated during oxidation was identified using an array of biochemical techniques. Specifically, redox processes are promoted by PMS and SO4•- targets and disrupt various components of bacterial cells, predominantly causing extracellular damage as well as intracellular lesions. Among these, external events are the key to cell death. Finally, by employing gene knockout mutants, we uncovered the role of specific gene responses in the intracellular damage induced by radical pathways. The findings of this study not only expand the understanding of PMS-mediated bacterial inactivation but also explain the ten-fold higher effectiveness of PMS than that reported for H2O2. Hence, we provide clear evidence that unactivated PMS solutions generate SO4•- in the presence of bacteria, and consequently, should be considered an effective disinfection method.
Collapse
Affiliation(s)
- Na Tian
- School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, PR China; Universidad Politécnica de Madrid, E.T.S. de Ingenieros de Caminos, Canales y Puertos, Departamento de Ingeniería Civil: Hidráulica, Energía y Medio Ambiente, Unidad docente Ingeniería Sanitaria, c/ Profesor Aranguren, s/n, ES-28040, Madrid, Spain.
| | - Luciana Carina Schmidt
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Avenida de los Naranjos s/n, Valencia 46022, Spain
| | - María Jesús Abeledo Lameiro
- CIEMAT-Plataforma Solar de Almería, Ctra. Senés km 4, Almería 04200, Spain; Solar Energy Research Centre (CIESOL), Joint Centre University of Almería-CIEMAT, Carretera de Sacramento s/n, Almería E-04120, Spain
| | - María Inmaculada Polo-López
- CIEMAT-Plataforma Solar de Almería, Ctra. Senés km 4, Almería 04200, Spain; Solar Energy Research Centre (CIESOL), Joint Centre University of Almería-CIEMAT, Carretera de Sacramento s/n, Almería E-04120, Spain
| | - María Luisa Marín
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Avenida de los Naranjos s/n, Valencia 46022, Spain
| | - Francisco Boscá
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Avenida de los Naranjos s/n, Valencia 46022, Spain
| | - Isabel Del Castillo González
- Universidad Politécnica de Madrid, E.T.S. de Ingenieros de Caminos, Canales y Puertos, Departamento de Ingeniería Civil: Hidráulica, Energía y Medio Ambiente, Unidad docente Ingeniería Sanitaria, c/ Profesor Aranguren, s/n, ES-28040, Madrid, Spain
| | - Aurelio Hernández Lehmann
- Universidad Politécnica de Madrid, E.T.S. de Ingenieros de Caminos, Canales y Puertos, Departamento de Ingeniería Civil: Hidráulica, Energía y Medio Ambiente, Unidad docente Ingeniería Sanitaria, c/ Profesor Aranguren, s/n, ES-28040, Madrid, Spain
| | - Stefanos Giannakis
- Universidad Politécnica de Madrid, E.T.S. de Ingenieros de Caminos, Canales y Puertos, Departamento de Ingeniería Civil: Hidráulica, Energía y Medio Ambiente, Unidad docente Ingeniería Sanitaria, c/ Profesor Aranguren, s/n, ES-28040, Madrid, Spain.
| |
Collapse
|
6
|
Selvam K, Wyrick JJ, Parra MA. DNA Repair in Nucleosomes: Insights from Histone Modifications and Mutants. Int J Mol Sci 2024; 25:4393. [PMID: 38673978 PMCID: PMC11050016 DOI: 10.3390/ijms25084393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 04/08/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024] Open
Abstract
DNA repair pathways play a critical role in genome stability, but in eukaryotic cells, they must operate to repair DNA lesions in the compact and tangled environment of chromatin. Previous studies have shown that the packaging of DNA into nucleosomes, which form the basic building block of chromatin, has a profound impact on DNA repair. In this review, we discuss the principles and mechanisms governing DNA repair in chromatin. We focus on the role of histone post-translational modifications (PTMs) in repair, as well as the molecular mechanisms by which histone mutants affect cellular sensitivity to DNA damage agents and repair activity in chromatin. Importantly, these mechanisms are thought to significantly impact somatic mutation rates in human cancers and potentially contribute to carcinogenesis and other human diseases. For example, a number of the histone mutants studied primarily in yeast have been identified as candidate oncohistone mutations in different cancers. This review highlights these connections and discusses the potential importance of DNA repair in chromatin to human health.
Collapse
Affiliation(s)
- Kathiresan Selvam
- School of Molecular Biosciences, Washington State University, Pullman, WA 99164, USA
| | - John J. Wyrick
- School of Molecular Biosciences, Washington State University, Pullman, WA 99164, USA
| | - Michael A. Parra
- Department of Chemistry, Susquehanna University, Selinsgrove, PA 17870, USA
| |
Collapse
|
7
|
Kose C, Lindsey-Boltz LA, Sancar A, Jiang Y. Genome-wide analysis of transcription-coupled repair reveals novel transcription events in Caenorhabditis elegans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.12.562083. [PMID: 37904932 PMCID: PMC10614815 DOI: 10.1101/2023.10.12.562083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/01/2023]
Abstract
Bulky DNA adducts such as those induced by ultraviolet light are removed from the genomes of multicellular organisms by nucleotide excision repair, which occurs through two distinct mechanisms, global repair, requiring the DNA damage recognition-factor XPC (xeroderma pigmentosum complementation group C), and transcription-coupled repair (TCR), which does not. TCR is initiated when elongating RNA polymerase II encounters DNA damage, and thus analysis of genome-wide excision repair in XPC-mutants only repairing by TCR provides a unique opportunity to map transcription events missed by methods dependent on capturing RNA transcription products and thus limited by their stability and/or modifications (5'-capping or 3'-polyadenylation). Here, we have performed the eXcision Repair-sequencing (XR-seq) in the model organism Caenorhabditis elegans to generate genome-wide repair maps from a wild-type strain with normal excision repair, a strain lacking TCR (csb-1), or one that only repairs by TCR (xpc-1). Analysis of the intersections between the xpc-1 XR-seq repair maps with RNA-mapping datasets (RNA-seq, long- and short-capped RNA-seq) reveal previously unrecognized sites of transcription and further enhance our understanding of the genome of this important model organism.
Collapse
Affiliation(s)
- Cansu Kose
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Laura A. Lindsey-Boltz
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Aziz Sancar
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Yuchao Jiang
- Department of Statistics, College of Arts and Sciences, Texas A&M University, College Station, TX 77843, USA
- Department of Biology, College of Arts and Sciences, Texas A&M University, College Station, TX 77843
- Department of Biomedical Engineering, College of Engineering, Texas A&M University, College Station, TX 77843
| |
Collapse
|
8
|
Hassanain H, Tseitline D, Hacohen T, Yifrach A, Kirshenbaum A, Lavi B, Parnas A, Adar S. A Practical Site-specific Method for the Detection of Bulky DNA Damages. J Mol Biol 2024; 436:168450. [PMID: 38246411 DOI: 10.1016/j.jmb.2024.168450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 01/16/2024] [Accepted: 01/16/2024] [Indexed: 01/23/2024]
Abstract
Helix-distorting DNA damages block RNA and DNA polymerase, compromising cell function and fate. In human cells, these damages are removed primarily by nucleotide excision repair (NER). Here, we describe damage-sensing PCR (dsPCR), a PCR-based method for the detection of these DNA damages. Exposure to DNA damaging agents results in lower PCR signal in comparison to non-damaged DNA, and repair is measured as the restoration of PCR signal over time. We show that the method successfully detects damages induced by ultraviolet (UV) radiation, by the carcinogenic component of cigarette smoke benzo[a]pyrene diol epoxide (BPDE) and by the chemotherapeutic drug cisplatin. Damage removal measured by dsPCR in a heterochromatic region is less efficient than in a transcribed and accessible region. Furthermore, lower repair is measured in repair-deficient knock-out cells. This straight-forward method could be applied by non-DNA repair experts to study the involvement of their gene-of-interest in repair. Furthermore, this method is fully amenable for high-throughput screening of DNA repair activity.
Collapse
Affiliation(s)
- Hiba Hassanain
- Department of Microbiology and Molecular Genetics, The Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Dana Tseitline
- Department of Microbiology and Molecular Genetics, The Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Tamar Hacohen
- Department of Microbiology and Molecular Genetics, The Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Adi Yifrach
- Department of Microbiology and Molecular Genetics, The Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Ayala Kirshenbaum
- Department of Microbiology and Molecular Genetics, The Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Bar Lavi
- Department of Microbiology and Molecular Genetics, The Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Avital Parnas
- Department of Microbiology and Molecular Genetics, The Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Sheera Adar
- Department of Microbiology and Molecular Genetics, The Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 9112102, Israel.
| |
Collapse
|
9
|
Cohen Y, Adar S. Novel insights into bulky DNA damage formation and nucleotide excision repair from high-resolution genomics. DNA Repair (Amst) 2023; 130:103549. [PMID: 37566959 DOI: 10.1016/j.dnarep.2023.103549] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 07/27/2023] [Accepted: 07/28/2023] [Indexed: 08/13/2023]
Abstract
DNA damages compromise cell function and fate. Cells of all organisms activate a global DNA damage response that includes a signaling stress response, activation of checkpoints, and recruitment of repair enzymes. Especially deleterious are bulky, helix-distorting damages that block transcription and replication. Due to their miscoding nature, these damages lead to mutations and cancer. In human cells, bulky DNA damages are repaired by nucleotide excision repair (NER). To date, the basic mechanism of NER in naked DNA is well defined. Still, there is a fundamental gap in our understanding of how repair is orchestrated despite the packaging of DNA in chromatin, and how it is coordinated with active transcription and replication. The last decade has brought forth huge advances in our ability to detect and assay bulky DNA damages and their repair at single nucleotide resolution across the human genome. Here we review recent findings on the effect of chromatin and DNA-binding proteins on the formation of bulky DNA damages, and novel insights on NER, provided by the recent application of genomic methods.
Collapse
Affiliation(s)
- Yuval Cohen
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Sheera Adar
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel.
| |
Collapse
|
10
|
Smerdon MJ, Wyrick JJ, Delaney S. A half century of exploring DNA excision repair in chromatin. J Biol Chem 2023; 299:105118. [PMID: 37527775 PMCID: PMC10498010 DOI: 10.1016/j.jbc.2023.105118] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/23/2023] [Accepted: 07/25/2023] [Indexed: 08/03/2023] Open
Abstract
DNA in eukaryotic cells is packaged into the compact and dynamic structure of chromatin. This packaging is a double-edged sword for DNA repair and genomic stability. Chromatin restricts the access of repair proteins to DNA lesions embedded in nucleosomes and higher order chromatin structures. However, chromatin also serves as a signaling platform in which post-translational modifications of histones and other chromatin-bound proteins promote lesion recognition and repair. Similarly, chromatin modulates the formation of DNA damage, promoting or suppressing lesion formation depending on the chromatin context. Therefore, the modulation of DNA damage and its repair in chromatin is crucial to our understanding of the fate of potentially mutagenic and carcinogenic lesions in DNA. Here, we survey many of the landmark findings on DNA damage and repair in chromatin over the last 50 years (i.e., since the beginning of this field), focusing on excision repair, the first repair mechanism studied in the chromatin landscape. For example, we highlight how the impact of chromatin on these processes explains the distinct patterns of somatic mutations observed in cancer genomes.
Collapse
Affiliation(s)
- Michael J Smerdon
- Biochemistry and Biophysics, School of Molecular Biosciences, Washington State University, Pullman, Washington, USA.
| | - John J Wyrick
- Genetics and Cell Biology, School of Molecular Biosciences, Washington State University, Pullman, Washington, USA
| | - Sarah Delaney
- Department of Chemistry, Brown University, Providence, Rhode Island, USA
| |
Collapse
|
11
|
He F, Bravo M, Fan L. Helicases required for nucleotide excision repair: structure, function and mechanism. Enzymes 2023; 54:273-304. [PMID: 37945175 DOI: 10.1016/bs.enz.2023.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
Nucleotide excision repair (NER) is a major DNA repair pathway conserved from bacteria to humans. Various DNA helicases, a group of enzymes capable of separating DNA duplex into two strands through ATP binding and hydrolysis, are required by NER to unwind the DNA duplex around the lesion to create a repair bubble and for damage verification and removal. In prokaryotes, UvrB helicase is required for repair bubble formation and damage verification, while UvrD helicase is responsible for the removal of the excised damage containing single-strand (ss) DNA fragment. In addition, UvrD facilitates transcription-coupled repair (TCR) by backtracking RNA polymerase stalled at the lesion. In eukaryotes, two helicases XPB and XPD from the transcription factor TFIIH complex fulfill the helicase requirements of NER. Interestingly, homologs of all these four helicases UvrB, UvrD, XPB, and XPD have been identified in archaea. This review summarizes our current understanding about the structure, function, and mechanism of these four helicases.
Collapse
Affiliation(s)
- Feng He
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, United States
| | - Marco Bravo
- Department of Biochemistry, University of California, Riverside, CA, United States
| | - Li Fan
- Department of Biochemistry, University of California, Riverside, CA, United States.
| |
Collapse
|
12
|
Adebali O, Yang Y, Neupane P, Dike NI, Boltz JL, Kose C, Braunstein M, Selby CP, Sancar A, Lindsey-Boltz LA. The Mfd protein is the transcription-repair coupling factor (TRCF) in Mycobacterium smegmatis. J Biol Chem 2023; 299:103009. [PMID: 36775124 PMCID: PMC10023983 DOI: 10.1016/j.jbc.2023.103009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/06/2023] [Accepted: 02/07/2023] [Indexed: 02/12/2023] Open
Abstract
In vitro and in vivo experiments with Escherichia coli have shown that the Mfd translocase is responsible for transcription-coupled repair, a subpathway of nucleotide excision repair involving the faster rate of repair of the transcribed strand than the nontranscribed strand. Even though the mfd gene is conserved in all bacterial lineages, there is only limited information on whether it performs the same function in other bacterial species. Here, by genome scale analysis of repair of UV-induced cyclobutane pyrimidine dimers, we find that the Mfd protein is the transcription-repair coupling factor in Mycobacterium smegmatis. This finding, combined with the inverted strandedness of UV-induced mutations in WT and mfd-E. coli and Bacillus subtilis indicate that the Mfd protein is the universal transcription-repair coupling factor in bacteria.
Collapse
Affiliation(s)
- Ogun Adebali
- Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul, Türkiye; Department of Computational Science - Biological Sciences, TÜBİTAK Research Institute for Fundamental Sciences, Gebze, Türkiye
| | - Yanyan Yang
- Department of Biochemistry and Biophysics, University of North Carolina-Chapel Hill, Chapel Hill, North Carolina, USA
| | - Pradeep Neupane
- Department of Microbiology and Immunology, University of North Carolina-Chapel Hill, Chapel Hill, North Carolina, USA
| | - Nneka I Dike
- Department of Biochemistry and Biophysics, University of North Carolina-Chapel Hill, Chapel Hill, North Carolina, USA
| | - Julia L Boltz
- Department of Biochemistry and Biophysics, University of North Carolina-Chapel Hill, Chapel Hill, North Carolina, USA
| | - Cansu Kose
- Department of Biochemistry and Biophysics, University of North Carolina-Chapel Hill, Chapel Hill, North Carolina, USA
| | - Miriam Braunstein
- Department of Microbiology and Immunology, University of North Carolina-Chapel Hill, Chapel Hill, North Carolina, USA
| | - Christopher P Selby
- Department of Biochemistry and Biophysics, University of North Carolina-Chapel Hill, Chapel Hill, North Carolina, USA
| | - Aziz Sancar
- Department of Biochemistry and Biophysics, University of North Carolina-Chapel Hill, Chapel Hill, North Carolina, USA.
| | - Laura A Lindsey-Boltz
- Department of Biochemistry and Biophysics, University of North Carolina-Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
13
|
Zhu Y, Tan Y, Li L, Xiang Y, Huang Y, Zhang X, Yin J, Li J, Lan F, Qian M, Hu J. Genome-wide mapping of protein-DNA damage interaction by PADD-seq. Nucleic Acids Res 2023; 51:e32. [PMID: 36715337 PMCID: PMC10085696 DOI: 10.1093/nar/gkad008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 12/26/2022] [Accepted: 01/03/2023] [Indexed: 01/31/2023] Open
Abstract
Protein-DNA damage interactions are critical for understanding the mechanism of DNA repair and damage response. However, due to the relatively random distributions of UV-induced damage and other DNA bulky adducts, it is challenging to measure the interactions between proteins and these lesions across the genome. To address this issue, we developed a new method named Protein-Associated DNA Damage Sequencing (PADD-seq) that uses Damage-seq to detect damage distribution in chromatin immunoprecipitation-enriched DNA fragments. It is possible to delineate genome-wide protein-DNA damage interactions at base resolution with this strategy. Using PADD-seq, we observed that RNA polymerase II (Pol II) was blocked by UV-induced damage on template strands, and the interaction declined within 2 h in transcription-coupled repair-proficient cells. On the other hand, Pol II was clearly restrained at damage sites in the absence of the transcription-repair coupling factor CSB during the same time course. Furthermore, we used PADD-seq to examine local changes in H3 acetylation at lysine 9 (H3K9ac) around cisplatin-induced damage, demonstrating the method's broad utility. In conclusion, this new method provides a powerful tool for monitoring the dynamics of protein-DNA damage interaction at the genomic level, and it encourages comprehensive research into DNA repair and damage response.
Collapse
Affiliation(s)
- Yongchang Zhu
- Shanghai Fifth People's Hospital, Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Yuanqing Tan
- Shanghai Fifth People's Hospital, Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Lin Li
- Institute of Pediatrics and Department of Hematology and Oncology, Children's Hospital of Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Yuening Xiang
- Institute of Pediatrics and Department of Hematology and Oncology, Children's Hospital of Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Yanchao Huang
- Shanghai Fifth People's Hospital, Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Xiping Zhang
- Shanghai Fifth People's Hospital, Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Jiayong Yin
- Institute of Pediatrics and Department of Hematology and Oncology, Children's Hospital of Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Jie Li
- Shanghai Fifth People's Hospital, Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Fei Lan
- Shanghai Key Laboratory of Medical Epigenetics, International Laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, and Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Maoxiang Qian
- Institute of Pediatrics and Department of Hematology and Oncology, Children's Hospital of Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Jinchuan Hu
- Shanghai Fifth People's Hospital, Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| |
Collapse
|
14
|
Thakur M, Muniyappa K. Macrophage activation highlight an important role for NER proteins in the survival, latency and multiplication of Mycobacterium tuberculosis. Tuberculosis (Edinb) 2023; 138:102284. [PMID: 36459831 DOI: 10.1016/j.tube.2022.102284] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 11/14/2022] [Accepted: 11/20/2022] [Indexed: 11/27/2022]
Abstract
Nucleotide excision repair (NER) is one of the most extensively studied DNA repair processes in both prokaryotes and eukaryotes. The NER pathway is a highly conserved, ATP-dependent multi-step process involving several proteins/enzymes that function in a concerted manner to recognize and excise a wide spectrum of helix-distorting DNA lesions and bulky adducts by nuclease cleavage on either side of the damaged bases. As such, the NER pathway of Mycobacterium tuberculosis (Mtb) is essential for its survival within the hostile environment of macrophages and disease progression. This review focuses on present published knowledge about the crucial roles of Mtb NER proteins in the survival and multiplication of the pathogen within the macrophages and as potential targets for drug discovery.
Collapse
Affiliation(s)
- Manoj Thakur
- Department of Biochemistry, Indian Institute of Science, Bangalore, 560012, India.
| | - K Muniyappa
- Department of Biochemistry, Indian Institute of Science, Bangalore, 560012, India
| |
Collapse
|
15
|
Effects of replication domains on genome-wide UV-induced DNA damage and repair. PLoS Genet 2022; 18:e1010426. [PMID: 36155646 PMCID: PMC9536635 DOI: 10.1371/journal.pgen.1010426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 10/06/2022] [Accepted: 09/12/2022] [Indexed: 11/19/2022] Open
Abstract
Nucleotide excision repair is the primary repair mechanism that removes UV-induced DNA lesions in placentals. Unrepaired UV-induced lesions could result in mutations during DNA replication. Although the mutagenesis of pyrimidine dimers is reasonably well understood, the direct effects of replication fork progression on nucleotide excision repair are yet to be clarified. Here, we applied Damage-seq and XR-seq techniques and generated replication maps in synchronized UV-treated HeLa cells. The results suggest that ongoing replication stimulates local repair in both early and late replication domains. Additionally, it was revealed that lesions on lagging strand templates are repaired slower in late replication domains, which is probably due to the imbalanced sequence context. Asymmetric relative repair is in line with the strand bias of melanoma mutations, suggesting a role of exogenous damage, repair, and replication in mutational strand asymmetry.
Collapse
|
16
|
Thakur M, Parulekar RS, Barale SS, Sonawane KD, Muniyappa K. Interrogating the substrate specificity landscape of UvrC reveals novel insights into its non-canonical function. Biophys J 2022; 121:3103-3125. [PMID: 35810330 PMCID: PMC9463653 DOI: 10.1016/j.bpj.2022.07.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 05/23/2022] [Accepted: 07/07/2022] [Indexed: 11/29/2022] Open
Abstract
Although it is relatively unexplored, accumulating data highlight the importance of tripartite crosstalk between nucleotide excision repair (NER), DNA replication, and recombination in the maintenance of genome stability; however, elucidating the underlying mechanisms remains challenging. While Escherichia coli uvrA and uvrB can fully complement polAΔ cells in DNA replication, uvrC attenuates this alternative DNA replication pathway, but the exact mechanism by which uvrC suppresses DNA replication is unknown. Furthermore, the identity of bona fide canonical and non-canonical substrates for UvrCs are undefined. Here, we reveal that Mycobacterium tuberculosis UvrC (MtUvrC) strongly binds to, and robustly cleaves, key intermediates of DNA replication/recombination as compared with the model NER substrates. Notably, inactivation of MtUvrC ATPase activity significantly attenuated its endonuclease activity, thus suggesting a causal link between these two functions. We built an in silico model of the interaction of MtUvrC with the Holliday junction (HJ), using a combination of homology modeling, molecular docking, and molecular dynamic simulations. The model predicted residues that were potentially involved in HJ binding. Six of these residues were mutated either singly or in pairs, and the resulting MtUvrC variants were purified and characterized. Among them, residues Glu595 and Arg597 in the helix-hairpin-helix motif were found to be crucial for the interaction between MtUvrC and HJ; consequently, mutations in these residues, or inhibition of ATP hydrolysis, strongly abrogated its DNA-binding and endonuclease activities. Viewed together, these findings expand the substrate specificity landscape of UvrCs and provide crucial mechanistic insights into the interplay between NER and DNA replication/recombination.
Collapse
Affiliation(s)
- Manoj Thakur
- Department of Biochemistry, Indian Institute of Science, Bengaluru, India.
| | | | - Sagar S Barale
- Structural Bioinformatics Unit, Shivaji University, Kolhapur, India
| | - Kailas D Sonawane
- Department of Microbiology, Shivaji University, Kolhapur, India; Structural Bioinformatics Unit, Shivaji University, Kolhapur, India
| | - Kalappa Muniyappa
- Department of Biochemistry, Indian Institute of Science, Bengaluru, India.
| |
Collapse
|
17
|
Zhang X, Yin M, Hu J. Nucleotide excision repair: a versatile and smart toolkit. Acta Biochim Biophys Sin (Shanghai) 2022; 54:807-819. [PMID: 35975604 PMCID: PMC9828404 DOI: 10.3724/abbs.2022054] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Nucleotide excision repair (NER) is a major pathway to deal with bulky adducts induced by various environmental toxins in all cellular organisms. The two sub-pathways of NER, global genome repair (GGR) and transcription-coupled repair (TCR), differ in the damage recognition modes. In this review, we describe the molecular mechanism of NER in mammalian cells, especially the details of damage recognition steps in both sub-pathways. We also introduce new sequencing methods for genome-wide mapping of NER, as well as recent advances about NER in chromatin by these methods. Finally, the roles of NER factors in repairing oxidative damages and resolving R-loops are discussed.
Collapse
Affiliation(s)
| | | | - Jinchuan Hu
- Correspondence address. Tel: +86-21-54237702; E-mail:
| |
Collapse
|
18
|
Li W, Jones K, Burke TJ, Hossain MA, Lariscy L. Epigenetic Regulation of Nucleotide Excision Repair. Front Cell Dev Biol 2022; 10:847051. [PMID: 35465333 PMCID: PMC9023881 DOI: 10.3389/fcell.2022.847051] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Accepted: 03/24/2022] [Indexed: 12/30/2022] Open
Abstract
Genomic DNA is constantly attacked by a plethora of DNA damaging agents both from endogenous and exogenous sources. Nucleotide excision repair (NER) is the most versatile repair pathway that recognizes and removes a wide range of bulky and/or helix-distorting DNA lesions. Even though the molecular mechanism of NER is well studied through in vitro system, the NER process inside the cell is more complicated because the genomic DNA in eukaryotes is tightly packaged into chromosomes and compacted into a nucleus. Epigenetic modifications regulate gene activity and expression without changing the DNA sequence. The dynamics of epigenetic regulation play a crucial role during the in vivo NER process. In this review, we summarize recent advances in our understanding of the epigenetic regulation of NER.
Collapse
|
19
|
Wu S, Huang Y, Selby CP, Gao M, Sancar A, Hu J. A new technique for genome-wide mapping of nucleotide excision repair without immunopurification of damaged DNA. J Biol Chem 2022; 298:101863. [PMID: 35339490 PMCID: PMC9034098 DOI: 10.1016/j.jbc.2022.101863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/14/2022] [Accepted: 03/15/2022] [Indexed: 12/03/2022] Open
Abstract
Nucleotide excision repair functions to protect genome integrity, and ongoing studies using excision repair sequencing (XR-seq) have contributed to our understanding of how cells prioritize repair across the genome. In this method, the products of excision repair bearing damaged DNA are captured, sequenced, and then mapped genome-wide at single-nucleotide resolution. However, reagent requirements and complex procedures have limited widespread usage of this technique. In addition to the expense of these reagents, it has been hypothesized that the immunoprecipitation step using antibodies directed against damaged DNA may introduce bias in different sequence contexts. Here, we describe a newly developed adaptation called dA-tailing and adaptor ligation (ATL)–XR-seq, a relatively simple XR-seq method that avoids the use of immunoprecipitation targeting damaged DNA. ATL-XR-seq captures repair products by 3′-dA-tailing and 5′-adapter ligation instead of the original 5′- and 3′-dual adapter ligation. This new approach avoids adapter dimer formation during subsequent PCR, omits inefficient and time-consuming purification steps, and is very sensitive. In addition, poly(dA) tail length heterogeneity can serve as a molecular identifier, allowing more repair hotspots to be mapped. Importantly, a comparison of both repair mapping methods showed that no major bias is introduced by the anti-UV damage antibodies used in the original XR-seq procedure. Finally, we also coupled the described dA-tailing approach with quantitative PCR in a new method to quantify repair products. These new methods provide powerful and user-friendly tools to qualitatively and quantitatively measure excision repair.
Collapse
Affiliation(s)
- Sizhong Wu
- Shanghai Fifth People's Hospital, Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Yanchao Huang
- Shanghai Fifth People's Hospital, Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Christopher P Selby
- Department of Biochemistry and Biophysics, School of Medicine, University of North Carolina, Chapel Hill, NC 27599-7260, USA
| | - Meng Gao
- Shanghai Fifth People's Hospital, Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Aziz Sancar
- Department of Biochemistry and Biophysics, School of Medicine, University of North Carolina, Chapel Hill, NC 27599-7260, USA.
| | - Jinchuan Hu
- Shanghai Fifth People's Hospital, Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China.
| |
Collapse
|
20
|
Lim W, Randisi F, Doye JPK, Louis AA. The interplay of supercoiling and thymine dimers in DNA. Nucleic Acids Res 2022; 50:2480-2492. [PMID: 35188542 PMCID: PMC8934635 DOI: 10.1093/nar/gkac082] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 01/21/2022] [Accepted: 02/04/2022] [Indexed: 11/16/2022] Open
Abstract
Thymine dimers are a major mutagenic photoproduct induced by UV radiation. While they have been the subject of extensive theoretical and experimental investigations, questions of how DNA supercoiling affects local defect properties, or, conversely, how the presence of such defects changes global supercoiled structure, are largely unexplored. Here, we introduce a model of thymine dimers in the oxDNA forcefield, parametrized by comparison to melting experiments and structural measurements of the thymine dimer induced bend angle. We performed extensive molecular dynamics simulations of double-stranded DNA as a function of external twist and force. Compared to undamaged DNA, the presence of a thymine dimer lowers the supercoiling densities at which plectonemes and bubbles occur. For biologically relevant supercoiling densities and forces, thymine dimers can preferentially segregate to the tips of the plectonemes, where they enhance the probability of a localized tip-bubble. This mechanism increases the probability of highly bent and denatured states at the thymine dimer site, which may facilitate repair enzyme binding. Thymine dimer-induced tip-bubbles also pin plectonemes, which may help repair enzymes to locate damage. We hypothesize that the interplay of supercoiling and local defects plays an important role for a wider set of DNA damage repair systems.
Collapse
Affiliation(s)
- Wilber Lim
- Rudolf Peierls Centre for Theoretical Physics, University of Oxford, Parks Road, Oxford OX1 3PU, UK
| | - Ferdinando Randisi
- Rudolf Peierls Centre for Theoretical Physics, University of Oxford, Parks Road, Oxford OX1 3PU, UK
- FabricNano Limited, 192 Drummond St, London NW1 3HP, UK
| | - Jonathan P K Doye
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford, OX1 3QZ, UK
| | - Ard A Louis
- Rudolf Peierls Centre for Theoretical Physics, University of Oxford, Parks Road, Oxford OX1 3PU, UK
| |
Collapse
|
21
|
Yoshioka KI, Kusumoto-Matsuo R, Matsuno Y, Ishiai M. Genomic Instability and Cancer Risk Associated with Erroneous DNA Repair. Int J Mol Sci 2021; 22:12254. [PMID: 34830134 PMCID: PMC8625880 DOI: 10.3390/ijms222212254] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 11/11/2021] [Accepted: 11/11/2021] [Indexed: 12/23/2022] Open
Abstract
Many cancers develop as a consequence of genomic instability, which induces genomic rearrangements and nucleotide mutations. Failure to correct DNA damage in DNA repair defective cells, such as in BRCA1 and BRCA2 mutated backgrounds, is directly associated with increased cancer risk. Genomic rearrangement is generally a consequence of erroneous repair of DNA double-strand breaks (DSBs), though paradoxically, many cancers develop in the absence of DNA repair defects. DNA repair systems are essential for cell survival, and in cancers deficient in one repair pathway, other pathways can become upregulated. In this review, we examine the current literature on genomic alterations in cancer cells and the association between these alterations and DNA repair pathway inactivation and upregulation.
Collapse
Affiliation(s)
- Ken-ichi Yoshioka
- Laboratory of Genome Stability Maintenance, National Cancer Center Research Institute, Tsukiji, Chuo-ku, Tokyo 104-0045, Japan; (R.K.-M.); (Y.M.)
| | - Rika Kusumoto-Matsuo
- Laboratory of Genome Stability Maintenance, National Cancer Center Research Institute, Tsukiji, Chuo-ku, Tokyo 104-0045, Japan; (R.K.-M.); (Y.M.)
| | - Yusuke Matsuno
- Laboratory of Genome Stability Maintenance, National Cancer Center Research Institute, Tsukiji, Chuo-ku, Tokyo 104-0045, Japan; (R.K.-M.); (Y.M.)
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Masamichi Ishiai
- Central Radioisotope Division, National Cancer Center Research Institute, Tsukiji, Chuo-ku, Tokyo 104-0045, Japan;
| |
Collapse
|
22
|
Piccione M, Belloni Fortina A, Ferri G, Andolina G, Beretta L, Cividini A, De Marni E, Caroppo F, Citernesi U, Di Liddo R. Xeroderma Pigmentosum: General Aspects and Management. J Pers Med 2021; 11:1146. [PMID: 34834498 PMCID: PMC8624855 DOI: 10.3390/jpm11111146] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 10/27/2021] [Accepted: 10/28/2021] [Indexed: 01/25/2023] Open
Abstract
Xeroderma Pigmentosum (XP) is a rare genetic syndrome with a defective DNA nucleotide excision repair. It is characterized by (i) an extreme sensitivity to ultraviolet (UV)-induced damages in the skin and eyes; (ii) high risk to develop multiple skin tumours; and (iii) neurologic alterations in the most severe form. To date, the management of XP patients consists of (i) early diagnosis; (ii) a long-life protection from ultraviolet radiation, including avoidance of unnecessary UV exposure, wearing UV blocking clothing, and use of topical sunscreens; and (iii) surgical resections of skin cancers. No curative treatment is available at present. Thus, in the last decade, in order to prevent or delay the progression of the clinical signs of XP, numerous strategies have been proposed and tested, in some cases, with adverse effects. The present review provides an overview of the molecular mechanisms featuring the development of XP and highlights both advantages and disadvantages of the clinical approaches developed throughout the years. The intention of the authors is to sensitize scientists to the crucial aspects of the pathology that could be differently targeted. In this context, the exploration of the process underlining the conception of liposomal nanocarriers is reported to focus the attention on the potentialities of liposomal technology to optimize the administration of chemoprotective agents in XP patients.
Collapse
Affiliation(s)
- Monica Piccione
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131 Padova, Italy
| | - Anna Belloni Fortina
- Pediatric Dermatology Unit, Department of Medicine DIMED, University of Padova, 35128 Padova, Italy; (A.B.F.); (F.C.)
| | - Giulia Ferri
- I.R.A. Istituto Ricerche Applicate S.p.A., 20865 Usmate Velate, Italy; (G.F.); (G.A.); (L.B.); (A.C.); (E.D.M.); (U.C.)
| | - Gloria Andolina
- I.R.A. Istituto Ricerche Applicate S.p.A., 20865 Usmate Velate, Italy; (G.F.); (G.A.); (L.B.); (A.C.); (E.D.M.); (U.C.)
| | - Lorenzo Beretta
- I.R.A. Istituto Ricerche Applicate S.p.A., 20865 Usmate Velate, Italy; (G.F.); (G.A.); (L.B.); (A.C.); (E.D.M.); (U.C.)
| | - Andrea Cividini
- I.R.A. Istituto Ricerche Applicate S.p.A., 20865 Usmate Velate, Italy; (G.F.); (G.A.); (L.B.); (A.C.); (E.D.M.); (U.C.)
| | - Emanuele De Marni
- I.R.A. Istituto Ricerche Applicate S.p.A., 20865 Usmate Velate, Italy; (G.F.); (G.A.); (L.B.); (A.C.); (E.D.M.); (U.C.)
| | - Francesca Caroppo
- Pediatric Dermatology Unit, Department of Medicine DIMED, University of Padova, 35128 Padova, Italy; (A.B.F.); (F.C.)
| | - Ugo Citernesi
- I.R.A. Istituto Ricerche Applicate S.p.A., 20865 Usmate Velate, Italy; (G.F.); (G.A.); (L.B.); (A.C.); (E.D.M.); (U.C.)
| | - Rosa Di Liddo
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131 Padova, Italy
| |
Collapse
|
23
|
Sivapragasam S, Stark B, Albrecht AV, Bohm KA, Mao P, Emehiser RG, Roberts SA, Hrdlicka PJ, Poon GMK, Wyrick JJ. CTCF binding modulates UV damage formation to promote mutation hot spots in melanoma. EMBO J 2021; 40:e107795. [PMID: 34487363 DOI: 10.15252/embj.2021107795] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 08/12/2021] [Accepted: 08/16/2021] [Indexed: 12/29/2022] Open
Abstract
Somatic mutations in DNA-binding sites for CCCTC-binding factor (CTCF) are significantly elevated in many cancers. Prior analysis has suggested that elevated mutation rates at CTCF-binding sites in skin cancers are a consequence of the CTCF-cohesin complex inhibiting repair of UV damage. Here, we show that CTCF binding modulates the formation of UV damage to induce mutation hot spots. Analysis of genome-wide CPD-seq data in UV-irradiated human cells indicates that formation of UV-induced cyclobutane pyrimidine dimers (CPDs) is primarily suppressed by CTCF binding but elevated at specific locations within the CTCF motif. Locations of CPD hot spots in the CTCF-binding motif coincide with mutation hot spots in melanoma. A similar pattern of damage formation is observed at CTCF-binding sites in vitro, indicating that UV damage modulation is a direct consequence of CTCF binding. We show that CTCF interacts with binding sites containing UV damage and inhibits repair by a model repair enzyme in vitro. Structural analysis and molecular dynamic simulations reveal the molecular mechanism for how CTCF binding modulates CPD formation.
Collapse
Affiliation(s)
- Smitha Sivapragasam
- School of Molecular Biosciences, Washington State University, Pullman, WA, USA
| | - Bastian Stark
- School of Molecular Biosciences, Washington State University, Pullman, WA, USA
| | | | - Kaitlynne A Bohm
- School of Molecular Biosciences, Washington State University, Pullman, WA, USA
| | - Peng Mao
- School of Molecular Biosciences, Washington State University, Pullman, WA, USA.,Department of Internal Medicine, University of New Mexico Comprehensive Cancer Center, Albuquerque, NM, USA
| | | | - Steven A Roberts
- School of Molecular Biosciences, Washington State University, Pullman, WA, USA
| | | | - Gregory M K Poon
- Department of Chemistry, Georgia State University, Atlanta, GA, USA.,Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA, USA
| | - John J Wyrick
- School of Molecular Biosciences, Washington State University, Pullman, WA, USA.,Center for Reproductive Biology, Washington State University, Pullman, WA, USA
| |
Collapse
|
24
|
Yang Y, Lindsey-Boltz LA, Vaughn CM, Selby CP, Cao X, Liu Z, Hsu DS, Sancar A. Circadian clock, carcinogenesis, chronochemotherapy connections. J Biol Chem 2021; 297:101068. [PMID: 34375638 PMCID: PMC8403766 DOI: 10.1016/j.jbc.2021.101068] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 08/05/2021] [Accepted: 08/06/2021] [Indexed: 01/27/2023] Open
Abstract
The circadian clock controls the expression of nearly 50% of protein coding genes in mice and most likely in humans as well. Therefore, disruption of the circadian clock is presumed to have serious pathological effects including cancer. However, epidemiological studies on individuals with circadian disruption because of night shift or rotating shift work have produced contradictory data not conducive to scientific consensus as to whether circadian disruption increases the incidence of breast, ovarian, prostate, or colorectal cancers. Similarly, genetically engineered mice with clock disruption do not exhibit spontaneous or radiation-induced cancers at higher incidence than wild-type controls. Because many cellular functions including the cell cycle and cell division are, at least in part, controlled by the molecular clock components (CLOCK, BMAL1, CRYs, PERs), it has also been expected that appropriate timing of chemotherapy may increase the efficacy of chemotherapeutic drugs and ameliorate their side effect. However, empirical attempts at chronochemotherapy have not produced beneficial outcomes. Using mice without and with human tumor xenografts, sites of DNA damage and repair following treatment with the anticancer drug cisplatin have been mapped genome-wide at single nucleotide resolution and as a function of circadian time. The data indicate that mechanism-based studies such as these may provide information necessary for devising rational chronochemotherapy regimens.
Collapse
Affiliation(s)
- Yanyan Yang
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Laura A Lindsey-Boltz
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Courtney M Vaughn
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Christopher P Selby
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Xuemei Cao
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Zhenxing Liu
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - David S Hsu
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, USA.
| | - Aziz Sancar
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA.
| |
Collapse
|
25
|
Akkose U, Kaya VO, Lindsey-Boltz L, Karagoz Z, Brown AD, Larsen PA, Yoder AD, Sancar A, Adebali O. Comparative analyses of two primate species diverged by more than 60 million years show different rates but similar distribution of genome-wide UV repair events. BMC Genomics 2021; 22:600. [PMID: 34362292 PMCID: PMC8349011 DOI: 10.1186/s12864-021-07898-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 07/19/2021] [Indexed: 11/10/2022] Open
Abstract
Background Nucleotide excision repair is the primary DNA repair mechanism that removes bulky DNA adducts such as UV-induced pyrimidine dimers. Correspondingly, genome-wide mapping of nucleotide excision repair with eXcision Repair sequencing (XR-seq), provides comprehensive profiling of DNA damage repair. A number of XR-seq experiments at a variety of conditions for different damage types revealed heterogenous repair in the human genome. Although human repair profiles were extensively studied, how repair maps vary between primates is yet to be investigated. Here, we characterized the genome-wide UV-induced damage repair in gray mouse lemur, Microcebus murinus, in comparison to human. Results We derived fibroblast cell lines from mouse lemur, exposed them to UV irradiation, and analyzed the repair events genome-wide using the XR-seq protocol. Mouse lemur repair profiles were analyzed in comparison to the equivalent human fibroblast datasets. We found that overall UV sensitivity, repair efficiency, and transcription-coupled repair levels differ between the two primates. Despite this, comparative analysis of human and mouse lemur fibroblasts revealed that genome-wide repair profiles of the homologous regions are highly correlated, and this correlation is stronger for highly expressed genes. With the inclusion of an additional XR-seq sample derived from another human cell line in the analysis, we found that fibroblasts of the two primates repair UV-induced DNA lesions in a more similar pattern than two distinct human cell lines do. Conclusion Our results suggest that mouse lemurs and humans, and possibly primates in general, share a homologous repair mechanism as well as genomic variance distribution, albeit with their variable repair efficiency. This result also emphasizes the deep homologies of individual tissue types across the eukaryotic phylogeny. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07898-3.
Collapse
Affiliation(s)
- Umit Akkose
- Molecular Biology, Genetics & Bioengineering Program, Faculty of Engineering and Natural Sciences, Sabanci University, 34956, Istanbul, Turkey
| | - Veysel Ogulcan Kaya
- Molecular Biology, Genetics & Bioengineering Program, Faculty of Engineering and Natural Sciences, Sabanci University, 34956, Istanbul, Turkey
| | - Laura Lindsey-Boltz
- Department of Biochemistry and Biophysics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599, USA
| | - Zeynep Karagoz
- Molecular Biology, Genetics & Bioengineering Program, Faculty of Engineering and Natural Sciences, Sabanci University, 34956, Istanbul, Turkey
| | - Adam D Brown
- Department of Pharmacology and Cancer Biology, Duke University, Durham, North Carolina, 27708, USA
| | - Peter A Larsen
- Department of Biology, Duke University, Durham, North Carolina, 27708, USA.,Present Address: Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, MN, 55112, USA
| | - Anne D Yoder
- Department of Biology, Duke University, Durham, North Carolina, 27708, USA
| | - Aziz Sancar
- Department of Biochemistry and Biophysics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599, USA
| | - Ogun Adebali
- Molecular Biology, Genetics & Bioengineering Program, Faculty of Engineering and Natural Sciences, Sabanci University, 34956, Istanbul, Turkey.
| |
Collapse
|
26
|
Lindsey-Boltz LA, Sancar A. The Transcription-Repair Coupling Factor Mfd Prevents and Promotes Mutagenesis in a Context-Dependent Manner. Front Mol Biosci 2021; 8:668290. [PMID: 34095223 PMCID: PMC8174841 DOI: 10.3389/fmolb.2021.668290] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 04/14/2021] [Indexed: 12/29/2022] Open
Abstract
The mfd (mutation frequency decline) gene was identified by screening an auxotrophic Escherichia coli strain exposed to UV and held in a minimal medium before plating onto rich or minimal agar plates. It was found that, under these conditions, holding cells in minimal (nongrowth) conditions resulted in mutations that enabled cells to grow on minimal media. Using this observation as a starting point, a mutant was isolated that failed to mutate to auxotrophy under the prescribed conditions, and the gene responsible for this phenomenon (mutation frequency decline) was named mfd. Later work revealed that mfd encoded a translocase that recognizes a stalled RNA polymerase (RNAP) at damage sites and binds to the stalled RNAP, recruits the nucleotide excision repair damage recognition complex UvrA2UvrB to the site, and facilitates damage recognition and repair while dissociating the stalled RNAP from the DNA along with the truncated RNA. Recent single-molecule and genome-wide repair studies have revealed time-resolved features and structural aspects of this transcription-coupled repair (TCR) phenomenon. Interestingly, recent work has shown that in certain bacterial species, mfd also plays roles in recombination, bacterial virulence, and the development of drug resistance.
Collapse
Affiliation(s)
- Laura A Lindsey-Boltz
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, NC, United States
| | - Aziz Sancar
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, NC, United States
| |
Collapse
|
27
|
Xiong X, Lai X, Li A, Liu Z, Ma N. Diversity roles of CHD1L in normal cell function and tumorigenesis. Biomark Res 2021; 9:16. [PMID: 33663617 PMCID: PMC7934534 DOI: 10.1186/s40364-021-00269-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 02/16/2021] [Indexed: 12/14/2022] Open
Abstract
Chromodomain helicase/ATPase DNA binding protein 1-like gene (CHD1L) is a multifunctional protein participated in diverse cellular processes, including chromosome remodeling, cell differentiation and development. CHD1L is a regulator of chromosomal integrity maintenance, DNA repair and transcriptional regulation through its bindings to DNA. By regulating kinds of complex networks, CHD1L has been identified as a potent anti-apoptotic and pro-proliferative factor. CHD1L is also an oncoprotein since its overexpression leads to dysregulation of related downstream targets in various cancers. The latest advances in the functional molecular basis of CHD1L in normal cells will be described in this review. As the same time, we will describe the current understanding of CHD1L in terms of structure, characteristics, function and the molecular mechanisms underlying CHD1L in tumorigenesis. We inference that the role of CHD1L which involve in multiple cellular processes and oncogenesis is well worth further studying in basic biology and clinical relevance.
Collapse
Affiliation(s)
- Xifeng Xiong
- Guangzhou Institute of Traumatic Surgery, Guangzhou Red Cross Hospital, Jinan University, Guangzhou, 510220, China
| | - Xudong Lai
- Departement of infectious disease, Guangzhou Red Cross Hospital, Jinan University, Guangzhou, 510220, China
| | - Aiguo Li
- Guangzhou Institute of Traumatic Surgery, Guangzhou Red Cross Hospital, Jinan University, Guangzhou, 510220, China.
| | - Zhihe Liu
- Guangzhou Institute of Traumatic Surgery, Guangzhou Red Cross Hospital, Jinan University, Guangzhou, 510220, China.
| | - Ningfang Ma
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, 510095, China. .,Department of Histology and Embryology, Guangzhou Medical University, Xinzao Town, Panyu District, Guangzhou, 511436, China.
| |
Collapse
|
28
|
Kraithong T, Hartley S, Jeruzalmi D, Pakotiprapha D. A Peek Inside the Machines of Bacterial Nucleotide Excision Repair. Int J Mol Sci 2021; 22:ijms22020952. [PMID: 33477956 PMCID: PMC7835731 DOI: 10.3390/ijms22020952] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 12/14/2020] [Accepted: 12/15/2020] [Indexed: 12/13/2022] Open
Abstract
Double stranded DNA (dsDNA), the repository of genetic information in bacteria, archaea and eukaryotes, exhibits a surprising instability in the intracellular environment; this fragility is exacerbated by exogenous agents, such as ultraviolet radiation. To protect themselves against the severe consequences of DNA damage, cells have evolved at least six distinct DNA repair pathways. Here, we review recent key findings of studies aimed at understanding one of these pathways: bacterial nucleotide excision repair (NER). This pathway operates in two modes: a global genome repair (GGR) pathway and a pathway that closely interfaces with transcription by RNA polymerase called transcription-coupled repair (TCR). Below, we discuss the architecture of key proteins in bacterial NER and recent biochemical, structural and single-molecule studies that shed light on the lesion recognition steps of both the GGR and the TCR sub-pathways. Although a great deal has been learned about both of these sub-pathways, several important questions, including damage discrimination, roles of ATP and the orchestration of protein binding and conformation switching, remain to be addressed.
Collapse
Affiliation(s)
- Thanyalak Kraithong
- Doctor of Philosophy Program in Biochemistry (International Program), Faculty of Science, Mahidol University, Bangkok 10400, Thailand;
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
- Center for Excellence in Protein and Enzyme Technology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Silas Hartley
- Department of Chemistry and Biochemistry, City College of New York, New York, NY 10031, USA;
- Doctor of Philosophy Programs in Biochemistry, Biology and Chemistry, The Graduate Center of the City University of New York, New York, NY 10016, USA
| | - David Jeruzalmi
- Department of Chemistry and Biochemistry, City College of New York, New York, NY 10031, USA;
- Doctor of Philosophy Programs in Biochemistry, Biology and Chemistry, The Graduate Center of the City University of New York, New York, NY 10016, USA
- Correspondence: (D.J.); (D.P.)
| | - Danaya Pakotiprapha
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
- Center for Excellence in Protein and Enzyme Technology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
- Correspondence: (D.J.); (D.P.)
| |
Collapse
|
29
|
Jiang Y, Li W, Lindsey-Boltz LA, Yang Y, Li Y, Sancar A. Super hotspots and super coldspots in the repair of UV-induced DNA damage in the human genome. J Biol Chem 2021; 296:100581. [PMID: 33771559 PMCID: PMC8081918 DOI: 10.1016/j.jbc.2021.100581] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 03/18/2021] [Accepted: 03/22/2021] [Indexed: 02/07/2023] Open
Abstract
The formation of UV-induced DNA damage and its repair are influenced by many factors that modulate lesion formation and the accessibility of repair machinery. However, it remains unknown which genomic sites are prioritized for immediate repair after UV damage induction, and whether these prioritized sites overlap with hotspots of UV damage. We identified the super hotspots subject to the earliest repair for (6-4) pyrimidine-pyrimidone photoproduct by using the eXcision Repair-sequencing (XR-seq) method. We further identified super coldspots for (6-4) pyrimidine-pyrimidone photoproduct repair and super hotspots for cyclobutane pyrimidine dimer repair by analyzing available XR-seq time-course data. By integrating datasets of XR-seq, Damage-seq, adductSeq, and cyclobutane pyrimidine dimer-seq, we show that neither repair super hotspots nor repair super coldspots overlap hotspots of UV damage. Furthermore, we demonstrate that repair super hotspots are significantly enriched in frequently interacting regions and superenhancers. Finally, we report our discovery of an enrichment of cytosine in repair super hotspots and super coldspots. These findings suggest that local DNA features together with large-scale chromatin features contribute to the orders of magnitude variability in the rates of UV damage repair.
Collapse
Affiliation(s)
- Yuchao Jiang
- Department of Biostatistics, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina, USA; Department of Genetics, School of Medicine, University of North Carolina, Chapel Hill, North Carolina, USA; Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina, USA.
| | - Wentao Li
- Department of Biochemistry and Biophysics, School of Medicine, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Laura A Lindsey-Boltz
- Department of Biochemistry and Biophysics, School of Medicine, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Yuchen Yang
- Department of Genetics, School of Medicine, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Yun Li
- Department of Biostatistics, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina, USA; Department of Genetics, School of Medicine, University of North Carolina, Chapel Hill, North Carolina, USA; Department of Computer Science, College of Arts and Sciences, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Aziz Sancar
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina, USA; Department of Biochemistry and Biophysics, School of Medicine, University of North Carolina, Chapel Hill, North Carolina, USA.
| |
Collapse
|
30
|
Pehlivanoglu B, Aysal A, Demir Kececi S, Ekmekci S, Erdogdu IH, Ertunc O, Gundogdu B, Kelten Talu C, Sahin Y, Toper MH. A Nobel-Winning Scientist: Aziz Sancar and the Impact of his Work on the Molecular Pathology of Neoplastic Diseases. Turk Patoloji Derg 2021; 37:93-105. [PMID: 33973640 PMCID: PMC10512686 DOI: 10.5146/tjpath.2020.01504] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 08/14/2020] [Indexed: 11/18/2022] Open
Abstract
Aziz Sancar, Nobel Prize winning Turkish scientist, made several discoveries which had a major impact on molecular sciences, particularly disciplines that focus on carcinogenesis and cancer treatment, including molecular pathology. Cloning the photolyase gene, which was the initial step of his work on DNA repair mechanisms, discovery of the "Maxicell" method, explanation of the mechanism of nucleotide excision repair and transcription-coupled repair, discovery of "molecular matchmakers", and mapping human excision repair genes at single nucleotide resolution constitute his major research topics. Moreover, Sancar discovered the cryptochromes, the clock genes in humans, in 1998, and this discovery led to substantial progress in the understanding of the circadian clock and the introduction of the concept of "chrono-chemoterapy" for more effective therapy in cancer patients. This review focuses on Aziz Sancar's scientific studies and their reflections on molecular pathology of neoplastic diseases. While providing a new perspective for researchers working in the field of pathology and molecular pathology, this review is also an evidence of how basic sciences and clinical sciences complete each other.
Collapse
Affiliation(s)
- Burcin Pehlivanoglu
- Department of Molecular Pathology, Dokuz Eylul University, Graduate School of Health Sciences, Izmir, Turkey
| | - Anil Aysal
- Department of Molecular Pathology, Dokuz Eylul University, Graduate School of Health Sciences, Izmir, Turkey
| | - Sibel Demir Kececi
- Department of Molecular Pathology, Dokuz Eylul University, Graduate School of Health Sciences, Izmir, Turkey
| | - Sumeyye Ekmekci
- Department of Molecular Pathology, Dokuz Eylul University, Graduate School of Health Sciences, Izmir, Turkey
| | - Ibrahim Halil Erdogdu
- Department of Molecular Pathology, Dokuz Eylul University, Graduate School of Health Sciences, Izmir, Turkey
| | - Onur Ertunc
- Department of Molecular Pathology, Dokuz Eylul University, Graduate School of Health Sciences, Izmir, Turkey
| | - Betul Gundogdu
- Department of Molecular Pathology, Dokuz Eylul University, Graduate School of Health Sciences, Izmir, Turkey
| | - Canan Kelten Talu
- Department of Molecular Pathology, Dokuz Eylul University, Graduate School of Health Sciences, Izmir, Turkey
| | - Yasemin Sahin
- Department of Molecular Pathology, Dokuz Eylul University, Graduate School of Health Sciences, Izmir, Turkey
| | - Muhammed Hasan Toper
- Department of Molecular Pathology, Dokuz Eylul University, Graduate School of Health Sciences, Izmir, Turkey
| |
Collapse
|
31
|
Selby CP, Lindsey-Boltz LA, Yang Y, Sancar A. Mycobacteria excise DNA damage in 12- or 13-nucleotide-long oligomers by prokaryotic-type dual incisions and performs transcription-coupled repair. J Biol Chem 2020; 295:17374-17380. [PMID: 33087442 PMCID: PMC7863889 DOI: 10.1074/jbc.ac120.016325] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 10/16/2020] [Indexed: 12/29/2022] Open
Abstract
In nucleotide excision repair, bulky DNA lesions such as UV-induced cyclobutane pyrimidine dimers are removed from the genome by concerted dual incisions bracketing the lesion, followed by gap filling and ligation. So far, two dual-incision patterns have been discovered: the prokaryotic type, which removes the damage in 11-13-nucleotide-long oligomers, and the eukaryotic type, which removes the damage in 24-32-nucleotide-long oligomers. However, a recent study reported that the UvrC protein of Mycobacterium tuberculosis removes damage in a manner analogous to yeast and humans in a 25-mer oligonucleotide arising from incisions at 15 nt from the 3´ end and 9 nt from the 5´ end flanking the damage. To test this model, we used the in vivo excision assay and the excision repair sequencing genome-wide repair mapping method developed in our laboratory to determine the repair pattern and genome-wide repair map of Mycobacterium smegmatis We find that M. smegmatis, which possesses homologs of the Escherichia coli uvrA, uvrB, and uvrC genes, removes cyclobutane pyrimidine dimers from the genome in a manner identical to the prokaryotic pattern by incising 7 nt 5´ and 3 or 4 nt 3´ to the photoproduct, and performs transcription-coupled repair in a manner similar to E. coli.
Collapse
Affiliation(s)
- Christopher P Selby
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Laura A Lindsey-Boltz
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Yanyan Yang
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Aziz Sancar
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA.
| |
Collapse
|
32
|
Paul D, Mu H, Tavakoli A, Dai Q, Chen X, Chakraborty S, He C, Ansari A, Broyde S, Min JH. Tethering-facilitated DNA 'opening' and complementary roles of β-hairpin motifs in the Rad4/XPC DNA damage sensor protein. Nucleic Acids Res 2020; 48:12348-12364. [PMID: 33119737 PMCID: PMC7708039 DOI: 10.1093/nar/gkaa909] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 08/28/2020] [Accepted: 10/02/2020] [Indexed: 01/01/2023] Open
Abstract
XPC/Rad4 initiates eukaryotic nucleotide excision repair on structurally diverse helix-destabilizing/distorting DNA lesions by selectively 'opening' these sites while rapidly diffusing along undamaged DNA. Previous structural studies showed that Rad4, when tethered to DNA, could also open undamaged DNA, suggesting a 'kinetic gating' mechanism whereby lesion discrimination relied on efficient opening versus diffusion. However, solution studies in support of such a mechanism were lacking and how 'opening' is brought about remained unclear. Here, we present crystal structures and fluorescence-based conformational analyses on tethered complexes, showing that Rad4 can indeed 'open' undamaged DNA in solution and that such 'opening' can largely occur without one or the other of the β-hairpin motifs in the BHD2 or BHD3 domains. Notably, the Rad4-bound 'open' DNA adopts multiple conformations in solution notwithstanding the DNA's original structure or the β-hairpins. Molecular dynamics simulations reveal compensatory roles of the β-hairpins, which may render robustness in dealing with and opening diverse lesions. Our study showcases how fluorescence-based studies can be used to obtain information complementary to ensemble structural studies. The tethering-facilitated DNA 'opening' of undamaged sites and the dynamic nature of 'open' DNA may shed light on how the protein functions within and beyond nucleotide excision repair in cells.
Collapse
Affiliation(s)
- Debamita Paul
- Department of Chemistry and Biochemistry, Baylor University, Waco, TX 76798, USA
| | - Hong Mu
- Department of Biology, New York University, New York, NY 10003, USA
| | - Amirrasoul Tavakoli
- Department of Chemistry and Biochemistry, Baylor University, Waco, TX 76798, USA
| | - Qing Dai
- Department of Chemistry, The University of Chicago, Chicago, IL 60637, USA
| | - Xuejing Chen
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Sagnik Chakraborty
- Department of Physics, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Chuan He
- Department of Chemistry, The University of Chicago, Chicago, IL 60637, USA
- Department of Biochemistry and Molecular Biology, Howard Hughes Medical Institute, The University of Chicago, Chicago, IL 60637, USA
| | - Anjum Ansari
- Department of Physics, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Suse Broyde
- Department of Biology, New York University, New York, NY 10003, USA
| | - Jung-Hyun Min
- Department of Chemistry and Biochemistry, Baylor University, Waco, TX 76798, USA
| |
Collapse
|
33
|
Zhu W, Hu J, Chi J, Li Y, Yang B, Hu W, Chen F, Xu C, Chai L, Bao Y. Label-Free Proteomics Reveals the Molecular Mechanism of Subculture Induced Strain Degeneration and Discovery of Indicative Index for Degeneration in Pleurotus ostreatus. Molecules 2020; 25:molecules25214920. [PMID: 33114310 PMCID: PMC7660624 DOI: 10.3390/molecules25214920] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 10/13/2020] [Accepted: 10/19/2020] [Indexed: 11/16/2022] Open
Abstract
Pleurotus ostreatus is one of the widely cultivated edible fungi across the world. Mycelial subculture is an indispensable part in the process of cultivation and production for all kinds of edible fungi. However, successive subcultures usually lead to strain degeneration. The degenerated strains usually have a decrease in stress resistance, yield, and an alteration in fruiting time, which will subsequently result in tremendous economic loss. Through proteomic analysis, we identified the differentially expressed proteins (DEPs) in the mycelium of Pleurotus ostreatus from different subcultured generations. We found that the DNA damage repair system, especially the double-strand breaks (DSBs), repairs via homologous recombination, was impaired in the subcultured mycelium, and gradual accumulation of the DSBs would lead to the strain degeneration after successive subculture. The TUNEL assay further confirmed our finding about the DNA breaks in the subcultured mycelium. Interestingly, the enzyme activity of laccase, carboxylic ester hydrolase, α-galactosidase, and catalase directly related to passage number could be used as the characteristic index for strain degeneration determination. Our results not only reveal for the first time at the molecular level that genomic instability is the cause of degeneration, but also provide an applicable approach for monitoring strain degeneration in process of edible fungi cultivation and production.
Collapse
Affiliation(s)
- Weiwei Zhu
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China;
- Microbial Research Institute of Liaoning Province, Chaoyang 122000, China; (J.C.); (Y.L.); (F.C.); (C.X.); (L.C.)
| | - Jinbo Hu
- Laboratory of Photosynthesis and Environment, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China; (J.H.); (B.Y.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jingliang Chi
- Microbial Research Institute of Liaoning Province, Chaoyang 122000, China; (J.C.); (Y.L.); (F.C.); (C.X.); (L.C.)
| | - Yang Li
- Microbial Research Institute of Liaoning Province, Chaoyang 122000, China; (J.C.); (Y.L.); (F.C.); (C.X.); (L.C.)
| | - Bing Yang
- Laboratory of Photosynthesis and Environment, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China; (J.H.); (B.Y.)
| | - Wenli Hu
- Core Facility Center, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China;
| | - Fei Chen
- Microbial Research Institute of Liaoning Province, Chaoyang 122000, China; (J.C.); (Y.L.); (F.C.); (C.X.); (L.C.)
| | - Chong Xu
- Microbial Research Institute of Liaoning Province, Chaoyang 122000, China; (J.C.); (Y.L.); (F.C.); (C.X.); (L.C.)
| | - Linshan Chai
- Microbial Research Institute of Liaoning Province, Chaoyang 122000, China; (J.C.); (Y.L.); (F.C.); (C.X.); (L.C.)
| | - Yongming Bao
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China;
- School of Ocean Science and Technology, Dalian University of Technology, Panjin 124021, China
- Correspondence: ; Tel.: +86-427-2631777; Fax: +86-411-84706365
| |
Collapse
|
34
|
Kciuk M, Marciniak B, Mojzych M, Kontek R. Focus on UV-Induced DNA Damage and Repair-Disease Relevance and Protective Strategies. Int J Mol Sci 2020; 21:ijms21197264. [PMID: 33019598 PMCID: PMC7582305 DOI: 10.3390/ijms21197264] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 09/28/2020] [Accepted: 09/29/2020] [Indexed: 02/06/2023] Open
Abstract
The protective ozone layer is continually depleting due to the release of deteriorating environmental pollutants. The diminished ozone layer contributes to excessive exposure of cells to ultraviolet (UV) radiation. This leads to various cellular responses utilized to restore the homeostasis of exposed cells. DNA is the primary chromophore of the cells that absorbs sunlight energy. Exposure of genomic DNA to UV light leads to the formation of multitude of types of damage (depending on wavelength and exposure time) that are removed by effectively working repair pathways. The aim of this review is to summarize current knowledge considering cellular response to UV radiation with special focus on DNA damage and repair and to give a comprehensive insight for new researchers in this field. We also highlight most important future prospects considering application of the progressing knowledge of UV response for the clinical control of diverse pathologies.
Collapse
Affiliation(s)
- Mateusz Kciuk
- Doctoral School of Exact and Natural Sciences, University of Lodz, Banacha Street 12/16, 90-237 Lodz, Poland
- Department of Molecular Biotechnology and Genetics, Faculty of Biology and Environmental Protection, University of Lodz, 12/16 Banacha St., 90-237 Lodz, Poland; (B.M.); (R.K.)
- Correspondence:
| | - Beata Marciniak
- Department of Molecular Biotechnology and Genetics, Faculty of Biology and Environmental Protection, University of Lodz, 12/16 Banacha St., 90-237 Lodz, Poland; (B.M.); (R.K.)
| | - Mariusz Mojzych
- Department of Chemistry, Siedlce University of Natural Sciences and Humanities, 3 Maja 54, 08-110 Siedlce, Poland;
| | - Renata Kontek
- Department of Molecular Biotechnology and Genetics, Faculty of Biology and Environmental Protection, University of Lodz, 12/16 Banacha St., 90-237 Lodz, Poland; (B.M.); (R.K.)
| |
Collapse
|
35
|
Hakim MS, Annisa L, Jariah ROA, Vink C. The mechanisms underlying antigenic variation and maintenance of genomic integrity in Mycoplasma pneumoniae and Mycoplasma genitalium. Arch Microbiol 2020; 203:413-429. [PMID: 32970220 DOI: 10.1007/s00203-020-02041-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 08/02/2020] [Accepted: 09/12/2020] [Indexed: 11/28/2022]
Abstract
Mycoplasma pneumoniae and Mycoplasma genitalium are important causative agents of infections in humans. Like all other mycoplasmas, these species possess genomes that are significantly smaller than that of other prokaryotes. Moreover, both organisms possess an exceptionally compact set of DNA recombination and repair-associated genes. These genes, however, are sufficient to generate antigenic variation by means of homologous recombination between specific repetitive genomic elements. At the same time, these mycoplasmas have likely evolved strategies to maintain the stability and integrity of their 'minimal' genomes. Previous studies have indicated that there are considerable differences between mycoplasmas and other bacteria in the composition of their DNA recombination and repair machinery. However, the complete repertoire of activities executed by the putative recombination and repair enzymes encoded by Mycoplasma species is not yet fully understood. In this paper, we review the current knowledge on the proteins that likely form part of the DNA repair and recombination pathways of two of the most clinically relevant Mycoplasma species, M. pneumoniae and M. genitalium. The characterization of these proteins will help to define the minimal enzymatic requirements for creating bacterial genetic diversity (antigenic variation) on the one hand, while maintaining genomic integrity on the other.
Collapse
Affiliation(s)
- Mohamad S Hakim
- Department of Microbiology, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, 55281, Yogyakarta, Indonesia. .,Postgraduate School of Molecular Medicine, Erasmus MC-University Medical Center Rotterdam, Rotterdam, The Netherlands.
| | - Luthvia Annisa
- Department of Microbiology, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, 55281, Yogyakarta, Indonesia
| | - Rizka O A Jariah
- Department of Health Science, Faculty of Vocational Studies, Universitas Airlangga, Surabaya, Indonesia
| | - Cornelis Vink
- Department of Life Sciences, Erasmus University College, Erasmus University, 3011 HP, Rotterdam, The Netherlands.
| |
Collapse
|
36
|
Abstract
Cellular DNA is constantly chemically altered by exogenous and endogenous agents. As all processes of life depend on the transmission of the genetic information, multiple biological processes exist to ensure genome integrity. Chemically damaged DNA has been linked to cancer and aging, therefore it is of great interest to map DNA damage formation and repair to elucidate the distribution of damage on a genome-wide scale. While the low abundance and inability to enzymatically amplify DNA damage are obstacles to genome-wide sequencing, new developments in the last few years have enabled high-resolution mapping of damaged bases. Recently, a number of DNA damage sequencing library construction strategies coupled to new data analysis pipelines allowed the mapping of specific DNA damage formation and repair at high and single nucleotide resolution. Strikingly, these advancements revealed that the distribution of DNA damage is heavily influenced by chromatin states and the binding of transcription factors. In the last seven years, these novel approaches have revealed new genomic maps of DNA damage distribution in a variety of organisms as generated by diverse chemical and physical DNA insults; oxidative stress, chemotherapeutic drugs, environmental pollutants, and sun exposure. Preferred sequences for damage formation and repair have been elucidated, thus making it possible to identify persistent weak spots in the genome as locations predicted to be vulnerable for mutation. As such, sequencing DNA damage will have an immense impact on our ability to elucidate mechanisms of disease initiation, and to evaluate and predict the efficacy of chemotherapeutic drugs.
Collapse
Affiliation(s)
- Cécile Mingard
- Department of Health Sciences and Technology, ETH Zürich, Schmelzbergstrasse 9, 8092 Zürich, Switzerland.
| | | | | | | |
Collapse
|
37
|
A panorama of transcription-coupled repair in yeast chromatin. Proc Natl Acad Sci U S A 2020; 117:20991-20993. [PMID: 32817470 DOI: 10.1073/pnas.2014392117] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
38
|
Li W, Sancar A. Methodologies for detecting environmentally induced DNA damage and repair. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2020; 61:664-679. [PMID: 32083352 PMCID: PMC7442611 DOI: 10.1002/em.22365] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Revised: 02/08/2020] [Accepted: 02/16/2020] [Indexed: 05/07/2023]
Abstract
Environmental DNA damaging agents continuously challenge the integrity of the genome by introducing a variety of DNA lesions. The DNA damage caused by environmental factors will lead to mutagenesis and subsequent carcinogenesis if they are not removed efficiently by repair pathways. Methods for detection of DNA damage and repair can be applied to identify, visualize, and quantify the DNA damage formation and repair events, and they enable us to illustrate the molecular mechanisms of DNA damage formation, DNA repair pathways, mutagenesis, and carcinogenesis. Ever since the discovery of the double helical structure of DNA in 1953, a great number of methods have been developed to detect various types of DNA damage and repair. Rapid advances in sequencing technologies have facilitated the emergence of a variety of novel methods for detecting environmentally induced DNA damage and repair at the genome-wide scale during the last decade. In this review, we provide a historical overview of the development of various damage detection methods. We also highlight the current methodologies to detect DNA damage and repair, especially some next generation sequencing-based methods.
Collapse
Affiliation(s)
- Wentao Li
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Aziz Sancar
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| |
Collapse
|
39
|
Thakur M, Agarwal A, Muniyappa K. The intrinsic ATPase activity of Mycobacterium tuberculosis UvrC is crucial for its damage-specific DNA incision function. FEBS J 2020; 288:1179-1200. [PMID: 32602194 DOI: 10.1111/febs.15465] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 05/04/2020] [Accepted: 06/24/2020] [Indexed: 11/28/2022]
Abstract
To ensure genome stability, bacteria have evolved a network of DNA repair mechanisms; among them, the UvrABC-dependent nucleotide excision repair (NER) pathway is essential for the incision of a variety of bulky adducts generated by exogenous chemicals, UV radiation and by-products of cellular metabolism. However, very little is known about the enzymatic properties of Mycobacterium tuberculosis UvrABC excinuclease complex. Furthermore, the biochemical properties of Escherichia coli UvrC (EcUvrC) are not well understood (compared to UvrA and UvrB), perhaps due to its limited availability and/or activity instability in vitro. In addition, homology modelling of M. tuberculosis UvrC (MtUvrC) revealed the presence of a putative ATP-binding pocket, although its function remains unknown. To elucidate the biochemical properties of UvrC, we constructed and purified wild-type MtUvrC and its eight variants harbouring mutations within the ATP-binding pocket. The data from DNA-binding studies suggest that MtUvrC exhibits high-affinity for duplex DNA containing a bubble or fluorescein-dT moiety, over fluorescein-adducted single-stranded DNA. Most notably, MtUvrC has an intrinsic UvrB-independent ATPase activity, which drives dual incision of the damaged DNA strand. In contrast, EcUvrC is devoid of ATPase activity; however, it retains the ability to bind ATP at levels comparable to that of MtUvrC. The ATPase-deficient variants map to residues lining the MtUvrC ATP-binding pocket. Further analysis of these variants revealed separation of function between ATPase and DNA-binding activities in MtUvrC. Altogether, these findings reveal functional diversity of the bacterial NER machinery and a paradigm for the evolution of a catalytic scaffold in UvrC.
Collapse
Affiliation(s)
- Manoj Thakur
- Department of Biochemistry, Indian Institute of Science, Bengaluru, India
| | - Ankit Agarwal
- Department of Biochemistry, Indian Institute of Science, Bengaluru, India
| | - Kalappa Muniyappa
- Department of Biochemistry, Indian Institute of Science, Bengaluru, India
| |
Collapse
|
40
|
Genome-wide Nucleotide-Resolution Mapping of DNA Replication Patterns, Single-Strand Breaks, and Lesions by GLOE-Seq. Mol Cell 2020; 78:975-985.e7. [PMID: 32320643 PMCID: PMC7276987 DOI: 10.1016/j.molcel.2020.03.027] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 02/13/2020] [Accepted: 03/20/2020] [Indexed: 12/03/2022]
Abstract
DNA single-strand breaks (SSBs) are among the most common lesions in the genome, arising spontaneously and as intermediates of many DNA transactions. Nevertheless, in contrast to double-strand breaks (DSBs), their distribution in the genome has hardly been addressed in a meaningful way. We now present a technique based on genome-wide ligation of 3′-OH ends followed by sequencing (GLOE-Seq) and an associated computational pipeline designed for capturing SSBs but versatile enough to be applied to any lesion convertible into a free 3′-OH terminus. We demonstrate its applicability to mapping of Okazaki fragments without prior size selection and provide insight into the relative contributions of DNA ligase 1 and ligase 3 to Okazaki fragment maturation in human cells. In addition, our analysis reveals biases and asymmetries in the distribution of spontaneous SSBs in yeast and human chromatin, distinct from the patterns of DSBs. GLOE-Seq detects 3′-OH ends with nucleotide resolution in purified genomic DNA GLOE-Seq maps single-strand breaks, lesions, and replication and repair intermediates GLOE-Seq reveals insight into the use of ligases 1 and 3 in human cells GLOE-Seq detects asymmetries in spontaneous nicks in yeast and human chromatin
Collapse
|
41
|
Thakur M, Muniyappa K. Deciphering the essentiality and function of SxSx motif in Mycobacterium tuberculosis UvrB. Biochimie 2020; 170:94-105. [PMID: 31923481 DOI: 10.1016/j.biochi.2020.01.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 01/06/2020] [Indexed: 10/25/2022]
Abstract
The UvrB subunit is a central component of the UvrABC incision complex and plays a pivotal role in damage recognition, strand excision and repair synthesis. A conserved structural motif (the SxSx motif) present in UvrB is analogous to a similar motif (TxGx) in the helicases of superfamily 2, whose function is not fully understood. To elucidate the significance of the SxSx (Ser143-Val144-Ser145-Cys146) motif in Mycobacterium tuberculosis UvrB (MtUvrB), different variants of MtUvrB subunit were constructed and characterized. The SxSx motif indeed was found to be essential for MtUvrB function: while Ser143 and Cys146 residues within this motif were crucial for MtUvrB function, Ser145 plays an important but less essential role. The SxSx motif-deleted mutant was drastically attenuated and three single (S143A, S145A and C146A) mutants and a double (S143A/S145A) mutant exhibited various degrees of severity in their DNA-binding, DNA helicase and ATPase activities. Taken together, these results highlight a hitherto unrecognized role for SxSx motif in the catalytic activities of UvrB.
Collapse
Affiliation(s)
- Manoj Thakur
- Department of Biochemistry, Indian Institute of Science, Bangalore, 560012, India
| | - K Muniyappa
- Department of Biochemistry, Indian Institute of Science, Bangalore, 560012, India.
| |
Collapse
|
42
|
Mao P, Smerdon MJ, Roberts SA, Wyrick JJ. Asymmetric repair of UV damage in nucleosomes imposes a DNA strand polarity on somatic mutations in skin cancer. Genome Res 2019; 30:12-21. [PMID: 31871068 PMCID: PMC6961582 DOI: 10.1101/gr.253146.119] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 12/06/2019] [Indexed: 12/20/2022]
Abstract
Nucleosomes inhibit excision repair of DNA damage caused by ultraviolet (UV) light, and it has been generally assumed that repair inhibition is equivalent on both sides of the nucleosome dyad. Here, we use genome-wide repair data to show that repair of UV damage in nucleosomes is asymmetric. In yeast, nucleosomes inhibit nucleotide excision repair (NER) of the nontranscribed strand (NTS) of genes in an asymmetric manner, with faster repair of UV damage occurring on the 5′ side of the nucleosomal DNA. Analysis of genomic repair data from UV-irradiated human cells indicates that NER activity along the NTS is also elevated on the 5′ side of nucleosomes, consistent with the repair asymmetry observed in yeast nucleosomes. Among intergenic nucleosomes, repair activity is elevated on the 5′ side of both DNA strands. The distribution of somatic mutations in nucleosomes shows the opposite asymmetry in NER-proficient skin cancers, but not in NER-deficient cancers, indicating that asymmetric repair of nucleosomal DNA imposes a strand polarity on UV mutagenesis. Somatic mutations are enriched on the relatively slow-repairing 3′ side of the nucleosomal DNA, particularly at positions where the DNA minor groove faces away from the histone octamer. Asymmetric repair and mutagenesis are likely caused by differential accessibility of the nucleosomal DNA, a consequence of its left-handed wrapping around the histone octamer.
Collapse
Affiliation(s)
- Peng Mao
- School of Molecular Biosciences, Washington State University, Pullman, Washington 99164, USA
| | - Michael J Smerdon
- School of Molecular Biosciences, Washington State University, Pullman, Washington 99164, USA
| | - Steven A Roberts
- School of Molecular Biosciences, Washington State University, Pullman, Washington 99164, USA.,Center for Reproductive Biology, Washington State University, Pullman, Washington 99164, USA
| | - John J Wyrick
- School of Molecular Biosciences, Washington State University, Pullman, Washington 99164, USA.,Center for Reproductive Biology, Washington State University, Pullman, Washington 99164, USA
| |
Collapse
|
43
|
Thakur M, Badugu S, Muniyappa K. UvrA and UvrC subunits of the Mycobacterium tuberculosis UvrABC excinuclease interact independently of UvrB and DNA. FEBS Lett 2019; 594:851-863. [PMID: 31705809 DOI: 10.1002/1873-3468.13671] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 10/31/2019] [Accepted: 10/31/2019] [Indexed: 11/10/2022]
Abstract
The UvrABC excinuclease plays a vital role in bacterial nucleotide excision repair. While UvrA and UvrB subunits associate to form a UvrA2 B2 complex, interaction between UvrA and UvrC has not been demonstrated or quantified in any bacterial species. Here, using Mycobacterium tuberculosis UvrA (MtUvrA), UvrB (MtUvrB) and UvrC (MtUvrC) subunits, we show that MtUvrA binds to MtUvrB and equally well to MtUvrC with submicromolar affinity. Furthermore, MtUvrA forms a complex with MtUvrC both in vivo and in vitro, independently of DNA and UvrB. Collectively, these findings reveal new insights into the pairwise relationships between the subunits of the UvrABC incision complex.
Collapse
Affiliation(s)
- Manoj Thakur
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | - Sugith Badugu
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | - Kalappa Muniyappa
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| |
Collapse
|
44
|
Walter NG. Biological Pathway Specificity in the Cell-Does Molecular Diversity Matter? Bioessays 2019; 41:e1800244. [PMID: 31245864 PMCID: PMC6684156 DOI: 10.1002/bies.201800244] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 05/09/2019] [Indexed: 01/07/2023]
Abstract
Biology arises from the crowded molecular environment of the cell, rendering it a challenge to understand biological pathways based on the reductionist, low-concentration in vitro conditions generally employed for mechanistic studies. Recent evidence suggests that low-affinity interactions between cellular biopolymers abound, with still poorly defined effects on the complex interaction networks that lead to the emergent properties and plasticity of life. Mass-action considerations are used here to underscore that the sheer number of weak interactions expected from the complex mixture of cellular components significantly shapes biological pathway specificity. In particular, on-pathway-i.e., "functional"-become those interactions thermodynamically and kinetically stable enough to survive the incessant onslaught of the many off-pathway ("nonfunctional") interactions. Consequently, to better understand the molecular biology of the cell a further paradigm shift is needed toward mechanistic experimental and computational approaches that probe intracellular diversity and complexity more directly. Also see the video abstract here https://youtu.be/T19X_zYaBzg.
Collapse
|
45
|
Abstract
The nucleotide excision repair (NER) system removes a variety of types of helix-distorting lesions from DNA through a dual incision mechanism, in which the damaged nucleotide bases are excised in the form of a small, excised, damage-containing single-stranded DNA oligonucleotide (sedDNA). Damage removal leaves a gap in the DNA template that must then be filled in by the action of a DNA polymerase and ligated to the downstream phosphodiester backbone in the DNA to complete the repair reaction. Defects in damage removal, sedDNA processing, or gap filling have the potential to be mutagenic and lethal to cells, and thus several human pathologies, including cancer and aging, are associated with defects in NER. This review summarizes our current understanding of NER with a focus on the enzymes that excise sedDNAs and restore the duplex DNA to its native state in human cells.
Collapse
Affiliation(s)
- Michael G Kemp
- Department of Pharmacology and Toxicology, Wright State University Boonshoft School of Medicine, Dayton, OH, United States.
| |
Collapse
|
46
|
Yang Y, Liu Z, Selby CP, Sancar A. Long-term, genome-wide kinetic analysis of the effect of the circadian clock and transcription on the repair of cisplatin-DNA adducts in the mouse liver. J Biol Chem 2019; 294:11960-11968. [PMID: 31217280 DOI: 10.1074/jbc.ra119.009579] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 06/19/2019] [Indexed: 01/27/2023] Open
Abstract
Cisplatin is the most commonly used chemotherapeutic drug for managing solid tumors. However, toxicity and the innate or acquired resistance of cancer cells to the drug limit its usefulness. Cisplatin kills cells by forming cisplatin-DNA adducts, most commonly the Pt-d(GpG) diadduct. We recently showed that, in mice, repair of this adduct 2 h following injection is controlled by two circadian programs. 1) The circadian clock controls transcription of 2000 genes in liver and, via transcription-directed repair, controls repair of the transcribed strand (TS) of these genes in a rhythmic fashion unique to each gene's phase of transcription. 2) The excision repair activity itself is controlled by the circadian clock with a single phase at which the repair of the nontranscribed strand (NTS) and the rest of the genome takes place. Here, we followed the repair kinetic for long periods genome-wide both globally and at single nucleotide resolution by the Excision Repair-sequencing (XR-seq) method to better understand cisplatin DNA damage and repair. We find that transcription-driven repair is nearly complete after 2 days, whereas weeks are required for repair of the NTS and the rest of the genome. TS repair oscillates in rhythmically expressed genes up to 2 days post injection, and in all expressed genes, we see a trend in TS repair with time from the 5' to 3' end. These findings help to understand the circadian- and transcription-dependent and -independent control of repair in response to cisplatin, and should aid in designing cisplatin chemotherapy regimens with improved therapeutic indexes.
Collapse
Affiliation(s)
- Yanyan Yang
- Department of Biochemistry and Biophysics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Zhenxing Liu
- Department of Biochemistry and Biophysics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Christopher P Selby
- Department of Biochemistry and Biophysics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Aziz Sancar
- Department of Biochemistry and Biophysics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599.
| |
Collapse
|
47
|
Abstract
Nucleotide excision repair is a versatile mechanism to repair a variety of bulky DNA adducts. We developed excision repair sequencing (XR-seq) to study nucleotide excision repair of DNA adducts in humans, mice, Arabidopsis thaliana, yeast and Escherichia coli. In this protocol, the excised oligomers, generated in the nucleotide excision repair reaction, are isolated by cell lysis and fractionation, followed by immunoprecipitation with damage- or repair factor-specific antibodies from the non-chromatin fraction. The single-stranded excised oligomers are ligated to adapters and re-immunoprecipitated with damage-specific antibodies. The DNA damage in the excised oligomers is then reversed by enzymatic or chemical reactions before being converted into a sequencing library by PCR amplification. Alternatively, the excised oligomers containing DNA damage, especially those containing irreversible DNA damage such as benzo[a]pyrene-induced DNA adducts, can be converted to a double-stranded DNA (dsDNA) form by using appropriate translesion DNA synthesis (TLS) polymerases and then can be amplified by PCR. The current genome-wide approaches for studying repair measure the loss of damage signal with time, which limits their resolution. By contrast, an advantage of XR-seq is that the repair signal is directly detected above a background of zero. An XR-seq library using the protocol described here can be obtained in 7-9 d.
Collapse
|
48
|
Roberts SA, Brown AJ, Wyrick JJ. Recurrent Noncoding Mutations in Skin Cancers: UV Damage Susceptibility or Repair Inhibition as Primary Driver? Bioessays 2019; 41:e1800152. [PMID: 30801747 PMCID: PMC6571124 DOI: 10.1002/bies.201800152] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 12/05/2018] [Indexed: 12/14/2022]
Abstract
Somatic mutations arising in human skin cancers are heterogeneously distributed across the genome, meaning that certain genomic regions (e.g., heterochromatin or transcription factor binding sites) have much higher mutation densities than others. Regional variations in mutation rates are typically not a consequence of selection, as the vast majority of somatic mutations in skin cancers are passenger mutations that do not promote cell growth or transformation. Instead, variations in DNA repair activity, due to chromatin organization and transcription factor binding, have been proposed to be a primary driver of mutational heterogeneity in melanoma. However, as discussed in this review here, recent studies indicate that chromatin organization and transcription factor binding also significantly modulate the rate at which UV lesions form in DNA. The authors propose that local variations in lesion susceptibility may be an important driver of mutational hotspots in melanoma and other skin cancers, particularly at binding sites for ETS transcription factors.
Collapse
Affiliation(s)
- Steven A. Roberts
- School of Molecular Biosciences and Center for Reproductive Biology, Washington State University, Pullman, WA 99164
| | - Alexander J. Brown
- School of Molecular Biosciences and Center for Reproductive Biology, Washington State University, Pullman, WA 99164
| | - John J. Wyrick
- School of Molecular Biosciences and Center for Reproductive Biology, Washington State University, Pullman, WA 99164
| |
Collapse
|
49
|
Li W, Liu W, Kakoki A, Wang R, Adebali O, Jiang Y, Sancar A. Nucleotide excision repair capacity increases during differentiation of human embryonic carcinoma cells into neurons and muscle cells. J Biol Chem 2019; 294:5914-5922. [PMID: 30808711 DOI: 10.1074/jbc.ra119.007861] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 02/22/2019] [Indexed: 11/06/2022] Open
Abstract
Embryonic stem cells can self-renew and differentiate, holding great promise for regenerative medicine. They also employ multiple mechanisms to preserve the integrity of their genomes. Nucleotide excision repair, a versatile repair mechanism, removes bulky DNA adducts from the genome. However, the dynamics of the capacity of nucleotide excision repair during stem cell differentiation remain unclear. Here, using immunoslot blot assay, we measured repair rates of UV-induced DNA damage during differentiation of human embryonic carcinoma (NTERA-2) cells into neurons and muscle cells. Our results revealed that the capacity of nucleotide excision repair increases as cell differentiation progresses. We also found that inhibition of the apoptotic signaling pathway has no effect on nucleotide excision repair capacity. Furthermore, RNA-Seq-based transcriptomic analysis indicated that expression levels of four core repair factors, xeroderma pigmentosum (XP) complementation group A (XPA), XPC, XPG, and XPF-ERCC1, are progressively up-regulated during differentiation, but not those of replication protein A (RPA) and transcription factor IIH (TFIIH). Together, our findings reveal that increase of nucleotide excision repair capacity accompanies cell differentiation, supported by the up-regulated transcription of genes encoding DNA repair enzymes during differentiation of two distinct cell lineages.
Collapse
Affiliation(s)
- Wentao Li
- From the Department of Biochemistry and Biophysics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Wenjie Liu
- From the Department of Biochemistry and Biophysics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599; School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen, Fujian 361102 China
| | - Ayano Kakoki
- From the Department of Biochemistry and Biophysics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Rujin Wang
- Department of Biostatistics, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Ogun Adebali
- Molecular Biology, Genetics and Bioengineering Program, Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul 34956 Turkey
| | - Yuchao Jiang
- Department of Biostatistics, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599; Department of Genetics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Aziz Sancar
- From the Department of Biochemistry and Biophysics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599.
| |
Collapse
|
50
|
Muenter MM, Aiken A, Akanji JO, Baig S, Bellou S, Carlson A, Conway C, Cowell CM, DeLateur NA, Hester A, Joshi C, Kramer C, Leifer BS, Nash E, Qi MH, Travers M, Wong KC, Hu M, Gou N, Giese RW, Gu AZ, Beuning PJ. The response of Escherichia coli to the alkylating agents chloroacetaldehyde and styrene oxide. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2019; 840:1-10. [PMID: 30857727 DOI: 10.1016/j.mrgentox.2019.02.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Revised: 02/06/2019] [Accepted: 02/06/2019] [Indexed: 10/27/2022]
Abstract
DNA damage is ubiquitous and can arise from endogenous or exogenous sources. DNA-damaging alkylating agents are present in environmental toxicants as well as in cancer chemotherapy drugs and are a constant threat, which can lead to mutations or cell death. All organisms have multiple DNA repair and DNA damage tolerance pathways to resist the potentially negative effects of exposure to alkylating agents. In bacteria, many of the genes in these pathways are regulated as part of the SOS reponse or the adaptive response. In this work, we probed the cellular responses to the alkylating agents chloroacetaldehyde (CAA), which is a metabolite of 1,2-dichloroethane used to produce polyvinyl chloride, and styrene oxide (SO), a major metabolite of styrene used in the production of polystyrene and other polymers. Vinyl chloride and styrene are produced on an industrial scale of billions of kilograms annually and thus have a high potential for environmental exposure. To identify stress response genes in E. coli that are responsible for tolerance to the reactive metabolites CAA and SO, we used libraries of transcriptional reporters and gene deletion strains. In response to both alkylating agents, genes associated with several different stress pathways were upregulated, including protein, membrane, and oxidative stress, as well as DNA damage. E. coli strains lacking genes involved in base excision repair and nucleotide excision repair were sensitive to SO, whereas strains lacking recA and the SOS gene ybfE were sensitive to both alkylating agents tested. This work indicates the varied systems involved in cellular responses to alkylating agents, and highlights the specific DNA repair genes involved in the responses.
Collapse
Affiliation(s)
- Mark M Muenter
- Department of Chemistry & Chemical Biology, Northeastern University, Boston, MA, 02115 USA
| | - Ariel Aiken
- Department of Chemistry & Chemical Biology, Northeastern University, Boston, MA, 02115 USA
| | - Jadesola O Akanji
- Department of Chemistry & Chemical Biology, Northeastern University, Boston, MA, 02115 USA
| | - Samir Baig
- Department of Chemistry & Chemical Biology, Northeastern University, Boston, MA, 02115 USA
| | - Sirine Bellou
- Department of Chemistry & Chemical Biology, Northeastern University, Boston, MA, 02115 USA
| | - Alyssa Carlson
- Department of Chemistry & Chemical Biology, Northeastern University, Boston, MA, 02115 USA
| | - Charles Conway
- Department of Chemistry & Chemical Biology, Northeastern University, Boston, MA, 02115 USA
| | - Courtney M Cowell
- Department of Chemistry & Chemical Biology, Northeastern University, Boston, MA, 02115 USA
| | - Nicholas A DeLateur
- Department of Chemistry & Chemical Biology, Northeastern University, Boston, MA, 02115 USA
| | - Alexis Hester
- Department of Chemistry & Chemical Biology, Northeastern University, Boston, MA, 02115 USA
| | - Christopher Joshi
- Department of Chemistry & Chemical Biology, Northeastern University, Boston, MA, 02115 USA
| | - Caitlin Kramer
- Department of Chemistry & Chemical Biology, Northeastern University, Boston, MA, 02115 USA
| | - Becky S Leifer
- Department of Chemistry & Chemical Biology, Northeastern University, Boston, MA, 02115 USA
| | - Emma Nash
- Department of Chemistry & Chemical Biology, Northeastern University, Boston, MA, 02115 USA
| | - Macee H Qi
- Department of Chemistry & Chemical Biology, Northeastern University, Boston, MA, 02115 USA
| | - Meghan Travers
- Department of Chemistry & Chemical Biology, Northeastern University, Boston, MA, 02115 USA
| | - Kelly C Wong
- Department of Chemistry & Chemical Biology, Northeastern University, Boston, MA, 02115 USA
| | - Man Hu
- Department of Civil and Environmental Engineering, Northeastern University, Boston, MA, 02115 USA
| | - Na Gou
- Department of Civil and Environmental Engineering, Northeastern University, Boston, MA, 02115 USA; School of Civil and Environmental Engineering, Cornell University, Ithaca, NY, 14850, USA
| | - Roger W Giese
- Department of Pharmaceutical Sciences, Northeastern University, Boston, MA, 02115 USA
| | - April Z Gu
- Department of Civil and Environmental Engineering, Northeastern University, Boston, MA, 02115 USA; School of Civil and Environmental Engineering, Cornell University, Ithaca, NY, 14850, USA
| | - Penny J Beuning
- Department of Chemistry & Chemical Biology, Northeastern University, Boston, MA, 02115 USA.
| |
Collapse
|