1
|
Ito F, Iwata W, Adachi Y, Sesaki H, Iijima M. GRHL2-HER3 and E-cadherin mediate EGFR-bypass drug resistance in lung cancer cells. Front Cell Dev Biol 2025; 12:1511190. [PMID: 39897079 PMCID: PMC11782226 DOI: 10.3389/fcell.2024.1511190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 12/20/2024] [Indexed: 02/04/2025] Open
Abstract
Epidermal growth factor receptor (EGFR) is a major oncogenic protein, and thus EGFR-targeting therapies are widely used in patients with various types of cancer, including lung cancer. However, resistance to EGFR inhibitors, such as erlotinib, presents a significant challenge in treating lung cancer. In this study, we established an EGFR-independent, erlotinib-resistant (ER) phenotype in lung cancer A549 cells by exposing them to erlotinib for an extended period. The resulting ER cells exhibited a dramatic increase in erlotinib resistance, a decreased EGFR protein level, and enhanced tumor growth, suggesting a robust mechanism bypassing EGFR inhibition. RNA sequencing identified the transcription factor GRHL2 as a critical player in this resistance. GRHL2 was upregulated in ER cells, and its knockdown and knockout significantly reduced erlotinib resistance. Further analysis revealed that GRHL2 upregulates the receptor tyrosine kinase HER3, and that HER3 knockdown similarly decreases the IC50 for erlotinib. Additionally, ER cells showed increased cell-cell adhesion, linked to upregulated E-cadherin. E-cadherin was found to be vital for erlotinib resistance, largely independent of GRHL2, highlighting multiple parallel pathways sustaining resistance. These findings provide a novel mechanism of drug resistance and suggest that combination therapies targeting both GRHL2-HER3 and E-cadherin-mediated pathways may be necessary to overcome erlotinib resistance in lung cancer.
Collapse
Affiliation(s)
| | | | | | | | - Miho Iijima
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
2
|
Chi XX, Ye P, Cao NQ, Hwang WL, Cha JH, Hung MC, Hsu KW, Yan XW, Yang WH. PPIH as a poor prognostic factor increases cell proliferation and m6A RNA methylation in hepatocellular carcinoma. Am J Cancer Res 2024; 14:3733-3756. [PMID: 39267679 PMCID: PMC11387852 DOI: 10.62347/nzij5785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 08/07/2024] [Indexed: 09/15/2024] Open
Abstract
RNA-binding proteins (RBPs) play a crucial role in the biological processes of liver hepatocellular carcinoma (LIHC). Peptidyl-prolyl cis-trans isomerase H (PPIH), an RBP, possesses prolyl isomerase activity and functions as a protein chaperone. The relationship between PPIH and LIHC has not yet been fully elucidated. This study elucidated potential mechanisms through which PPIH affects the prognosis of LIHC. Bioinformatics analysis and in vitro experiments revealed that PPIH expression was higher in LIHC tissues than in normal tissues. PPIH was identified as an independent prognostic factor, with high PPIH expression being associated with worse prognoses. Moreover, PPIH increased the m6A RNA methylation level and promoted cell proliferation by modulating DNA replication and the expression of cell cycle-related genes in LIHC cells. Bioinformatics analysis also revealed that PPIH expression increased immune cell infiltration and the expression of immune checkpoint proteins. Collectively, these findings indicate that PPIH might promote LIHC progression by enhancing the m6A RNA methylation level, increasing cell proliferation, and altering the tumor immune microenvironment. Our study demonstrates that PPIH, as a poor prognostic factor, may lead to LIHC malignancy through multiple pathways. Further in-depth research on this topic is warranted.
Collapse
Affiliation(s)
- Xiao-Xia Chi
- Affiliated Cancer Hospital and Institute, Guangzhou Medical University Guangzhou 510095, Guangdong, China
- Department of Family Medicine, The University of Hong Kong-Shenzhen Hospital Shenzhen 518053, Guangdong, China
| | - Peng Ye
- Infection Medicine Research Institute of Panyu District, The Affiliated Panyu Central Hospital of Guangzhou Medical University Guangzhou 511400, Guangdong, China
| | - Neng-Qi Cao
- Department of General Surgery, Nanjing Lishui People's Hospital Nanjing 211200, Jiangsu, China
| | - Wei-Lun Hwang
- Department of Biotechnology and Laboratory Science in Medicine, and Cancer Progression Research Center, National Yang Ming Chiao Tung University Taipei 112304, Taiwan
| | - Jong-Ho Cha
- Department of Biomedical Science and Engineering, Graduate School, Inha University Incheon 22212, The Republic of Korea
| | - Mien-Chie Hung
- Graduate Institute of Biomedical Sciences, Institute of Biochemistry and Molecular Biology, Research Center for Cancer Biology, Cancer Biology and Precision Therapeutics Center, and Center for Molecular Medicine, China Medical University Taichung 406040, Taiwan
| | - Kai-Wen Hsu
- Institute of Translational Medicine and New Drug Development, China Medical University Taichung 404328, Taiwan
| | - Xiu-Wen Yan
- Affiliated Cancer Hospital and Institute, Guangzhou Medical University Guangzhou 510095, Guangdong, China
| | - Wen-Hao Yang
- Graduate Institute of Cell Biology, and Cancer Biology and Precision Therapeutics Center, China Medical University Taichung 404327, Taiwan
| |
Collapse
|
3
|
Li J, Wang Y, Xiong K, Gao C. Editorial: Neuroinflammation and cognitive impairment. Front Aging Neurosci 2024; 16:1453772. [PMID: 39044808 PMCID: PMC11263280 DOI: 10.3389/fnagi.2024.1453772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 07/01/2024] [Indexed: 07/25/2024] Open
Affiliation(s)
- Juan Li
- Emergency Department, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yang Wang
- Department of Neurosurgery, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kun Xiong
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Chengjin Gao
- Emergency Department, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
4
|
Gambini D, Ferrero S, Bulfamante G, Pisani L, Corbo M, Kuhn E. Cerebellar phenotypes in germline PTEN mutation carriers. Neuropathol Appl Neurobiol 2024; 50:e12970. [PMID: 38504418 DOI: 10.1111/nan.12970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 02/21/2024] [Accepted: 02/25/2024] [Indexed: 03/21/2024]
Abstract
PTEN hamartoma tumour syndrome (PHTS) comprises different hereditary conditions caused by germline PTEN mutations, predisposing to the development of multiple hamartomas in many body tissues and also increasing the risk of some types of cancer. Cerebellar involvement in PHTS patients has been long known due to the development of a pathognomonic cerebellar hamartoma (known as dysplastic gangliocytoma of the cerebellum or Lhermitte-Duclos disease). Recently, a crucial role of the cerebellum has been highlighted in the pathogenesis of autism spectrum disorders, now recognised as a phenotype expressed in a variable percentage of PHTS children. In addition, rare PTEN variants are indeed identified in medulloblastoma as well, even if they are less frequent than other germline gene mutations. The importance of PTEN and its downstream signalling enzymatic pathways, PI3K/AKT/mTOR, has been studied at different levels in both human clinical settings and animal models, not only leading to a better understanding of the pathogenesis of different disorders but, most importantly, to identify potential targets for specific therapies. In particular, PTEN integrity makes an important contribution to the normal development of tissue architecture in the nervous system, including the cerebellum. Thus, in patients with PTEN germline mutations, the cerebellum is an affected organ that is increasingly recognised in different disorders, whereas, in animal models, cerebellar Pten loss causes a variety of functional and histological alterations. In this review, we summarise the range of cerebellar involvement observed in PHTS and its relationships with germline PTEN mutations, along with the phenotypes expressed by murine models with PTEN deficiency in cerebellar tissue.
Collapse
Affiliation(s)
- Donatella Gambini
- Department of Neurorehabilitation Sciences, Casa di Cura Igea, Milan, Italy
| | - Stefano Ferrero
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy
- Pathology Unit, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Gaetano Bulfamante
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy
- Human Pathology and Molecular Pathology Unit, TOMA Advanced Biomedical Assays, Busto Arsizio, Italy
| | - Luigi Pisani
- Department of Neurorehabilitation Sciences, Casa di Cura Igea, Milan, Italy
| | - Massimo Corbo
- Department of Neurorehabilitation Sciences, Casa di Cura Igea, Milan, Italy
| | - Elisabetta Kuhn
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy
- Pathology Unit, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| |
Collapse
|
5
|
Langdon CG. Nuclear PTEN's Functions in Suppressing Tumorigenesis: Implications for Rare Cancers. Biomolecules 2023; 13:biom13020259. [PMID: 36830628 PMCID: PMC9953540 DOI: 10.3390/biom13020259] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/25/2023] [Accepted: 01/28/2023] [Indexed: 01/31/2023] Open
Abstract
Phosphatase and tensin homolog (PTEN) encodes a tumor-suppressive phosphatase with both lipid and protein phosphatase activity. The tumor-suppressive functions of PTEN are lost through a variety of mechanisms across a wide spectrum of human malignancies, including several rare cancers that affect pediatric and adult populations. Originally discovered and characterized as a negative regulator of the cytoplasmic, pro-oncogenic phosphoinositide-3-kinase (PI3K) pathway, PTEN is also localized to the nucleus where it can exert tumor-suppressive functions in a PI3K pathway-independent manner. Cancers can usurp the tumor-suppressive functions of PTEN to promote oncogenesis by disrupting homeostatic subcellular PTEN localization. The objective of this review is to describe the changes seen in PTEN subcellular localization during tumorigenesis, how PTEN enters the nucleus, and the spectrum of impacts and consequences arising from disrupted PTEN nuclear localization on tumor promotion. This review will highlight the immediate need in understanding not only the cytoplasmic but also the nuclear functions of PTEN to gain more complete insights into how important PTEN is in preventing human cancers.
Collapse
Affiliation(s)
- Casey G. Langdon
- Department of Pediatrics, Darby Children’s Research Institute, Medical University of South Carolina, Charleston, SC 29425, USA; ; Tel.: +1-(843)-792-9289
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA
| |
Collapse
|
6
|
Genovese I, Fornetti E, Ruocco G. Mitochondria inter-organelle relationships in cancer protein aggregation. Front Cell Dev Biol 2022; 10:1062993. [PMID: 36601538 PMCID: PMC9806238 DOI: 10.3389/fcell.2022.1062993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 11/29/2022] [Indexed: 12/23/2022] Open
Abstract
Mitochondria are physically associated with other organelles, such as ER and lysosomes, forming a complex network that is crucial for cell homeostasis regulation. Inter-organelle relationships are finely regulated by both tether systems, which maintain physical proximity, and by signaling cues that induce the exchange of molecular information to regulate metabolism, Ca2+ homeostasis, redox state, nutrient availability, and proteostasis. The coordinated action of the organelles is engaged in the cellular integrated stress response. In any case, pathological conditions alter functional communication and efficient rescue pathway activation, leading to cell distress exacerbation and eventually cell death. Among these detrimental signals, misfolded protein accumulation and aggregation cause major damage to the cells, since defects in protein clearance systems worsen cell toxicity. A cause for protein aggregation is often a defective mitochondrial redox balance, and the ER freshly translated misfolded proteins and/or a deficient lysosome-mediated clearance system. All these features aggravate mitochondrial damage and enhance proteotoxic stress. This review aims to gather the current knowledge about the complex liaison between mitochondria, ER, and lysosomes in facing proteotoxic stress and protein aggregation, highlighting both causes and consequences. Particularly, specific focus will be pointed to cancer, a pathology in which inter-organelle relations in protein aggregation have been poorly investigated.
Collapse
Affiliation(s)
- Ilaria Genovese
- Center for Life Nano and Neuro Science, Istituto Italiano di Tecnologia (IIT), Rome, Italy,*Correspondence: Ilaria Genovese,
| | - Ersilia Fornetti
- Center for Life Nano and Neuro Science, Istituto Italiano di Tecnologia (IIT), Rome, Italy
| | - Giancarlo Ruocco
- Center for Life Nano and Neuro Science, Istituto Italiano di Tecnologia (IIT), Rome, Italy,Department of Physics, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
7
|
Song MS, Pandolfi PP. The HECT family of E3 ubiquitin ligases and PTEN. Semin Cancer Biol 2022; 85:43-51. [PMID: 34129913 PMCID: PMC8665946 DOI: 10.1016/j.semcancer.2021.06.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/09/2021] [Accepted: 06/10/2021] [Indexed: 12/22/2022]
Abstract
Members of the HECT family of E3 ubiquitin ligases have emerged as prominent regulators of PTEN function, subcellular localization and levels. In turn this unfolding regulatory network is allowing for the identification of genes directly involved in both tumorigenesis at large and cancer susceptibility syndromes. While the complexity of this regulatory network is still being unraveled, these new findings are paving the way for novel therapeutic modalities for cancer prevention and therapy as well as for other diseases. Here we will review the signal transduction and therapeutic implications of the cross-talk between HECT family members and PTEN.
Collapse
Affiliation(s)
- Min Sup Song
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX77030, USA.
| | - Pier Paolo Pandolfi
- Renown Institute for Cancer, Nevada System of Higher Education, Reno, NV89502, USA.
| |
Collapse
|
8
|
Kato T, Igarashi A, Sesaki H, Iijima M. Generating a new mouse model for nuclear PTEN deficiency by a single K13R mutation. Genes Cells 2021; 26:1014-1022. [PMID: 34661323 DOI: 10.1111/gtc.12902] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 10/12/2021] [Accepted: 10/14/2021] [Indexed: 12/01/2022]
Abstract
Many human diseases, including cancer and neurological abnormalities, are linked to deficiencies of phosphatase and tensin homolog deleted on chromosome ten (PTEN), a dual phosphatase that dephosphorylates both lipids and proteins. PTEN functions in multiple intracellular locations, including the plasma membrane and nucleus. Therefore, a critical challenge to understand the pathogenesis of PTEN-associated diseases is to determine the specific role of PTEN at different locations. Toward this goal, the current study generated a mouse line in which lysine 13, which is critical for the nuclear localization of PTEN, is changed to arginine in the lipid-binding domain using the CRISPR-Ca9 gene-editing system. We found that PTENK13R mice show a strong decrease in the localization of PTEN in the nucleus without affecting the protein stability, phosphatase activity, and phosphorylation in the C-terminal tail region. PTENK13R mice are viable but produce smaller neurons and develop microcephaly. These data demonstrate that PTENK13R mice provide a useful animal model to study the role of PTEN in the nucleus in vivo.
Collapse
Affiliation(s)
- Takashi Kato
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Faculty of Pharmacy, Yasuda Women's University, Hiroshima, Japan
| | - Atsushi Igarashi
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Hiromi Sesaki
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Miho Iijima
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
9
|
Zhao J, Yin L, Jiang L, Hou L, He L, Zhang C. PTEN nuclear translocation enhances neuronal injury after hypoxia-ischemia via modulation of the nuclear factor-κB signaling pathway. Aging (Albany NY) 2021; 13:16165-16177. [PMID: 34114972 PMCID: PMC8266328 DOI: 10.18632/aging.203141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 04/29/2021] [Indexed: 11/25/2022]
Abstract
The occurrence of hypoxia-ischemia (HI) in the developing brain is closely associated with neuronal injury and even death. However, the underlying molecular mechanism is not fully understood. This study was designed to investigate phosphatase and tensin homolog (PTEN) nuclear translocation and its possible role in rat cortical neuronal damage following oxygen-glucose deprivation (OGD) in vitro. An in vitro OGD model was established using primary cortical neurons dissected from newborn Sprague-Dawley rats to mimic HI conditions. The PTENK13R mutant plasmid, which contains a lysine-to-arginine mutation at the lysine 13 residue, was constructed. The nuclei and cytoplasm of neurons were separated. Neuronal injury following OGD was evidenced by increased lactate dehydrogenase (LDH) release and apoptotic cell counts. In addition, PTEN expression was increased and the phosphorylation of extracellular signal-regulated kinase 1/2 (p-ERK1/2) and activation of nuclear factor kappa B (NF-κB) were decreased following OGD. PTENK13R transfection prevented PTEN nuclear translocation; attenuated the effect of OGD on nuclear p-ERK1/2 and NF-κB, apoptosis, and LDH release; and increased the expression of several anti-apoptotic proteins. We conclude that PTEN nuclear translocation plays an essential role in neuronal injury following OGD via modulation of the p-ERK1/2 and NF-κB pathways. Prevention of PTEN nuclear translocation might be a candidate strategy for preventing brain injury following HI.
Collapse
Affiliation(s)
- Jing Zhao
- Department of Neonatology, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, Sichuan, China
| | - Linlin Yin
- Department of Neonatology, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, Sichuan, China
| | - Lin Jiang
- Department of Neonatology, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, Sichuan, China
| | - Li Hou
- Department of Neonatology, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, Sichuan, China
| | - Ling He
- Department of Neonatology, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, Sichuan, China
| | - Chunyan Zhang
- Department of Neonatology, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, Sichuan, China
| |
Collapse
|
10
|
Sarn N, Thacker S, Lee H, Eng C. Germline nuclear-predominant Pten murine model exhibits impaired social and perseverative behavior, microglial activation, and increased oxytocinergic activity. Mol Autism 2021; 12:41. [PMID: 34088332 PMCID: PMC8176582 DOI: 10.1186/s13229-021-00448-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 05/17/2021] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Autism spectrum disorder (ASD) has a strong genetic etiology. Germline mutation in the tumor suppressor gene PTEN is one of the best described monogenic risk cases for ASD. Animal modeling of cell-specific Pten loss or mutation has provided insight into how disruptions to the function of PTEN affect neurodevelopment, neurobiology, and social behavior. As such, there is a growing need to understand more about how various aspects of PTEN activity and cell-compartment-specific functions, contribute to certain neurological or behavior phenotypes. METHODS To understand more about the relationship between Pten localization and downstream effects on neurophenotypes, we generated the nuclear-predominant PtenY68H/+ mouse, which is identical to the genotype of some PTEN-ASD individuals. We subjected the PtenY68H/+ mouse to morphological and behavioral phenotyping, including the three-chamber sociability, open field, rotarod, and marble burying tests. We subsequently performed in vivo and in vitro cellular phenotyping and concluded the work with a transcriptomic survey of the PtenY68H/+ cortex, which profiled gene expression. RESULTS We observe a significant increase in P-Akt downstream of canonical Pten signaling, macrocephaly, decreased sociability, decreased preference for novel social stimuli, increased repetitive behavior, and increased thigmotaxis in PtenY68H/+ six-week-old (P40) mice. In addition, we found significant microglial activation with increased expression of complement and neuroinflammatory proteins in vivo and in vitro accompanied by enhanced phagocytosis. These observations were subsequently validated with RNA-seq and qRT-PCR, which revealed overexpression of many genes involved in neuroinflammation and neuronal function, including oxytocin. Oxytocin transcript was fivefold overexpressed (P = 0.0018), and oxytocin protein was strongly overexpressed in the PtenY68H/+ hypothalamus. CONCLUSIONS The nuclear-predominant PtenY68H/+ model has clarified that Pten dysfunction links to microglial pathology and this associates with increased Akt signaling. We also demonstrate that Pten dysfunction associates with changes in the oxytocin system, an important connection between a prominent ASD risk gene and a potent neuroendocrine regulator of social behavior. These cellular and molecular pathologies may related to the observed changes in social behavior. Ultimately, the findings from this work may reveal important biomarkers and/or novel therapeutic modalities that could be explored in individuals with germline mutations in PTEN with ASD.
Collapse
Affiliation(s)
- Nick Sarn
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195 USA
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106 USA
| | - Stetson Thacker
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195 USA
- Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH 44195 USA
| | - Hyunpil Lee
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195 USA
| | - Charis Eng
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195 USA
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106 USA
- Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH 44195 USA
- Germline High Risk Focus Group, Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH 44106 USA
| |
Collapse
|
11
|
Pirozzi F, Lee B, Horsley N, Burkardt DD, Dobyns WB, Graham JM, Dentici ML, Cesario C, Schallner J, Porrmann J, Di Donato N, Sanchez-Lara PA, Mirzaa GM. Proximal variants in CCND2 associated with microcephaly, short stature, and developmental delay: A case series and review of inverse brain growth phenotypes. Am J Med Genet A 2021; 185:2719-2738. [PMID: 34087052 DOI: 10.1002/ajmg.a.62362] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 04/30/2021] [Accepted: 05/04/2021] [Indexed: 01/28/2023]
Abstract
Cyclin D2 (CCND2) is a critical cell cycle regulator and key member of the cyclin D2-CDK4 (DC) complex. De novo variants of CCND2 clustering in the distal part of the protein have been identified as pathogenic causes of brain overgrowth (megalencephaly, MEG) and severe cortical malformations in children including the megalencephaly-polymicrogyria-polydactyly-hydrocephalus (MPPH) syndrome. Megalencephaly-associated CCND2 variants are localized to the terminal exon and result in accumulation of degradation-resistant protein. We identified five individuals from three unrelated families with novel variants in the proximal region of CCND2 associated with microcephaly, mildly simplified cortical gyral pattern, symmetric short stature, and mild developmental delay. Identified variants include de novo frameshift variants and a dominantly inherited stop-gain variant segregating with the phenotype. This is the first reported association between proximal CCND2 variants and microcephaly, to our knowledge. This series expands the phenotypic spectrum of CCND2-related disorders and suggests that distinct classes of CCND2 variants are associated with reciprocal effects on human brain growth (microcephaly and megalencephaly due to possible loss or gain of protein function, respectively), adding to the growing paradigm of inverse phenotypes due to dysregulation of key brain growth genes.
Collapse
Affiliation(s)
- Filomena Pirozzi
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington, USA
| | - Benson Lee
- Division of Medical Genetics, Department of Medicine, Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, California, USA
| | - Nicole Horsley
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington, USA
| | - Deepika D Burkardt
- National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - William B Dobyns
- Division of Genetics and Metabolism, Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, USA
| | - John M Graham
- Medical Genetics Institute, Cedars-Sinai Medical Center, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Maria L Dentici
- Medical Genetics Unit, Academic Department of Pediatrics, Bambino Gesù Children's Hospital, IRCSS, Rome, Italy.,Genetics and Rare Diseases Research Division, Bambino Gesù Children's Hospital, IRCSS, Rome, Italy
| | - Claudia Cesario
- Translational Cytogenomics Research Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Jens Schallner
- Department of Neuropediatrics, School of Medicine, Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Joseph Porrmann
- Institute for Clinical Genetics, University Hospital, TU Dresden, Dresden, Germany
| | - Nataliya Di Donato
- Institute for Clinical Genetics, University Hospital, TU Dresden, Dresden, Germany
| | - Pedro A Sanchez-Lara
- Medical Genetics Institute, Cedars-Sinai Medical Center, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Ghayda M Mirzaa
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington, USA.,Division of Medical Genetics, Department of Pediatrics, University of Washington, Seattle, Washington, USA.,Brotman-Baty Institute for Precision Medicine, Seattle, Washington, USA.,Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington, USA
| |
Collapse
|
12
|
Igarashi A, Kato T, Sesaki H, Iijima M. Nuclear PTEN deficiency and heterozygous PTEN loss have distinct impacts on brain and lymph node size. Biochem Biophys Res Commun 2021; 555:81-88. [PMID: 33813280 PMCID: PMC8085137 DOI: 10.1016/j.bbrc.2021.03.081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 03/15/2021] [Indexed: 01/08/2023]
Abstract
Defects in PTEN, a critical tumor suppressor, are associated with tumorigenesis and aberrant organ sizes. It has been shown that heterozygous PTEN loss increases brains and neuron size, while the specific loss of nuclear PTEN has the opposite effect. Here, we investigate the impact of a combination of heterozygous PTEN loss and nuclear PTEN loss on the size of various organs, including the brain, liver, thymus, spleen, and inguinal lymph node. We found that the effect of the combination varies among organs. Notably, the combination of heterozygous PTEN loss and nuclear PTEN loss restored the normal size of brains and neurons. In contrast, the liver's size was unaffected by either single PTEN defects or their combination. Strikingly, the size of the inguinal lymph node was greatly increased due to lymphoma by the combination of the two PTEN defects. These data suggest that nuclear PTEN and non-nuclear PTEN function in an antagonistic manner in the brain while acting synergistically in the inguinal lymph node.
Collapse
Affiliation(s)
- Atsushi Igarashi
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Takashi Kato
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Hiromi Sesaki
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Miho Iijima
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
13
|
Kato T, Murata D, Anders RA, Sesaki H, Iijima M. Nuclear PTEN and p53 suppress stress-induced liver cancer through distinct mechanisms. Biochem Biophys Res Commun 2021; 549:83-90. [PMID: 33667713 PMCID: PMC7995232 DOI: 10.1016/j.bbrc.2021.02.093] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 02/21/2021] [Indexed: 01/06/2023]
Abstract
PTEN and p53 are highly mutated in many cancers. These two tumor suppressors have critical functions in the nucleus, such as DNA repair, cell cycle progression, and genome maintenance. However, the in vivo functional relationship of nuclear PTEN and p53 is unknown. Here, we analyzed the liver of mice in which nuclear PTEN and p53 are individually or simultaneously depleted. We found that nuclear PTEN loss greatly upregulates p53 expression upon oxidative stress, while the loss of p53 potentiates stress-induced accumulation of PTEN in the nucleus. Next, we examined oxidative stress-induced DNA damage in hepatocytes, and found that nuclear PTEN loss aggravated the damage while p53 loss did not. Notably, mice lacking nuclear PTEN had increased hepatocellular carcinoma under oxidative stress, while mice lacking p53 in hepatocytes had accelerated hepatocellular carcinoma and intrahepatic cholangiocarcinoma. The formation of cholangiocarcinoma appears to involve the transformation of hepatocytes into cholangiocarcinoma. Simultaneous loss of nuclear PTEN and p53 exacerbated both types of liver cancers. These data suggest that nuclear PTEN and p53 suppress liver cancers through distinct mechanisms.
Collapse
Affiliation(s)
- Takashi Kato
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Daisuke Murata
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Robert A Anders
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Hiromi Sesaki
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
| | - Miho Iijima
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
| |
Collapse
|
14
|
Bae M, Roh JD, Kim Y, Kim SS, Han HM, Yang E, Kang H, Lee S, Kim JY, Kang R, Jung H, Yoo T, Kim H, Kim D, Oh H, Han S, Kim D, Han J, Bae YC, Kim H, Ahn S, Chan AM, Lee D, Kim JW, Kim E. SLC6A20 transporter: a novel regulator of brain glycine homeostasis and NMDAR function. EMBO Mol Med 2021; 13:e12632. [PMID: 33428810 PMCID: PMC7863395 DOI: 10.15252/emmm.202012632] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 10/22/2020] [Accepted: 11/19/2020] [Indexed: 12/25/2022] Open
Abstract
Glycine transporters (GlyT1 and GlyT2) that regulate levels of brain glycine, an inhibitory neurotransmitter with co-agonist activity for NMDA receptors (NMDARs), have been considered to be important targets for the treatment of brain disorders with suppressed NMDAR function such as schizophrenia. However, it remains unclear whether other amino acid transporters expressed in the brain can also regulate brain glycine levels and NMDAR function. Here, we report that SLC6A20A, an amino acid transporter known to transport proline based on in vitro data but is understudied in the brain, regulates proline and glycine levels and NMDAR function in the mouse brain. SLC6A20A transcript and protein levels were abnormally increased in mice carrying a mutant PTEN protein lacking the C terminus through enhanced β-catenin binding to the Slc6a20a gene. These mice displayed reduced extracellular levels of brain proline and glycine and decreased NMDAR currents. Elevating glycine levels back to normal ranges by antisense oligonucleotide-induced SLC6A20 knockdown, or the competitive GlyT1 antagonist sarcosine, normalized NMDAR currents and repetitive climbing behavior observed in these mice. Conversely, mice lacking SLC6A20A displayed increased extracellular glycine levels and NMDAR currents. Lastly, both mouse and human SLC6A20 proteins mediated proline and glycine transports, and SLC6A20 proteins could be detected in human neurons. These results suggest that SLC6A20 regulates proline and glycine homeostasis in the brain and that SLC6A20 inhibition has therapeutic potential for brain disorders involving NMDAR hypofunction.
Collapse
Affiliation(s)
- Mihyun Bae
- Center for Synaptic Brain DysfunctionsInstitute for Basic Science (IBS)DaejeonKorea
| | - Junyeop Daniel Roh
- Department of Biological SciencesKorea Advanced Institute for Science and Technology (KAIST)DaejeonKorea
| | - Youjoung Kim
- Department of Biological SciencesKorea Advanced Institute for Science and Technology (KAIST)DaejeonKorea
| | - Seong Soon Kim
- Therapeutics and Biotechnology DivisionKorea Research Institute of Chemical Technology (KRICT)DaejeonKorea
| | - Hye Min Han
- Department of Anatomy and NeurobiologySchool of DentistryKyungpook National UniversityDaeguKorea
| | - Esther Yang
- Department of Anatomy and Division of Brain Korea 21Biomedical ScienceCollege of MedicineKorea UniversitySeoulKorea
| | - Hyojin Kang
- Division of National SupercomputingKISTIDaejeonKorea
| | - Suho Lee
- Center for Synaptic Brain DysfunctionsInstitute for Basic Science (IBS)DaejeonKorea
| | - Jin Yong Kim
- Department of Anatomy and Division of Brain Korea 21Biomedical ScienceCollege of MedicineKorea UniversitySeoulKorea
| | - Ryeonghwa Kang
- Department of Biological SciencesKorea Advanced Institute for Science and Technology (KAIST)DaejeonKorea
| | - Hwajin Jung
- Center for Synaptic Brain DysfunctionsInstitute for Basic Science (IBS)DaejeonKorea
| | - Taesun Yoo
- Center for Synaptic Brain DysfunctionsInstitute for Basic Science (IBS)DaejeonKorea
| | - Hyosang Kim
- Department of Biological SciencesKorea Advanced Institute for Science and Technology (KAIST)DaejeonKorea
| | - Doyoun Kim
- Center for Synaptic Brain DysfunctionsInstitute for Basic Science (IBS)DaejeonKorea
| | - Heejeong Oh
- Department of Biological SciencesKorea Advanced Institute for Science and Technology (KAIST)DaejeonKorea
| | - Sungwook Han
- Department of Biological SciencesKorea Advanced Institute for Science and Technology (KAIST)DaejeonKorea
| | - Dayeon Kim
- Graduate School of Medical Science and EngineeringKAISTDaejeonKorea
| | - Jinju Han
- Graduate School of Medical Science and EngineeringKAISTDaejeonKorea
| | - Yong Chul Bae
- Department of Anatomy and NeurobiologySchool of DentistryKyungpook National UniversityDaeguKorea
| | - Hyun Kim
- Department of Anatomy and Division of Brain Korea 21Biomedical ScienceCollege of MedicineKorea UniversitySeoulKorea
| | - Sunjoo Ahn
- Therapeutics and Biotechnology DivisionKorea Research Institute of Chemical Technology (KRICT)DaejeonKorea
| | - Andrew M Chan
- School of Biomedical SciencesThe Chinese University of Hong KongHong KongHong Kong SARChina
| | - Daeyoup Lee
- Department of Biological SciencesKorea Advanced Institute for Science and Technology (KAIST)DaejeonKorea
| | - Jin Woo Kim
- Department of Biological SciencesKorea Advanced Institute for Science and Technology (KAIST)DaejeonKorea
| | - Eunjoon Kim
- Center for Synaptic Brain DysfunctionsInstitute for Basic Science (IBS)DaejeonKorea
- Department of Biological SciencesKorea Advanced Institute for Science and Technology (KAIST)DaejeonKorea
| |
Collapse
|
15
|
Li L, Lu S, Fan X. Silencing of miR-302b-3p alleviates isoflurane-induced neuronal injury by regulating PTEN expression and AKT pathway. Brain Res Bull 2020; 168:89-99. [PMID: 33370590 DOI: 10.1016/j.brainresbull.2020.12.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 12/21/2020] [Accepted: 12/22/2020] [Indexed: 12/17/2022]
Abstract
Isoflurane (ISO) is an anesthesia and can result in neuron injury. A previous study has indicated that microRNA-302b-3p (miR-302b-3p) exerts a crucial function in modulating cerebral ischemia/reperfusion damage-induced neuronal injury. We sought to examine the role of miR-302b-3p in ISO-induced neuronal injury. In the present study, the effects of miR-302b-3p on ISO-induced neuron injury were investigated by MTT and TUNEL assays. We discovered that ISO stimulation led to miR-302b-3p upregulation and neuronal injury. MiR-302b-3p silencing exerted protective effects against ISO induced neuronal injury. In addition, phosphatase and tensin homologue deleted on chromosome 10 (PTEN) was a direct downstream target gene of miR-302b-3p. MiR-302b-3p targets the 3'UTR of PTEN to inhibit its mRNA expression, and further reduces its protein expression. Silencing of PTEN partially reversed the protecting effects of silenced miR-302b-3p on ISO-induced injury of hippocampal neurons. Further, miR-302b-3p activated the AKT signaling pathway in neurons exposed to ISO by downregulation of PTEN. Finally, in vivo studies revealed that silencing of miR-302b-3p alleviates ISO-induced injury and spatial memory impairment of rats partly by upregulation of PTEN. Overall, our findings indicated that miR-302b-3p targets PTEN to activate the AKT pathway, and silencing of miR-302b-3p plays a neuroprotective role in ISO-induced neuronal injury by the PTEN/AKT pathway, suggesting miR-302b-3p as a crucial target for ISO-induced neuronal injury.
Collapse
Affiliation(s)
- Linlin Li
- Department of Anesthesiology, China-Japan Union Hospital of Jilin University, No.126 Xiantai Street, Changchun, 130033, Jilin, China
| | - Shan Lu
- Department of Anesthesiology, China-Japan Union Hospital of Jilin University, No.126 Xiantai Street, Changchun, 130033, Jilin, China
| | - Xiaodi Fan
- Department of Anesthesiology, China-Japan Union Hospital of Jilin University, No.126 Xiantai Street, Changchun, 130033, Jilin, China.
| |
Collapse
|
16
|
Kato T, Yamada T, Nakamura H, Igarashi A, Anders RA, Sesaki H, Iijima M. The Loss of Nuclear PTEN Increases Tumorigenesis in a Preclinical Mouse Model for Hepatocellular Carcinoma. iScience 2020; 23:101548. [PMID: 33083717 PMCID: PMC7516300 DOI: 10.1016/j.isci.2020.101548] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 06/16/2020] [Accepted: 09/07/2020] [Indexed: 02/07/2023] Open
Abstract
The PTEN gene is highly mutated in many cancers, including hepatocellular carcinoma. The PTEN protein is located at different subcellular regions-PTEN at the plasma membrane suppresses PI3-kinase signaling in cell growth, whereas PTEN in the nucleus maintains genome integrity. Here, using nuclear PTEN-deficient mice, we analyzed the role of PTEN in the nucleus in hepatocellular carcinoma that is induced by carcinogen and oxidative stress-producing hepatotoxin. Upon oxidative stress, PTEN was accumulated in the nucleus of the liver, and this accumulation promoted repair of DNA damage in wild-type mice. In contrast, nuclear PTEN-deficient mice had increased DNA damage and accelerated hepatocellular carcinoma formation. Both basal and oxidative stress-induced localization of PTEN in the nucleus require ubiquitination of lysine 13 in PTEN. Taken together, these data suggest the critical role of nuclear PTEN in the protection from DNA damage and tumorigenesis in vivo.
Collapse
Affiliation(s)
- Takashi Kato
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Tatsuya Yamada
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Hideki Nakamura
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Atsushi Igarashi
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Robert A. Anders
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Hiromi Sesaki
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Miho Iijima
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Corresponding author
| |
Collapse
|
17
|
Liang Z, Tang Y, Li H, Xie Y, Zhan L. Association of phosphatase and tension homologue deleted on chromosome ten polymorphism rs1903858, but not serum levels with the risk of non-small-cell lung cancer: A case-control study. J Clin Lab Anal 2020; 34:e23328. [PMID: 32537792 PMCID: PMC7439348 DOI: 10.1002/jcla.23328] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 03/16/2020] [Accepted: 03/17/2020] [Indexed: 12/22/2022] Open
Abstract
Background To investigate the association between phosphatase and tension homologue deleted on chromosome ten (PTEN) gene polymorphisms and non–small‐cell lung cancer (NSCLC) and further identify whether these polymorphisms influence serum PTEN levels. Methods A total of 152 NSCLC patients and 124 healthy controls were included in the study. PTEN gene rs11202586 (T > C) and rs1903858 (A > G) polymorphisms were detected using the multiple single‐base extension technique (SNaPshot). The serum PTEN levels were determined using an enzyme‐linked immunosorbent assay (ELISA) kit. Results The rs1903858 AG, GG genotypes, and G allele were associated with a higher risk of NSCLC (odds ratio (OR) =2.079, 95% confidence interval (CI) = 1.087‐3.974, P = .027; OR = 1.897, 95%CI = 1.053‐3.419, P = .033; OR = 1.505, 95%CI = 1.065‐2.126, P = .020). Stratified analysis reveal that the rs1903858 GG genotype and G allele were associated with an increased risk of squamous cell carcinoma (SCC) (OR = 3.226, 95%CI = 1.075‐9.678, P = .037; OR = 1.873, 95%CI = 1.092‐3.212, P = .023). Among smokers, the rs1903858 G allele carriers have an increased risk of NSCLC (OR = 1.916, 95%CI = 1.023‐3.589, P = .042), but a decreased risk of NSCLC was found with the AT haplotype. With respect to the serum PTEN levels, no significant difference was noted between NSCLC patients and healthy controls in this study. Conclusions The study indicated that the rs1903858 gene polymorphism is associated with increased risk of NSCLC, particularly in SCC and smoker, and the haplotype AT was a protective factor for NSCLC. The serum PTEN levels were not associated with NSCLC.
Collapse
Affiliation(s)
- Zhen Liang
- Department of Clinical LaboratoryRed Cross Hospital of Yulin CityYulinChina
| | - Yuzhu Tang
- Department of Clinical LaboratoryRuikang Hospital Affiliated to Guangxi University of Chinese MedicineNanningChina
| | - Hao Li
- Department of Blood TransfusionPeople's Hospital of Guangxi Zhuang Autonomous RegionNanningGuangxiChina
| | - Youjun Xie
- Department of Clinical LaboratoryFirst Affiliated Hospital of Guangxi Medical UniversityNanningChina
| | - Lingling Zhan
- Department of Clinical LaboratoryFirst Affiliated Hospital of Guangxi Medical UniversityNanningChina
| |
Collapse
|
18
|
Kang SC, Jaini R, Hitomi M, Lee H, Sarn N, Thacker S, Eng C. Decreased nuclear Pten in neural stem cells contributes to deficits in neuronal maturation. Mol Autism 2020; 11:43. [PMID: 32487265 PMCID: PMC7268763 DOI: 10.1186/s13229-020-00337-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 04/13/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND PTEN, a syndromic autism spectrum disorder (ASD) risk gene, is mutated in approximately 10% of macrocephalic ASD cases. Despite the described genetic association between PTEN and ASD and ensuing studies, we continue to have a limited understanding of how PTEN disruption drives ASD pathogenesis and maintenance. METHODS We derived neural stem cells (NSCs) from the dentate gyrus (DG) of Ptenm3m4 mice, a model that recapitulates PTEN-ASD phenotypes. We subsequently characterized the expression of stemness factors, proliferation, and differentiation of neurons and glia in Ptenm3m4 NSCs using immunofluorescent and immunoblotting approaches. We also measured Creb phosphorylation by Western blot analysis and expression of Creb-regulated genes with qRT-PCR. RESULTS The m3m4 mutation decreases Pten localization to the nucleus and its global expression over time. Ptenm3m4 NSCs exhibit persistent stemness characteristics associated with increased proliferation and a resistance to neuronal maturation during differentiation. Given the increased proliferation of Ptenm3m4 NSCs, a significant increase in the population of immature neurons relative to mature neurons occurs, an approximately tenfold decrease in the ratio between the homozygous mutant and wildtype. There is an opposite pattern of differentiation in some Ptenm3m4 glia, specifically an increase in astrocytes. These aberrant differentiation patterns associate with changes in Creb activation in Ptenm3m4/m3m4 NSCs. We specifically observed loss of Creb phosphorylation at S133 in Ptenm3m4/m3m4 NSCs and a subsequent decrease in expression of Creb-regulated genes important to neuronal function (i.e., Bdnf). Interestingly, Bdnf treatment is able to partially rescue the stunted neuronal maturation phenotype in Ptenm3m4/m3m4 NSCs. CONCLUSIONS Constitutional disruption of Pten nuclear localization with subsequent global decrease in Pten expression generates abnormal patterns of differentiation, a stunting of neuronal maturation. The propensity of Pten disruption to restrain neurons to a more progenitor-like state may be an important feature contributing to PTEN-ASD pathogenesis.
Collapse
Affiliation(s)
- Shin Chung Kang
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Ritika Jaini
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA.,Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, 9500 Euclid Avenue, Cleveland, OH, 44195, USA.,Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - Masahiro Hitomi
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA.,Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, 9500 Euclid Avenue, Cleveland, OH, 44195, USA
| | - Hyunpil Lee
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Nick Sarn
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA.,Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - Stetson Thacker
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA.,Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, 9500 Euclid Avenue, Cleveland, OH, 44195, USA
| | - Charis Eng
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA. .,Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, 9500 Euclid Avenue, Cleveland, OH, 44195, USA. .,Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA. .,Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, 44195, USA. .,Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA.
| |
Collapse
|
19
|
Mutations in the KIF21B kinesin gene cause neurodevelopmental disorders through imbalanced canonical motor activity. Nat Commun 2020; 11:2441. [PMID: 32415109 PMCID: PMC7229210 DOI: 10.1038/s41467-020-16294-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 04/26/2020] [Indexed: 01/08/2023] Open
Abstract
KIF21B is a kinesin protein that promotes intracellular transport and controls microtubule dynamics. We report three missense variants and one duplication in KIF21B in individuals with neurodevelopmental disorders associated with brain malformations, including corpus callosum agenesis (ACC) and microcephaly. We demonstrate, in vivo, that the expression of KIF21B missense variants specifically recapitulates patients’ neurodevelopmental abnormalities, including microcephaly and reduced intra- and inter-hemispheric connectivity. We establish that missense KIF21B variants impede neuronal migration through attenuation of kinesin autoinhibition leading to aberrant KIF21B motility activity. We also show that the ACC-related KIF21B variant independently perturbs axonal growth and ipsilateral axon branching through two distinct mechanisms, both leading to deregulation of canonical kinesin motor activity. The duplication introduces a premature termination codon leading to nonsense-mediated mRNA decay. Although we demonstrate that Kif21b haploinsufficiency leads to an impaired neuronal positioning, the duplication variant might not be pathogenic. Altogether, our data indicate that impaired KIF21B autoregulation and function play a critical role in the pathogenicity of human neurodevelopmental disorder. Kinesins regulate intracellular transport and microtubule dynamics. Here, the authors show that KIF21B variants in humans associate with corpus callosum agenesis and microcephaly. Using mice and zebrafish, they showed the cellular mechanisms altered by the missense KIF21B variants.
Collapse
|
20
|
Ho J, Cruise ES, Dowling RJO, Stambolic V. PTEN Nuclear Functions. Cold Spring Harb Perspect Med 2020; 10:cshperspect.a036079. [PMID: 31712221 DOI: 10.1101/cshperspect.a036079] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
For years, clinical and basic researchers have been aware of the presence of PTEN in the nucleus in cell culture, animal models, and both healthy and diseased human tissues. Despite the early recognition of nuclear PTEN, the understanding of the mechanisms of its nuclear localization, function in the nucleus, and importance in biology and human disease has been lacking. Over the last decade, emerging concepts for the complex involvement of nuclear PTEN in a variety of processes, including genome maintenance and DNA repair, cell-cycle control, gene expression, and DNA replication, are illuminating what could prove to be the key path toward a full understanding of PTEN function in health and disease. Dysregulation of nuclear PTEN is now considered an important aspect of the etiology of many pathologic conditions, prompting reconsideration of the therapeutic approaches aimed at countering the consequences of PTEN deficiency. This new knowledge is fueling the development of innovative therapeutic modalities for a broad spectrum of human conditions, from cancer and metabolic diseases, to neurological disorders and autism.
Collapse
Affiliation(s)
- Jason Ho
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario M5G 1L7, Canada
| | - Edward S Cruise
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Ryan J O Dowling
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario M5G 1L7, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Vuk Stambolic
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario M5G 1L7, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| |
Collapse
|
21
|
Effect of adenovirus-mediated overexpression of PTEN on brain oxidative damage and neuroinflammation in a rat kindling model of epilepsy. Chin Med J (Engl) 2020; 132:2628-2635. [PMID: 31658159 PMCID: PMC6846256 DOI: 10.1097/cm9.0000000000000496] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Background: Epilepsy is a chronic and severe neurological disorder. Phosphatase and tensin homolog deleted on chromosome ten (PTEN)-deficient mice exhibit learning and memory deficits and spontaneous epilepsy. The aim of this study was to investigate the role of PTEN in brain oxidative damage and neuroinflammation in a rat model of epilepsy. Methods: An adenovirus (Ad)-PTEN vector was constructed, and status epilepticus (SE) was induced in 41 model rats using lithium chloride-pilocarpine. Thirty-six SE rats were then allocated into the Ad-PTEN, Ad-LacZ, and SE groups, those were administered intracerebroventricular injections of Ad-PTEN, Ad-enhanced green fluorescent protein, and phosphate buffer saline, respectively. The normal group was comprised of healthy Sprague-Dawley rats. Nissl staining was conducted to evaluate neuronal damage, and immunohistochemistry was conducted to observe the morphology of cells in the hippocampal CA1 region and the distribution of ionized calcium-binding adaptor molecule 1 (Iba1) and ED1 (rat homologue of human CD68). Levels of apoptosis-related proteins, inflammatory-related factors, and oxidative stress-related markers (reactive oxygen species [ROS], glutathione [GSH], superoxide dismutase [SOD], and malondialdehyde [MDA]) were measured. Comparisons between multiple groups were conducted using one-way analysis of variance (ANOVA), and pairwise comparisons after ANOVA were conducted using the Tukey multiple comparisons test. Results: After SE induction, PTEN expression in the rat brain exhibited a four-fold decrease (P = 0.000) and the expression of both Iba1 and ED1 increased. Furthermore, significant neuronal loss, oxidative damage, and neuroinflammation were observed in the SE rat brain. After intracerebroventricular injection of Ad-PTEN, PTEN expression exhibited a three-fold increase (P = 0.003), and the expression of both Iba1 and ED1 decreased. Additionally, neurons were restored and neuronal apoptosis was inhibited. Furthermore, ROS and MDA levels decreased, GSH level and SOD activity increased, and neuroinflammation was reduced. Conclusion: Our study demonstrated that brain oxidative damage and neuroinflammation in SE rats were ameliorated by intracerebroventricular injection of Ad-PTEN.
Collapse
|
22
|
Rademacher S, Eickholt BJ. PTEN in Autism and Neurodevelopmental Disorders. Cold Spring Harb Perspect Med 2019; 9:cshperspect.a036780. [PMID: 31427284 DOI: 10.1101/cshperspect.a036780] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Phosphatase and tensin homolog (PTEN) is a classical tumor suppressor that antagonizes phosphatidylinositol 3-phosphate kinase (PI3K)/AKT signaling. Although there is a strong association of PTEN germline mutations with cancer syndromes, they have also been described in a subset of patients with autism spectrum disorders with macrocephaly characterized by impairments in social interactions and communication, repetitive behavior and, occasionally, epilepsy. To investigate PTEN's role during neurodevelopment and its implication for autism, several conditional Pten knockout mouse models have been generated. These models are valuable tools to understand PTEN's spatiotemporal roles during neurodevelopment. In this review, we will highlight the anatomical and phenotypic results from animal studies and link them to cellular and molecular findings.
Collapse
Affiliation(s)
- Sebastian Rademacher
- Institute of Biochemistry, Charité - Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Britta J Eickholt
- Institute of Biochemistry, Charité - Universitätsmedizin Berlin, 10117 Berlin, Germany
| |
Collapse
|
23
|
Itoh K, Murata D, Kato T, Yamada T, Araki Y, Saito A, Adachi Y, Igarashi A, Li S, Pletnikov M, Huganir RL, Watanabe S, Kamiya A, Iijima M, Sesaki H. Brain-specific Drp1 regulates postsynaptic endocytosis and dendrite formation independently of mitochondrial division. eLife 2019; 8:44739. [PMID: 31603426 PMCID: PMC6824841 DOI: 10.7554/elife.44739] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Accepted: 10/10/2019] [Indexed: 12/31/2022] Open
Abstract
Dynamin-related protein 1 (Drp1) divides mitochondria as a mechano-chemical GTPase. However, the function of Drp1 beyond mitochondrial division is largely unknown. Multiple Drp1 isoforms are produced through mRNA splicing. One such isoform, Drp1ABCD, contains all four alternative exons and is specifically expressed in the brain. Here, we studied the function of Drp1ABCD in mouse neurons in both culture and animal systems using isoform-specific knockdown by shRNA and isoform-specific knockout by CRISPR/Cas9. We found that the expression of Drp1ABCD is induced during postnatal brain development. Drp1ABCD is enriched in dendritic spines and regulates postsynaptic clathrin-mediated endocytosis by positioning the endocytic zone at the postsynaptic density, independently of mitochondrial division. Drp1ABCD loss promotes the formation of ectopic dendrites in neurons and enhanced sensorimotor gating behavior in mice. These data reveal that Drp1ABCD controls postsynaptic endocytosis, neuronal morphology and brain function.
Collapse
Affiliation(s)
- Kie Itoh
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, United States
| | - Daisuke Murata
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, United States
| | - Takashi Kato
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, United States
| | - Tatsuya Yamada
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, United States
| | - Yoichi Araki
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, United States
| | - Atsushi Saito
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, United States
| | - Yoshihiro Adachi
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, United States
| | - Atsushi Igarashi
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, United States
| | - Shuo Li
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, United States
| | - Mikhail Pletnikov
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, United States.,Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, United States
| | - Richard L Huganir
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, United States
| | - Shigeki Watanabe
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, United States.,Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, United States
| | - Atsushi Kamiya
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, United States
| | - Miho Iijima
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, United States
| | - Hiromi Sesaki
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, United States
| |
Collapse
|
24
|
Palumbo E, Zhao B, Xue B, Uversky VN, Davé V. Analyzing aggregation propensities of clinically relevant PTEN mutants: a new culprit in pathogenesis of cancer and other PTENopathies. J Biomol Struct Dyn 2019; 38:2253-2266. [PMID: 31232187 DOI: 10.1080/07391102.2019.1630005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
While studies on pathological protein aggregation are largely limited to neurodegenerative disease, emerging evidence suggests that other diseases are also associated with pathogenic protein aggregation. For example, tumor suppressor protein p53, and its mutant conformers, undergo protein aggregation, exacerbating the cancer phenotype. These findings raise the possibility that inactivation of tumor suppressors via protein aggregation may participate in cancer and other disease pathologies. Since tumor suppressor protein PTEN has similar functions to p53, and is mutated in multiple diseases, we examined the aggregation propensity of PTEN wild-type and 1523 clinically relevant PTEN mutants. Applying computational tools to PTEN mutation databases revealed that PTEN wild-type protein can aggregate under physiological conditions, and 274 distinct PTEN mutants had increased aggregation propensity. To understand the mechanism underlying PTEN conformer aggregation, we analyzed the physicochemical properties of these 274 PTEN mutants and defined their aggregation potential. We conclude that increased aggregation propensity of select PTEN mutants may contribute to disease phenotypes. Our studies have built the foundation for interrogating the aggregation potential of these select mutants in cancers and in PTENopathies. Elucidating the pathogenic mechanisms associated with aggregation-prone PTEN conformers will aid in developing therapies that target PTEN-aggregates in multiple diseases.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Emily Palumbo
- Department of Pathology and Cell Biology, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Bi Zhao
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, FL, USA
| | - Bin Xue
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, FL, USA
| | - Vladimir N Uversky
- Department of Molecular Medicine, Morsani College of Medicine, Byrd Alzheimer's Institute, University of South Florida, Tampa, FL, USA.,Institute for Biological Instrumentation of the Russian Academy of Sciences, Pushchino, Moscow Region, Russia
| | - Vrushank Davé
- Department of Pathology and Cell Biology, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| |
Collapse
|