1
|
Gao Y, Tang Y. Emerging roles of prohibitins in cancer: an update. Cancer Gene Ther 2025; 32:357-370. [PMID: 40057573 DOI: 10.1038/s41417-025-00883-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 02/17/2025] [Accepted: 02/26/2025] [Indexed: 04/09/2025]
Abstract
The prohibitin (PHB) family, including PHB1 and its homolog PHB2, is ubiquitously located in different cellular compartments and plays roles in fundamental cellular processes such as proliferation, differentiation, and apoptosis. Accumulating evidence has indicated that this family contributes to the development of numerous diseases in particular cancers. Aberrant expressions of PHBs can been observed in diverse types of human cancer. Depending on their cell compartment-specific attributes and interacting proteins, PHBs are tightly linked to almost all aspects of cancer biology and have distinct bidirectional functions of tumor-suppression or tumor-promotion. However, the roles of PHBs in cancer have yet to be fully characterized and understood. This review provides an updated overview of the pleiotropic effects of PHBs and emphasizes their characteristic roles in each cancer respectively, with the great expectation to identify potential targets for therapeutic approaches and promising molecular biomarkers for cancer diagnosis and prognostic monitor.
Collapse
Affiliation(s)
- Yunliang Gao
- Department of Urology, the Second Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Mental Disorders, Changsha, China
- Hunan Clinical Research Center of Minimally Invasive Urology, Changsha, China
| | - Yuanyuan Tang
- Department of Oncology, the Second Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
2
|
Zhang B, Li W, Cao J, Zhou Y, Yuan X. Prohibitin 2: A key regulator of cell function. Life Sci 2024; 338:122371. [PMID: 38142736 DOI: 10.1016/j.lfs.2023.122371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/16/2023] [Accepted: 12/18/2023] [Indexed: 12/26/2023]
Abstract
The PHB2 gene is located on chromosome 12p13 and encodes prohibitin 2, a highly conserved protein of 37 kDa. PHB2 is a dimer with antiparallel coils, possessing a unique negatively charged region crucial for its mitochondrial molecular chaperone functions. Thus, PHB2 plays a significant role in cell life activities such as mitosis, mitochondrial autophagy, signal transduction, and cell death. This review discusses how PHB2 inhibits transcription factors or nuclear receptors to maintain normal cell functions; how PHB2 in the cytoplasm or membrane ensures normal cell mitosis and regulates cell differentiation; how PHB2 affects mitochondrial structure, function, and cell apoptosis through mitochondrial intimal integrity and mitochondrial autophagy; how PHB2 affects mitochondrial stress and inhibits cell apoptosis by regulating cytochrome c migration and other pathways; how PHB2 affects cell growth, proliferation, and metastasis through a mitochondrial independent mechanism; and how PHB2 could be applied in disease treatment. We provide a theoretical basis and an innovative perspective for a comprehensive understanding of the role and mechanism of PHB2 in cell function regulation.
Collapse
Affiliation(s)
- Bingjie Zhang
- Gastroenterology and Urology Department II, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, China; Cancer Research Institute, Basic School of Medicine, Central South University, Changsha, Hunan 410011, China
| | - Wentao Li
- Cancer Research Institute, Basic School of Medicine, Central South University, Changsha, Hunan 410011, China
| | - Jiaying Cao
- Cancer Research Institute, Basic School of Medicine, Central South University, Changsha, Hunan 410011, China
| | - Yanhong Zhou
- Cancer Research Institute, Basic School of Medicine, Central South University, Changsha, Hunan 410011, China.
| | - Xia Yuan
- Gastroenterology and Urology Department II, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, China.
| |
Collapse
|
3
|
Xu L, Xiang W, Yang J, Gao J, Wang X, Meng L, Ye K, Zhao XH, Zhang XD, Jin L, Ye Y. PHB2 promotes SHIP2 ubiquitination via the E3 ligase NEDD4 to regulate AKT signaling in gastric cancer. J Exp Clin Cancer Res 2024; 43:17. [PMID: 38200519 PMCID: PMC10782615 DOI: 10.1186/s13046-023-02937-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 12/18/2023] [Indexed: 01/12/2024] Open
Abstract
BACKGROUND Prohibitin 2 (PHB2) exhibits opposite functions of promoting or inhibiting tumour across various cancer types. In this study, we aim to investigate its functions and underlying mechanisms in the context of gastric cancer (GC). METHODS PHB2 protein expression levels in GC and normal tissues were examined using western blot and immunohistochemistry. PHB2 expression level associations with patient outcomes were examined through Kaplan-Meier plotter analysis utilizing GEO datasets (GSE14210 and GSE29272). The biological role of PHB2 and its subsequent regulatory mechanisms were elucidated in vitro and in vivo. GC cell viability and proliferation were assessed using MTT cell viability analysis, clonogenic assays, and BrdU incorporation assays, while the growth of GC xenografted tumours was measured via IHC staining of Ki67. The interaction among PHB2 and SHIP2, as well as between SHIP2 and NEDD4, was identified through co-immunoprecipitation, GST pull-down assays, and deletion-mapping experiments. SHIP2 ubiquitination and degradation were assessed using cycloheximide treatment, plasmid transfection and co-immunoprecipitation, followed by western blot analysis. RESULTS Our analysis revealed a substantial increase in PHB2 expression in GC tissues compared to adjacent normal tissues. Notably, higher PHB2 levels correlated with poorer patient outcomes, suggesting its clinical relevance. Functionally, silencing PHB2 in GC cells significantly reduced cell proliferation and retarded GC tumour growth, whereas overexpression of PHB2 further enhanced GC cell proliferation. Mechanistically, PHB2 physically interacted with Src homology 2-containing inositol 5-phosphatase 2 (SHIP2) in the cytoplasm of GC cells, thus leading to SHIP2 degradation via its novel E3 ligase NEDD4. It subsequently activated the PI3K/Akt signaling pathway and thus promoted GC cell proliferation. CONCLUSIONS Our findings highlight the importance of PHB2 upregulation in driving GC progression and its association with adverse patient outcomes. Understanding the functional impact of PHB2 on GC growth contributes valuable insights into the molecular underpinnings of GC and may pave the way for the development of targeted therapies to improve patient outcomes.
Collapse
Affiliation(s)
- Liang Xu
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, Anhui, China
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Newcastle, NSW, 2308, Australia
| | - Wanying Xiang
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Jiezhen Yang
- Department of Pathology, Zhongshan Hospital (Xiamen Branch), Fudan University, Xiamen, 361015, China
| | - Jing Gao
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Xinyue Wang
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Li Meng
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Kaihong Ye
- Translational Research Institute, Henan Provincial and Zhengzhou City Key Laboratory of Non-Coding RNA and Cancer Metabolism, Henan International Join Laboratory of Non-Coding RNA and Metabolism in Cancer, Henan Provincial People's Hospital, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450053, Henan, China
| | - Xiao Hong Zhao
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Newcastle, NSW, 2308, Australia
| | - Xu Dong Zhang
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Newcastle, NSW, 2308, Australia.
- Translational Research Institute, Henan Provincial and Zhengzhou City Key Laboratory of Non-Coding RNA and Cancer Metabolism, Henan International Join Laboratory of Non-Coding RNA and Metabolism in Cancer, Henan Provincial People's Hospital, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450053, Henan, China.
| | - Lei Jin
- Translational Research Institute, Henan Provincial and Zhengzhou City Key Laboratory of Non-Coding RNA and Cancer Metabolism, Henan International Join Laboratory of Non-Coding RNA and Metabolism in Cancer, Henan Provincial People's Hospital, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450053, Henan, China.
- School of Medicine and Public Health, The University of Newcastle, Newcastle, NSW, 2308, Australia.
| | - Yan Ye
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, Anhui, China.
| |
Collapse
|
4
|
Zhai S, Lin J, Ji Y, Zhang R, Zhang Z, Cao Y, Liu Y, Tang X, Liu J, Liu P, Lin J, Li F, Li H, Shi Y, Fu D, Deng X, Shen B. A microprotein N1DARP encoded by LINC00261 promotes Notch1 intracellular domain (N1ICD) degradation via disrupting USP10-N1ICD interaction to inhibit chemoresistance in Notch1-hyperactivated pancreatic cancer. Cell Discov 2023; 9:95. [PMID: 37714834 PMCID: PMC10504324 DOI: 10.1038/s41421-023-00592-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 07/28/2023] [Indexed: 09/17/2023] Open
Abstract
The extensively activated Notch signaling pathway in pancreatic cancer cells is important in carcinogenesis, chemoresistance, and recurrence. Targeting this pathway is a promising therapeutic strategy for pancreatic cancer; however, few successful approaches have been reported, and currently used molecular inhibitors of this pathway exhibit limited clinical benefits. In this study, we identified a previously uncharacterized microprotein, Notch1 degradation-associated regulatory polypeptide (N1DARP), encoded by LINC00261. N1DARP knockout accelerated tumor progression and enhanced stem cell properties in pancreatic cancer organoids and LSL-Kras, LSL-Trp53, and Pdx1-Cre (KPC) mice. Mechanistically, N1DARP suppressed canonical and non-canonical Notch1 pathways by competitively disrupting the interaction between N1ICD and ubiquitin-specific peptidase 10 (USP10), thereby promoting K11- and K48-linked polyubiquitination of N1ICD. To evaluate the therapeutic potential of N1DARP, we designed a cell-penetrating stapled peptide, SAH-mAH2-5, with a helical structure similar to that of N1DARP that confers remarkable physicochemical stability. SAH-mAH2-5 interacted with and promoted the proteasome-mediated degradation of N1ICD. SAH-mAH2-5 injection provided substantial therapeutic benefits with limited off-target and systemic adverse effects in Notch1-activated pancreatic cancer models. Taken together, these findings confirm that N1DARP acts as a tumor suppressor and chemosensitizer by regulating USP10-Notch1 oncogenic signaling, and suggest a promising therapeutic strategy targeting the N1DARP-N1ICD interaction in Notch1-activated pancreatic cancer.
Collapse
Affiliation(s)
- Shuyu Zhai
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Research Institute of Pancreatic Diseases, Shanghai Jiaotong University School of Medicine, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Institute of Translational Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Jiewei Lin
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yuchen Ji
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Research Institute of Pancreatic Diseases, Shanghai Jiaotong University School of Medicine, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Institute of Translational Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Ronghao Zhang
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Research Institute of Pancreatic Diseases, Shanghai Jiaotong University School of Medicine, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Institute of Translational Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Zehui Zhang
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Research Institute of Pancreatic Diseases, Shanghai Jiaotong University School of Medicine, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Institute of Translational Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Yizhi Cao
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Research Institute of Pancreatic Diseases, Shanghai Jiaotong University School of Medicine, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Institute of Translational Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Yang Liu
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Research Institute of Pancreatic Diseases, Shanghai Jiaotong University School of Medicine, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Institute of Translational Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Xiaomei Tang
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Research Institute of Pancreatic Diseases, Shanghai Jiaotong University School of Medicine, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Institute of Translational Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Jia Liu
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Research Institute of Pancreatic Diseases, Shanghai Jiaotong University School of Medicine, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Institute of Translational Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Pengyi Liu
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Research Institute of Pancreatic Diseases, Shanghai Jiaotong University School of Medicine, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Institute of Translational Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Jiayu Lin
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Research Institute of Pancreatic Diseases, Shanghai Jiaotong University School of Medicine, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Institute of Translational Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Fanlu Li
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Research Institute of Pancreatic Diseases, Shanghai Jiaotong University School of Medicine, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Institute of Translational Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Hongzhe Li
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Research Institute of Pancreatic Diseases, Shanghai Jiaotong University School of Medicine, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Institute of Translational Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Yusheng Shi
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.
- Research Institute of Pancreatic Diseases, Shanghai Jiaotong University School of Medicine, Shanghai, China.
- State Key Laboratory of Oncogenes and Related Genes, Institute of Translational Medicine, Shanghai Jiaotong University, Shanghai, China.
| | - Da Fu
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.
- Research Institute of Pancreatic Diseases, Shanghai Jiaotong University School of Medicine, Shanghai, China.
- State Key Laboratory of Oncogenes and Related Genes, Institute of Translational Medicine, Shanghai Jiaotong University, Shanghai, China.
| | - Xiaxing Deng
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.
- Research Institute of Pancreatic Diseases, Shanghai Jiaotong University School of Medicine, Shanghai, China.
- State Key Laboratory of Oncogenes and Related Genes, Institute of Translational Medicine, Shanghai Jiaotong University, Shanghai, China.
| | - Baiyong Shen
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.
- Research Institute of Pancreatic Diseases, Shanghai Jiaotong University School of Medicine, Shanghai, China.
- State Key Laboratory of Oncogenes and Related Genes, Institute of Translational Medicine, Shanghai Jiaotong University, Shanghai, China.
| |
Collapse
|
5
|
Najem A, Krayem M, Sabbah S, Pesetti M, Journe F, Awada A, Désaubry L, Ghanem GE. Targeting Prohibitins to Inhibit Melanoma Growth and Overcome Resistance to Targeted Therapies. Cells 2023; 12:1855. [PMID: 37508519 PMCID: PMC10378173 DOI: 10.3390/cells12141855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/19/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023] Open
Abstract
Despite important advances in the treatment of metastatic melanoma with the development of MAPK-targeted agents and immune checkpoint inhibitors, the majority of patients either do not respond to therapies or develop acquired resistance. Furthermore, there is no effective targeted therapy currently available for BRAF wild-type melanomas (approximately 50% of cutaneous melanoma). Thus, there is a compelling need for new efficient targeted therapies. Prohibitins (PHBs) are overexpressed in several types of cancers and implicated in the regulation of signaling networks that promote cell invasion and resistance to cell apoptosis. Herein, we show that PHBs are highly expressed in melanoma and are associated with not only poor survival but also with resistance to BRAFi/MEKi. We designed and identified novel specific PHB inhibitors that can inhibit melanoma cell growth in 3D spheroid models and a large panel of representative cell lines with different molecular subtypes, including those with intrinsic and acquired resistance to MAPKi, by significantly moderating both MAPK (CRAF-ERK axis) and PI3K/AKT pathways, and inducing apoptosis through the mitochondrial pathway and up-regulation of p53. In addition, autophagy inhibition enhances the antitumor efficacy of these PHB ligands. More important, these ligands can act in synergy with MAPKi to more efficiently inhibit cell growth and overcome drug resistance in both BRAF wild-type and mutant melanoma. In conclusion, targeting PHBs represents a very promising therapeutic strategy in melanoma, regardless of mutational status.
Collapse
Affiliation(s)
- Ahmad Najem
- Laboratory of Clinical and Experimental Oncology (LOCE), Institut Jules Bordet, Université Libre de Bruxelles, 1000 Brussels, Belgium
| | - Mohammad Krayem
- Laboratory of Clinical and Experimental Oncology (LOCE), Institut Jules Bordet, Université Libre de Bruxelles, 1000 Brussels, Belgium
| | - Serena Sabbah
- Laboratory of Clinical and Experimental Oncology (LOCE), Institut Jules Bordet, Université Libre de Bruxelles, 1000 Brussels, Belgium
| | - Matilde Pesetti
- Laboratory of Clinical and Experimental Oncology (LOCE), Institut Jules Bordet, Université Libre de Bruxelles, 1000 Brussels, Belgium
| | - Fabrice Journe
- Laboratory of Clinical and Experimental Oncology (LOCE), Institut Jules Bordet, Université Libre de Bruxelles, 1000 Brussels, Belgium
| | - Ahmad Awada
- Laboratory of Clinical and Experimental Oncology (LOCE), Institut Jules Bordet, Université Libre de Bruxelles, 1000 Brussels, Belgium
- Department of Medical Oncology, Institut Jules Bordet, Université Libre de Bruxelles, 1070 Brussels, Belgium
| | - Laurent Désaubry
- Center of Research in Biomedicine of Strasbourg, Regenerative Nanomedicine (UMR 1260), INSERM, University of Strasbourg, 67000 Strasbourg, France
| | - Ghanem E Ghanem
- Laboratory of Clinical and Experimental Oncology (LOCE), Institut Jules Bordet, Université Libre de Bruxelles, 1000 Brussels, Belgium
| |
Collapse
|
6
|
Qi A, Lamont L, Liu E, Murray SD, Meng X, Yang S. Essential Protein PHB2 and Its Regulatory Mechanisms in Cancer. Cells 2023; 12:cells12081211. [PMID: 37190120 DOI: 10.3390/cells12081211] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/19/2023] [Accepted: 04/20/2023] [Indexed: 05/17/2023] Open
Abstract
Prohibitins (PHBs) are a highly conserved class of proteins and have an essential role in transcription, epigenetic regulation, nuclear signaling, mitochondrial structural integrity, cell division, and cellular membrane metabolism. Prohibitins form a heterodimeric complex, consisting of two proteins, prohibitin 1 (PHB1) and prohibitin 2 (PHB2). They have been discovered to have crucial roles in regulating cancer and other metabolic diseases, functioning both together and independently. As there have been many previously published reviews on PHB1, this review focuses on the lesser studied prohibitin, PHB2. The role of PHB2 in cancer is controversial. In most human cancers, overexpressed PHB2 enhances tumor progression, while in some cancers, it suppresses tumor progression. In this review, we focus on (1) the history, family, and structure of prohibitins, (2) the essential location-dependent functions of PHB2, (3) dysfunction in cancer, and (4) the promising modulators to target PHB2. At the end, we discuss future directions and the clinical significance of this common essential gene in cancer.
Collapse
Affiliation(s)
- Amanda Qi
- Department of Pathology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Lillie Lamont
- Department of Pathology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Evelyn Liu
- Department of Pathology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Sarina D Murray
- Department of Pathology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Xiangbing Meng
- Department of Pathology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Shujie Yang
- Department of Pathology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
- Holden Comprehensive Cancer Center, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
7
|
Zhang X, Zhao J, Li Q, Qin D, Li W, Wang X, Bi M, Li Q, Li T. Lamprey prohibitin 2 inhibits non-small cell lung carcinoma cell proliferation by down-regulating the expression and phosphorylation levels of cell cycle-associated proteins. FISH & SHELLFISH IMMUNOLOGY 2023; 134:108560. [PMID: 36681363 DOI: 10.1016/j.fsi.2023.108560] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 12/31/2022] [Accepted: 01/18/2023] [Indexed: 06/17/2023]
Abstract
Prohibitin 2 (PHB2) is an evolutionarily conserved and functionally diverse protein that plays an important role in multiple cellular functions, including cell proliferation, cell migration, and apoptosis, and is also known to participate in the process of tumorigenesis and development. In this study, the lamprey PHB2 (Lm-PHB2) gene was over-expressed in KRAS (kirsten rat sarcoma viral oncogene homolog)-mutated non-small cell lung carcinoma (NSCLC) cells to investigate its effect on cell proliferation. The effects of Lm-PHB2 protein on the proliferation of NSCLC cells were determined by treating cells with the purified recombinant Lm-PHB2 protein (rLm-PHB2) followed by cell counting kit (CCK) assays and flow cytometry. Analysis showed that rLm-PHB2 blocked cells in the G2 phase and inhibited the cell proliferation of A549, Calu-1, and NCI-H226 to various degrees. The effect on Calu-1 cells was the most obvious and was concentration- and time-dependent. Similarly, cells transfected with the pEGFP-N1-Lm-PHB2 plasmid also resulted in the suppression of proliferation in A549 cells and Calu-1 cells. Quantitative real-time polymerase chain reaction (qRT-PCR) showed that Lm-PHB2 inhibited cell proliferation by repressing the transcription of PLK1 (polo-like kinase 1), Wee1 (wee1 kinase), CCNB1 (cyclin B1), and CDC25C (cell division control protein 25C). According to western blot analysis, Lm-PHB2 not only down-regulated the expression of PLK1, Wee1, CCNB1, and CDC25C but also reduced the phosphorylation levels of CCNB1 and CDC25C, thus blocking Calu-1 cells in G2/M phase. Our findings demonstrate a function of lamprey PHB2 that may inhibit the proliferation of some NSCLC cells by down-regulating the expression and phosphorylation of cell cycle-associated proteins.
Collapse
Affiliation(s)
- Xue Zhang
- College of Life Sciences, Lamprey Research Center, Liaoning Provincial Key Laboratory of Biotechnology and Drug Discovery, Liaoning Normal University, Dalian, 116081, China
| | - Jianzhu Zhao
- College of Life Sciences, Lamprey Research Center, Liaoning Provincial Key Laboratory of Biotechnology and Drug Discovery, Liaoning Normal University, Dalian, 116081, China
| | - Qing Li
- School of Science and Engineering, University of Dundee, Dundee, DD1 5EN, UK
| | - Di Qin
- College of Life Sciences, Lamprey Research Center, Liaoning Provincial Key Laboratory of Biotechnology and Drug Discovery, Liaoning Normal University, Dalian, 116081, China
| | - Wenwei Li
- College of Life Sciences, Lamprey Research Center, Liaoning Provincial Key Laboratory of Biotechnology and Drug Discovery, Liaoning Normal University, Dalian, 116081, China
| | - Xinyu Wang
- College of Life Sciences, Lamprey Research Center, Liaoning Provincial Key Laboratory of Biotechnology and Drug Discovery, Liaoning Normal University, Dalian, 116081, China
| | - Mengfei Bi
- College of Life Sciences, Lamprey Research Center, Liaoning Provincial Key Laboratory of Biotechnology and Drug Discovery, Liaoning Normal University, Dalian, 116081, China
| | - Qingwei Li
- College of Life Sciences, Lamprey Research Center, Liaoning Provincial Key Laboratory of Biotechnology and Drug Discovery, Liaoning Normal University, Dalian, 116081, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, 116023, China
| | - Tiesong Li
- College of Life Sciences, Lamprey Research Center, Liaoning Provincial Key Laboratory of Biotechnology and Drug Discovery, Liaoning Normal University, Dalian, 116081, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, 116023, China.
| |
Collapse
|
8
|
Wang X, Zheng Y, Chai Z, Li J, Zhu C, Peng Y, Qiu J, Xu J, Liu C. Dihydroartemisinin synergistically enhances the cytotoxic effects of oxaliplatin in colon cancer by targeting the PHB2-RCHY1 mediated signaling pathway. Mol Carcinog 2023; 62:293-302. [PMID: 36342357 DOI: 10.1002/mc.23486] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 10/24/2022] [Accepted: 10/26/2022] [Indexed: 11/09/2022]
Abstract
Dihydroartemisinin (DHA) has recently attracted increasing attention for its low toxicity and high antitumor activity. DHA has been reported to have synergistic anticancer effects with a variety of drugs in the clinic; however, the molecular mechanism by which DHA inhibits tumorigenesis and improves oxaliplatin cytotoxicity in colon cancer cells is still not well understood. In this study, we found that DHA can inhibit cell proliferation and colony formation in a dose-dependent manner. Prohibitin 2 (PHB2) is a potential target by which DHA exerts its antitumor and cytotoxic effects. The function and molecular mechanism of PHB2 in colon cancer tumorigenesis were fully studied to determine the regulatory mechanism between DHA and PHB2. We found that PHB2, a mitochondrial inner membrane scaffold protein, has a higher expression level in colon cancer tissues than in adjacent nontumor tissues and is mainly localized in mitochondria. Overexpression of PHB2 can promote cell proliferation and colony formation in vitro and accelerate tumor growth in vivo. We also found that the expression level of PHB2 was inversely related to the cytotoxicity of DHA and oxaliplatin in colon cancer cells. The molecular mechanism of PHB2 in tumorigenesis and cancer therapy was further studied. The results showed that 20 μM DHA can downregulate PHB2 expression in a ubiquitylation-dependent manner and subsequently block PHB2-induced RCHY1 upregulation and p53 and p21 downregulation. In this process, RCHY1 is necessary for PHB2 to play a tumor-promoting role. Thus, PHB2 and RCHY1 are effective targets for colon cancer therapy, and DHA has synergistic anticancer effects with oxaliplatin via promoting PHB2 degradation in colon cancer cells.
Collapse
Affiliation(s)
- Xiwei Wang
- Department of Anesthesiology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, People's Republic of China
| | - Yingying Zheng
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, People's Republic of China.,Medical Research Center, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, People's Republic of China
| | - Zhengbin Chai
- Department of Clinical Laboratory Medicine, Shandong Public Health Clinical Center, Jinan, People's Republic of China
| | - Ji Li
- Department of AIDS Control and Prevention, Center for Disease Control and Prevention of Jining, Jining, Shandong, People's Republic of China
| | - Changhui Zhu
- School of Basic Medicine, Weifang Medical University, Weifang, Shandong, China
| | - Yanling Peng
- Shandong First Medical University & Shandong First Medical University, Jinan, People's Republic of China
| | - Juanjuan Qiu
- Shandong First Medical University & Shandong First Medical University, Jinan, People's Republic of China
| | - Jiajun Xu
- Shandong First Medical University & Shandong First Medical University, Jinan, People's Republic of China
| | - Chunyan Liu
- Medical Research Center, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, People's Republic of China
| |
Collapse
|
9
|
Non-classical ferroptosis inhibition by a small molecule targeting PHB2. Nat Commun 2022; 13:7473. [PMID: 36463308 PMCID: PMC9719519 DOI: 10.1038/s41467-022-35294-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 11/27/2022] [Indexed: 12/05/2022] Open
Abstract
Ferroptosis is a new type of programmed cell death characterized by iron-dependent lipid peroxidation. Ferroptosis inhibition is thought as a promising therapeutic strategy for a variety of diseases. Currently, a majority of known ferroptosis inhibitors belong to either antioxidants or iron-chelators. Here we report a new ferroptosis inhibitor, termed YL-939, which is neither an antioxidant nor an iron-chelator. Chemical proteomics revealed the biological target of YL-939 to be prohibitin 2 (PHB2). Mechanistically, YL-939 binding to PHB2 promotes the expression of the iron storage protein ferritin, hence reduces the iron content, thereby decreasing the susceptibility to ferroptosis. We further showed that YL-939 could substantially ameliorate liver damage in a ferroptosis-related acute liver injury model by targeting the PHB2/ferritin/iron axis. Overall, we identified a non-classical ferroptosis inhibitor and revealed a new regulation mechanism of ferroptosis. These findings may present an attractive intervention strategy for ferroptosis-related diseases.
Collapse
|
10
|
Llaurado Fernandez M, Hijmans EM, Gennissen AM, Wong NK, Li S, Wisman GBA, Hamilton A, Hoenisch J, Dawson A, Lee CH, Bittner M, Kim H, DiMattia GE, Lok CA, Lieftink C, Beijersbergen RL, de Jong S, Carey MS, Bernards R, Berns K. NOTCH Signaling Limits the Response of Low-Grade Serous Ovarian Cancers to MEK Inhibition. Mol Cancer Ther 2022; 21:1862-1874. [PMID: 36198031 PMCID: PMC9716250 DOI: 10.1158/1535-7163.mct-22-0004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 05/30/2022] [Accepted: 10/03/2022] [Indexed: 01/12/2023]
Abstract
Low-grade serous ovarian cancer (LGSOC) is a rare subtype of epithelial ovarian cancer with high fatality rates in advanced stages due to its chemoresistant properties. LGSOC is characterized by activation of MAPK signaling, and recent clinical trials indicate that the MEK inhibitor (MEKi) trametinib may be a good treatment option for a subset of patients. Understanding MEKi-resistance mechanisms and subsequent identification of rational drug combinations to suppress resistance may greatly improve LGSOC treatment strategies. Both gain-of-function and loss-of-function CRISPR-Cas9 genome-wide libraries were used to screen LGSOC cell lines to identify genes that modulate the response to MEKi. Overexpression of MAML2 and loss of MAP3K1 were identified, both leading to overexpression of the NOTCH target HES1, which has a causal role in this process as its knockdown reversed MEKi resistance. Interestingly, increased HES1 expression was also observed in selected spontaneous trametinib-resistant clones, next to activating MAP2K1 (MEK1) mutations. Subsequent trametinib synthetic lethality screens identified SHOC2 downregulation as being synthetic lethal with MEKis. Targeting SHOC2 with pan-RAF inhibitors (pan-RAFis) in combination with MEKi was effective in parental LGSOC cell lines, in MEKi-resistant derivatives, in primary ascites cultures from patients with LGSOC, and in LGSOC (cell line-derived and patient-derived) xenograft mouse models. We found that the combination of pan-RAFi with MEKi downregulated HES1 levels in trametinib-resistant cells, providing an explanation for the synergy that was observed. Combining MEKis with pan-RAFis may provide a promising treatment strategy for patients with LGSOC, which warrants further clinical validation.
Collapse
Affiliation(s)
- Marta Llaurado Fernandez
- Department of Obstetrics and Gynaecology, University of British Columbia Vancouver, British Columbia, Canada
| | - E. Marielle Hijmans
- Division of Molecular Carcinogenesis, Oncode Institute, Cancer Genomics Center Netherlands, the Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Annemiek M.C. Gennissen
- Division of Molecular Carcinogenesis, Oncode Institute, Cancer Genomics Center Netherlands, the Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Nelson K.Y. Wong
- Department of Obstetrics and Gynaecology, University of British Columbia Vancouver, British Columbia, Canada.,Department of Experimental Therapeutics, BC Cancer, Vancouver, British Columbia, Canada
| | - Shang Li
- Department of Medical Oncology, Cancer Research Center Groningen, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - G. Bea A. Wisman
- Department of Gynecologic Oncology, Cancer Research Center Groningen, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Aleksandra Hamilton
- Department of Obstetrics and Gynaecology, University of British Columbia Vancouver, British Columbia, Canada
| | - Joshua Hoenisch
- Department of Obstetrics and Gynaecology, University of British Columbia Vancouver, British Columbia, Canada
| | - Amy Dawson
- Department of Obstetrics and Gynaecology, University of British Columbia Vancouver, British Columbia, Canada
| | - Cheng-Han Lee
- Department of Obstetrics and Gynaecology, University of British Columbia Vancouver, British Columbia, Canada
| | - Madison Bittner
- Department of Obstetrics and Gynaecology, University of British Columbia Vancouver, British Columbia, Canada
| | - Hannah Kim
- Department of Obstetrics and Gynaecology, University of British Columbia Vancouver, British Columbia, Canada
| | - Gabriel E. DiMattia
- Mary and John Knight Translational Ovarian Cancer Research Unit, London Health Sciences Center
| | - Christianne A.R. Lok
- Center for Gynecologic Oncology Amsterdam, Antoni van Leeuwenhoek/The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Cor Lieftink
- Division of Molecular Carcinogenesis, Oncode Institute, Cancer Genomics Center Netherlands, the Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Roderick L. Beijersbergen
- Division of Molecular Carcinogenesis, Oncode Institute, Cancer Genomics Center Netherlands, the Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Steven de Jong
- Department of Medical Oncology, Cancer Research Center Groningen, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Mark S. Carey
- Department of Obstetrics and Gynaecology, University of British Columbia Vancouver, British Columbia, Canada.,Corresponding Authors: Katrien Berns, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands. Phone: 31-20-5121955. E-mail: ; and Mark S. Carey, Vancouver, British Columbia V6Z 2K8, Canada. Phone: 160-4875-4268; E-mail: ; René Bernards, Plesmanlaan 121,1066 CX Amsterdam, the Netherlands. Phone: 31-20-5121952; E-mail:
| | - René Bernards
- Division of Molecular Carcinogenesis, Oncode Institute, Cancer Genomics Center Netherlands, the Netherlands Cancer Institute, Amsterdam, the Netherlands.,Corresponding Authors: Katrien Berns, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands. Phone: 31-20-5121955. E-mail: ; and Mark S. Carey, Vancouver, British Columbia V6Z 2K8, Canada. Phone: 160-4875-4268; E-mail: ; René Bernards, Plesmanlaan 121,1066 CX Amsterdam, the Netherlands. Phone: 31-20-5121952; E-mail:
| | - Katrien Berns
- Division of Molecular Carcinogenesis, Oncode Institute, Cancer Genomics Center Netherlands, the Netherlands Cancer Institute, Amsterdam, the Netherlands.,Corresponding Authors: Katrien Berns, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands. Phone: 31-20-5121955. E-mail: ; and Mark S. Carey, Vancouver, British Columbia V6Z 2K8, Canada. Phone: 160-4875-4268; E-mail: ; René Bernards, Plesmanlaan 121,1066 CX Amsterdam, the Netherlands. Phone: 31-20-5121952; E-mail:
| |
Collapse
|
11
|
Current Opportunities for Targeting Dysregulated Neurodevelopmental Signaling Pathways in Glioblastoma. Cells 2022; 11:cells11162530. [PMID: 36010607 PMCID: PMC9406959 DOI: 10.3390/cells11162530] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 08/06/2022] [Accepted: 08/09/2022] [Indexed: 11/29/2022] Open
Abstract
Glioblastoma (GBM) is the most common and highly lethal type of brain tumor, with poor survival despite advances in understanding its complexity. After current standard therapeutic treatment, including tumor resection, radiotherapy and concomitant chemotherapy with temozolomide, the median overall survival of patients with this type of tumor is less than 15 months. Thus, there is an urgent need for new insights into GBM molecular characteristics and progress in targeted therapy in order to improve clinical outcomes. The literature data revealed that a number of different signaling pathways are dysregulated in GBM. In this review, we intended to summarize and discuss current literature data and therapeutic modalities focused on targeting dysregulated signaling pathways in GBM. A better understanding of opportunities for targeting signaling pathways that influences malignant behavior of GBM cells might open the way for the development of novel GBM-targeted therapies.
Collapse
|
12
|
Kovach AR, Oristian KM, Kirsch DG, Bentley RC, Cheng C, Chen X, Chen P, Chi JA, Linardic CM. Identification and targeting of a
HES1‐YAP1‐CDKN1C
functional interaction in fusion‐negative rhabdomyosarcoma. Mol Oncol 2022; 16:3587-3605. [PMID: 36037042 PMCID: PMC9580881 DOI: 10.1002/1878-0261.13304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 04/22/2022] [Accepted: 08/11/2022] [Indexed: 11/18/2022] Open
Abstract
Rhabdomyosarcoma (RMS), a cancer characterized by features of skeletal muscle, is the most common soft‐tissue sarcoma of childhood. With 5‐year survival rates among high‐risk groups at < 30%, new therapeutics are desperately needed. Previously, using a myoblast‐based model of fusion‐negative RMS (FN‐RMS), we found that expression of the Hippo pathway effector transcriptional coactivator YAP1 (YAP1) permitted senescence bypass and subsequent transformation to malignant cells, mimicking FN‐RMS. We also found that YAP1 engages in a positive feedback loop with Notch signaling to promote FN‐RMS tumorigenesis. However, we could not identify an immediate downstream impact of this Hippo‐Notch relationship. Here, we identify a HES1‐YAP1‐CDKN1C functional interaction, and show that knockdown of the Notch effector HES1 (Hes family BHLH transcription factor 1) impairs growth of multiple FN‐RMS cell lines, with knockdown resulting in decreased YAP1 and increased CDKN1C expression. In silico mining of published proteomic and transcriptomic profiles of human RMS patient‐derived xenografts revealed the same pattern of HES1‐YAP1‐CDKN1C expression. Treatment of FN‐RMS cells in vitro with the recently described HES1 small‐molecule inhibitor, JI130, limited FN‐RMS cell growth. Inhibition of HES1 in vivo via conditional expression of a HES1‐directed shRNA or JI130 dosing impaired FN‐RMS tumor xenograft growth. Lastly, targeted transcriptomic profiling of FN‐RMS xenografts in the context of HES1 suppression identified associations between HES1 and RAS‐MAPK signaling. In summary, these in vitro and in vivo preclinical studies support the further investigation of HES1 as a therapeutic target in FN‐RMS.
Collapse
Affiliation(s)
- Alexander R Kovach
- Department of Pediatrics Duke University School of Medicine Durham NC USA
| | - Kristianne M Oristian
- Department of Pharmacology & Cancer Biology Duke University School of Medicine Durham NC USA
- Department of Radiation Oncology Duke University School of Medicine Durham NC USA
| | - David G Kirsch
- Department of Pharmacology & Cancer Biology Duke University School of Medicine Durham NC USA
- Department of Radiation Oncology Duke University School of Medicine Durham NC USA
| | - Rex C Bentley
- Department of Pathology Duke University Durham NC USA
| | - Changde Cheng
- Department of Computational Biology, St. Jude Children's Research Hospital Memphis TN USA
| | - Xiang Chen
- Department of Computational Biology, St. Jude Children's Research Hospital Memphis TN USA
| | - Po‐Han Chen
- Department of Molecular Genetics & Microbiology Duke University School of Medicine Durham NC USA
| | - Jen‐Tsan Ashley Chi
- Department of Molecular Genetics & Microbiology Duke University School of Medicine Durham NC USA
| | - Corinne M Linardic
- Department of Pediatrics Duke University School of Medicine Durham NC USA
- Department of Pharmacology & Cancer Biology Duke University School of Medicine Durham NC USA
| |
Collapse
|
13
|
Kadian LK, Arora M, Prasad CP, Pramanik R, Chauhan SS. Signaling pathways and their potential therapeutic utility in esophageal squamous cell carcinoma. Clin Transl Oncol 2022; 24:1014-1032. [PMID: 34990001 DOI: 10.1007/s12094-021-02763-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 12/16/2021] [Indexed: 12/12/2022]
Abstract
Esophageal cancer is a complex gastrointestinal malignancy with an extremely poor outcome. Approximately 80% of cases of this malignancy in Asian countries including India are of squamous cell origin, termed Esophageal Squamous Cell Carcinoma (ESCC).The five-year survival rate in ESCC patients is less than 20%. Neo-adjuvant chemo-radiotherapy (NACRT) followed by surgical resection remains the major therapeutic strategy for patients with operable ESCC. However, resistance to NACRT and local recurrence after initial treatment are the leading cause of dismal outcomes in these patients. Therefore, an alternative strategy to promote response to the therapy and reduce the post-operative disease recurrence is highly needed. At the molecular level, wide variations have been observed in tumor characteristics among different populations, nevertheless, several common molecular features have been identified which orchestrate disease progression and clinical outcome in the malignancy. Therefore, determination of candidate molecular pathways for targeted therapy remains the mainstream idea of focus in ESCC research. In this review, we have discussed the key signaling pathways associated with ESCC, i.e., Notch, Wnt, and Nrf2 pathways, and their crosstalk during disease progression. We further discuss the recent developments of novel agents to target these pathways in the context of targeted cancer therapy. In-depth research of the signaling pathways, gene signatures, and a combinatorial approach may help in discovering targeted therapy for ESCC.
Collapse
Affiliation(s)
- L K Kadian
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - M Arora
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - C P Prasad
- Department of Medical Oncology (Lab), Dr. B. R. Ambedkar-IRCH, All India Institute of Medical Sciences, New Delhi, India
| | - R Pramanik
- Department of Medical Oncology, Dr. B. R. Ambedkar-IRCH, All India Institute of Medical Sciences, New Delhi, India
| | - S S Chauhan
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India.
| |
Collapse
|
14
|
Belser M, Walker DW. Role of Prohibitins in Aging and Therapeutic Potential Against Age-Related Diseases. Front Genet 2021; 12:714228. [PMID: 34868199 PMCID: PMC8636131 DOI: 10.3389/fgene.2021.714228] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 09/21/2021] [Indexed: 12/16/2022] Open
Abstract
A decline in mitochondrial function has long been associated with age-related health decline. Several lines of evidence suggest that interventions that stimulate mitochondrial autophagy (mitophagy) can slow aging and prolong healthy lifespan. Prohibitins (PHB1 and PHB2) assemble at the mitochondrial inner membrane and are critical for mitochondrial homeostasis. In addition, prohibitins (PHBs) have diverse roles in cell and organismal biology. Here, we will discuss the role of PHBs in mitophagy, oxidative phosphorylation, cellular senescence, and apoptosis. We will also discuss the role of PHBs in modulating lifespan. In addition, we will review the links between PHBs and diseases of aging. Finally, we will discuss the emerging concept that PHBs may represent an attractive therapeutic target to counteract aging and age-onset disease.
Collapse
Affiliation(s)
- Misa Belser
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, United States
| | - David W. Walker
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, United States
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
15
|
Zhdanovskaya N, Firrincieli M, Lazzari S, Pace E, Scribani Rossi P, Felli MP, Talora C, Screpanti I, Palermo R. Targeting Notch to Maximize Chemotherapeutic Benefits: Rationale, Advanced Strategies, and Future Perspectives. Cancers (Basel) 2021; 13:cancers13205106. [PMID: 34680255 PMCID: PMC8533696 DOI: 10.3390/cancers13205106] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/03/2021] [Accepted: 10/06/2021] [Indexed: 12/15/2022] Open
Abstract
Simple Summary The Notch signaling pathway regulates cell proliferation, apoptosis, stem cell self-renewal, and differentiation in a context-dependent fashion both during embryonic development and in adult tissue homeostasis. Consistent with its pleiotropic physiological role, unproper activation of the signaling promotes or counteracts tumor pathogenesis and therapy response in distinct tissues. In the last twenty years, a wide number of studies have highlighted the anti-cancer potential of Notch-modulating agents as single treatment and in combination with the existent therapies. However, most of these strategies have failed in the clinical exploration due to dose-limiting toxicity and low efficacy, encouraging the development of novel agents and the design of more appropriate combinations between Notch signaling inhibitors and chemotherapeutic drugs with improved safety and effectiveness for distinct types of cancer. Abstract Notch signaling guides cell fate decisions by affecting proliferation, apoptosis, stem cell self-renewal, and differentiation depending on cell and tissue context. Given its multifaceted function during tissue development, both overactivation and loss of Notch signaling have been linked to tumorigenesis in ways that are either oncogenic or oncosuppressive, but always context-dependent. Notch signaling is critical for several mechanisms of chemoresistance including cancer stem cell maintenance, epithelial-mesenchymal transition, tumor-stroma interaction, and malignant neovascularization that makes its targeting an appealing strategy against tumor growth and recurrence. During the last decades, numerous Notch-interfering agents have been developed, and the abundant preclinical evidence has been transformed in orphan drug approval for few rare diseases. However, the majority of Notch-dependent malignancies remain untargeted, even if the application of Notch inhibitors alone or in combination with common chemotherapeutic drugs is being evaluated in clinical trials. The modest clinical success of current Notch-targeting strategies is mostly due to their limited efficacy and severe on-target toxicity in Notch-controlled healthy tissues. Here, we review the available preclinical and clinical evidence on combinatorial treatment between different Notch signaling inhibitors and existent chemotherapeutic drugs, providing a comprehensive picture of molecular mechanisms explaining the potential or lacking success of these combinations.
Collapse
Affiliation(s)
- Nadezda Zhdanovskaya
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (N.Z.); (M.F.); (S.L.); (E.P.); (P.S.R.); (C.T.)
| | - Mariarosaria Firrincieli
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (N.Z.); (M.F.); (S.L.); (E.P.); (P.S.R.); (C.T.)
- Center for Life Nano Science, Istituto Italiano di Tecnologia, 00161 Rome, Italy
| | - Sara Lazzari
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (N.Z.); (M.F.); (S.L.); (E.P.); (P.S.R.); (C.T.)
| | - Eleonora Pace
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (N.Z.); (M.F.); (S.L.); (E.P.); (P.S.R.); (C.T.)
| | - Pietro Scribani Rossi
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (N.Z.); (M.F.); (S.L.); (E.P.); (P.S.R.); (C.T.)
| | - Maria Pia Felli
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy;
| | - Claudio Talora
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (N.Z.); (M.F.); (S.L.); (E.P.); (P.S.R.); (C.T.)
| | - Isabella Screpanti
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (N.Z.); (M.F.); (S.L.); (E.P.); (P.S.R.); (C.T.)
- Correspondence: (I.S.); (R.P.)
| | - Rocco Palermo
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (N.Z.); (M.F.); (S.L.); (E.P.); (P.S.R.); (C.T.)
- Center for Life Nano Science, Istituto Italiano di Tecnologia, 00161 Rome, Italy
- Correspondence: (I.S.); (R.P.)
| |
Collapse
|
16
|
Gao Z, Daquinag AC, Fussell C, Djehal A, Désaubry L, Kolonin MG. Prohibitin Inactivation in Adipocytes Results in Reduced Lipid Metabolism and Adaptive Thermogenesis Impairment. Diabetes 2021; 70:2204-2212. [PMID: 34257070 PMCID: PMC8576510 DOI: 10.2337/db21-0094] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 07/06/2021] [Indexed: 11/13/2022]
Abstract
Prohibitin-1 (PHB) is a multifunctional protein previously reported to be important for adipocyte function. PHB is expressed on the surface of adipose cells, where it interacts with a long-chain fatty acid (LCFA) transporter. Here, we show that mice lacking PHB in adipocytes (PHB adipocyte [Ad]-knockout [KO]) have a defect in fat tissue accumulation despite having larger lipid droplets in adipocytes due to reduced lipolysis. Although PHB Ad-KO mice do not display glucose intolerance, they are insulin resistant. We show that PHB Ad-KO mice are lipid intolerant due to a decreased capacity of adipocytes for LCFA uptake. Instead, PHB Ad-KO mice have increased expression of GLUT1 in various tissues and use glucose as a preferred energy source. We demonstrate that PHB Ad-KO mice have defective brown adipose tissue, are intolerant to cold, and display reduced basal energy expenditure. Systemic repercussions of PHB inactivation in adipocytes were observed in both males and females. Consistent with lower cellular mitochondrial content and reduced uncoupling protein 1 protein expression, brown adipocytes lacking PHB display decreased proton leak and switch from aerobic metabolism to glycolysis. Treatment of differentiating brown adipocytes with small molecules targeting PHB suppressed mitochondrial respiration and uncoupling. Our results demonstrate that PHB in adipocytes is essential for normal fatty acid uptake, oxidative metabolism, and adaptive thermogenesis. We conclude that PHB inhibition could be investigated as an approach to altering energy substrate utilization.
Collapse
Affiliation(s)
- Zhanguo Gao
- The Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center, Houston, TX
| | - Alexes C Daquinag
- The Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center, Houston, TX
| | - Cale Fussell
- The Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center, Houston, TX
| | - Amel Djehal
- Regenerative Nanomedicine Laboratory (UMR1260), Faculty of Medicine, Fédération de Médecine Translationnelle, INSERM-University of Strasbourg, Strasbourg, France
- Superior National School Biotechnology Taoufik Khaznadar, Constantine, Algeria
| | - Laurent Désaubry
- Regenerative Nanomedicine Laboratory (UMR1260), Faculty of Medicine, Fédération de Médecine Translationnelle, INSERM-University of Strasbourg, Strasbourg, France
| | - Mikhail G Kolonin
- The Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center, Houston, TX
| |
Collapse
|
17
|
Majumder S, Crabtree JS, Golde TE, Minter LM, Osborne BA, Miele L. Targeting Notch in oncology: the path forward. Nat Rev Drug Discov 2021; 20:125-144. [PMID: 33293690 DOI: 10.1038/s41573-020-00091-3] [Citation(s) in RCA: 170] [Impact Index Per Article: 42.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/21/2020] [Indexed: 02/07/2023]
Abstract
Notch signalling is involved in many aspects of cancer biology, including angiogenesis, tumour immunity and the maintenance of cancer stem-like cells. In addition, Notch can function as an oncogene and a tumour suppressor in different cancers and in different cell populations within the same tumour. Despite promising preclinical results and early-phase clinical trials, the goal of developing safe, effective, tumour-selective Notch-targeting agents for clinical use remains elusive. However, our continually improving understanding of Notch signalling in specific cancers, individual cancer cases and different cell populations, as well as crosstalk between pathways, is aiding the discovery and development of novel investigational Notch-targeted therapeutics.
Collapse
Affiliation(s)
- Samarpan Majumder
- Department of Genetics, Louisiana State University Health Sciences Center, New Orleans, LA, USA
- Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - Judy S Crabtree
- Department of Genetics, Louisiana State University Health Sciences Center, New Orleans, LA, USA
- Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - Todd E Golde
- Department of Neuroscience, University of Florida, Gainesville, FL, USA
- McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Lisa M Minter
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, USA
| | - Barbara A Osborne
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, USA
| | - Lucio Miele
- Department of Genetics, Louisiana State University Health Sciences Center, New Orleans, LA, USA.
- Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, LA, USA.
| |
Collapse
|
18
|
Matsumori T, Kodama Y, Takai A, Shiokawa M, Nishikawa Y, Matsumoto T, Takeda H, Marui S, Okada H, Hirano T, Kuwada T, Sogabe Y, Kakiuchi N, Tomono T, Mima A, Morita T, Ueda T, Tsuda M, Yamauchi Y, Kuriyama K, Sakuma Y, Ota Y, Maruno T, Uza N, Marusawa H, Kageyama R, Chiba T, Seno H. Hes1 Is Essential in Proliferating Ductal Cell-Mediated Development of Intrahepatic Cholangiocarcinoma. Cancer Res 2020; 80:5305-5316. [PMID: 33067264 DOI: 10.1158/0008-5472.can-20-1161] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 08/11/2020] [Accepted: 10/13/2020] [Indexed: 11/16/2022]
Abstract
Intrahepatic cholangiocarcinoma (ICC) is frequently driven by aberrant KRAS activation and develops in the liver with chronic inflammation. Although the Notch signaling pathway is critically involved in ICC development, detailed mechanisms of Notch-driven ICC development are still unknown. Here, we use mice whose Notch signaling is genetically engineered to show that the Notch signaling pathway, specifically the Notch/Hes1 axis, plays an essential role in expanding ductular cells in the liver with chronic inflammation or oncogenic Kras activation. Activation of Notch1 enhanced the development of proliferating ductal cells (PDC) in injured livers, while depletion of Hes1 led to suppression. In correlation with PDC expansion, ICC development was also regulated by the Notch/Hes1 axis and suppressed by Hes1 depletion. Lineage-tracing experiments using EpcamcreERT2 mice further confirmed that Hes1 plays a critical role in the induction of PDC and that ICC could originate from PDC. Analysis of human ICC specimens showed PDC in nonneoplastic background tissues, confirming HES1 expression in both PDC and ICC tumor cells. Our findings provide novel direct experimental evidence that Hes1 plays an essential role in the development of ICC via PDC. SIGNIFICANCE: This study contributes to the identification of the cells of origin that initiate ICC and suggests that HES1 may represent a therapeutic target in ICC.
Collapse
Affiliation(s)
- Tomoaki Matsumori
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yuzo Kodama
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan. .,Department of Gastroenterology, Kobe University Graduate School of Medicine, Hyogo, Japan
| | - Atsushi Takai
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Masahiro Shiokawa
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yoshihiro Nishikawa
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Tomonori Matsumoto
- Oregon Stem Cell Center, Oregon Health and Science University, Portland, Oregon
| | - Haruhiko Takeda
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Saiko Marui
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Hirokazu Okada
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Tomonori Hirano
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Takeshi Kuwada
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yuko Sogabe
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Nobuyuki Kakiuchi
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Teruko Tomono
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Atsushi Mima
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Toshihiro Morita
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Tatsuki Ueda
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Motoyuki Tsuda
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yuki Yamauchi
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Katsutoshi Kuriyama
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yojiro Sakuma
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yuji Ota
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Takahisa Maruno
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Norimitsu Uza
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Hiroyuki Marusawa
- Department of Gastroenterology, Japanese Red Cross Hospital Osaka, Osaka, Japan
| | - Ryoichiro Kageyama
- Institute for Frontier Life and Medical Sciences, Kyoto University, Shogoin-Kawahara, Sakyo-Ku, Kyoto, Japan
| | - Tsutomu Chiba
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan.,Kansai Electric Power Hospital, Osaka, Japan
| | - Hiroshi Seno
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| |
Collapse
|
19
|
Wang D, Tabti R, Elderwish S, Abou-Hamdan H, Djehal A, Yu P, Yurugi H, Rajalingam K, Nebigil CG, Désaubry L. Prohibitin ligands: a growing armamentarium to tackle cancers, osteoporosis, inflammatory, cardiac and neurological diseases. Cell Mol Life Sci 2020; 77:3525-3546. [PMID: 32062751 PMCID: PMC11104971 DOI: 10.1007/s00018-020-03475-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 01/28/2020] [Accepted: 01/30/2020] [Indexed: 02/08/2023]
Abstract
Over the last three decades, the scaffold proteins prohibitins-1 and -2 (PHB1/2) have emerged as key signaling proteins regulating a myriad of signaling pathways in health and diseases. Small molecules targeting PHBs display promising effects against cancers, osteoporosis, inflammatory, cardiac and neurodegenerative diseases. This review provides an updated overview of the various classes of PHB ligands, with an emphasis on their mechanism of action and therapeutic potential. We also describe how these ligands have been used to explore PHB signaling in different physiological and pathological settings.
Collapse
Affiliation(s)
- Dong Wang
- Sino-French Joint Lab of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Redouane Tabti
- Laboratory of Cardio-Oncology and Medicinal Chemistry (FRE 2033), CNRS, Institut Le Bel, 4 rue Blaise Pascal, CS 90032, 67081, Strasbourg, France
| | - Sabria Elderwish
- Laboratory of Cardio-Oncology and Medicinal Chemistry (FRE 2033), CNRS, Institut Le Bel, 4 rue Blaise Pascal, CS 90032, 67081, Strasbourg, France
| | - Hussein Abou-Hamdan
- Laboratory of Cardio-Oncology and Medicinal Chemistry (FRE 2033), CNRS, Institut Le Bel, 4 rue Blaise Pascal, CS 90032, 67081, Strasbourg, France
| | - Amel Djehal
- Laboratory of Cardio-Oncology and Medicinal Chemistry (FRE 2033), CNRS, Institut Le Bel, 4 rue Blaise Pascal, CS 90032, 67081, Strasbourg, France
- Superior National School Biotechnology Taoufik Khaznadar, Ville universitaire Ali Mendjeli, BP E66 25100, Constantine, Algeria
| | - Peng Yu
- Sino-French Joint Lab of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Hajime Yurugi
- Cell Biology Unit, University Medical Center Mainz, JGU-Mainz, Mainz, Germany
| | | | - Canan G Nebigil
- Laboratory of Cardio-Oncology and Medicinal Chemistry (FRE 2033), CNRS, Institut Le Bel, 4 rue Blaise Pascal, CS 90032, 67081, Strasbourg, France
| | - Laurent Désaubry
- Sino-French Joint Lab of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China.
- Laboratory of Cardio-Oncology and Medicinal Chemistry (FRE 2033), CNRS, Institut Le Bel, 4 rue Blaise Pascal, CS 90032, 67081, Strasbourg, France.
| |
Collapse
|
20
|
Chemoproteomic Profiling of a Pharmacophore-Focused Chemical Library. Cell Chem Biol 2020; 27:708-718.e10. [PMID: 32402240 DOI: 10.1016/j.chembiol.2020.04.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Revised: 03/28/2020] [Accepted: 04/15/2020] [Indexed: 11/20/2022]
Abstract
Pharmacophore-focused chemical libraries are continuously being created in drug discovery programs, yet screening assays to maximize the usage of such libraries are not fully explored. Here, we report a chemical proteomics approach to reutilizing a focused chemical library of 1,800 indole-containing molecules for discovering uncharacterized ligand-protein pairs. Gel-based protein profiling of the library using a photo-affinity indole probe 1 enabled us to find new ligands for glyoxalase 1 (Glo1), an enzyme involved in the detoxification of methylglyoxal. Structure optimization of the ligands yielded an inhibitor for Glo1 (9). Molecule 9 increased the cellular methylglyoxal levels in human cells and suppressed the osteoclast formation of mouse bone marrow-derived macrophages. X-ray structure analyses revealed that the molecule lies at a site abutting the substrate binding site, which is consistent with the enzyme kinetic profile of 9. Overall, this study exemplifies how chemical proteomics can be used to exploit existing focused chemical libraries.
Collapse
|
21
|
Jin X, Xie J, Zabolocki M, Wang X, Jiang T, Wang D, Désaubry L, Bardy C, Proud CG. The prohibitin-binding compound fluorizoline affects multiple components of the translational machinery and inhibits protein synthesis. J Biol Chem 2020; 295:9855-9867. [PMID: 32430400 DOI: 10.1074/jbc.ra120.012979] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 05/12/2020] [Indexed: 01/12/2023] Open
Abstract
Fluorizoline (FLZ) binds to prohibitin-1 and -2 (PHB1/2), which are pleiotropic scaffold proteins known to affect signaling pathways involved in several intracellular processes. However, it is not yet clear how FLZ exerts its effect. Here, we show that exposure of three different human cancer cell lines to FLZ increases the phosphorylation of key translation factors, particularly of initiation factor 2 (eIF2) and elongation factor 2 (eEF2), modifications that inhibit their activities. FLZ also impaired signaling through mTOR complex 1, which also regulates the translational machinery, e.g. through the eIF4E-binding protein 4E-BP1. In line with these findings, FLZ potently inhibited protein synthesis. We noted that the first phase of this inhibition involves very rapid eEF2 phosphorylation, which is catalyzed by a dedicated Ca2+-dependent protein kinase, eEF2 kinase (eEF2K). We also demonstrate that FLZ induces a swift and marked rise in intracellular Ca2+ levels, likely explaining the effects on eEF2. Disruption of normal Ca2+ homeostasis can also induce endoplasmic reticulum stress, and our results suggest that induction of this stress response contributes to the increased phosphorylation of eIF2, likely because of activation of the eIF2-modifying kinase PKR-like endoplasmic reticulum kinase (PERK). We show that FLZ induces cancer cell death and that this effect involves contributions from the phosphorylation of both eEF2 and eIF2. Our findings provide important new insights into the biological effects of FLZ and thus the roles of PHBs, specifically in regulating Ca2+ levels, cellular protein synthesis, and cell survival.
Collapse
Affiliation(s)
- Xin Jin
- Lifelong Health Theme, South Australian Health & Medical Research Institute, Adelaide, Australia.,Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology and School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Jianling Xie
- Lifelong Health Theme, South Australian Health & Medical Research Institute, Adelaide, Australia
| | - Michael Zabolocki
- Lifelong Health Theme, South Australian Health & Medical Research Institute, Adelaide, Australia.,Laboratory for Human Neurophysiology and Genetics, College of Medicine and Public Health, Flinders University, Adelaide, Australia
| | - Xuemin Wang
- Lifelong Health Theme, South Australian Health & Medical Research Institute, Adelaide, Australia.,School of Biological Sciences, University of Adelaide, Adelaide, Australia
| | - Tao Jiang
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology and School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Dong Wang
- Sino-French Joint Lab of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Laurent Désaubry
- Sino-French Joint Lab of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China.,Laboratory of Medicinal Chemistry and Cardio-oncology, CNRS, Strasbourg, France
| | - Cedric Bardy
- Lifelong Health Theme, South Australian Health & Medical Research Institute, Adelaide, Australia.,Laboratory for Human Neurophysiology and Genetics, College of Medicine and Public Health, Flinders University, Adelaide, Australia
| | - Christopher G Proud
- Lifelong Health Theme, South Australian Health & Medical Research Institute, Adelaide, Australia .,School of Biological Sciences, University of Adelaide, Adelaide, Australia
| |
Collapse
|
22
|
Nishikawa Y, Kodama Y, Shiokawa M, Matsumori T, Marui S, Kuriyama K, Kuwada T, Sogabe Y, Kakiuchi N, Tomono T, Mima A, Morita T, Ueda T, Tsuda M, Yamauchi Y, Sakuma Y, Ota Y, Maruno T, Uza N, Uesugi M, Kageyama R, Chiba T, Seno H. Hes1 plays an essential role in Kras-driven pancreatic tumorigenesis. Oncogene 2019; 38:4283-4296. [PMID: 30705405 DOI: 10.1038/s41388-019-0718-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 12/25/2018] [Accepted: 01/04/2019] [Indexed: 11/08/2022]
Abstract
Most pancreatic ductal adenocarcinoma (PDAC) develops from pancreatic epithelial cells bearing activating mutant KRAS genes through precancerous lesions, i.e. acinar-to-ductal metaplasia (ADM) and pancreatic intraepithelial neoplasia (PanIN). During pancreatic tumorigenesis, Hes1 expression starts with the transition from acinar cells to ADM, and continues during PanIN and PDAC formation, but the role of Hes1 in pancreatic tumorigenesis is not fully elucidated. Here we show that Hes1 plays an essential role in the initiation and progression of KRAS-driven pancreatic tumorigenesis. In vitro, activation of MAPK signaling due to EGF or mutant KRAS activation induced sustained Hes1 expression in pancreatic acinar cells. In vivo, acinar cell-specific activation of mutant KRAS by Elastase1-CreERT2;KrasG12D induced ADM/PanIN formation with Hes1 expression in mice, and genetic ablation of Hes1 in these mice dramatically suppressed PanIN formation. Gene expression analysis and lineage tracing revealed that Hes1 regulates acinar-to-ductal reprogramming-related genes and, in a Hes1-deficient state, mutant Kras-induced ADM could not progress into PanIN, but re-differentiated into acinar cells. In the Elastase1-CreERT2;KrasG12D;Trp53R172H mouse PDAC model, genetic ablation of Hes1 completely blocked PDAC formation by keeping PanIN lesions in low-grade conditions, in addition to reducing the occurrence of PanIN. Together, these findings indicate that mutant KRAS-induced Hes1 plays an essential role in PDAC initiation and progression by regulating acinar-to-ductal reprogramming-related genes.
Collapse
Affiliation(s)
- Yoshihiro Nishikawa
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Yuzo Kodama
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan.
- Department of Gastroenterology, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, Hyogo, 650-0017, Japan.
| | - Masahiro Shiokawa
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Tomoaki Matsumori
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Saiko Marui
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Katsutoshi Kuriyama
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Takeshi Kuwada
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Yuko Sogabe
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Nobuyuki Kakiuchi
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Teruko Tomono
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Atsushi Mima
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Toshihiro Morita
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Tatsuki Ueda
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Motoyuki Tsuda
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Yuki Yamauchi
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Yojiro Sakuma
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Yuji Ota
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Takahisa Maruno
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Norimitsu Uza
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Motonari Uesugi
- Institute for Chemical Research, Kyoto University, Uji, Kyoto, 611-0011, Japan
- Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University, Uji, Kyoto, 611-0011, Japan
| | - Ryoichiro Kageyama
- Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University, Uji, Kyoto, 611-0011, Japan
- Institute for Frontier Life and Medical Sciences, Kyoto University, Shogoin-Kawahara, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Tsutomu Chiba
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
- Kansai Electric Power Hospital, 2-1-7 Fukushima, Fukushima-ku, Osaka, 553-0003, Japan
| | - Hiroshi Seno
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| |
Collapse
|
23
|
Rohena-Rivera K, Bhowmick NA. Notch inhibitor screening reveals an unexpected HES1 heterodimer. J Biol Chem 2019; 293:8295-8296. [PMID: 29802140 DOI: 10.1074/jbc.h118.002880] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Notch signaling plays critical roles in cancer progression, motivating efforts to identify inhibitors of this pathway. Perron et al. report a small-molecule screen intended to discover compounds that could interfere with the downstream transcription factor HES1. Target validation of their compounds unexpectedly identified a novel HES1-interacting protein, prohibitin 2. This highlights a new mechanism to block Notch signaling and prompting further exploration of HES1 biology.
Collapse
Affiliation(s)
- Krizia Rohena-Rivera
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California 90048
| | - Neil A Bhowmick
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California 90048; Department of Research, Greater Los Angeles Veterans Affairs Hospital, Los Angeles, California 90048.
| |
Collapse
|