1
|
Fan Y, Hao Y, Ding Y, Wang X, Ge X. FTO deficiency facilitates epithelia dysfunction in oral lichen planus. MOLECULAR THERAPY. NUCLEIC ACIDS 2025; 36:102463. [PMID: 39995976 PMCID: PMC11847738 DOI: 10.1016/j.omtn.2025.102463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 01/22/2025] [Indexed: 02/26/2025]
Abstract
The fat mass and obesity-associated protein (FTO) is identified as regulating mammalian development and diseases by removing methyl groups from RNAs. However, the roles of FTO in the context of oral lichen planus (OLP) remain unknown. Here, we demonstrated that the protein levels of FTO in the keratinocytes from OLP patients were down-regulated compared to those from healthy participants. At the molecular level, we explained that GSK-3β-induced phosphorylation promoted FTO protein degradation in diseased oral keratinocytes. Using a cell co-culture model, we further confirmed that FTO deficiency facilitated NF-κB activation and apoptosis in oral keratinocytes under inflammatory conditions. Vitamin D receptor (VDR), which plays a protective role in OLP, was mediated by FTO in an RNA N 6-methyladenosine (m6A) methylation-dependent way. FTO overexpression failed to suppress NF-κB and caspase-3 activities upon VDR ablation in oral keratinocytes, suggesting that FTO insufficiency damages oral epithelial by targeting VDR. Collectively, these data reveal that FTO deficiency facilitates epithelial dysfunction in OLP by decreasing VDR expression.
Collapse
Affiliation(s)
- Yufeng Fan
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi, China
- Department of Endodontics, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi, China
| | - Yukai Hao
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi, China
- Department of Endodontics, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi, China
| | - Yan Ding
- Department of Dermatology, Hainan Provincial Hospital of Skin Disease, Haikou, Hainan, China
- Department of Dermatology, Skin Disease Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Xiangyu Wang
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi, China
| | - Xuejun Ge
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi, China
- Department of Endodontics, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi, China
| |
Collapse
|
2
|
Verhamme R, Jansens RJJ, Liu J, Van Raemdonck F, Van Waesberghe C, Nicholson L, Jaffrey SR, Favoreel HW. The pseudorabies virus UL13 protein kinase triggers phosphorylation of the RNA demethylase FTO, which is associated with FTO-dependent suppression of interferon-stimulated gene expression. J Virol 2025; 99:e0201924. [PMID: 39791911 PMCID: PMC11852732 DOI: 10.1128/jvi.02019-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 12/11/2024] [Indexed: 01/12/2025] Open
Abstract
Alpha-ketoglutarate-dependent dioxygenase, also known as fat mass and obesity-associated protein (FTO), is an RNA demethylase that mediates the demethylation of N6,2-O-dimethyladenosine (m6Am) and N6-methyladenosine (m6A). Both m6Am and m6A are prevalent modifications in mRNA and affect different aspects of transcript biology, including splicing, nuclear export, translation efficiency, and degradation. The role of FTO during (herpes) virus infection remains largely unexplored. In this study, we show that the UL13 protein kinase of the alphaherpesvirus pseudorabies virus (PRV) triggers phosphorylation of FTO. In primary epithelial cells, depletion of FTO leads to increased expression of antiviral interferon-stimulated genes (ISGs) and UL13 triggers FTO-dependent suppression of ISG expression. Although PRV infection suppresses m6Am levels in host small nuclear RNA, this is independent of UL13. The current data highlight FTO as an important regulator of antiviral ISG expression and suggest that UL13-mediated phosphorylation of FTO may serve as a previously unrecognized viral strategy to suppress the antiviral interferon response.IMPORTANCERNA modification pathways play important roles in diverse cellular processes and virus life cycles. Although previous studies have demonstrated that alphaherpesviruses can substantially influence cellular RNA modifications, such as m6A, the impact on the m6Am epitranscriptome machinery remains largely unexplored. The present work reports that the UL13 protein kinase of pseudorabies virus (PRV), an alphaherpesvirus, mediates phosphorylation of the m6Am/m6A eraser FTO and that this correlates with a UL13- and FTO-dependent suppression of antiviral interferon-stimulated gene (ISG) expression. Furthermore, PRV infection leads to a pronounced reduction in m6Am levels in host snRNA and also induces phosphorylation of the m6Am writer PCIF1. These data highlight FTO as an important regulator of ISG expression and reveal that viral manipulation of FTO, such as UL13-induced phosphorylation of FTO, may serve as a previously unrecognized interferon evasion strategy.
Collapse
Affiliation(s)
- Ruth Verhamme
- Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Robert J. J. Jansens
- Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Jianheng Liu
- Department of Pharmacology, Weill Medical College, Cornell University, New York, New York, USA
| | - Fien Van Raemdonck
- Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Cliff Van Waesberghe
- Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Luke Nicholson
- Department of Pharmacology, Weill Medical College, Cornell University, New York, New York, USA
| | - Samie R. Jaffrey
- Department of Pharmacology, Weill Medical College, Cornell University, New York, New York, USA
| | - Herman W. Favoreel
- Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| |
Collapse
|
3
|
Lin Y, Lin P, Lu Y, Zheng J, Zheng Y, Huang X, Zhao X, Cui L. Post-Translational Modifications of RNA-Modifying Proteins in Cellular Dynamics and Disease Progression. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2406318. [PMID: 39377984 PMCID: PMC11600222 DOI: 10.1002/advs.202406318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 09/02/2024] [Indexed: 11/28/2024]
Abstract
RNA-modifying proteins, classified as "writers," "erasers," and "readers," dynamically modulate RNA by adding, removing, or interpreting chemical groups, thereby influencing RNA stability, functionality, and interactions. To date, over 170 distinct RNA chemical modifications and more than 100 RNA-modifying enzymes have been identified, with ongoing research expanding these numbers. Although significant progress has been made in understanding RNA modification, the regulatory mechanisms that govern RNA-modifying proteins themselves remain insufficiently explored. Post-translational modifications (PTMs) such as phosphorylation, ubiquitination, and acetylation are crucial in modulating the function and behavior of these proteins. However, the full extent of PTM influence on RNA-modifying proteins and their role in disease development remains to be fully elucidated. This review addresses these gaps by offering a comprehensive analysis of the roles PTMs play in regulating RNA-modifying proteins. Mechanistic insights are provided into how these modifications alter biological processes, contribute to cellular function, and drive disease progression. In addition, the current research landscape is examined, highlighting the therapeutic potential of targeting PTMs on RNA-modifying proteins for precision medicine. By advancing understanding of these regulatory networks, this review seeks to facilitate the development of more effective therapeutic strategies and inspire future research in the critical area of PTMs in RNA-modifying proteins.
Collapse
Affiliation(s)
- Yunfan Lin
- Stomatological Hospital, School of StomatologySouthern Medical UniversityGuangzhouGuangdong510280China
| | - Pei Lin
- Stomatological Hospital, School of StomatologySouthern Medical UniversityGuangzhouGuangdong510280China
| | - Ye Lu
- Stomatological Hospital, School of StomatologySouthern Medical UniversityGuangzhouGuangdong510280China
| | - Jiarong Zheng
- Department of Dentistry, The First Affiliated HospitalSun Yat‐Sen UniversityGuangzhou510080China
| | - Yucheng Zheng
- Stomatological Hospital, School of StomatologySouthern Medical UniversityGuangzhouGuangdong510280China
| | - Xiangyu Huang
- Stomatological Hospital, School of StomatologySouthern Medical UniversityGuangzhouGuangdong510280China
| | - Xinyuan Zhao
- Stomatological Hospital, School of StomatologySouthern Medical UniversityGuangzhouGuangdong510280China
| | - Li Cui
- Stomatological Hospital, School of StomatologySouthern Medical UniversityGuangzhouGuangdong510280China
- School of DentistryUniversity of California, Los AngelesLos AngelesCA90095USA
| |
Collapse
|
4
|
Wang Y, Yang C, Sun H, Jiang H, Zhang P, Huang Y, Liu Z, Yu Y, Xu Z, Xiang H, Yi C. The Role of N6-methyladenosine Modification in Gametogenesis and Embryogenesis: Impact on Fertility. GENOMICS, PROTEOMICS & BIOINFORMATICS 2024; 22:qzae050. [PMID: 38937660 PMCID: PMC11514847 DOI: 10.1093/gpbjnl/qzae050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 06/02/2024] [Accepted: 06/24/2024] [Indexed: 06/29/2024]
Abstract
The most common epigenetic modification of messenger RNAs (mRNAs) is N6-methyladenosine (m6A), which is mainly located near the 3' untranslated region of mRNAs, near the stop codons, and within internal exons. The biological effect of m6A is dynamically modulated by methyltransferases (writers), demethylases (erasers), and m6A-binding proteins (readers). By controlling post-transcriptional gene expression, m6A has a significant impact on numerous biological functions, including RNA transcription, translation, splicing, transport, and degradation. Hence, m6A influences various physiological and pathological processes, such as spermatogenesis, oogenesis, embryogenesis, placental function, and human reproductive system diseases. During gametogenesis and embryogenesis, genetic material undergoes significant changes, including epigenomic modifications such as m6A. From spermatogenesis and oogenesis to the formation of an oosperm and early embryogenesis, m6A changes occur at every step. m6A abnormalities can lead to gamete abnormalities, developmental delays, impaired fertilization, and maternal-to-zygotic transition blockage. Both mice and humans with abnormal m6A modifications exhibit impaired fertility. In this review, we discuss the dynamic biological effects of m6A and its regulators on gamete and embryonic development and review the possible mechanisms of infertility caused by m6A changes. We also discuss the drugs currently used to manipulate m6A and provide prospects for the prevention and treatment of infertility at the epigenetic level.
Collapse
Affiliation(s)
- Yujie Wang
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei 230032, China
- MOE Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Hefei 230032, China
| | - Chen Yang
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei 230032, China
- MOE Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Hefei 230032, China
| | - Hanxiao Sun
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| | - Hui Jiang
- Department of Interventional Therapy, the Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China
| | - Pin Zhang
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei 230032, China
- MOE Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Hefei 230032, China
| | - Yue Huang
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei 230032, China
- MOE Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Hefei 230032, China
| | - Zhenran Liu
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei 230032, China
- MOE Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Hefei 230032, China
| | - Yaru Yu
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei 230032, China
- MOE Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Hefei 230032, China
| | - Zuying Xu
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei 230032, China
- MOE Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Hefei 230032, China
| | - Huifen Xiang
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei 230032, China
- MOE Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Hefei 230032, China
| | - Chengqi Yi
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
- Department of Chemical Biology and Synthetic and Functional Biomolecules Center, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
5
|
Zhang J, Tong L, Liu Y, Li X, Wang J, Lin R, Zhou Z, Chen Y, Chen Y, Liu Y, Chen D. The regulatory role of m 6A modification in the maintenance and differentiation of embryonic stem cells. Genes Dis 2024; 11:101199. [PMID: 38947741 PMCID: PMC11214295 DOI: 10.1016/j.gendis.2023.101199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/28/2023] [Accepted: 11/11/2023] [Indexed: 07/02/2024] Open
Abstract
As the most prevalent and reversible internal epigenetic modification in eukaryotic mRNAs, N 6-methyladenosine (m6A) post-transcriptionally regulates the processing and metabolism of mRNAs involved in diverse biological processes. m6A modification is regulated by m6A writers, erasers, and readers. Emerging evidence suggests that m6A modification plays essential roles in modulating the cell-fate transition of embryonic stem cells. Mechanistic investigation of embryonic stem cell maintenance and differentiation is critical for understanding early embryonic development, which is also the premise for the application of embryonic stem cells in regenerative medicine. This review highlights the current knowledge of m6A modification and its essential regulatory contribution to the cell fate transition of mouse and human embryonic stem cells.
Collapse
Affiliation(s)
- Jin Zhang
- Center for Reproductive Medicine of the Second Affiliated Hospital, Center for Regeneration and Cell Therapy of Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China
| | - Lingling Tong
- Center for Reproductive Medicine of the Second Affiliated Hospital, Center for Regeneration and Cell Therapy of Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China
| | - Yuchen Liu
- Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China
| | - Xiang Li
- Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China
| | - Jiayi Wang
- Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China
| | - Ruoxin Lin
- Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China
| | - Ziyu Zhou
- Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China
| | - Yunbing Chen
- Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China
| | - Yanxi Chen
- Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China
| | - Yirong Liu
- College of Materials and Chemical Engineering, Minjiang University, Fuzhou, Fujian 350108, China
| | - Di Chen
- Center for Reproductive Medicine of the Second Affiliated Hospital, Center for Regeneration and Cell Therapy of Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China
- National Key Laboratory of Biobased Transportation Fuel Technology, Haining, Zhejiang 314400, China
| |
Collapse
|
6
|
Li B, Zhou Q, Cai L, Li L, Xie C, Li D, Zhu F, Li X, Zhao X, Liu X, Shen L, Xu T, He C. TMK4-mediated FIP37 phosphorylation regulates auxin-triggered N 6-methyladenosine modification of auxin biosynthetic genes in Arabidopsis. Cell Rep 2024; 43:114597. [PMID: 39106180 DOI: 10.1016/j.celrep.2024.114597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 03/20/2024] [Accepted: 07/23/2024] [Indexed: 08/09/2024] Open
Abstract
The dynamics of N6-methyladenosine (m6A) mRNA modification are tightly controlled by the m6A methyltransferase complex and demethylases. Here, we find that auxin treatment alters m6A modification on auxin-responsive genes. Mechanically, TRANSMEMBRANE KINASE 4 (TMK4), a component of the auxin signaling pathway, interacts with and phosphorylates FKBP12-INTERACTING PROTEIN 37 (FIP37), a core component of the m6A methyltransferase complex, in an auxin-dependent manner. Phosphorylation of FIP37 enhances its interaction with RNA, thereby increasing m6A modification on its target genes, such as NITRILASE 1 (NIT1), a gene involved in indole-3-acetic acid (IAA) biosynthesis. 1-Naphthalacetic acid (NAA) treatment accelerates the mRNA decay of NIT1, in a TMK4- and FIP37-dependent manner, which leads to inhibition of auxin biosynthesis. Our findings identify a regulatory mechanism by which auxin modulates m6A modification through the phosphorylation of FIP37, ultimately affecting mRNA stability and auxin biosynthesis in plants.
Collapse
Affiliation(s)
- Bin Li
- College of Biology, Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha, Hunan 410082, China; State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Hunan Academy of Agricultural Sciences, Changsha, Hunan 410082, China
| | - Qiting Zhou
- College of Biology, Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha, Hunan 410082, China
| | - Linjun Cai
- College of Biology, Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha, Hunan 410082, China
| | - Lan Li
- School of Pharmacy, Xiangnan University, Chenzhou, Hunan 423000, China
| | - Chong Xie
- College of Biology, Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha, Hunan 410082, China
| | - Donghao Li
- College of Biology, Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha, Hunan 410082, China
| | - Fan Zhu
- College of Biology, Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha, Hunan 410082, China
| | - Xiushan Li
- College of Biology, Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha, Hunan 410082, China
| | - Xiaoying Zhao
- College of Biology, Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha, Hunan 410082, China
| | - Xuanming Liu
- College of Biology, Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha, Hunan 410082, China
| | - Lisha Shen
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore 117604, Singapore
| | - Tongda Xu
- FAFU-Joint Center, Horticulture and Metabolic Biology Center, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Chongsheng He
- College of Biology, Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha, Hunan 410082, China.
| |
Collapse
|
7
|
Yang H, Xuan L, Wang S, Luo H, Duan X, Guo J, Cui S, Xin J, Hao J, Li X, Chen J, Sun F, Hu X, Li S, Zhang Y, Jiao L, Yang B, Sun L. LncRNA CCRR maintains Ca 2+ homeostasis against myocardial infarction through the FTO-SERCA2a pathway. SCIENCE CHINA. LIFE SCIENCES 2024; 67:1601-1619. [PMID: 38761356 DOI: 10.1007/s11427-023-2527-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 01/11/2024] [Indexed: 05/20/2024]
Abstract
Cardiac conduction regulatory RNA (CCRR) has been documented as an antiarrhythmic lncRNA in our earlier investigation. This study aimed to evaluate the effects of CCRR on SERCA2a and the associated Ca2+ homeostasis in myocardial infarction (MI). Overexpression of CCRR via AAV9-mediated delivery not only partially reversed ischemia-induced contractile dysfunction but also alleviated abnormal Ca2+ homeostasis and reduced the heightened methylation level of SERCA2a following MI. These effects were also observed in CCRR over-expressing transgenic mice. A conserved sequence domain of CCRR mimicked the protective function observed with the full length. Furthermore, silencing CCRR in healthy mice led to intracellular Ca2+ overloading of cardiomyocytes. CCRR increased SERCA2a protein stability by upregulating FTO expression. The direct interaction between CCRR and FTO protein was characterized by RNA-binding protein immunoprecipitation (RIP) analysis and RNA pulldown experiments. Activation of NFATc3 was identified as an upstream mechanism responsible for CCRR downregulation in MI. This study demonstrates that CCRR is a protective lncRNA that acts by maintaining the function of FTO, thereby reducing the m6A RNA methylation level of SERCA2a, ultimately preserving calcium homeostasis for myocardial contractile function in MI. Therefore, CCRR may be considered a promising therapeutic strategy with a beneficial role in cardiac pathology.
Collapse
Affiliation(s)
- Hua Yang
- Department of Pharmacology, Harbin Medical University (State Key Laboratory of Frigid Zone Cardiovascular Disease, the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education, Joint International Research Laboratory of Cardiovascular Medicine Research, Ministry of Education, China), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Lina Xuan
- Department of Pharmacology, Harbin Medical University (State Key Laboratory of Frigid Zone Cardiovascular Disease, the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education, Joint International Research Laboratory of Cardiovascular Medicine Research, Ministry of Education, China), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Shengjie Wang
- Department of Pharmacology, Harbin Medical University (State Key Laboratory of Frigid Zone Cardiovascular Disease, the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education, Joint International Research Laboratory of Cardiovascular Medicine Research, Ministry of Education, China), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Huishan Luo
- Department of Pharmacology, Harbin Medical University (State Key Laboratory of Frigid Zone Cardiovascular Disease, the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education, Joint International Research Laboratory of Cardiovascular Medicine Research, Ministry of Education, China), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Xiaomeng Duan
- Department of Pharmacology, Harbin Medical University (State Key Laboratory of Frigid Zone Cardiovascular Disease, the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education, Joint International Research Laboratory of Cardiovascular Medicine Research, Ministry of Education, China), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Jianjun Guo
- Department of Pharmacology, Harbin Medical University (State Key Laboratory of Frigid Zone Cardiovascular Disease, the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education, Joint International Research Laboratory of Cardiovascular Medicine Research, Ministry of Education, China), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Shijia Cui
- Department of Pharmacology, Harbin Medical University (State Key Laboratory of Frigid Zone Cardiovascular Disease, the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education, Joint International Research Laboratory of Cardiovascular Medicine Research, Ministry of Education, China), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Jieru Xin
- Department of Pharmacology, Harbin Medical University (State Key Laboratory of Frigid Zone Cardiovascular Disease, the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education, Joint International Research Laboratory of Cardiovascular Medicine Research, Ministry of Education, China), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Junwei Hao
- Department of Pharmacology, Harbin Medical University (State Key Laboratory of Frigid Zone Cardiovascular Disease, the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education, Joint International Research Laboratory of Cardiovascular Medicine Research, Ministry of Education, China), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Xiufang Li
- Department of Pharmacology, Harbin Medical University (State Key Laboratory of Frigid Zone Cardiovascular Disease, the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education, Joint International Research Laboratory of Cardiovascular Medicine Research, Ministry of Education, China), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Jun Chen
- Department of Pharmacology, Harbin Medical University (State Key Laboratory of Frigid Zone Cardiovascular Disease, the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education, Joint International Research Laboratory of Cardiovascular Medicine Research, Ministry of Education, China), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Feihan Sun
- Department of Pharmacology, Harbin Medical University (State Key Laboratory of Frigid Zone Cardiovascular Disease, the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education, Joint International Research Laboratory of Cardiovascular Medicine Research, Ministry of Education, China), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Xiaolin Hu
- Department of Pharmacology, Harbin Medical University (State Key Laboratory of Frigid Zone Cardiovascular Disease, the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education, Joint International Research Laboratory of Cardiovascular Medicine Research, Ministry of Education, China), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Siyun Li
- Department of Pharmacology, Harbin Medical University (State Key Laboratory of Frigid Zone Cardiovascular Disease, the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education, Joint International Research Laboratory of Cardiovascular Medicine Research, Ministry of Education, China), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Ying Zhang
- Department of Pharmacology, Harbin Medical University (State Key Laboratory of Frigid Zone Cardiovascular Disease, the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education, Joint International Research Laboratory of Cardiovascular Medicine Research, Ministry of Education, China), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Lei Jiao
- Department of Pharmacology, Harbin Medical University (State Key Laboratory of Frigid Zone Cardiovascular Disease, the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education, Joint International Research Laboratory of Cardiovascular Medicine Research, Ministry of Education, China), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Baofeng Yang
- Department of Pharmacology, Harbin Medical University (State Key Laboratory of Frigid Zone Cardiovascular Disease, the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education, Joint International Research Laboratory of Cardiovascular Medicine Research, Ministry of Education, China), College of Pharmacy, Harbin Medical University, Harbin, 150081, China.
| | - Lihua Sun
- Department of Pharmacology, Harbin Medical University (State Key Laboratory of Frigid Zone Cardiovascular Disease, the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education, Joint International Research Laboratory of Cardiovascular Medicine Research, Ministry of Education, China), College of Pharmacy, Harbin Medical University, Harbin, 150081, China.
| |
Collapse
|
8
|
Cai YT, Li Z, Wang YY, Li C, Ma QY. A novel GSK3β inhibitor 5n attenuates acute kidney injury. Heliyon 2024; 10:e29159. [PMID: 38644860 PMCID: PMC11031767 DOI: 10.1016/j.heliyon.2024.e29159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 03/31/2024] [Accepted: 04/02/2024] [Indexed: 04/23/2024] Open
Abstract
Acute kidney injury (AKI) is a clinical syndrome with high morbidity and mortality caused by various factor. The specific strategies for AKI are still lacking. GSK3β is widely expressed in the kidneys. In acute models of injury, GSK3β promotes the systemic inflammatory response, increases the proinflammatory release of cytokines, induces apoptosis, and alters cell proliferation. We screened a series of 3-(4-pyridyl)-5-(4-sulfamido-phenyl)-1,2,4-oxadiazole derivatives which are recognized as new GSK3β inhibitors, and found that 5n had the least toxicity and the best cell protection. We then tested the anti-inflammatory and reno-protective effect of 5n in cisplatin-treated tubular epithelial cells. 5n had anti-inflammation effect indicated by phosphor-NF-κB detection. Finally, we found that 5n ameliorated renal injury and inflammation in cisplatin-induced AKI mouse model. Silencing GSK3β inhibited cell injury and inflammation induced by cisplatin. We found that GSK3β interacted with PP2Ac to modulate the activity of NF-κB. In conclusion, 5n, the novel GSK3β inhibitor, protects against AKI via PP2Ac-dependent mechanisms which may provide a potential strategy for the treatment of AKI in clinic.
Collapse
Affiliation(s)
- Yu-ting Cai
- Department of Nephrology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230032, China
| | - Zeng Li
- The Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, 230032, China
| | - Yue-yue Wang
- The Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, 230032, China
| | - Chao Li
- The Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, 230032, China
| | - Qiu-ying Ma
- Department of pharmacy, 1. The First Affiliated Hospital of Anhui Medical University, 2. Anhui Public Health Clinical Center, No. 100 Huaihai Road, Hefei, Anhui, 230012, China
| |
Collapse
|
9
|
Zhao Y, Huang J, Zhao K, Li M, Wang S. Ubiquitination and deubiquitination in the regulation of N 6-methyladenosine functional molecules. J Mol Med (Berl) 2024; 102:337-351. [PMID: 38289385 DOI: 10.1007/s00109-024-02417-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 10/17/2023] [Accepted: 01/09/2024] [Indexed: 02/21/2024]
Abstract
N6 methyladenosine (m6A) is the most prevalent RNA epigenetic modification, regulated by methyltransferases and demethyltransferases and recognized by methylation-related reading proteins to impact mRNA splicing, translocation, stability, and translation efficiency. It significantly affects a variety of activities, including stem cell maintenance and differentiation, tumor formation, immune regulation, and metabolic disorders. Ubiquitination refers to the specific modification of target proteins by ubiquitin molecule in response to a series of enzymes. E3 ligases connect ubiquitin to target proteins and usually lead to protein degradation. On the contrary, deubiquitination induced by deubiquitinating enzymes (DUBs) can separate ubiquitin and regulate the stability of protein. Recent studies have emphasized the potential importance of ubiquitination and deubiquitination in controlling the function of m6A modification. In this review, we discuss the impact of ubiquitination and deubiquitination on m6A functional molecules in diseases, such as metabolism, cellular stress, and tumor growth.
Collapse
Affiliation(s)
- Yue Zhao
- Department of Laboratory Medicine, Affiliated Hospital, Jiangsu University, Jiefang Road No 438, Zhenjiang, 212002, China
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Jiaojiao Huang
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Kexin Zhao
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Min Li
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Shengjun Wang
- Department of Laboratory Medicine, Affiliated Hospital, Jiangsu University, Jiefang Road No 438, Zhenjiang, 212002, China.
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China.
| |
Collapse
|
10
|
Zhang C, Wang Y, Zhen Z, Li J, Su J, Wu C. mTORC1 Mediates Biphasic Mechano-Response to Orchestrate Adhesion-Dependent Cell Growth and Anoikis Resistance. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307206. [PMID: 38041494 PMCID: PMC10853740 DOI: 10.1002/advs.202307206] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Indexed: 12/03/2023]
Abstract
Cells constantly sense and respond to not only biochemical but also biomechanical changes in their microenvironment, demanding for dynamic metabolic adaptation. ECM stiffening is a hallmark of cancer aggressiveness, while survival under substrate detachment also associates with poor prognosis. Mechanisms underlying this, non-linear mechano-response of tumor cells may reveal potential double-hit targets for cancers. Here, an integrin-GSK3β-FTO-mTOR axis is reported, that can integrate stiffness sensing to ensure both the growth advantage endowed by rigid substrate and cell death resistance under matrix detachment. It is demonstrated that substrate stiffening can activate mTORC1 and elevate mTOR level through integrins and GSK3β-FTO mediated mRNA m6 A modification, promoting anabolic metabolism. Inhibition of this axis upon ECM detachment enhances autophagy, which in turn conveys resilience of tumor cells to anoikis, as it is demonstrated in human breast ductal carcinoma in situ (DCIS) and mice malignant ascites. Collectively, these results highlight the biphasic mechano-regulation of cellular metabolism, with implications in tumor growth under stiffened conditions such as fibrosis, as well as in anoikis-resistance during cancer metastasis.
Collapse
Affiliation(s)
- Chunlei Zhang
- Institute of Systems BiomedicineSchool of Basic Medical SciencesPeking University Health Science CenterBeijing100191China
- International Cancer InstituteBeijing Key Laboratory of Tumor Systems BiologyPeking University Health Science CenterBeijing100191China
| | - Yuan Wang
- Institute of Systems BiomedicineSchool of Basic Medical SciencesPeking University Health Science CenterBeijing100191China
- International Cancer InstituteBeijing Key Laboratory of Tumor Systems BiologyPeking University Health Science CenterBeijing100191China
| | - Zifeng Zhen
- Institute of Systems BiomedicineSchool of Basic Medical SciencesPeking University Health Science CenterBeijing100191China
- International Cancer InstituteBeijing Key Laboratory of Tumor Systems BiologyPeking University Health Science CenterBeijing100191China
| | - Jiayi Li
- Institute of Systems BiomedicineSchool of Basic Medical SciencesPeking University Health Science CenterBeijing100191China
- International Cancer InstituteBeijing Key Laboratory of Tumor Systems BiologyPeking University Health Science CenterBeijing100191China
| | - Jing Su
- Pathology DepartmentPeking University Third HospitalBeijing100191China
| | - Congying Wu
- Institute of Systems BiomedicineSchool of Basic Medical SciencesPeking University Health Science CenterBeijing100191China
- International Cancer InstituteBeijing Key Laboratory of Tumor Systems BiologyPeking University Health Science CenterBeijing100191China
| |
Collapse
|
11
|
Chen Y, Jiang Z, Yang Y, Zhang C, Liu H, Wan J. The functions and mechanisms of post-translational modification in protein regulators of RNA methylation: Current status and future perspectives. Int J Biol Macromol 2023; 253:126773. [PMID: 37690652 DOI: 10.1016/j.ijbiomac.2023.126773] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 08/31/2023] [Accepted: 09/05/2023] [Indexed: 09/12/2023]
Abstract
RNA methylation, an epigenetic modification that does not alter gene sequence, may be important to diverse biological processes. Protein regulators of RNA methylation include "writers," "erasers," and "readers," which respectively deposit, remove, and recognize methylated RNA. RNA methylation, particularly N6-methyladenosine (m6A), 5-methylcytosine (m5C), N3-methylcytosine (m3C), N1-methyladenosine (m1A) and N7-methylguanosine (m7G), has been suggested as disease therapeutic targets. Despite advances in the structure and pharmacology of RNA methylation regulators that have improved drug discovery, regulating these proteins by various post-translational modifications (PTMs) has received little attention. PTM modifies protein structure and function, affecting all aspects of normal biology and pathogenesis, including immunology, cell differentiation, DNA damage repair, and tumors. It is becoming evident that RNA methylation regulators are also regulated by diverse PTMs. PTM of RNA methylation regulators induces their covalent linkage to new functional groups, hence modifying their activity and function. Mass spectrometry has identified many PTMs on protein regulators of RNA methylation. In this review, we describe the functions and PTM of protein regulators of RNA methylation and summarize the recent advances in the regulatory mode of human disease and its underlying mechanisms.
Collapse
Affiliation(s)
- Youming Chen
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Zuli Jiang
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Ying Yang
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Chenxing Zhang
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Hongyang Liu
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| | - Junhu Wan
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| |
Collapse
|
12
|
Xu K, Du W, Zhuang X, Liang D, Mo Y, Wang J. Glycogen synthase kinase-3β mediates toll-like receptors 4/nuclear factor kappa-B-activated cerebral ischemia-reperfusion injury through regulation of fat mass and obesity-associated protein. Brain Circ 2023; 9:162-171. [PMID: 38020949 PMCID: PMC10679630 DOI: 10.4103/bc.bc_3_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 04/19/2023] [Accepted: 04/24/2023] [Indexed: 12/01/2023] Open
Abstract
BACKGROUND Glycogen synthase kinase-3β (GSK3β), fat mass and obesity-associated protein (FTO), and toll-like receptors 4 (TLR4) take on critical significance in different biological processes, whereas their interactions remain unclear. The objective was the investigation of the interaction effect in cerebral ischemia-reperfusion (I/R) injury. METHODS The function of the cerebral cortex in the mouse middle cerebral artery occlusion (MCAO) model (each group n = 6) and P12 cells oxygen-glucose deprivation/reoxygenation (OGD/R) model was analyzed using short hairpin GSK3β lentivirus and overexpression of FTO lentivirus (in vitro), TLR4 inhibitor (TAK242), and LiCl to regulate GSK3β, FTO, TLR4 expression, and GSK3β activity, respectively. RESULTS After GSK3β knockdown in the OGD/R model of PC12 cells, the levels of TLR4 and p-p65 were lower than in the control, and the level of FTO was higher than in the control. Knockdown GSK3β reversed the OGD/R-induced nuclear factor kappa-B transfer to the intranuclear nuclei. As indicated by the result, TLR4 expression was down-regulated by overexpressed FTO, and TLR4 expression was up-regulated notably after inhibition of FTO with the use of R-2HG. After the inhibition of the activity of GSK3β in vivo, the reduction of FTO in mice suffering from MCAO was reversed. CONCLUSIONS Our research shows that GSK3β/FTO/TLR4 pathway contributes to cerebral I/R injury.
Collapse
Affiliation(s)
- Kaiwei Xu
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Wenwen Du
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiuxiu Zhuang
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Dongdong Liang
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yunchang Mo
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Junlu Wang
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
13
|
Brandt G, Sedivy LJ, Mitchell M, Phiel CJ. Vitamin C and Transferrin Reduce RNA Methylation in Mouse Embryonic Stem Cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.23.529811. [PMID: 36865322 PMCID: PMC9980082 DOI: 10.1101/2023.02.23.529811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/26/2023]
Abstract
Methylation of mRNA on adenosine bases (referred to as m 6 A) is the most common internal modification of mRNA in eukaryotic cells. Recent work has revealed a detailed view of the biological significance of m 6 A-modified mRNA, with a role in mRNA splicing, control of mRNA stability, and mRNA translation efficiency. Importantly, m 6 A is a reversible modification, and the primary enzymes responsible for methylating (Mettl3/Mettl14) and demethylating RNA (FTO/Alkbh5) have been identified. Given this reversibility, we are interested in understanding how m 6 A addition/removal is regulated. Recently, we identified glycogen synthase kinase-3 (Gsk-3) activity as a mediator of m 6 A regulation via controlling the levels of the FTO demethylase in mouse embryonic stem cells (ESCs), with Gsk-3 inhibitors and Gsk-3 knockout both leading to increased FTO protein and decreased m 6 A mRNA levels. To our knowledge, this remains one of the only mechanisms identified for the regulation of m 6 A modifications in ESCs. Several small molecules that have been shown to promote the retention of pluripotency of ESCs, and interestingly, many have connections to the regulation of FTO and m 6 A. Here we show that the combination of Vitamin C and transferrin potently reduces levels of m 6 A and promotes retention of pluripotency in mouse ESCs. Combining Vitamin C and transferrin should prove to be valuable in growing and maintaining pluripotent mouse ESCs.
Collapse
|
14
|
Sedivy LJ, Brandt G, Martin AL, Abroe HM, Phiel CJ. Mouse Embryonic Stem Cell Pluripotency Factors Regulate RNA Methylation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.23.529801. [PMID: 36865332 PMCID: PMC9980107 DOI: 10.1101/2023.02.23.529801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Abstract
The pluripotency of embryonic stem cells (ESCs) is actively promoted by a diverse set of factors, including leukemia inhibitory factor (LIF), glycogen synthase kinase-3 (Gsk-3) and mitogen-activated protein kinase kinase (MEK) inhibitors, ascorbic acid, and α-ketoglutarate. Strikingly, several of these factors intersect with the post-transcriptional methylation of RNA (m 6 A), which has also been shown to play a role in ESC pluripotency. Therefore, we explored the possibility that these factors converge on this biochemical pathway to promote the retention of ESC pluripotency. Mouse ESCs were treated with various combinations of small molecules, and the relative levels of m 6 A RNA were measured, as well as the expression of genes marking naïve and primed ESCs. The most surprising result was the discovery that replacing glucose with high levels of fructose pushed ESCs to a more naïve state and reduced m 6 A RNA abundance. Our results suggest a correlation between molecules previously shown to promote the retention of ESC pluripotency and m 6 A RNA levels, strengthening a molecular connection between reduced m 6 A RNA and the pluripotent state, and provides a foundation for future mechanistic studies on the role of m 6 A and ESC pluripotency.
Collapse
|
15
|
Zablowsky N, Farack L, Rofall S, Kramer J, Meyer H, Nguyen D, Ulrich AKC, Bader B, Steigemann P. High Throughput FISH Screening Identifies Small Molecules That Modulate Oncogenic lncRNA MALAT1 via GSK3B and hnRNPs. Noncoding RNA 2023; 9:ncrna9010002. [PMID: 36649031 PMCID: PMC9844399 DOI: 10.3390/ncrna9010002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 12/12/2022] [Accepted: 12/20/2022] [Indexed: 01/06/2023] Open
Abstract
Traditionally, small molecule-based drug discovery has mainly focused on proteins as the drug target. Opening RNA as an additional target space for small molecules offers the possibility to therapeutically modulate disease-driving non-coding RNA targets as well as mRNA of otherwise undruggable protein targets. MALAT1 is a highly conserved long-noncoding RNA whose overexpression correlates with poor overall patient survival in some cancers. We report here a fluorescence in-situ hybridization-based high-content imaging screen to identify small molecules that modulate the oncogenic lncRNA MALAT1 in a cellular setting. From a library of FDA approved drugs and known bioactive molecules, we identified two compounds, including Niclosamide, an FDA-approved drug, that lead to a rapid decrease of MALAT1 nuclear levels with good potency. Mode-of-action studies suggest a novel cellular regulatory pathway that impacts MALAT1 lncRNA nuclear levels by GSK3B activation and the involvement of the RNA modulating family of heterogenous nuclear ribonucleoproteins (hnRNPs). This study is the basis for the identification of novel targets that lead to a reduction of the oncogenic lncRNA MALAT1 in a cancer setting.
Collapse
|
16
|
Liu C, Li Y, Dong C, Qu L, Zuo Y. E6E7 regulates the HK2 expression in cervical cancer via GSK3β/FTO signal. Arch Biochem Biophys 2022; 729:109389. [PMID: 36075458 DOI: 10.1016/j.abb.2022.109389] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 08/12/2022] [Accepted: 08/30/2022] [Indexed: 11/02/2022]
Abstract
BACKGROUND Cervical cancer is one of the most common cancers in women worldwide. Hexokinase 2 (HK2) is responsible for phosphorylating glucose into glucose-6-phosphate, which is required for tumorigenesis and metastasis. METHODS E6E7 and FTO were exogenously expressed, and their effects on HK2 mRNA and protein levels were detected by RT-qPCR and Western blot. RESULTS The exogenous expression of E6E7 in SiHa and C33A cells up-regulated the mRNA and protein levels of intracellular HK2, up-regulated the total m6A levels, changed the expression of m6A proteins and activated the GSK3β transcription. The expression levels of METTL3 and WTAP were enhanced, whereas the expression of FTO and ALKBH5 were decreased. In addition, FTO down-regulated the mRNA and protein levels of HK2. FTO overexpression partially inhibited the up-regulated expression of HK2 caused by E6E7. Furthermore, FTO overexpression increased the level of HK2 pre-mRNA in the nucleus and decreased the level of mature HK2 mRNA in the cytoplasm. We also found that GSK3β overexpression enhanced FTO ubiquitination and decreased FTO protein levels. CONCLUSION This study found that E6E7 oncogene activates the transcription of GSK3β; GSK3β can promote the ubiquitination-proteasomal degradation of FTO and reduce the level of FTO protein; FTO inhibits the maturation and translation of HK2 mRNA by retaining HK2 pre-mRNA in the nucleus.
Collapse
Affiliation(s)
- Chunyan Liu
- Yantai Yuhuangding Affiliated Hospital of Qingdao University, Yantai, 264000, Shandong, China
| | - Yangyang Li
- Yantai Yuhuangding Affiliated Hospital of Qingdao University, Yantai, 264000, Shandong, China
| | - Changyan Dong
- Yantai Yuhuangding Affiliated Hospital of Qingdao University, Yantai, 264000, Shandong, China
| | - Luyun Qu
- Yantai Yuhuangding Affiliated Hospital of Qingdao University, Yantai, 264000, Shandong, China
| | - Ying Zuo
- Yantai Yuhuangding Affiliated Hospital of Qingdao University, Yantai, 264000, Shandong, China.
| |
Collapse
|
17
|
Loh D, Reiter RJ. Melatonin: Regulation of Viral Phase Separation and Epitranscriptomics in Post-Acute Sequelae of COVID-19. Int J Mol Sci 2022; 23:8122. [PMID: 35897696 PMCID: PMC9368024 DOI: 10.3390/ijms23158122] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/09/2022] [Accepted: 07/20/2022] [Indexed: 01/27/2023] Open
Abstract
The relentless, protracted evolution of the SARS-CoV-2 virus imposes tremendous pressure on herd immunity and demands versatile adaptations by the human host genome to counter transcriptomic and epitranscriptomic alterations associated with a wide range of short- and long-term manifestations during acute infection and post-acute recovery, respectively. To promote viral replication during active infection and viral persistence, the SARS-CoV-2 envelope protein regulates host cell microenvironment including pH and ion concentrations to maintain a high oxidative environment that supports template switching, causing extensive mitochondrial damage and activation of pro-inflammatory cytokine signaling cascades. Oxidative stress and mitochondrial distress induce dynamic changes to both the host and viral RNA m6A methylome, and can trigger the derepression of long interspersed nuclear element 1 (LINE1), resulting in global hypomethylation, epigenetic changes, and genomic instability. The timely application of melatonin during early infection enhances host innate antiviral immune responses by preventing the formation of "viral factories" by nucleocapsid liquid-liquid phase separation that effectively blockades viral genome transcription and packaging, the disassembly of stress granules, and the sequestration of DEAD-box RNA helicases, including DDX3X, vital to immune signaling. Melatonin prevents membrane depolarization and protects cristae morphology to suppress glycolysis via antioxidant-dependent and -independent mechanisms. By restraining the derepression of LINE1 via multifaceted strategies, and maintaining the balance in m6A RNA modifications, melatonin could be the quintessential ancient molecule that significantly influences the outcome of the constant struggle between virus and host to gain transcriptomic and epitranscriptomic dominance over the host genome during acute infection and PASC.
Collapse
Affiliation(s)
- Doris Loh
- Independent Researcher, Marble Falls, TX 78654, USA;
| | - Russel J. Reiter
- Department of Cell Systems and Anatomy, UT Health San Antonio, San Antonio, TX 78229, USA
| |
Collapse
|
18
|
GSK3β Exacerbates Myocardial Ischemia/Reperfusion Injury by Inhibiting Myc. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:2588891. [PMID: 35528516 PMCID: PMC9076327 DOI: 10.1155/2022/2588891] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 03/02/2022] [Accepted: 03/04/2022] [Indexed: 01/01/2023]
Abstract
Myocardial ischemia/reperfusion (MI/R) injury is a life-threatening disease with high morbidity and mortality. Herein, the present study is conducted to explore the regulatory mechanism of GSK3β in MI/R injury regarding cardiomyocyte apoptosis and oxidative stress. The MI/R injury mouse model and hypoxic reoxygenation (H/R) cell model were established. The expression pattern of GSK3β, FTO, KLF5, and Myc was determined followed by their relation validation. Next, loss-of-function experiments were implemented to verify the effect of GSK3β/FTO/KLF5/Myc on cardiomyocyte apoptosis and oxidative stress in the MI/R injury mouse model and H/R cell model. High expression of GSK3β and low expression of FTO, KLF5, and Myc were observed in the MI/R injury mouse model and H/R cell model. GSK3β promoted phosphorylation of FTO and KLF5, thus increasing the ubiquitination degradation of FTO and KLF5. A decrease of FTO and KLF5 was able to downregulate Myc expression, resulting in enhanced cardiomyocyte apoptosis and oxidative stress. These data together supported the crucial role that GSK3β played in facilitating cardiomyocyte apoptosis and oxidative stress so as to accelerate MI/R injury, which highlights a promising therapeutic strategy against MI/R injury.
Collapse
|
19
|
Chang Y, Yi M, Wang J, Cao Z, Zhou T, Ge W, Muhammad Z, Zhang Z, Feng Y, Yan Z, Felici MD, Shen W, Cao H. Genetic Regulation of N6-Methyladenosine-RNA in Mammalian Gametogenesis and Embryonic Development. Front Cell Dev Biol 2022; 10:819044. [PMID: 35359444 PMCID: PMC8964082 DOI: 10.3389/fcell.2022.819044] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 02/21/2022] [Indexed: 01/20/2023] Open
Abstract
Emerging evidence shows that m6A is the most abundant modification in eukaryotic RNA molecules. It has only recently been found that this epigenetic modification plays an important role in many physiological and pathological processes, such as cell fate commitment, immune response, obesity, tumorigenesis, and relevant for the present review, gametogenesis. Notably the RNA metabolism process mediated by m6A is controlled and regulated by a series of proteins termed writers, readers and erasers that are highly expressed in germ cells and somatic cells of gonads. Here, we review and discuss the expression and the functional emerging roles of m6A in gametogenesis and early embryogenesis of mammals. Besides updated references about such new topics, readers might find in the present work inspiration and clues to elucidate epigenetic molecular mechanisms of reproductive dysfunction and perspectives for future research.
Collapse
Affiliation(s)
- Yuguang Chang
- Anhui Province Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Bio-breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Mingliang Yi
- Anhui Province Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Bio-breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Jing Wang
- Anhui Province Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Bio-breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Zhikun Cao
- Anhui Province Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Bio-breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Tingting Zhou
- Anhui Province Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Bio-breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Wei Ge
- Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Zafir Muhammad
- Anhui Province Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Bio-breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Zijun Zhang
- Anhui Province Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Bio-breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Yanqin Feng
- Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Zihui Yan
- Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Massimo De Felici
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
- *Correspondence: Massimo De Felici, ; Wei Shen, ; Hongguo Cao,
| | - Wei Shen
- Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, College of Life Sciences, Qingdao Agricultural University, Qingdao, China
- *Correspondence: Massimo De Felici, ; Wei Shen, ; Hongguo Cao,
| | - Hongguo Cao
- Anhui Province Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Bio-breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
- *Correspondence: Massimo De Felici, ; Wei Shen, ; Hongguo Cao,
| |
Collapse
|
20
|
Kim H, Jang S, Lee YS. The m6A(m)-independent role of FTO in regulating WNT signaling pathways. Life Sci Alliance 2022; 5:5/5/e202101250. [PMID: 35169043 PMCID: PMC8860091 DOI: 10.26508/lsa.202101250] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 01/31/2022] [Accepted: 02/01/2022] [Indexed: 01/02/2023] Open
Abstract
FTO and ALKBH5 are the two enzymes responsible for mRNA demethylation. Hence, the functional study of FTO has been focused on its mechanistic role in dynamic mRNA modification, and how this post-transcriptional regulation modulates signaling pathways. Here, we report that the functional landscape of FTO is largely associated with WNT signaling pathways but in a manner that is independent of its enzymatic activity. Re-analyses of public datasets identified the bifurcation of canonical and noncanonical WNT pathways as the major role of FTO. In FTO-depleted cells, we find that the canonical WNT/β-Catenin signaling is attenuated in a non-cell autonomous manner via the up-regulation of DKK1. Simultaneously, this up-regulation of DKK1 promotes cell migration via activating the noncanonical WNT/PCP pathway. Unexpectedly, this regulation of DKK1 is independent of its RNA methylation status but operates at the transcriptional level, revealing a noncanonical function of FTO in gene regulation. In conclusion, this study places the functional context of FTO at the branch point of multiple WNT signaling pathways and extends its mechanistic role in gene regulation.
Collapse
Affiliation(s)
- Hyunjoon Kim
- Center for RNA Research, Institute for Basic Science, Seoul, Korea .,School of Biological Sciences, Seoul National University, Seoul, Korea
| | - Soohyun Jang
- Center for RNA Research, Institute for Basic Science, Seoul, Korea.,School of Biological Sciences, Seoul National University, Seoul, Korea
| | - Young-Suk Lee
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea
| |
Collapse
|
21
|
Gao M, Qi Z, Feng W, Huang H, Xu Z, Dong Z, Xu M, Han J, Kloeber JA, Huang J, Lou Z, Liu S. m6A demethylation of cytidine deaminase APOBEC3B mRNA orchestrates arsenic-induced mutagenesis. J Biol Chem 2022; 298:101563. [PMID: 34998823 PMCID: PMC8814665 DOI: 10.1016/j.jbc.2022.101563] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 12/28/2021] [Accepted: 12/29/2021] [Indexed: 12/14/2022] Open
Abstract
The cytidine deaminase APOBEC3B (A3B) is an endogenous inducer of somatic mutations and causes chromosomal instability by converting cytosine to uracil in single-stranded DNA. Therefore, identification of factors and mechanisms that mediate A3B expression will be helpful for developing therapeutic approaches to decrease DNA mutagenesis. Arsenic (As) is one well-known mutagen and carcinogen, but the mechanisms by which it induces mutations have not been fully elucidated. Herein, we show that A3B is upregulated and required for As-induced DNA damage and mutagenesis. We found that As treatment causes a decrease of N6-methyladenosine (m6A) modification near the stop codon of A3B, consequently increasing the stability of A3B mRNA. We further reveal that the demethylase FTO is responsible for As-reduced m6A modification of A3B, leading to increased A3B expression and DNA mutation rates in a manner dependent on the m6A reader YTHDF2. Our in vivo data also confirm that A3B is a downstream target of FTO in As-exposed lung tissues. In addition, FTO protein is highly expressed and positively correlates with the protein levels of A3B in tumor samples from human non-small cell lung cancer patients. These findings indicate a previously unrecognized role of A3B in As-triggered somatic mutation and might open new avenues to reduce DNA mutagenesis by targeting the FTO/m6A axis.
Collapse
Affiliation(s)
- Ming Gao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Zijuan Qi
- Department of Orthopedic Surgery, The First Affiliated Hospital of Shandong First Medical University, Ji'nan, Shandong, China
| | - Wenya Feng
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Hongyang Huang
- Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Zhijie Xu
- Department of Pathology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zheng Dong
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Ming Xu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Jinxiang Han
- Department of Orthopedic Surgery, The First Affiliated Hospital of Shandong First Medical University, Ji'nan, Shandong, China
| | - Jake A Kloeber
- Department of Oncology, Mayo Clinic, Rochester, Minnesota, USA; Mayo Clinic Medical Scientist Training Program, Mayo Clinic, Rochester, Minnesota, USA
| | - Jinzhou Huang
- Department of Oncology, Mayo Clinic, Rochester, Minnesota, USA.
| | - Zhenkun Lou
- Department of Oncology, Mayo Clinic, Rochester, Minnesota, USA.
| | - Sijin Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
22
|
The Role of RNA Methylation in Regulating Stem Cell Fate and Function-Focus on m 6A. Stem Cells Int 2021; 2021:8874360. [PMID: 34745269 PMCID: PMC8568546 DOI: 10.1155/2021/8874360] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 07/18/2021] [Accepted: 09/23/2021] [Indexed: 01/22/2023] Open
Abstract
The biological role of RNA methylation in stem cells has attracted increasing attention. Recent studies have demonstrated that RNA methylation plays a crucial role in self-renewal, differentiation, and tumorigenicity of stem cells. In this review, we focus on the biological role of RNA methylation modifications including N6-methyladenosine, 5-methylcytosine, and uridylation in embryonic stem cells, adult stem cells, induced pluripotent stem cells, and cancer stem cells, so as to provide new insights into the potential innovative treatments of cancer or other complex diseases.
Collapse
|
23
|
Marcinkowski M, Pilžys T, Garbicz D, Piwowarski J, Przygońska K, Winiewska-Szajewska M, Ferenc K, Skorobogatov O, Poznański J, Grzesiuk E. Calmodulin as Ca 2+-Dependent Interactor of FTO Dioxygenase. Int J Mol Sci 2021; 22:ijms221910869. [PMID: 34639211 PMCID: PMC8509707 DOI: 10.3390/ijms221910869] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 09/24/2021] [Accepted: 10/06/2021] [Indexed: 11/16/2022] Open
Abstract
FTO is an N6-methyladenosine demethylase removing methyl groups from nucleic acids. Several studies indicate the creation of FTO complexes with other proteins. Here, we looked for regulatory proteins recognizing parts of the FTO dioxygenase region. In the Calmodulin (CaM) Target Database, we found the FTO C-domain potentially binding CaM, and we proved this finding experimentally. The interaction was Ca2+-dependent but independent on FTO phosphorylation. We found that FTO–CaM interaction essentially influences calcium-binding loops in CaM, indicating the presence of two peptide populations—exchanging as CaM alone and differently, suggesting that only one part of CaM interacts with FTO, and the other one reminds free. The modeling of FTO–CaM interaction showed its stable structure when the half of the CaM molecule saturated with Ca2+ interacts with the FTO C-domain, whereas the other part is disconnected. The presented data indicate calmodulin as a new FTO interactor and support engagement of the FTO protein in calcium signaling pathways.
Collapse
Affiliation(s)
- Michał Marcinkowski
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland; (M.M.); (T.P.); (D.G.); (J.P.); (K.P.); (M.W.-S.); (O.S.)
| | - Tomaš Pilžys
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland; (M.M.); (T.P.); (D.G.); (J.P.); (K.P.); (M.W.-S.); (O.S.)
| | - Damian Garbicz
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland; (M.M.); (T.P.); (D.G.); (J.P.); (K.P.); (M.W.-S.); (O.S.)
| | - Jan Piwowarski
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland; (M.M.); (T.P.); (D.G.); (J.P.); (K.P.); (M.W.-S.); (O.S.)
| | - Kaja Przygońska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland; (M.M.); (T.P.); (D.G.); (J.P.); (K.P.); (M.W.-S.); (O.S.)
| | - Maria Winiewska-Szajewska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland; (M.M.); (T.P.); (D.G.); (J.P.); (K.P.); (M.W.-S.); (O.S.)
| | - Karolina Ferenc
- Center of Translational Medicine, Warsaw University of Life Sciences, Nowoursynowska 100, 02-797 Warsaw, Poland;
| | - Oleksandr Skorobogatov
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland; (M.M.); (T.P.); (D.G.); (J.P.); (K.P.); (M.W.-S.); (O.S.)
| | - Jarosław Poznański
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland; (M.M.); (T.P.); (D.G.); (J.P.); (K.P.); (M.W.-S.); (O.S.)
- Correspondence: (J.P.); (E.G.)
| | - Elżbieta Grzesiuk
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland; (M.M.); (T.P.); (D.G.); (J.P.); (K.P.); (M.W.-S.); (O.S.)
- Correspondence: (J.P.); (E.G.)
| |
Collapse
|
24
|
Qin S, Mao Y, Wang H, Duan Y, Zhao L. The interplay between m6A modification and non-coding RNA in cancer stemness modulation: mechanisms, signaling pathways, and clinical implications. Int J Biol Sci 2021; 17:2718-2736. [PMID: 34345203 PMCID: PMC8326131 DOI: 10.7150/ijbs.60641] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 06/13/2021] [Indexed: 12/13/2022] Open
Abstract
Cancer stemness, mainly consisting of chemo-resistance, radio-resistance, tumorigenesis, metastasis, tumor self-renewal, cancer metabolism reprogramming, and tumor immuno-microenvironment remodeling, play crucial roles in the cancer progression process and has become the hotspot of cancer research field in recent years. Nowadays, the exact molecular mechanisms of cancer stemness have not been fully understood. Extensive studies have recently implicated that non-coding RNA (ncRNA) plays vital roles in modulating cancer stemness. Notably, N6-methyladenosine (m6A) modification is of crucial importance for RNAs to exert their biological functions, including RNA splicing, stability, translation, degradation, and export. Emerging evidence has revealed that m6A modification can govern the expressions and functions of ncRNAs, consequently controlling cancer stemness properties. However, the interaction mechanisms between ncRNAs and m6A modification in cancer stemness modulation are rarely investigated. In this review, we elucidate the recent findings on the relationships of m6A modification, ncRNAs, and cancer stemness. We also focus on some key signaling pathways such as Wnt/β-catenin signaling, MAPK signaling, Hippo signaling, and JAK/STAT3 signaling to illustrate the underlying interplay mechanisms between m6A modification and ncRNAs in cancer stemness. In particular, we briefly highlight the clinical potential of ncRNAs and m6A modifiers as promising biomarkers and therapeutic targets for indicating cancer stemness properties and improving the diagnostic precision for a wide variety of cancers.
Collapse
Affiliation(s)
- Sha Qin
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, China; and Department of Pathology, School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Yitao Mao
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Haofan Wang
- Department of Interventional Radiology, The 3rd Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Yingxing Duan
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Luqing Zhao
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, China; and Department of Pathology, School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
25
|
Li C, Jiang Z, Hao J, Liu D, Hu H, Gao Y, Wang D. Role of N6-methyl-adenosine modification in mammalian embryonic development. Genet Mol Biol 2021; 44:e20200253. [PMID: 33999093 PMCID: PMC8127566 DOI: 10.1590/1678-4685-gmb-2020-0253] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Accepted: 04/07/2021] [Indexed: 11/21/2022] Open
Abstract
N6-methyl-adenosine (m6A) methylation is one of the most common and abundant modifications of RNA molecules in eukaryotes. Although various biological roles of m6A methylation have been elucidated, its role in embryonic development is still unclear. In this review, we focused on the function and expression patterns of m6A-related genes in mammalian embryonic development and the role of m6A modification in the embryonic epigenetic reprogramming process. The modification of m6A is regulated by the combined activities of methyltransferases, demethylases, and m6A-binding proteins. m6A-related genes act synergistically to form a dynamic, reversible m6A pattern, which exists in several physiological processes in various stages of embryonic development. The lack of one of these enzymes affects embryonic m6A levels, leading to abnormal embryonic development and even death. Moreover, m6A is a positive regulator of reprogramming to pluripotency and can affect embryo reprogramming by affecting activation of the maternal-to-zygotic transition. In conclusion, m6A is involved in the regulation of gene expression during embryonic development and the metabolic processes of RNA and plays an important role in the epigenetic modification of embryos.
Collapse
Affiliation(s)
- Chengshun Li
- Jilin University, College of Animal Science, Laboratory Animal Center, Changchun, China
| | - Ziping Jiang
- The First Hospital of Jilin University, Department of hand surgery, Changchun, China
| | - Jindong Hao
- Jilin University, College of Animal Science, Laboratory Animal Center, Changchun, China
| | - Da Liu
- Changchun University of Chinese Medicine, Department of Pharmacy, Changchun, China
| | - Haobo Hu
- Jilin University, College of Animal Science, Laboratory Animal Center, Changchun, China
| | - Yan Gao
- Jilin University, College of Animal Science, Laboratory Animal Center, Changchun, China
| | - Dongxu Wang
- Jilin University, College of Animal Science, Laboratory Animal Center, Changchun, China
| |
Collapse
|
26
|
Marcinkowski M, Pilžys T, Garbicz D, Piwowarski J, Mielecki D, Nowaczyk G, Taube M, Gielnik M, Kozak M, Winiewska-Szajewska M, Szołajska E, Dębski J, Maciejewska AM, Przygońska K, Ferenc K, Grzesiuk E, Poznański J. Effect of Posttranslational Modifications on the Structure and Activity of FTO Demethylase. Int J Mol Sci 2021; 22:ijms22094512. [PMID: 33925955 PMCID: PMC8123419 DOI: 10.3390/ijms22094512] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 04/19/2021] [Accepted: 04/22/2021] [Indexed: 12/13/2022] Open
Abstract
The FTO protein is involved in a wide range of physiological processes, including adipogenesis and osteogenesis. This two-domain protein belongs to the AlkB family of 2-oxoglutarate (2-OG)- and Fe(II)-dependent dioxygenases, displaying N6-methyladenosine (N6-meA) demethylase activity. The aim of the study was to characterize the relationships between the structure and activity of FTO. The effect of cofactors (Fe2+/Mn2+ and 2-OG), Ca2+ that do not bind at the catalytic site, and protein concentration on FTO properties expressed in either E. coli (ECFTO) or baculovirus (BESFTO) system were determined using biophysical methods (DSF, MST, SAXS) and biochemical techniques (size-exclusion chromatography, enzymatic assay). We found that BESFTO carries three phosphoserines (S184, S256, S260), while there were no such modifications in ECFTO. The S256D mutation mimicking the S256 phosphorylation moderately decreased FTO catalytic activity. In the presence of Ca2+, a slight stabilization of the FTO structure was observed, accompanied by a decrease in catalytic activity. Size exclusion chromatography and MST data confirmed the ability of FTO from both expression systems to form homodimers. The MST-determined dissociation constant of the FTO homodimer was consistent with their in vivo formation in human cells. Finally, a low-resolution structure of the FTO homodimer was built based on SAXS data.
Collapse
Affiliation(s)
- Michał Marcinkowski
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland; (M.M.); (T.P.); (D.G.); (J.P.); (D.M.); (M.W.-S.); (E.S.); (J.D.); (A.M.M.); (K.P.)
| | - Tomaš Pilžys
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland; (M.M.); (T.P.); (D.G.); (J.P.); (D.M.); (M.W.-S.); (E.S.); (J.D.); (A.M.M.); (K.P.)
| | - Damian Garbicz
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland; (M.M.); (T.P.); (D.G.); (J.P.); (D.M.); (M.W.-S.); (E.S.); (J.D.); (A.M.M.); (K.P.)
| | - Jan Piwowarski
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland; (M.M.); (T.P.); (D.G.); (J.P.); (D.M.); (M.W.-S.); (E.S.); (J.D.); (A.M.M.); (K.P.)
| | - Damian Mielecki
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland; (M.M.); (T.P.); (D.G.); (J.P.); (D.M.); (M.W.-S.); (E.S.); (J.D.); (A.M.M.); (K.P.)
| | - Grzegorz Nowaczyk
- NanoBioMedical Centre, Adam Mickiewicz University, Wszechnicy Piastowskiej 3, 61-614 Poznan, Poland;
| | - Michał Taube
- Department of Macromolecular Physics, Faculty of Physics, Adam Mickiewicz University, Uniwersytetu Poznanskiego 2, 61-614 Poznan, Poland; (M.T.); (M.G.); (M.K.)
| | - Maciej Gielnik
- Department of Macromolecular Physics, Faculty of Physics, Adam Mickiewicz University, Uniwersytetu Poznanskiego 2, 61-614 Poznan, Poland; (M.T.); (M.G.); (M.K.)
| | - Maciej Kozak
- Department of Macromolecular Physics, Faculty of Physics, Adam Mickiewicz University, Uniwersytetu Poznanskiego 2, 61-614 Poznan, Poland; (M.T.); (M.G.); (M.K.)
- National Synchrotron Radiation Centre SOLARIS, Jagiellonian University, Czerwone Maki 98, 30-392 Kraków, Poland
| | - Maria Winiewska-Szajewska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland; (M.M.); (T.P.); (D.G.); (J.P.); (D.M.); (M.W.-S.); (E.S.); (J.D.); (A.M.M.); (K.P.)
| | - Ewa Szołajska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland; (M.M.); (T.P.); (D.G.); (J.P.); (D.M.); (M.W.-S.); (E.S.); (J.D.); (A.M.M.); (K.P.)
| | - Janusz Dębski
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland; (M.M.); (T.P.); (D.G.); (J.P.); (D.M.); (M.W.-S.); (E.S.); (J.D.); (A.M.M.); (K.P.)
| | - Agnieszka M. Maciejewska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland; (M.M.); (T.P.); (D.G.); (J.P.); (D.M.); (M.W.-S.); (E.S.); (J.D.); (A.M.M.); (K.P.)
| | - Kaja Przygońska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland; (M.M.); (T.P.); (D.G.); (J.P.); (D.M.); (M.W.-S.); (E.S.); (J.D.); (A.M.M.); (K.P.)
| | - Karolina Ferenc
- Veterinary Research Centre, Department of Large Animal Diseases and Clinic, Institute of Veterinary Medicine, Warsaw University of Life Sciences, Nowoursynowska 100, 02-797 Warsaw, Poland;
| | - Elżbieta Grzesiuk
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland; (M.M.); (T.P.); (D.G.); (J.P.); (D.M.); (M.W.-S.); (E.S.); (J.D.); (A.M.M.); (K.P.)
- Correspondence: (E.G.); (J.P.)
| | - Jarosław Poznański
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland; (M.M.); (T.P.); (D.G.); (J.P.); (D.M.); (M.W.-S.); (E.S.); (J.D.); (A.M.M.); (K.P.)
- Correspondence: (E.G.); (J.P.)
| |
Collapse
|
27
|
Zhang Z, Gao Q, Wang S. Kinase GSK3β functions as a suppressor in colorectal carcinoma through the FTO-mediated MZF1/c-Myc axis. J Cell Mol Med 2021; 25:2655-2665. [PMID: 33533172 PMCID: PMC7933972 DOI: 10.1111/jcmm.16291] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 12/31/2020] [Accepted: 01/06/2021] [Indexed: 12/24/2022] Open
Abstract
Colorectal carcinoma (CRC) poses heavy burden to human health and has an increasing incidence. Currently, the existing biomarkers for CRC bring about restrained clinical benefits. GSK3β is reported to be a novel therapeutic target for this disease but with undefined molecular mechanisms. Thus, we aimed to investigate the regulatory effect of GSK3β on CRC progression via FTO/MZF1/c-Myc axis. Firstly, the expression patterns of GSK3β, FTO, MZF1 and c-Myc were determined after sample collection. Lowly expressed GSK3β but highly expressed FTO, MZF1 and c-Myc were found in CRC. After transfection of different overexpressed and interference plasmids, the underlying mechanisms concerning GSK3β in CRC cell functions were analysed. Additionally, the effect of GSK3β on FTO protein stability was assessed followed by detection of MZF1 m6A modification and MZF1-FTO interaction. Mechanistically, GSK3β mediated ubiquitination of demethylase FTO to reduce FTO expression. Besides, GSK3β inhibited MZF1 expression by mediating FTO-regulated m6A modification of MZF1 and then decreased the proto-oncogene c-Myc expression, thus hampering CRC cell proliferation. We also carried out in vivo experiment to verify the regulatory effect of GSK3β on CRC via FTO-mediated MZF1/c-Myc axis. It was found that GSK3β inhibited CRC growth in vivo which was reversed by overexpressing c-Myc. Taken together, our findings indicate that GSK3β suppresses the progression of CRC through FTO-regulated MZF1/c-Myc axis, shedding light onto a new possible pathway by which GSK3β regulates CRC.
Collapse
Affiliation(s)
- Zeyan Zhang
- Anorectal Department, Linyi People' s Hospital, Linyi, China
| | - Qianfu Gao
- Anorectal Department, Linyi People' s Hospital, Linyi, China
| | - Shanchao Wang
- Anorectal Department, Linyi People' s Hospital, Linyi, China
| |
Collapse
|
28
|
Liu H, Zhan YL, Luo GJ, Zou LL, Li Y, Lu HY. Liraglutide and Insulin Have Contrary Effects on Adipogenesis of Human Adipose-Derived Stem Cells via Wnt Pathway. Diabetes Metab Syndr Obes 2020; 13:3075-3087. [PMID: 32943896 PMCID: PMC7478378 DOI: 10.2147/dmso.s253097] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Accepted: 06/30/2020] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Glucagon-like peptide-1 (GLP-1) has been reported to have beneficial impacts on improving human's metabolism and ameliorating insulin resistance. While insulin is another important and conventional drug in diabetes treatment, but it has an adverse effect on weight gain. PURPOSE To make sure whether GLP-1 and insulin play different roles in human adipose-derived stem cells (hADSCs). METHODS We examined the in vitro roles and molecular mechanisms of liraglutide, a GLP-1 analogue, and human insulin on hADSCs isolated from subcutaneous adipose tissue. Different concentrations (0, 0.1, 1, 10, 100nM) of liraglutide and insulin were added to proliferation and differentiation medium of hADSCs, respectively. RESULTS Liraglutide inhibits while insulin promotes the proliferation and differentiation at the concentration of 100nM. Moreover, the levels of GSK-3 increase during differentiation and liraglutide could down-regulate it when compared with insulin. We also find that the activation of phosphorylated GSK-3α and GSK-3β is involved in the differentiation roles. And classical and non-classical Wnt pathways all play roles in the differentiation, which are characterized with the up/down-regulation of the expression of adipogenesis genes such as PPAR-γ and CEBP-α. CONCLUSION Liraglutide and insulin have contrary effects on the proliferation and adipogenesis via Wnt pathway in primary cultured ADSCs. Those effects could partly explain the different roles of GLP-1 and insulin on weight gain and insulin resistance.
Collapse
Affiliation(s)
- Hong Liu
- Department of Nutrition, The Third Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China
- Department of Endocrinology & Metabolism, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, Guangdong, People’s Republic of China
| | - Yan-li Zhan
- Department of Endocrinology & Metabolism, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, Guangdong, People’s Republic of China
- Department of Rheumatology, Jiaozuo People’s Hospital, Jiaozuo, Henan, People’s Republic of China
| | - Guo-jing Luo
- Department of Endocrinology & Metabolism, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, Guangdong, People’s Republic of China
- Department of Endocrinology & Metabolism, Zhuhai Hospital Affiliated with Jinan University, Zhuhai People’s Hospital, Zhuhai, Guangdong, People’s Republic of China
| | - Ling-ling Zou
- Department of Endocrinology & Metabolism, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, Guangdong, People’s Republic of China
- Department of Endocrinology, The Second People’s Hospital of Hefei, Anhui, People’s Republic of China
| | - Yun Li
- Department of Endocrinology & Metabolism, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, Guangdong, People’s Republic of China
| | - Hong-yun Lu
- Department of Endocrinology & Metabolism, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, Guangdong, People’s Republic of China
- Department of Endocrinology & Metabolism, Zhuhai Hospital Affiliated with Jinan University, Zhuhai People’s Hospital, Zhuhai, Guangdong, People’s Republic of China
| |
Collapse
|
29
|
Karthiya R, Khandelia P. m6A RNA Methylation: Ramifications for Gene Expression and Human Health. Mol Biotechnol 2020; 62:467-484. [PMID: 32840728 DOI: 10.1007/s12033-020-00269-5] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/14/2020] [Indexed: 12/12/2022]
Abstract
Cellular transcriptomes are frequently adorned by a variety of chemical modification marks, which in turn have a profound influence on its functioning. Of these modifications, the one which has invited a lot of attention in the recent years is m6A RNA methylation, leading to the development of RNA epigenetics or epitranscriptomics as a frontier research area. m6A RNA methylation is one of the most abundant reversible internal modification seen in cellular RNAs. Studies in the last few years have not only shed light on the molecular machinery involved in m6A RNA methylation but also on the impact of this modification in regulating gene expression and hence biological processes. In this review, we will emphasize the biological impact of this modification in normal organismal development and diseases.
Collapse
Affiliation(s)
- R Karthiya
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani - Hyderabad Campus, Jawahar Nagar, Kapra Mandal, Medchal District, Hyderabad, Telangana, 500078, India
| | - Piyush Khandelia
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani - Hyderabad Campus, Jawahar Nagar, Kapra Mandal, Medchal District, Hyderabad, Telangana, 500078, India.
| |
Collapse
|
30
|
Marcinkowski M, Pilžys T, Garbicz D, Steciuk J, Zugaj D, Mielecki D, Sarnowski TJ, Grzesiuk E. Human and Arabidopsis alpha-ketoglutarate-dependent dioxygenase homolog proteins-New players in important regulatory processes. IUBMB Life 2020; 72:1126-1144. [PMID: 32207231 DOI: 10.1002/iub.2276] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 02/20/2020] [Accepted: 03/08/2020] [Indexed: 12/31/2022]
Abstract
The family of AlkB homolog (ALKBH) proteins, the homologs of Escherichia coli AlkB 2-oxoglutarate (2OG), and Fe(II)-dependent dioxygenase are involved in a number of important regulatory processes in eukaryotic cells including repair of alkylation lesions in DNA, RNA, and nucleoprotein complexes. There are nine human and thirteen Arabidopsis thaliana ALKBH proteins described, which exhibit diversified functions. Among them, human ALKBH5 and FaT mass and Obesity-associated (FTO) protein and Arabidopsis ALKBH9B and ALKBH10B have been recognized as N6 methyladenine (N6 meA) demethylases, the most abundant posttranscriptional modification in mRNA. The FTO protein is reported to be associated with obesity and type 2 diabetes, and involved in multiple other processes, while ALKBH5 is induced by hypoxia. Arabidopsis ALKBH9B is an N6 meA demethylase influencing plant susceptibility to viral infections via m6 A/A ratio control in viral RNA. ALKBH10B has been discovered to be a functional Arabidopsis homolog of FTO; thus, it is also an RNA N6 meA demethylase involved in plant flowering and several other regulatory processes including control of metabolism. High-throughput mass spectrometry showed multiple sites of human ALKBH phosphorylation. In the case of FTO, the type of modified residue decides about the further processing of the protein. This modification may result in subsequent protein ubiquitination and proteolysis, or in the blocking of these processes. However, the impact of phosphorylation on the other ALKBH function and their downstream pathways remains nearly unexplored in both human and Arabidopsis. Therefore, the investigation of evolutionarily conserved functions of ALKBH proteins and their regulatory impact on important cellular processes is clearly called for.
Collapse
Affiliation(s)
- Michał Marcinkowski
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Tomaš Pilžys
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Damian Garbicz
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Jaroslaw Steciuk
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Dorota Zugaj
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Damian Mielecki
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Tomasz J Sarnowski
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Elżbieta Grzesiuk
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
31
|
Chokkalla AK, Mehta SL, Kim T, Chelluboina B, Kim JY, Vemuganti R. Transient Focal Ischemia Significantly Alters the m 6A Epitranscriptomic Tagging of RNAs in the Brain. Stroke 2019; 50:2912-2921. [PMID: 31436138 PMCID: PMC6759411 DOI: 10.1161/strokeaha.119.026433] [Citation(s) in RCA: 118] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Background and Purpose- Adenosine in many types of RNAs can be converted to m6A (N6-methyladenosine) which is a highly dynamic epitranscriptomic modification that regulates RNA metabolism and function. Of all organs, the brain shows the highest abundance of m6A methylation of RNAs. As recent studies showed that m6A modification promotes cell survival after adverse conditions, we currently evaluated the effect of stroke on cerebral m6A methylation in mRNAs and lncRNAs. Methods- Adult C57BL/6J mice were subjected to transient middle cerebral artery occlusion. In the peri-infarct cortex, m6A levels were measured by dot blot analysis, and transcriptome-wide m6A changes were profiled using immunoprecipitated methylated RNAs with microarrays (44 122 mRNAs and 12 496 lncRNAs). Gene ontology analysis was conducted to understand the functional implications of m6A changes after stroke. Expression of m6A writers, readers, and erasers was also estimated in the ischemic brain. Results- Global m6A levels increased significantly at 12 hours and 24 hours of reperfusion compared with sham. While 139 transcripts (122 mRNAs and 17 lncRNAs) were hypermethylated, 8 transcripts (5 mRNAs and 3 lncRNAs) were hypomethylated (>5-fold compared with sham) in the ischemic brain at 12 hours reperfusion. Inflammation, apoptosis, and transcriptional regulation are the major biological processes modulated by the poststroke differentially m6A methylated mRNAs. The m6A writers were unaltered, but the m6A eraser (fat mass and obesity-associated protein) decreased significantly after stroke compared with sham. Conclusions- This is the first study to show that stroke alters the cerebral m6A epitranscriptome, which might have functional implications in poststroke pathophysiology. Visual Overview- An online visual overview is available for this article.
Collapse
Affiliation(s)
- Anil K Chokkalla
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, USA
- Cellular and Molecular Pathology Graduate Program, University of Wisconsin, Madison, WI, USA
| | - Suresh L. Mehta
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, USA
| | - TaeHee Kim
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, USA
| | - Bharath Chelluboina
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, USA
| | - Joo Yong Kim
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, USA
| | - Raghu Vemuganti
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, USA
- Cellular and Molecular Pathology Graduate Program, University of Wisconsin, Madison, WI, USA
- William S. Middleton Memorial Veteran Administration Hospital, Madison, WI, USA
| |
Collapse
|
32
|
Deciphering the Epitranscriptomic Signatures in Cell Fate Determination and Development. Stem Cell Rev Rep 2019; 15:474-496. [DOI: 10.1007/s12015-019-09894-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
33
|
Liu X, Klein PS. Glycogen synthase kinase-3 and alternative splicing. WILEY INTERDISCIPLINARY REVIEWS-RNA 2018; 9:e1501. [PMID: 30118183 DOI: 10.1002/wrna.1501] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 07/03/2018] [Accepted: 07/09/2018] [Indexed: 12/16/2022]
Abstract
Glycogen synthase kinase-3 (GSK-3) is a highly conserved negative regulator of receptor tyrosine kinase, cytokine, and Wnt signaling pathways. Stimulation of these pathways inhibits GSK-3 to modulate diverse downstream effectors that include transcription factors, nutrient sensors, glycogen synthesis, mitochondrial function, circadian rhythm, and cell fate. GSK-3 also regulates alternative splicing in response to T-cell receptor activation, and recent phosphoproteomic studies have revealed that multiple splicing factors and regulators of RNA biosynthesis are phosphorylated in a GSK-3-dependent manner. Furthermore, inhibition of GSK-3 alters the splicing of hundreds of mRNAs, indicating a broad role for GSK-3 in the regulation of RNA processing. GSK-3-regulated phosphoproteins include SF3B1, SRSF2, PSF, RBM8A, nucleophosmin 1 (NPM1), and PHF6, many of which are mutated in leukemia and myelodysplasia. As GSK-3 is inhibited by pathways that are pathologically activated in leukemia and loss of Gsk3 in hematopoietic cells causes a severe myelodysplastic neoplasm in mice, these findings strongly implicate GSK-3 as a critical regulator of mRNA processing in normal and malignant hematopoiesis. This article is categorized under: RNA Processing > Splicing Mechanisms RNA Processing > Splicing Regulation/Alternative Splicing RNA in Disease and Development > RNA in Disease RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications.
Collapse
Affiliation(s)
- Xiaolei Liu
- Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Peter S Klein
- Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|