1
|
Archer CR, Enslow BT, Carver CM, Stockand JD. Phosphatidylinositol 4,5-bisphosphate directly interacts with the β and γ subunits of the sodium channel ENaC. J Biol Chem 2020; 295:7958-7969. [PMID: 32341072 PMCID: PMC7278353 DOI: 10.1074/jbc.ra120.012606] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 04/22/2020] [Indexed: 12/18/2022] Open
Abstract
The plasma membrane phospholipid phosphatidylinositol 4,5-bisphosphate (PIP2) regulates the activity of diverse ion channels to include the epithelial Na+ channel ENaC. Whether PIP2 regulation of ENaC is due to a direct phospholipid-protein interaction, remains obscure. To date, possible interaction of PIP2 with ENaC primarily has been tested indirectly through assays of channel function. A fragment-based biochemical analysis approach is used here to directly quantify possible PIP2-ENaC interactions. We find using the CIBN-CRY2 optogenetic dimerization system that the phosphoryl group positioned at carbon 5 of PIP2 is necessary for interaction with ENaC. Previous studies have implicated conserved basic residues in the cytosolic portions of β- and γ-ENaC subunits as being important for PIP2-ENaC interactions. To test this, we used synthetic peptides of these regions of β- and γ-ENaC. Steady-state intrinsic fluorescence spectroscopy demonstrated that phosphoinositides change the local conformation of the N terminus of β-ENaC, and two sites of γ-ENaC adjacent to the plasma membrane, suggesting direct interactions of PIP2 with these three regions. Microscale thermophoresis elaborated PIP2 interactions with the N termini of β- (Kd ∼5.2 μm) and γ-ENaC (Kd ∼13 μm). A weaker interaction site within the carboxyl terminus of γ-ENaC (Kd ∼800 μm) was also observed. These results support that PIP2 regulates ENaC activity by directly interacting with at least three distinct regions within the cytoplasmic domains of the channel that contain conserved basic residues. These interactions are probably electrostatic in nature, and are likely to bear a key structural role in support of channel activity.
Collapse
Affiliation(s)
- Crystal R Archer
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center, San Antonio, Texas, United States
| | - Benjamin T Enslow
- Division of Nephrology, Department of Medicine, University of Texas Health Science Center, San Antonio, Texas, United States
| | - Chase M Carver
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center, San Antonio, Texas, United States
| | - James D Stockand
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center, San Antonio, Texas, United States
| |
Collapse
|
2
|
Abstract
Recent studies have suggested that postprandial increases in insulin directly contribute to reduced urinary sodium excretion. An abundance of research supports the ability of insulin to augment epithelial sodium channel (ENaC) transport. This study hypothesized that ENaC contributes to the increase in renal sodium reabsorption following a meal. To test this, we used fasted or 4 hour postprandial Sprague Dawley rats to analyze ENaC expression and activity. We also assessed total expression of additional sodium transporters (Na+-Cl− cotransporter (NCC), Na+-K+-2Cl− cotransporter (NKCC2), and Na+-K+-ATPase (NKA)) and circulating hormones involved in the renin-angiotensin-aldosterone system (RAAS). We found that after carbohydrate stimulus, ENaC open probability increased in split-open isolated collecting duct tubules, while ENaC protein levels remained unchanged. This was supported by a lack of change in phosphorylated Nedd4-2, an E3 ubiquitin ligase protein which regulates the number of ENaCs at the plasma membrane. Additionally, we found no differences in total expression of NCC, NKCC2, or NKA in the postprandial rats. Lastly, there were no significant changes in RAAS signaling between the stimulated and fasted rats, suggesting that acute hyperinsulinemia increases ENaC activity independent of the RAAS signaling cascade. These results demonstrate that insulin regulation of ENaC is a potential mechanism to preserve sodium and volume loss following a meal, and that this regulation is distinct from classical ENaC regulation by RAAS.
Collapse
|
3
|
Wu NC, Cramp RL, Ohmer MEB, Franklin CE. Epidermal epidemic: unravelling the pathogenesis of chytridiomycosis. ACTA ACUST UNITED AC 2019; 222:jeb.191817. [PMID: 30559300 DOI: 10.1242/jeb.191817] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 12/05/2018] [Indexed: 12/18/2022]
Abstract
Chytridiomycosis, a lethal fungal skin disease of amphibians, fatally disrupts ionic and osmotic homeostasis. Infected amphibians increase their skin shedding rate (sloughing) to slow pathogen growth, but the sloughing process also increases skin permeability. Healthy amphibians increase active ion uptake during sloughing by increasing ion transporter abundance to offset the increased skin permeability. How chytridiomycosis affects the skin function during and between sloughing events remains unknown. Here, we show that non-sloughing frogs with chytridiomycosis have impaired cutaneous sodium uptake, in part because they have fewer sodium transporters in their skin. Interestingly, sloughing was associated with a transient increase in sodium transporter activity and abundance, suggesting that the newly exposed skin layer is initially fully functional until the recolonization of the skin by the fungus again impedes cutaneous function. However, the temporary restoration of skin function during sloughing does not restore ionic homeostasis, and the underlying loss of ion uptake capacity is ultimately detrimental for amphibians with chytridiomycosis.
Collapse
Affiliation(s)
- Nicholas C Wu
- School of Biological Sciences, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Rebecca L Cramp
- School of Biological Sciences, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Michel E B Ohmer
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Craig E Franklin
- School of Biological Sciences, The University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
4
|
Shobair M, Dagliyan O, Kota P, Dang YL, He H, Stutts MJ, Dokholyan NV. Gain-of-Function Mutation W493R in the Epithelial Sodium Channel Allosterically Reconfigures Intersubunit Coupling. J Biol Chem 2015; 291:3682-92. [PMID: 26668308 DOI: 10.1074/jbc.m115.678052] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Indexed: 12/21/2022] Open
Abstract
Sodium absorption in epithelial cells is rate-limited by the epithelial sodium channel (ENaC) activity in lung, kidney, and the distal colon. Pathophysiological conditions, such as cystic fibrosis and Liddle syndrome, result from water-electrolyte imbalance partly due to malfunction of ENaC regulation. Because the quaternary structure of ENaC is yet undetermined, the bases of pathologically linked mutations in ENaC subunits α, β, and γ are largely unknown. Here, we present a structural model of heterotetrameric ENaC α1βα2γ that is consistent with previous cross-linking results and site-directed mutagenesis experiments. By using this model, we show that the disease-causing mutation αW493R rewires structural dynamics of the intersubunit interfaces α1β and α2γ. Changes in dynamics can allosterically propagate to the channel gate. We demonstrate that cleavage of the γ-subunit, which is critical for full channel activation, does not mediate activation of ENaC by αW493R. Our molecular dynamics simulations led us to identify a channel-activating electrostatic interaction between α2Arg-493 and γGlu-348 at the α2γ interface. By neutralizing a sodium-binding acidic patch at the α1β interface, we reduced ENaC activation of αW493R by more than 2-fold. By combining homology modeling, molecular dynamics, cysteine cross-linking, and voltage clamp experiments, we propose a dynamics-driven model for the gain-of-function in ENaC by αW493R. Our integrated computational and experimental approach advances our understanding of structure, dynamics, and function of ENaC in its disease-causing state.
Collapse
Affiliation(s)
- Mahmoud Shobair
- From the Program in Molecular and Cellular Biophysics, Curriculum in Bioinformatics and Computational Biology, Department of Biochemistry and Biophysics, and
| | - Onur Dagliyan
- From the Program in Molecular and Cellular Biophysics, Department of Biochemistry and Biophysics, and
| | - Pradeep Kota
- From the Program in Molecular and Cellular Biophysics, Department of Biochemistry and Biophysics, and
| | - Yan L Dang
- Cystic Fibrosis and Pulmonary Diseases Research and Treatment Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Hong He
- Cystic Fibrosis and Pulmonary Diseases Research and Treatment Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - M Jackson Stutts
- Cystic Fibrosis and Pulmonary Diseases Research and Treatment Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Nikolay V Dokholyan
- From the Program in Molecular and Cellular Biophysics, Curriculum in Bioinformatics and Computational Biology, Department of Biochemistry and Biophysics, and Cystic Fibrosis and Pulmonary Diseases Research and Treatment Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| |
Collapse
|
5
|
Capdevila JH, Wang W, Falck JR. Arachidonic acid monooxygenase: Genetic and biochemical approaches to physiological/pathophysiological relevance. Prostaglandins Other Lipid Mediat 2015; 120:40-9. [PMID: 25986599 DOI: 10.1016/j.prostaglandins.2015.05.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2014] [Revised: 04/19/2015] [Accepted: 05/06/2015] [Indexed: 12/22/2022]
Abstract
Studies with rat genetic models of hypertension pointed to roles for the CYP2C and CYP4A arachidonic acid epoxygenases and ω-hydroxylases in tubular transport, hemodynamics, and blood pressure control. Further progress in defining their physiological functions and significance to human hypertension requires conclusive identifications of the relevant genes and proteins. Here we discuss unequivocal evidence of roles for the murine Cyp4a14, Cyp4a10, and Cyp2c44 genes in the pathophysiology of hypertension by showing that: (a) Cyp4a14(-/-) mice develop sexually dimorphic hypertension associated with renal vasoconstriction, and up-regulated expression of Cyp4a12a and pro-hypertensive 20-hydroxyeicosatetraenoic acid (20-HETE) levels, and b) Cyp4a10(-/-) and Cyp2c44(-/-) mice develop salt sensitive hypertension linked to downregulation or lack of the Cyp2c44 epoxygenase, reductions in anti-hypertensive epoxyeicosatrienoic acids (EETs), and increases in distal sodium reabsorption. Based on these studies, the human CYP4A11 and CYPs 2C8 and 2C9 genes and their products are identified as potential candidates for studies of the molecular basis of human hypertension.
Collapse
Affiliation(s)
- Jorge H Capdevila
- Department of Medicine, Vanderbilt University Medical School, Nashville, TN 37232, USA.
| | - Wenhui Wang
- Department of Pharmacology, New York Medical College, Valhalla, NY 10595, USA
| | - John R Falck
- Department of Biochemistry, UT Southwestern Medical Center , Dallas, TX 75390, USA.
| |
Collapse
|
6
|
Abstract
The epithelial Na+ channel, ENaC, is a key regulator of the volume of airway surface liquid in the human airway epithelium. In cystic fibrosis (CF), Na+ hyperabsorption through ENaC in the absence of CFTR-mediated anion secretion results in the dehydration of respiratory secretions and the impairment of mucociliary clearance. The hypothesis of utilizing an ENaC-blocking molecule to facilitate restoration of the airway surface liquid volume sufficiently to allow normal mucociliary clearance is of interest in the management of lung disease in CF patients. This article summarizes the published patent applications from 2010 that claim approaches to inhibit the function of ENaC for utility in the treatment of CF. Patents were located though SciFinder®, using “ENaC” as the keyword from 2010 onwards; documents not relevant to CF were then manually removed.
Collapse
|
7
|
Capdevila JH, Pidkovka N, Mei S, Gong Y, Falck JR, Imig JD, Harris RC, Wang W. The Cyp2c44 epoxygenase regulates epithelial sodium channel activity and the blood pressure responses to increased dietary salt. J Biol Chem 2013; 289:4377-86. [PMID: 24368771 DOI: 10.1074/jbc.m113.508416] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Hypertension is a major risk factor for cerebral, cardiovascular, and renal disease, and its prevalence and devastating consequences raises a need for new strategies for its early diagnosis and treatment. We show here that lack of a Cyp2c44 epoxygenase causes dietary salt-sensitive hypertension, a common form of the human disease. Cyp2c44(-/-) mice on normal salt diets are normotensive but become hypertensive when fed high salt. Hypertensive Cyp2c44(-/-) mice show a hyperactive kidney epithelial sodium channel (ENaC) and reductions in ERK1/2 and ENaC subunit phosphorylation. The demonstration that amiloride, an ENaC inhibitor, lowers the blood pressure of hypertensive Cyp2c44(-/-) mice identifies a role for the channel in the hypertensive phenotype of the animals. These studies: (a) identify an antihypertensive role for the kidney Cyp2c44 epoxygenase and for its epoxyeicosatrienoic acid (EET) metabolites in the in vivo control of ENaC activity and the activation of mitogenic kinase pathways; (b) provide evidence for a Cyp2c44 epoxygenase, EET-mediated mechanism of ENaC regulation involving an ERK1/2-catalyzed threonine phosphorylation of the channel γ subunit: and (c) characterize a common scientific platform that could explain the seemingly unrelated biological activities attributed to the epoxygenase metabolites in cell proliferation, angiogenesis, channel activity, and blood pressure control. It is expected that these results will serve as a basis for the development of novel strategies for the early diagnosis and treatment of hypertension and of pathophysiologies associated with dysfunctional mitogenic signaling.
Collapse
Affiliation(s)
- Jorge H Capdevila
- From the Department of Medicine, Vanderbilt University, Nashville Tennessee 37232
| | | | | | | | | | | | | | | |
Collapse
|
8
|
L Y K, McIntosh CJ, Biasio W, Liu Y, Ke Y, Olson DR, Miller JH, Page R, Snyder PM, McDonald FJ. Regulation of the delta and alpha epithelial sodium channel (ENaC) by ubiquitination and Nedd8. J Cell Physiol 2013; 228:2190-201. [PMID: 23589227 DOI: 10.1002/jcp.24390] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Accepted: 04/05/2013] [Indexed: 12/16/2022]
Abstract
The δ epithelial sodium channel (δENaC) is a proton-activated, sodium-selective, amiloride-sensitive ion channel in the ENaC/degenerin family of ion channels involved in blood pressure regulation and mechanosensation. Other ENaC family members are subject to ubiquitin modification leading to internalization from the cell surface, and degradation of the channel. Here, we show that δENaC is also modified by ubiquitin on three intracellular lysine residues. Absence of these lysines abolished ubiquitin modification of δENaC and increased cell surface levels of δENaC. Although the HECT-domain ubiquitin ligase Nedd4-2 reduced amiloride-sensitive current generated by δβγENaC-containing channels, δENaC does not contain a binding site for Nedd4-2; therefore, this effect is probably mediated by the βγENaC subunits. Nedd8, a ubiquitin-like protein that regulates RING-domain E3 ubiquitin ligases, promoted δENaC ubiquitination, decreased both the intracellular and cell surface δENaC populations, and decreased δβγENaC amiloride-sensitive short circuit current (Isc -amiloride) in a mammalian epithelium. Nedd8 also promoted α- and γENaC ubiquitination, decreased the cell surface pools, and decreased αβγENaC Isc -amiloride. Conversely, XIAP, a single subunit RING E3 ligase, decreased ubiquitinated δENaC, increased the δENaC cell surface pool and increased δβγENaC Isc -amiloride. Therefore δ- and α - βγENaC channel function may be influenced by RING-domain E3 ubiquitin ligases.
Collapse
Affiliation(s)
- Kevin L Y
- Department of Physiology, University of Otago, Dunedin, New Zealand
| | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Fujimaki-Aoba K, Komazaki S, Jensik PJ, Hokari S, Takada M. Larval bullfrog skin lacks amiloride-blockable epithelial transport because α-ENaC is located within intracellular vesicles in epidermal apical cells and not in the apical plasma membrane. Acta Histochem 2013; 115:357-62. [PMID: 23072797 DOI: 10.1016/j.acthis.2012.09.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2012] [Accepted: 09/12/2012] [Indexed: 11/19/2022]
Abstract
The epithelial Na channel (ENaC) plays an essential role in sodium transport across epithelia such as adult frog skin. Transport across the skin, measured as short-circuit current (SCC), is blocked by amiloride. Bullfrog alpha-ENaC (α-fENaC) is expressed in adult bullfrog skin, and the SCC across this skin is blocked by amiloride. In contrast, an amiloride-blockable SCC is not detected in larval bullfrog skin, even though it expresses α-fENaC. We examined the subcellular localization of α-ENaC in such larval and adult skins. Immunofluorescent and immunoelectron microscopy of apical cells in the larval epidermis revealed α-fENaC localization within intracellular vesicles, but not in the plasma membrane. In contrast, in adult skin α-fENaC was localized to the apical-side membrane and to intracellular vesicles in Stratum granulosum cells. This may support the view that amiloride-blockable SCC is absent from larval skin, but is present in adult skin.
Collapse
Affiliation(s)
- Kayo Fujimaki-Aoba
- Department of Physiology, School of Medicine, Saitama Medical University, Moroyama, Iruma-gunn, Saitama 3500495, Japan
| | | | | | | | | |
Collapse
|
10
|
Welzel M, Akin L, Büscher A, Güran T, Hauffa BP, Högler W, Leonards J, Karges B, Kentrup H, Kirel B, Senses EEY, Tekin N, Holterhus PM, Riepe FG. Five novel mutations in the SCNN1A gene causing autosomal recessive pseudohypoaldosteronism type 1. Eur J Endocrinol 2013; 168:707-15. [PMID: 23416952 DOI: 10.1530/eje-12-1000] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Pseudohypoaldosteronism type 1 (PHA1) is a monogenic disease caused by mutations in the genes encoding the human mineralocorticoid receptor (MR) or the α (SCNN1A), β (SCNN1B) or γ (SCNN1G) subunit of the epithelial Na(+) channel (ENaC). While autosomal dominant mutation of the MR cause renal PHA1, autosomal recessive mutations of the ENaC lead to systemic PHA1. In the latter, affected children suffer from neonatal onset of multi-organ salt loss and often exhibit cystic fibrosis-like pulmonary symptoms. OBJECTIVE We searched for underlying mutations in seven unrelated children with systemic PHA1, all offsprings of healthy consanguineous parents. METHODS AND RESULTS Amplification of the SCNN1A gene and sequencing of all 13 coding exons unraveled mutations in all of our patients. We found five novel homozygous mutations (c.587_588insC in two patients, c.1342_1343insTACA, c.742delG, c.189C>A, c.1361-2A>G) and one known mutation (c.1474C>T) leading to truncation of the αENaC protein. All parents were asymptomatic heterozygous carriers of the respective mutations, confirming the autosomal recessive mode of inheritance. Five out of seven patients exhibited pulmonary symptoms in the neonatal period. CONCLUSION The α subunit is essential for ENaC function and mutations truncating the pore-forming part of the protein leading to systemic PHA1. Based on current knowledge, the pulmonary phenotype cannot be satisfactorily predicted.
Collapse
Affiliation(s)
- Maik Welzel
- Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics, University Hospital Schleswig-Holstein, Christian-Albrechts University, Kiel, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Pidkovka N, Rao R, Mei S, Gong Y, Harris RC, Wang WH, Capdevila JH. Epoxyeicosatrienoic acids (EETs) regulate epithelial sodium channel activity by extracellular signal-regulated kinase 1/2 (ERK1/2)-mediated phosphorylation. J Biol Chem 2013; 288:5223-31. [PMID: 23283969 DOI: 10.1074/jbc.m112.407981] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The epithelial sodium channel (ENaC) participates in the regulation of plasma sodium and volume, and gain of function mutations in the human channel cause salt-sensitive hypertension. Roles for the arachidonic acid epoxygenase metabolites, the epoxyeicosatrienoic acids (EETs), in ENaC activity have been identified; however, their mechanisms of action remain unknown. In polarized M1 cells, 14,15-EET inhibited amiloride-sensitive apical to basolateral sodium transport as effectively as epidermal growth factor (EGF). The EET effects were associated with increased threonine phosphorylation of the ENaC β and γ subunits and abolished by inhibitors of (a) mitogen-activated protein kinase/extracellular signal-regulated kinase kinase/extracellular signal regulated kinases 1 and 2 (MEK/ERK1/2) and (b) EGF receptor signaling. CYP2C44 epoxygenase knockdown blunted the sodium transport effects of EGF, and its 14,15-EET metabolite rescued the knockdown phenotype. The relevance of these findings is indicated by (a) the hypertension that results in mice administered cetuximab, an inhibitor of EGF receptor binding, and (b) immunological data showing an association between the pressure effects of cetuximab and reductions in ENaCγ phosphorylation. These studies (a) identify an ERK1/2-dependent mechanism for ENaC inhibition by 14,15-EET, (b) point to ENaC as a proximal target for EET-activated ERK1/2 mitogenic kinases, (c) characterize a mechanistic commonality between EGF and epoxygenase metabolites as ENaC inhibitors, and (d) suggest a CYP2C epoxygenase-mediated pathway for the regulation of distal sodium transport.
Collapse
Affiliation(s)
- Nataliya Pidkovka
- Department of Medicine, Vanderbilt University, Nashville, Tennessee 37232, USA
| | | | | | | | | | | | | |
Collapse
|
12
|
Two Drosophila DEG/ENaC channel subunits have distinct functions in gustatory neurons that activate male courtship. J Neurosci 2012; 32:11879-89. [PMID: 22915128 DOI: 10.1523/jneurosci.1376-12.2012] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Trimeric sodium channels of the DEG/ENaC family have important roles in neurons, but the specific functions of different subunits present in heteromeric channels are poorly understood. We previously reported that the Drosophila DEG/ENaC subunit Ppk25 is essential in a small subset of gustatory neurons for activation of male courtship behavior, likely through detection of female pheromones. Here we show that, like mutations in ppk25, mutations in another Drosophila DEG/ENaC subunit gene, nope, specifically impair male courtship of females. nope regulatory sequences drive reporter gene expression in gustatory neurons of the labellum wings, and legs, including all gustatory neurons in which ppk25 function is required for male courtship of females. In addition, gustatory-specific knockdown of nope impairs male courtship. Further, the impaired courtship response of nope mutant males to females is rescued by targeted expression of nope in the subset of gustatory neurons in which ppk25 functions. However, nope and ppk25 have nonredundant functions, as targeted expression of ppk25 does not compensate for the lack of nope and vice versa. Moreover, Nope and Ppk25 form specific complexes when coexpressed in cultured cells. Together, these data indicate that the Nope and Ppk25 polypeptides have specific, nonredundant functions in a subset of gustatory neurons required for activation of male courtship in response to females, and suggest the hypothesis that Nope and Ppk25 function as subunits of a heteromeric DEG/ENaC channel required for gustatory detection of female pheromones.
Collapse
|
13
|
Zennaro MC, Hubert EL, Fernandes-Rosa FL. Aldosterone resistance: structural and functional considerations and new perspectives. Mol Cell Endocrinol 2012; 350:206-15. [PMID: 21664233 DOI: 10.1016/j.mce.2011.04.023] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2011] [Revised: 04/20/2011] [Accepted: 04/24/2011] [Indexed: 11/30/2022]
Abstract
Aldosterone plays an essential role in the maintenance of fluid and electrolyte homeostasis in the distal nephron. Loss-of-function mutations in two key components of the aldosterone response, the mineralocorticoid receptor and the epithelial sodium channel ENaC, lead to type 1 pseudohypoaldosteronism (PHA1), a rare genetic disease of aldosterone resistance characterized by salt wasting, dehydration, failure to thrive, hyperkalemia and metabolic acidosis. This review describes the clinical, biological and genetic characteristics of the different forms of PHA1 and highlights recent advances in the understanding of the pathogenesis of the disease. We will also discuss genotype-phenotype correlations and new clinical and genetic entities that may prove relevant for patient's care in neonates with renal salt losing syndromes and/or failure to thrive.
Collapse
|
14
|
Mueller GM, Maarouf AB, Kinlough CL, Sheng N, Kashlan OB, Okumura S, Luthy S, Kleyman TR, Hughey RP. Cys palmitoylation of the beta subunit modulates gating of the epithelial sodium channel. J Biol Chem 2010; 285:30453-62. [PMID: 20663869 DOI: 10.1074/jbc.m110.151845] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The epithelial Na(+) channel (ENaC) is comprised of three homologous subunits (α, β, and γ) that have a similar topology with two transmembrane domains, a large extracellular region, and cytoplasmic N and C termini. Although ENaC activity is regulated by a number of factors, palmitoylation of its cytoplasmic Cys residues has not been previously described. Fatty acid-exchange chemistry was used to determine whether channel subunits were Cys-palmitoylated. We observed that only the β and γ subunits were modified by Cys palmitoylation. Analyses of ENaCs with mutant β subunits revealed that Cys-43 and Cys-557 were palmitoylated. Xenopus oocytes expressing ENaC with a β C43A,C557A mutant had significantly reduced amiloride-sensitive whole cell currents, enhanced Na(+) self-inhibition, and reduced single channel P(o) when compared with wild-type ENaC, while membrane trafficking and levels of surface expression were unchanged. Computer modeling of cytoplasmic domains indicated that β Cys-43 is in proximity to the first transmembrane α helix, whereas β Cys-557 is within an amphipathic α-helix contiguous with the second transmembrane domain. We propose that β subunit palmitoylation modulates channel gating by facilitating interactions between cytoplasmic domains and the plasma membrane.
Collapse
Affiliation(s)
- Gunhild M Mueller
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Adachi M, Asakura Y, Muroya K, Tajima T, Fujieda K, Kuribayashi E, Uchida S. Increased Na reabsorption via the Na-Cl cotransporter in autosomal recessive pseudohypoaldosteronism. Clin Exp Nephrol 2010; 14:228-32. [PMID: 20376516 DOI: 10.1007/s10157-010-0277-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2009] [Accepted: 02/28/2010] [Indexed: 11/29/2022]
Abstract
BACKGROUND The autosomal recessive form of pseudohypoaldosteronism type 1 (AR-PHA1) is caused by loss-of-function mutations in the epithelial sodium channel subunit genes and is characterized by a multisystemic and lifelong severe salt-wasting tendency. However, we observed a male AR-PHA1 patient who exhibited less frequent salt wasting with advancing age, despite the cessation of daily salt supplementation. OBJECTIVE To elucidate the mechanism for the above phenomenon. METHODS We evaluated the sodium-reabsorption ability of his distal nephrons (from the distal convoluted tubules to the collecting ducts) and compared it to that of a patient with the dominant form of PHA1 (AD-PHA1) carrying a heterozygous NR3C2 (mineralocorticoid receptor) gene mutation. In addition, immunoblotting of the thiazide-sensitive Na(+)-Cl(-) cotransporter (NCC) protein was conducted using urine samples from the AR- and AD-PHA1 patients. RESULTS The levels of sodium reabsorption that occurred via the distal nephrons were almost identical in the two PHA1 patients, despite their different molecular pathogeneses. Immunoblotting showed an increased urinary NCC protein level in the AR-PHA1 patient. CONCLUSION Taken together, increased sodium reabsorption via the upregulation of the expression of NCC might have been responsible, at least in part, for the clinical improvement seen in an AR-PHA1 patient.
Collapse
Affiliation(s)
- Masanori Adachi
- Department of Endocrinology and Metabolism, Kanagawa Children's Medical Center, Minami-ku, Yokohama, 232-8555, Japan.
| | | | | | | | | | | | | |
Collapse
|
16
|
Abstract
PURPOSE OF REVIEW The amiloride-sensitive epithelial sodium channel (ENaC) plays a major role in the regulation of sodium transport in the collecting duct and hence sodium balance. This review describes recent findings in the regulation of ENaC function by serine proteases in particular and other regulatory aspects. RECENT FINDINGS Regulation of ENaC occurs at many levels (biophysical, transcriptional, post-translational modifications, assembly, membrane insertion, retrieval, recycling, degradation, etc.). Recent studies have recognized and delineated proteolytic cleavage, particularly of the alpha and gamma subunits, as major mechanisms of activation. Release of peptide fragments from these two subunits appears to be an important aspect of activation. These proteolytic mechanisms of ENaC activation have also been demonstrated in vivo and strongly suggested in clinical circumstances, particularly the nephrotic syndrome. In the nephrotic syndrome, filtered plasminogen may be cleaved by tubular urokinase to yield plasmin which can activate ENaC. In addition to these mechanisms, regulation by ubiquitination and deubiquitination represents a pivotal process. Several important deubiquitinating enzymes have been identified as important in ENaC retention in, or recycling to, the apical membrane. New aspects of the genomic control of ENaC transcription have also been found including histone methylation. SUMMARY The mechanisms of regulation of ENaC are increasingly understood to be a complex interplay of many different levels and systems. Proteolytic cleavage of alpha and gamma subunits plays a major role in ENaC activation. This may be particularly clinically relevant in nephrotic syndrome in which plasmin may activate ENaC activity.
Collapse
Affiliation(s)
- L Lee Hamm
- Departments of Medicine, Physiology and the Tulane Hypertension and Renal Center of Excellence, Tulane University School of Medicine, New Orleans, Louisiana 70112, USA.
| | | | | |
Collapse
|
17
|
Jesse NM, McCartney J, Feng X, Richards EM, Wood CE, Keller-Wood M. Expression of ENaC subunits, chloride channels, and aquaporins in ovine fetal lung: ontogeny of expression and effects of altered fetal cortisol concentrations. Am J Physiol Regul Integr Comp Physiol 2009; 297:R453-61. [PMID: 19515987 DOI: 10.1152/ajpregu.00127.2009] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Transition of the epithelium of the fetal lung from fluid secretion to fluid reabsorption requires changes in the expression of ion channels. Corticosteroids regulate expression of several of these channels, including the epithelium sodium channel (ENaC) subunits and aquaporins (AQP). We investigated the ontogenetic changes in these ion channels in the ovine fetal lung during the last half of gestation, a time of increasing adrenal maturation. Expression of the mRNAs for the chloride channels, cystic fibrosis transmembrane conductance regulator (CFTR), and chloride channel 2 (CLCN2) decreased with age. Expression of mRNAs for AQP1, AQP5, and for subunits of ENaC (alpha, beta, gamma) increased with age. In the fetal sheep the expression of ENaCbeta mRNA was dramatically higher than the expression of ENaCalpha or ENaCgamma, but expression of ENaCbeta protein decreased with maturation, although the ratio of the mature (112 kDa) to immature (102 kDa) ENaCbeta protein increased with age, particularly in the membrane fraction. In contrast, ENaCalpha mRNA and protein both increase with maturation, and the mature form of ENaCalpha (68 kDa) predominates at all ages. A modest increase in fetal cortisol, within the range expected to occur naturally in late gestation but prior to active labor, increased ENaCalpha mRNA but not ENaCbeta, ENaCgamma, or AQP mRNAs. We conclude that in the ovine fetal lung, appearance of functional sodium channels is associated with induction of ENACalpha and ENaCgamma, and that ENaCalpha expression may be induced by even small, preterm increases in fetal cortisol.
Collapse
Affiliation(s)
- Nathan M Jesse
- Department of Pediatrics, College of Medicine, University of Florida, Gainesville, Florida, USA
| | | | | | | | | | | |
Collapse
|
18
|
Kim SH, Kim KX, Raveendran NN, Wu T, Pondugula SR, Marcus DC. Regulation of ENaC-mediated sodium transport by glucocorticoids in Reissner's membrane epithelium. Am J Physiol Cell Physiol 2009; 296:C544-57. [PMID: 19144862 DOI: 10.1152/ajpcell.00338.2008] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Reissner's membrane epithelium forms much of the barrier that produces and sustains the large ionic differences between cochlear endolymph and perilymph. We have reported that Reissner's membrane contributes to normal cochlear function by absorbing Na(+) from endolymph via amiloride-sensitive channels in gerbil inner ear. We used mouse Reissner's membrane to 1) identify candidate genes involved in the Na(+) transport pathway, 2) determine whether their level of expression was regulated by the synthetic glucocorticoid dexamethasone, and 3) obtain functional evidence for the physiological importance of these genes. Transcripts were present for alpha-, beta-, and gamma-subunits of epithelial Na(+) channel (ENaC); corticosteroid receptors GR (glucocorticoid receptor) and MR (mineralocorticoid receptor); GR agonist regulator 11beta-hydroxysteroid dehydrogenase (HSD) type 1 (11beta-HSD1); Na(+) transport control components SGK1, Nedd4-2, and WNKs; and K(+) channels and Na(+)-K(+)-ATPase. Expression of the MR agonist regulator 11beta-HSD2 was not detected. Dexamethasone upregulated transcripts for alpha- and beta-subunits of ENaC ( approximately 6- and approximately 3-fold), KCNK1 ( approximately 3-fold), 11beta-HSD1 ( approximately 2-fold), SGK1 ( approximately 2-fold), and WNK4 ( approximately 3-fold). Transepithelial currents from the apical to the basolateral side of Reissner's membrane were sensitive to amiloride (IC(50) approximately 0.7 muM) and benzamil (IC(50) approximately 0.1 muM), but not EIPA (IC(50) approximately 34 muM); amiloride-blocked transepithelial current was not immediately changed by forskolin/IBMX. Currents were reduced by ouabain, lowered bath Na(+) concentration (from 150 to 120 mM), and K(+) channel blockers (XE-991, Ba(2+), and acidification from pH 7.4 to 6.5). Dexamethasone-stimulated current and gene expression were reduced by mifepristone, but not spironolactone. These molecular, pharmacological, and functional observations are consistent with Na(+) absorption by mouse Reissner's membrane, which is mediated by apical ENaC and/or other amiloride-sensitive channels, basolateral Na(+)-K(+)-ATPase, and K(+)-permeable channels and is under the control of glucocorticoids. These results provide an understanding and a molecular definition of an important transport function of Reissner's membrane epithelium in the homeostasis of cochlear endolymph.
Collapse
Affiliation(s)
- Sung Huhn Kim
- Kansas State Univ., Anatomy & Physiology, 228 Coles Hall, Manhattan, KS 66506-5802, USA
| | | | | | | | | | | |
Collapse
|