1
|
Fuchs J, Fernández-Arévalo U, Demmer U, Díaz E, Ullmann GM, Pierik AJ, Ermler U, Boll M. Enzymatic Birch reduction via hydrogen atom transfer at [4Fe-4S]-OH 2 and [8Fe-9S] clusters. Nat Commun 2025; 16:3236. [PMID: 40185728 PMCID: PMC11971306 DOI: 10.1038/s41467-025-58418-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 03/20/2025] [Indexed: 04/07/2025] Open
Abstract
The alkali metal- and ammonia-dependent Birch reduction is the classical synthetic method for achieving dihydro additions to arenes, typically yielding 1,4-cyclodienes. A mild biological alternative to this process are 1,5-dienoyl-coenzyme A (CoA)-forming class I and II benzoyl-CoA reductases (BCRs), widely abundant key enzymes in the biodegradation of aromatic compounds at anoxic environments. To obtain a comprehensive mechanistic understanding of class I BCR catalysis, we produced the active site subunits from a denitrifying bacterium and determined the X-ray structure of its substrate and product complexes at 1.4 Å revealing non-canonical double-cubane [8Fe-9S] and active site aqua-[4Fe-4S] clusters. Together with kinetic, spectroscopic and QM/MM studies, we provide evidence for a radical mechanism with a [4Fe-4S] cluster-bound water molecule acting as hydrogen atom and electron donor at potentials beyond the biological redox window. An analogous Birch-like radical mechanism is applied by class II BCRs with the catalytic water bound to a tungsten-bis-metallopterin cofactor. The use of activated, metal-bound water ligands as hydrogen atom donor serves as a basic blueprint for future enzymatic or biomimetic Birch reduction processes.
Collapse
Affiliation(s)
- Jonathan Fuchs
- Faculty of Biology - Microbiology, University of Freiburg, 79104, Freiburg, Germany
| | - Unai Fernández-Arévalo
- Biotechnology Department, Centro de Investigaciones Biológicas Margarita Salas-CSIC, 28040, Madrid, Spain
| | - Ulrike Demmer
- Department of Molecular Membrane Biology, Max Planck Institute of Biophysics, 60438, Frankfurt am Main, Germany
| | - Eduardo Díaz
- Biotechnology Department, Centro de Investigaciones Biológicas Margarita Salas-CSIC, 28040, Madrid, Spain
| | - G Matthias Ullmann
- Faculty of Computational Biochemistry, University of Bayreuth, 95447, Bayreuth, Germany
| | - Antonio J Pierik
- Department of Chemistry, RPTU Kaiserslautern-Landau, 67663, Kaiserslautern, Germany
| | - Ulrich Ermler
- Department of Molecular Membrane Biology, Max Planck Institute of Biophysics, 60438, Frankfurt am Main, Germany
| | - Matthias Boll
- Faculty of Biology - Microbiology, University of Freiburg, 79104, Freiburg, Germany.
| |
Collapse
|
2
|
Ding J, Liu F, Zeng J, Gu H, Huang J, Wu B, Shu L, Yan Q, He Z, Wang C. Depth heterogeneity of lignin-degrading microbiome and organic carbon processing in mangrove sediments. NPJ Biofilms Microbiomes 2025; 11:5. [PMID: 39762227 PMCID: PMC11704145 DOI: 10.1038/s41522-024-00638-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 12/18/2024] [Indexed: 01/11/2025] Open
Abstract
Mangrove ecosystems are globally recognized for their blue carbon (C) sequestration capacity. Lignocellulosic detritus constitutes the primary C input to mangrove sediments, but the microbial processes involved in its bioprocessing remain unclear. Using lignocellulosic analysis and metagenomic sequencing across five 100-cm sediment cores, we found a high proportion of lignin (95.0-97.7%) within sediments' lignocellulosic detritus, with a small fraction of lignin-degrading genes (1.24-1.98%) of lignin-degrading genes within the carbohydrate-active enzyme coding genes. Depth stratification was observed in genes and microbial communities involved in lignin depolymerization and mineralization of lignin monomer derivatives. Further microbe-centered analyses of biomass production rates and adaptive metabolism revealed diminished microbial C use efficiency potential and augmented "enzyme latch" with increasing sediment depths. These findings enhance our understanding of sedimentary organic C cycling and storage in coastal blue C ecosystems.
Collapse
Affiliation(s)
- Jijuan Ding
- School of Environmental Science and Engineering, Marine Synthetic Ecology Research Center, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory for Biocontrol, Sun Yat-sen University, 510006, Guangzhou, China
| | - Fei Liu
- School of Environmental Science and Engineering, Marine Synthetic Ecology Research Center, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory for Biocontrol, Sun Yat-sen University, 510006, Guangzhou, China
| | - Jiaxiong Zeng
- School of Environmental Science and Engineering, Marine Synthetic Ecology Research Center, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory for Biocontrol, Sun Yat-sen University, 510006, Guangzhou, China
| | - Hang Gu
- School of Environmental Science and Engineering, Marine Synthetic Ecology Research Center, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory for Biocontrol, Sun Yat-sen University, 510006, Guangzhou, China
| | - Jing Huang
- School of Environmental Science and Engineering, Marine Synthetic Ecology Research Center, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory for Biocontrol, Sun Yat-sen University, 510006, Guangzhou, China
| | - Bo Wu
- School of Environmental Science and Engineering, Marine Synthetic Ecology Research Center, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory for Biocontrol, Sun Yat-sen University, 510006, Guangzhou, China
| | - Longfei Shu
- School of Environmental Science and Engineering, Marine Synthetic Ecology Research Center, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory for Biocontrol, Sun Yat-sen University, 510006, Guangzhou, China
| | - Qingyun Yan
- School of Environmental Science and Engineering, Marine Synthetic Ecology Research Center, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory for Biocontrol, Sun Yat-sen University, 510006, Guangzhou, China
| | - Zhili He
- School of Environmental Science and Engineering, Marine Synthetic Ecology Research Center, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory for Biocontrol, Sun Yat-sen University, 510006, Guangzhou, China
| | - Cheng Wang
- School of Environmental Science and Engineering, Marine Synthetic Ecology Research Center, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory for Biocontrol, Sun Yat-sen University, 510006, Guangzhou, China.
| |
Collapse
|
3
|
Laczi K, Bodor A, Kovács T, Magyar B, Perei K, Rákhely G. Methanogenesis coupled hydrocarbon biodegradation enhanced by ferric and sulphate ions. Appl Microbiol Biotechnol 2024; 108:449. [PMID: 39207532 PMCID: PMC11362221 DOI: 10.1007/s00253-024-13278-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 08/05/2024] [Accepted: 08/08/2024] [Indexed: 09/04/2024]
Abstract
Bioremediation provides an environmentally sound solution for hydrocarbon removal. Although bioremediation under anoxic conditions is slow, it can be coupled with methanogenesis and is suitable for energy recovery. By altering conditions and supplementing alternative terminal electron acceptors to the system to induce syntrophic partners of the methanogens, this process can be enhanced. In this study, we investigated a hydrocarbon-degrading microbial community derived from chronically contaminated soil. Various hydrocarbon mixtures were used during our experiments in the presence of different electron acceptors. In addition, we performed whole metagenome sequencing to identify the main actors of hydrocarbon biodegradation in the samples. Our results showed that the addition of ferric ions or sulphate increased the methane yield. Furthermore, the addition of CO2, ferric ion or sulphate enhanced the biodegradation of alkanes. A significant increase in biodegradation was observed in the presence of ferric ions or sulphate in the case of all aromatic components, while naphthalene and phenanthrene degradation was also enhanced by CO2. Metagenome analysis revealed that Cellulomonas sp. is the most abundant in the presence of alkanes, while Ruminococcus and Faecalibacterium spp. are prevalent in aromatics-supplemented samples. From the recovery of 25 genomes, it was concluded that the main pathway of hydrocarbon activation was fumarate addition in both Cellulomonas, Ruminococcus and Faecalibacterium. Chloroflexota bacteria can utilise the central metabolites of aromatics biodegradation via ATP-independent benzoyl-CoA reduction. KEY POINTS: • Methanogenesis and hydrocarbon biodegradation were enhanced by Fe3+ or SO42- • Cellulomonas, Ruminococcus and Faecalibacterium can be candidates for the main hydrocarbon degraders • Chloroflexota bacteria can utilise the central metabolites of aromatics degradation.
Collapse
Affiliation(s)
- Krisztián Laczi
- Department of Biotechnology, University of Szeged, Szeged, Hungary.
- Biological Research Centre, Institute of Plant Biology, Hungarian Research Network, Szeged, Hungary.
| | - Attila Bodor
- Department of Biotechnology, University of Szeged, Szeged, Hungary
- Biological Research Centre, Institute of Biophysics, Hungarian Research Network, Szeged, Hungary
| | - Tamás Kovács
- Department of Biotechnology, Nanophage Therapy Center, Enviroinvest Corporation, Pécs, Hungary
| | | | - Katalin Perei
- Department of Biotechnology, University of Szeged, Szeged, Hungary
| | - Gábor Rákhely
- Department of Biotechnology, University of Szeged, Szeged, Hungary
- Biological Research Centre, Institute of Biophysics, Hungarian Research Network, Szeged, Hungary
| |
Collapse
|
4
|
Hernández-Ospina DA, Osorio-González CS, Miri S, Kaur Brar S. New perspectives on the anaerobic degradation of BTEX: Mechanisms, pathways, and intermediates. CHEMOSPHERE 2024; 361:142490. [PMID: 38821131 DOI: 10.1016/j.chemosphere.2024.142490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/27/2024] [Accepted: 05/29/2024] [Indexed: 06/02/2024]
Abstract
Aromatic hydrocarbons like benzene, toluene, xylene, and ethylbenzene (BTEX) can escape into the environment from oil and gas operations and manufacturing industries posing significant health risks to humans and wildlife. Unlike conventional clean-up methods used, biological approaches such as bioremediation can provide a more energy and labour-efficient and environmentally friendly option for sensitive areas such as nature reserves and cities, protecting biodiversity and public health. BTEX contamination is often concentrated in the subsurface of these locations where oxygen is rapidly depleted, and biodegradation relies on anaerobic processes. Thus, it is critical to understand the anaerobic biodegradation characteristics as it has not been explored to a major extent. This review presents novel insights into the degradation mechanisms under anaerobic conditions and presents a detailed description and interconnection between them. BTEX degradation can follow four activation mechanisms: hydroxylation, carboxylation, methylation, and fumarate addition. Hydroxylation is one of the mechanisms that explains the transformation of benzene into phenol, toluene into benzyl alcohol or p-cresol, and ethylbenzene into 1-phenylethanol. Carboxylation to benzoate is thought to be the primary mechanism of degradation for benzene. Despite being poorly understood, benzene methylation has been also reported. Moreover, fumarate addition is the most widely reported mechanism, present in toluene, ethylbenzene, and xylene degradation. Further research efforts are required to better elucidate new and current alternative catabolic pathways. Likewise, a comprehensive analysis of the enzymes involved as well as the development of advance tools such as omic tools can reveal bottlenecks degradation steps and create more effective on-site strategies to address BTEX pollution.
Collapse
Affiliation(s)
- Diego A Hernández-Ospina
- Department of Civil Engineering, Lassonde School of Engineering, York University, North York, Toronto, Ontario, Canada, M3J 1P3
| | - Carlos S Osorio-González
- Department of Civil Engineering, Lassonde School of Engineering, York University, North York, Toronto, Ontario, Canada, M3J 1P3
| | - Saba Miri
- Department of Civil Engineering, Lassonde School of Engineering, York University, North York, Toronto, Ontario, Canada, M3J 1P3
| | - Satinder Kaur Brar
- Department of Civil Engineering, Lassonde School of Engineering, York University, North York, Toronto, Ontario, Canada, M3J 1P3.
| |
Collapse
|
5
|
Mrnjavac N, Nagies FSP, Wimmer JLE, Kapust N, Knopp MR, Trost K, Modjewski L, Bremer N, Mentel M, Esposti MD, Mizrahi I, Allen JF, Martin WF. The radical impact of oxygen on prokaryotic evolution-enzyme inhibition first, uninhibited essential biosyntheses second, aerobic respiration third. FEBS Lett 2024; 598:1692-1714. [PMID: 38750628 PMCID: PMC7616280 DOI: 10.1002/1873-3468.14906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/12/2024] [Accepted: 04/19/2024] [Indexed: 07/15/2024]
Abstract
Molecular oxygen is a stable diradical. All O2-dependent enzymes employ a radical mechanism. Generated by cyanobacteria, O2 started accumulating on Earth 2.4 billion years ago. Its evolutionary impact is traditionally sought in respiration and energy yield. We mapped 365 O2-dependent enzymatic reactions of prokaryotes to phylogenies for the corresponding 792 protein families. The main physiological adaptations imparted by O2-dependent enzymes were not energy conservation, but novel organic substrate oxidations and O2-dependent, hence O2-tolerant, alternative pathways for O2-inhibited reactions. Oxygen-dependent enzymes evolved in ancestrally anaerobic pathways for essential cofactor biosynthesis including NAD+, pyridoxal, thiamine, ubiquinone, cobalamin, heme, and chlorophyll. These innovations allowed prokaryotes to synthesize essential cofactors in O2-containing environments, a prerequisite for the later emergence of aerobic respiratory chains.
Collapse
Affiliation(s)
- Natalia Mrnjavac
- Institute of Molecular Evolution, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Düsseldorf, Germany
| | - Falk S P Nagies
- Institute of Molecular Evolution, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Düsseldorf, Germany
| | - Jessica L E Wimmer
- Institute of Molecular Evolution, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Düsseldorf, Germany
| | - Nils Kapust
- Institute of Molecular Evolution, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Düsseldorf, Germany
| | - Michael R Knopp
- Institute of Molecular Evolution, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Düsseldorf, Germany
| | - Katharina Trost
- Institute of Molecular Evolution, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Düsseldorf, Germany
| | - Luca Modjewski
- Institute of Molecular Evolution, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Düsseldorf, Germany
| | - Nico Bremer
- Institute of Molecular Evolution, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Düsseldorf, Germany
| | - Marek Mentel
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovakia
| | | | - Itzhak Mizrahi
- Department of Life Sciences, Ben-Gurion University of the Negev and The National Institute for Biotechnology in the Negev, Be'er-Sheva, Israel
| | - John F Allen
- Research Department of Genetics, Evolution and Environment, University College London, UK
| | - William F Martin
- Institute of Molecular Evolution, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Düsseldorf, Germany
| |
Collapse
|
6
|
Haq IU, Christensen A, Fixen KR. Evolution of Rhodopseudomonas palustris to degrade halogenated aromatic compounds involves changes in pathway regulation and enzyme specificity. Appl Environ Microbiol 2024; 90:e0210423. [PMID: 38206012 PMCID: PMC10880631 DOI: 10.1128/aem.02104-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 12/15/2023] [Indexed: 01/12/2024] Open
Abstract
Halogenated aromatic compounds are used in a variety of industrial applications but can be harmful to humans and animals when released into the environment. Microorganisms that degrade halogenated aromatic compounds anaerobically have been isolated but the evolutionary path that they may have taken to acquire this ability is not well understood. A strain of the purple nonsulfur bacterium, Rhodopseudomonas palustris, RCB100, can use 3-chlorobenzoate (3-CBA) as a carbon source whereas a closely related strain, CGA009, cannot. To reconstruct the evolutionary events that enabled RCB100 to degrade 3-CBA, we isolated an evolved strain derived from CGA009 capable of growing on 3-CBA. Comparative whole-genome sequencing of the evolved strain and RCB100 revealed both strains contained large deletions encompassing badM, a transcriptional repressor of genes for anaerobic benzoate degradation. It was previously shown that in strain RCB100, a single nucleotide change in an alicyclic acid coenzyme A ligase gene, named aliA, gives rise to a variant AliA enzyme that has high activity with 3-CBA. When the RCB100 aliA allele and a deletion in badM were introduced into R. palustris CGA009, the resulting strain grew on 3-CBA at a similar rate as RCB100. This work provides an example of pathway evolution in which regulatory constraints were overcome to enable the selection of a variant of a promiscuous enzyme with enhanced substrate specificity.IMPORTANCEBiodegradation of man-made compounds often involves the activity of promiscuous enzymes whose native substrate is structurally similar to the man-made compound. Based on the enzymes involved, it is possible to predict what microorganisms are likely involved in biodegradation of anthropogenic compounds. However, there are examples of organisms that contain the required enzyme(s) and yet cannot metabolize these compounds. We found that even when the purple nonsulfur bacterium, Rhodopseudomonas palustris, encodes all the enzymes required for degradation of a halogenated aromatic compound, it is unable to metabolize that compound. Using adaptive evolution, we found that a regulatory mutation and a variant of promiscuous enzyme with increased substrate specificity were required. This work provides insight into how an environmental isolate evolved to use a halogenated aromatic compound.
Collapse
Affiliation(s)
- Irshad Ul Haq
- Department of Plant and Microbial Biology, College of Biological Sciences, University of Minnesota, Saint Paul, Minnesota, USA
- Department of Plant and Microbial Biology, BioTechnology Institute, University of Minnesota, Saint Paul, Minnesota, USA
| | - Annika Christensen
- Department of Plant and Microbial Biology, College of Biological Sciences, University of Minnesota, Saint Paul, Minnesota, USA
- Department of Plant and Microbial Biology, BioTechnology Institute, University of Minnesota, Saint Paul, Minnesota, USA
| | - Kathryn R. Fixen
- Department of Plant and Microbial Biology, College of Biological Sciences, University of Minnesota, Saint Paul, Minnesota, USA
- Department of Plant and Microbial Biology, BioTechnology Institute, University of Minnesota, Saint Paul, Minnesota, USA
| |
Collapse
|
7
|
Antonioli R, de Faria Poloni J, Riveros Escalona MA, Dorn M. Functional response of microbial communities in lab-controlled oil-contaminated marine sediment. Mol Omics 2023; 19:756-768. [PMID: 37477619 DOI: 10.1039/d3mo00007a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/22/2023]
Abstract
Crude oil contamination is one of the biggest problems in modern society. As oil enters into contact with the environment, especially if the point of contact is a body of water, it begins a weathering process by mixing and spreading. This is dangerous to local living organisms' communities and can impact diversity. However, despite unfavorable conditions, some microorganisms in these environments can survive using hydrocarbons as a nutrient source. Thus, understanding the local community dynamics of contaminated areas is essential. In this work, we analyzed the 16S rRNA amplicon sequencing and metatranscriptomic data of uncontaminated versus contaminated shallow marine sediment from publicly available datasets. We investigated the local population's taxonomic composition, species diversity, and fluctuations over time. Co-expression analysis coupled with functional enrichment showed us a prevalence of hydrocarbon-degrading functionality while keeping a distinct transcriptional profile between the late stages of oil contamination and the uncontaminated control. Processes related to the degradation of aromatic compounds and the metabolism of propanoate and butanoate were coupled with evidence of enhanced activity such as flagellar assembly and two-component system. Many enzymes of the anaerobic toluene degradation pathways were also enriched in our results. Furthermore, our diversity and taxonomical analyses showed a prevalence of the class Desulfobacteria, indicating interesting targets for bioremediation applications on marine sediment.
Collapse
Affiliation(s)
- Regis Antonioli
- Center for Biotechnology, Federal University of Rio Grande do Sul, 91501-970, Porto Alegre, Brazil
| | - Joice de Faria Poloni
- School of Health and Life Sciences, Pontifical Catholic University of Rio Grande do Sul, 90619-900, Porto Alegre, Brazil
| | | | - Márcio Dorn
- Center for Biotechnology, Federal University of Rio Grande do Sul, 91501-970, Porto Alegre, Brazil
- National Institute of Science and Technology - Forensic Science, Porto Alegre, Brazil
- Institute of Informatics, Federal University of Rio Grande do Sul, 91501-970, Porto Alegre, Brazil.
| |
Collapse
|
8
|
Salter C, Westrick JA, Chaganti SR, Birbeck JA, Peraino NJ, Weisener CG. Elucidating microbial mechanisms of microcystin-LR degradation in Lake Erie beach sand through metabolomics and metatranscriptomics. WATER RESEARCH 2023; 247:120816. [PMID: 37952399 DOI: 10.1016/j.watres.2023.120816] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/11/2023] [Accepted: 10/29/2023] [Indexed: 11/14/2023]
Abstract
As one of five Laurentian Great Lakes, Lake Erie ranks among the top freshwater drinking sources and ecosystems globally. Historical and current agriculture mismanagement and climate change sustains the environmental landscape for late summer cyanobacterial harmful algal blooms, and consequently, cyanotoxins such as microcystin (MC). Microcystin microbial degradation is a promising mitigation strategy, however the mechanisms controlling the breakdown of MCs in Lake Erie are not well understood. Pelee Island, Ontario, Canada is located in the western basin of Lake Erie and the bacterial community in the sand has demonstrated the capacity of metabolizing the toxin. Through a multi-omic approach, the metabolic, functional and taxonomical signatures of the Pelee Island microbial community during MC-LR degradation was investigated over a 48-hour period to comprehensively study the degradation mechanism. Cleavage of bonds surrounding nitrogen atoms and the upregulation of nitrogen deamination (dadA, alanine dehydrogenase, leucine dehydrogenase) and assimilation genes (glnA, gltB) suggests a targeted isolation of nitrogen by the microbial community for energy production. Methylotrophic pathways RuMP and H4MPT control assimilation and dissimilation of carbon, respectively and differential abundance of Methylophilales indicates an interconnected role through electron exchange of denitrification and methylotrophic pathways. The detected metabolites did not resolve a clear breakdown pathway, but rather the diversity of products in combination with taxonomic and functional results supports that a variety of strategies are applied, such as epoxidation, hydroxylation, and aromatic degradation. Annual repeated exposure to the toxin may have allowed the community to adaptatively establish a novel pathway through functional plasticity and horizontal gene transfer. The culmination of these results reveals the complexity of the Pelee Island sand community and supports a dynamic and cooperative metabolism between microbial species to achieve MC degradation.
Collapse
Affiliation(s)
- Chelsea Salter
- Great Lakes Institute for Environmental Research, University of Windsor, 401 Sunset Avenue, Windsor, ON N9B 3P4, Canada.
| | - Judy A Westrick
- Lumigen Instrument Center, Department of Chemistry, Wayne State University, Detroit, MI 48202, United States
| | - Subba Rao Chaganti
- Cooperative Institute for Great Lakes Research, School for Environment and Sustainability, University of Michigan, 440 Church Street, Ann Arbor, MI 48109, United States
| | - Johnna A Birbeck
- Lumigen Instrument Center, Department of Chemistry, Wayne State University, Detroit, MI 48202, United States
| | - Nicholas J Peraino
- Lumigen Instrument Center, Department of Chemistry, Wayne State University, Detroit, MI 48202, United States
| | - Christopher G Weisener
- Great Lakes Institute for Environmental Research, University of Windsor, 401 Sunset Avenue, Windsor, ON N9B 3P4, Canada
| |
Collapse
|
9
|
Cabral L, Giovanella P, Pellizzer EP, Teramoto EH, Kiang CH, Sette LD. Microbial communities in petroleum-contaminated sites: Structure and metabolisms. CHEMOSPHERE 2022; 286:131752. [PMID: 34426136 DOI: 10.1016/j.chemosphere.2021.131752] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 06/24/2021] [Accepted: 07/30/2021] [Indexed: 06/13/2023]
Abstract
Over recent decades, hydrocarbon concentrations have been augmented in soil and water, mainly derived from accidents or operations that input crude oil and petroleum into the environment. Different techniques for remediation have been proposed and used to mitigate oil contamination. Among the available environmental recovery approaches, bioremediation stands out since these hydrocarbon compounds can be used as growth substrates for microorganisms. In turn, microorganisms can play an important role with significant contributions to the stabilization of impacted areas. In this review, we present the current knowledge about responses from natural microbial communities (using DNA barcoding, multiomics, and functional gene markers) and bioremediation experiments (microcosm and mesocosm) conducted in the presence of petroleum and chemical dispersants in different samples, including soil, sediment, and water. Additionally, we present metabolic mechanisms for aerobic/anaerobic hydrocarbon degradation and alternative pathways, as well as a summary of studies showing functional genes and other mechanisms involved in petroleum biodegradation processes.
Collapse
Affiliation(s)
- Lucélia Cabral
- Laboratório de Micologia Ambiental e Industrial (LAMAI), Departamento de Biologia Geral e Aplicada, Instituto de Biociências, Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), Rio Claro, SP, Brazil
| | - Patricia Giovanella
- Laboratório de Micologia Ambiental e Industrial (LAMAI), Departamento de Biologia Geral e Aplicada, Instituto de Biociências, Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), Rio Claro, SP, Brazil; Centro de Estudos Ambientais (CEA), Instituto de Biociências, Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), Rio Claro, SP, Brazil
| | - Elisa Pais Pellizzer
- Laboratório de Micologia Ambiental e Industrial (LAMAI), Departamento de Biologia Geral e Aplicada, Instituto de Biociências, Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), Rio Claro, SP, Brazil
| | - Elias Hideo Teramoto
- Centro de Estudos Ambientais (CEA), Instituto de Biociências, Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), Rio Claro, SP, Brazil; Laboratório de Estudos de Bacias (LEBAC), Departamento de Geologia Aplicada, Instituto de Geociências e Ciências Exatas, Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), Rio Claro, SP, Brazil
| | - Chang Hung Kiang
- Centro de Estudos Ambientais (CEA), Instituto de Biociências, Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), Rio Claro, SP, Brazil; Laboratório de Estudos de Bacias (LEBAC), Departamento de Geologia Aplicada, Instituto de Geociências e Ciências Exatas, Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), Rio Claro, SP, Brazil
| | - Lara Durães Sette
- Laboratório de Micologia Ambiental e Industrial (LAMAI), Departamento de Biologia Geral e Aplicada, Instituto de Biociências, Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), Rio Claro, SP, Brazil; Centro de Estudos Ambientais (CEA), Instituto de Biociências, Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), Rio Claro, SP, Brazil.
| |
Collapse
|
10
|
Louie TS, Pavlik EJ, Häggblom MM. Genome analysis of Thauera chlorobenzoica strain 3CB-1 T, a halobenzoate-degrading bacterium isolated from aquatic sediment. Arch Microbiol 2021; 203:5095-5104. [PMID: 34302506 DOI: 10.1007/s00203-021-02497-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 07/11/2021] [Accepted: 07/15/2021] [Indexed: 11/24/2022]
Abstract
The genus Thauera is characterized by several species and strains with the ability to degrade a variety of aromatic compounds under denitrifying conditions. Thauera chlorobenzoica strain 3CB-1T, isolated from river sediment, has the unique ability to degrade a variety of halobenzoates, such as 3-chlorobenzoate, 3-bromobenzoate, 3-iodobenzoate, and 2-fluorobenzoate, coupled to nitrate reduction. The genome of T. chlorobenzoica strain 3CB-1T has been sequenced, allowing us to gain insights into the molecular basis for the anaerobic degradation of (halo)aromatic compounds. The 3.77-Mb genome contains 3584 genes; 3514 are protein-coding genes of which 198 are likely associated with degradation of aromatic compounds. It has a G + C content of 67.25%. The genome contains two sets of CoA reductase gene clusters, both belonging to class I benzoate-CoA reductases (BCRs). The genes in one of the two clusters differ from the typical BCRs, with low sequence identities, suggesting they might have different substrate specificities. The genome also contains four benzoate-CoA ligase genes. One likely encodes a 3-hydroxybenzoate-CoA ligase, and two others group together with benzoate-CoA ligases from Thauera aromatica. The fourth has a 77% identity to the mbdA gene from Azoarcus sp. CIB, is absent in the T. aromatica genome, and potentially encodes a halobenzoate-CoA ligase. 3-Chlorobenzoate is reductively dechlorinated in T. chlorobenzoica by a benzoyl-CoA reductase.
Collapse
Affiliation(s)
- Tiffany S Louie
- Department of Biochemistry and Microbiology, School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| | - Elizabeth Jane Pavlik
- Department of Biochemistry and Microbiology, School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| | - Max M Häggblom
- Department of Biochemistry and Microbiology, School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA.
| |
Collapse
|
11
|
Appel L, Willistein M, Dahl C, Ermler U, Boll M. Functional diversity of prokaryotic HdrA(BC) modules: Role in flavin-based electron bifurcation processes and beyond. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2021; 1862:148379. [PMID: 33460586 DOI: 10.1016/j.bbabio.2021.148379] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 01/08/2021] [Accepted: 01/11/2021] [Indexed: 10/22/2022]
Abstract
In methanogenic archaea, the archetypical complex of heterodisulfide reductase (HdrABC) and hydrogenase (MvhAGD) couples the endergonic reduction of CO2 by H2 to the exergonic reduction of the CoB-S-S-CoM heterodisulfide by H2 via flavin-based electron bifurcation. Presently known enzymes containing HdrA(BC)-like components play key roles in methanogenesis, acetogenesis, respiratory sulfate reduction, lithotrophic reduced sulfur compound oxidation, aromatic compound degradation, fermentations, and probably many further processes. This functional diversity is achieved by a modular architecture of HdrA(BC) enzymes, where a big variety of electron input/output modules may be connected either directly or via adaptor modules to the HdrA(BC) components. Many, but not all HdrA(BC) complexes are proposed to catalyse a flavin-based electron bifurcation/confurcation. Despite the availability of HdrA(BC) crystal structures, fundamental questions of electron transfer and energy coupling processes remain. Here, we address the common properties and functional diversity of HdrA(BC) core modules integrated into electron-transfer machineries of outstanding complexity.
Collapse
Affiliation(s)
- Lena Appel
- Fakultät für Biologie - Mikrobiologie, Universität Freiburg, Freiburg, Germany
| | - Max Willistein
- Fakultät für Biologie - Mikrobiologie, Universität Freiburg, Freiburg, Germany
| | - Christiane Dahl
- Institut für Mikrobiologie & Biotechnologie, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Ulrich Ermler
- Max-Planck-Institut für Biophysik, Frankfurt, Germany
| | - Matthias Boll
- Fakultät für Biologie - Mikrobiologie, Universität Freiburg, Freiburg, Germany.
| |
Collapse
|
12
|
Jacoby C, Ferlaino S, Bezold D, Jessen H, Müller M, Boll M. ATP-dependent hydroxylation of an unactivated primary carbon with water. Nat Commun 2020; 11:3906. [PMID: 32764563 PMCID: PMC7411048 DOI: 10.1038/s41467-020-17675-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 07/09/2020] [Indexed: 11/09/2022] Open
Abstract
Enzymatic hydroxylation of unactivated primary carbons is generally associated with the use of molecular oxygen as co-substrate for monooxygenases. However, in anaerobic cholesterol-degrading bacteria such as Sterolibacterium denitrificans the primary carbon of the isoprenoid side chain is oxidised to a carboxylate in the absence of oxygen. Here, we identify an enzymatic reaction sequence comprising two molybdenum-dependent hydroxylases and one ATP-dependent dehydratase that accomplish the hydroxylation of unactivated primary C26 methyl group of cholesterol with water: (i) hydroxylation of C25 to a tertiary alcohol, (ii) ATP-dependent dehydration to an alkene via a phosphorylated intermediate, (iii) hydroxylation of C26 to an allylic alcohol that is subsequently oxidised to the carboxylate. The three-step enzymatic reaction cascade divides the high activation energy barrier of primary C–H bond cleavage into three biologically feasible steps. This finding expands our knowledge of biological C–H activations beyond canonical oxygenase-dependent reactions. Monooxygenases catalyse the hydroxylation of C-H bonds using oxygen as a co-substrate, which, in turn, is unavailable for anaerobic bacteria. Here, the authors report a three-step reaction cascade involving two hydroxylases and one dehydratase which hydroxylate the C26 methyl group of cholesterol with water as a co-substrate.
Collapse
Affiliation(s)
- Christian Jacoby
- Microbiology, Faculty of Biology, Albert-Ludwigs-Universität Freiburg, Schänzlestr. 1, 79104, Freiburg, Germany
| | - Sascha Ferlaino
- Institute of Pharmaceutical Sciences, Albert-Ludwigs-Universität Freiburg, Albertstrasse 25, 79104, Freiburg, Germany
| | - Dominik Bezold
- Institute of Organic Chemistry, Albert-Ludwigs-Universität Freiburg, Albertstrasse 21, 79104, Freiburg, Germany
| | - Henning Jessen
- Institute of Organic Chemistry, Albert-Ludwigs-Universität Freiburg, Albertstrasse 21, 79104, Freiburg, Germany
| | - Michael Müller
- Institute of Pharmaceutical Sciences, Albert-Ludwigs-Universität Freiburg, Albertstrasse 25, 79104, Freiburg, Germany
| | - Matthias Boll
- Microbiology, Faculty of Biology, Albert-Ludwigs-Universität Freiburg, Schänzlestr. 1, 79104, Freiburg, Germany.
| |
Collapse
|
13
|
An Aerobic Hybrid Phthalate Degradation Pathway via Phthaloyl-Coenzyme A in Denitrifying Bacteria. Appl Environ Microbiol 2020; 86:AEM.00498-20. [PMID: 32220846 DOI: 10.1128/aem.00498-20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 03/16/2020] [Indexed: 11/20/2022] Open
Abstract
The degradation of the xenobiotic phthalic acid esters by microorganisms is initiated by the hydrolysis to the respective alcohols and ortho-phthalate (hereafter, phthalate). In aerobic bacteria and fungi, oxygenases are involved in the conversion of phthalate to protocatechuate, the substrate for ring-cleaving dioxygenases. In contrast, anaerobic bacteria activate phthalate to the extremely unstable phthaloyl-coenzyme A (CoA), which is decarboxylated by oxygen-sensitive UbiD-like phthaloyl-CoA decarboxylase (PCD) to the central benzoyl-CoA intermediate. Here, we demonstrate that the facultatively anaerobic, denitrifying Thauera chlorobenzoica 3CB-1 and Aromatoleum evansii KB740 strains use phthalate as a growth substrate under aerobic and denitrifying conditions. In vitro assays with extracts from cells grown aerobically with phthalate demonstrated the succinyl-CoA-dependent activation of phthalate followed by decarboxylation to benzoyl-CoA. In T. chlorobenzoica 3CB-1, we identified PCD as a highly abundant enzyme in both aerobically and anaerobically grown cells, whereas genes for phthalate dioxygenases are missing in the genome. PCD was highly enriched from aerobically grown T. chlorobenzoica cells and was identified as an identical enzyme produced under denitrifying conditions. These results indicate that the initial steps of aerobic phthalate degradation in denitrifying bacteria are accomplished by the anaerobic enzyme inventory, whereas the benzoyl-CoA oxygenase-dependent pathway is used for further conversion to central intermediates. Such a hybrid pathway requires intracellular oxygen homeostasis at concentrations low enough to prevent PCD inactivation but sufficiently high to supply benzoyl-CoA oxygenase with its cosubstrate.IMPORTANCE Phthalic acid esters (PAEs) are industrially produced on a million-ton scale per year and are predominantly used as plasticizers. They are classified as environmentally relevant xenobiotics with a number of adverse health effects, including endocrine-disrupting activity. Biodegradation by microorganisms is considered the most effective process to eliminate PAEs from the environment. It is usually initiated by the hydrolysis of PAEs to alcohols and o-phthalic acid. Degradation of o-phthalic acid fundamentally differs in aerobic and anaerobic microorganisms; aerobic phthalate degradation heavily depends on dioxygenase-dependent reactions, whereas anaerobic degradation employs the oxygen-sensitive key enzyme phthaloyl-CoA decarboxylase. We demonstrate that aerobic phthalate degradation in facultatively anaerobic bacteria proceeds via a previously unknown hybrid degradation pathway involving oxygen-sensitive and oxygen-dependent key enzymes. Such a strategy is essential for facultatively anaerobic bacteria that frequently switch between oxic and anoxic environments.
Collapse
|
14
|
Schmid G, Scheffen M, Willistein M, Boll M. Oxygen detoxification by dienoyl-CoA oxidase involving flavin/disulfide cofactors. Mol Microbiol 2020; 114:17-30. [PMID: 32080908 DOI: 10.1111/mmi.14493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 02/14/2020] [Accepted: 02/17/2020] [Indexed: 11/30/2022]
Abstract
Class I benzoyl-CoA reductases (BCRs) are oxygen-sensitive key enzymes in the degradation of monocyclic aromatic compounds in anaerobic prokaryotes. They catalyze the ATP-dependent reductive dearomatization of their substrate to cyclohexa-1,5-diene-1-carboxyl-CoA (1,5-dienoyl-CoA). An aromatizing 1,5-dienoyl-CoA oxidase (DCO) activity has been proposed to protect BCRs from oxidative damage, however, the gene and its product involved have not been identified, yet. Here, we heterologously produced a DCO from the hyperthermophilic euryarchaeon Ferroglobus placidus that coupled the oxidation of two 1,5-dienoyl-CoA to benzoyl-CoA to the reduction of O2 to water at 80°C. DCO showed similarities to members of the old yellow enzyme family and contained FMN, FAD and an FeS cluster as cofactors. The O2 -dependent activation of inactive, reduced DCO is assigned to a redox thiol switch at Eo ' = -3 mV. We propose a catalytic cycle in which the active site FMN/disulfide redox centers are reduced by two 1,5-dienoyl-CoA (reductive half-cycle), followed by two consecutive two-electron transfer steps to molecular oxygen via peroxy- and hydroxyflavin intermediates yielding water (oxidative half-cycle). This work identified the enzyme involved in a unique oxygen detoxification process for an oxygen-sensitive catabolic enzyme.
Collapse
Affiliation(s)
- Georg Schmid
- Faculty of Biology - Microbiology, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Marieke Scheffen
- Faculty of Biology - Microbiology, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Max Willistein
- Faculty of Biology - Microbiology, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Matthias Boll
- Faculty of Biology - Microbiology, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| |
Collapse
|
15
|
Boll M, Geiger R, Junghare M, Schink B. Microbial degradation of phthalates: biochemistry and environmental implications. ENVIRONMENTAL MICROBIOLOGY REPORTS 2020; 12:3-15. [PMID: 31364812 DOI: 10.1111/1758-2229.12787] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 07/23/2019] [Accepted: 07/27/2019] [Indexed: 05/10/2023]
Abstract
The environmentally relevant xenobiotic esters of phthalic acid (PA), isophthalic acid (IPA) and terephthalic acid (TPA) are produced on a million ton scale annually and are predominantly used as plastic polymers or plasticizers. Degradation by microorganisms is considered as the most effective means of their elimination from the environment and proceeds via hydrolysis to the corresponding PA isomers and alcohols under oxic and anoxic conditions. Further degradation of PA, IPA and TPA differs fundamentally between anaerobic and aerobic microorganisms. The latter introduce hydroxyl functionalities by dioxygenases to facilitate subsequent decarboxylation by either aromatizing dehydrogenases or cofactor-free decarboxylases. In contrast, anaerobic bacteria activate the PA isomers to the respective thioesters using CoA ligases or CoA transferases followed by decarboxylation to the central intermediate benzoyl-CoA. Decarboxylases acting on the three PA CoA thioesters belong to the UbiD enzyme family that harbour a prenylated flavin mononucleotide (FMN) cofactor to achieve the mechanistically challenging decarboxylation. Capture of the extremely instable PA-CoA intermediate is accomplished by a massive overproduction of phthaloyl-CoA decarboxylase and a balanced production of PA-CoA forming/decarboxylating enzymes. The strategy of anaerobic phthalate degradation probably represents a snapshot of an ongoing evolution of a xenobiotic degradation pathway via a short-lived reaction intermediate.
Collapse
Affiliation(s)
- Matthias Boll
- Faculty of Biology, Microbiology, University of Freiburg, Freiburg, Germany
| | - Robin Geiger
- Faculty of Biology, Microbiology, University of Freiburg, Freiburg, Germany
| | - Madan Junghare
- Department of Biology and Microbial Ecology, University of Konstanz, Constance, Germany
| | - Bernhard Schink
- Department of Biology and Microbial Ecology, University of Konstanz, Constance, Germany
| |
Collapse
|
16
|
Anselmann SEL, Löffler C, Stärk HJ, Jehmlich N, von Bergen M, Brüls T, Boll M. The class II benzoyl-coenzyme A reductase complex from the sulfate-reducing Desulfosarcina cetonica. Environ Microbiol 2019; 21:4241-4252. [PMID: 31430028 DOI: 10.1111/1462-2920.14784] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 08/06/2019] [Accepted: 08/18/2019] [Indexed: 12/17/2022]
Abstract
Benzoyl-CoA reductases (BCRs) catalyse a key reaction in the anaerobic degradation pathways of monocyclic aromatic substrates, the dearomatization of benzoyl-CoA (BzCoA) to cyclohexa-1,5-diene-1-carboxyl-CoA (1,5-dienoyl-CoA) at the negative redox potential limit of diffusible enzymatic substrate/product couples (E°' = -622 mV). A 1-MDa class II BCR complex composed of the BamBCDEGHI subunits has so far only been isolated from the Fe(III)-respiring Geobacter metallireducens. It is supposed to drive endergonic benzene ring reduction at an active site W-pterin cofactor by flavin-based electron bifurcation. Here, we identified multiple copies of putative genes encoding the structural components of a class II BCR in sulfate reducing, Fe(III)-respiring and syntrophic bacteria. A soluble 950 kDa Bam[(BC)2 DEFGHI]2 complex was isolated from extracts of Desulfosarcina cetonica cells grown with benzoate/sulfate. Metal and cofactor analyses together with the identification of conserved binding motifs gave rise to 4 W-pterins, two selenocysteines, six flavin adenine dinucleotides, four Zn, and 48 FeS clusters. The complex exhibited 1,5-dienoyl-CoA-, NADPH- and ferredoxin-dependent oxidoreductase activities. Our results indicate that high-molecular class II BCR metalloenzyme machineries are remarkably conserved in strictly anaerobic bacteria with regard to subunit architecture and cofactor content, but their subcellular localization and electron acceptor preference may differ as a result of adaptations to variable energy metabolisms.
Collapse
Affiliation(s)
| | - Claudia Löffler
- Faculty of Biology - Microbiology, University of Freiburg, 79104, Freiburg, Germany
| | - Hans-Joachim Stärk
- Department of Analytical Chemistry, Helmholtz Centre for Environmental Research - UFZ, 04318, Leipzig, Germany
| | - Nico Jehmlich
- Department of Molecular Systems Biology, Helmholtz Centre for Environmental Research - UFZ, 04318, Leipzig, Germany
| | - Martin von Bergen
- Department of Molecular Systems Biology, Helmholtz Centre for Environmental Research - UFZ, 04318, Leipzig, Germany.,Faculty of Life Sciences, Institute of Biochemistry, University of Leipzig, Brüderstr. 34, 04103, Leipzig, Germany
| | - Thomas Brüls
- CEA, DRF, IBFJ, Genoscope, Evry, France.,CNRS-UMR8030, Université d'Evry Val d'Essonne and Université Paris-Saclay, Evry, France
| | - Matthias Boll
- Faculty of Biology - Microbiology, University of Freiburg, 79104, Freiburg, Germany
| |
Collapse
|
17
|
Pacheco-Sánchez D, Rama-Garda R, Marín P, Martirani-Von Abercron SM, Marqués S. Occurrence and diversity of the oxidative hydroxyhydroquinone pathway for the anaerobic degradation of aromatic compounds in nitrate-reducing bacteria. ENVIRONMENTAL MICROBIOLOGY REPORTS 2019; 11:525-537. [PMID: 30884168 DOI: 10.1111/1758-2229.12752] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 03/13/2019] [Indexed: 06/09/2023]
Abstract
The nitrate-reducing betaproteobacteria Azoarcus anaerobius and Thauera aromatica AR-1 use an oxidative mechanism to anaerobically degrade resorcinol and 3,5-dihydroxybenzoate (3,5-DHB), respectively, rendering hydroxyhydroquinone as intermediate. The first pathway step is performed by a dimethylsulphoxide-reductase family hydroxylase. The gene cluster coding for the pathway is homologous in these strains. Only these two Rhodocyclales are known to follow this anaerobic pathway, and nothing is known about its distribution in prokaryotes. To determine the relevance and diversity of this strategy in nature, we enriched for bacteria able to oxidize resorcinol or 3,5-DHB under denitrifying conditions. Nitrate-reducing bacteria able to degrade these compounds were present in soil, aquifer and marine sediments. We were able to isolate a number of strains with this capacity from soil and aquifer samples. Amplicon libraries of rehL, the gene encoding the first step of this pathway, showed an overall low diversity, most sequences clustering with either pathway enzyme. Isolates belonging to the Beta- and Gammaproteobacteria able to grow on these substrates revealed rehL homologues only in strains belonging to Thauera and Azoarcus. Analysis of sequenced genomes in the databases detected the presence of highly similar clusters in two additional betaproteobacteria and in the gammaproteobacterium Sedimenticola selenatireducens, although anaerobic growth on a dihydroxyaromatic could only be confirmed in Thauera chlorobenzoica 3CB-1. The presence of mobile elements in the flanking sequences of some of the clusters suggested events of horizontal gene transfer, probably contributing to expand the pathway to a broader host range within the Proteobacteria.
Collapse
Affiliation(s)
- Daniel Pacheco-Sánchez
- Department of Environmental Protection, Consejo Superior de Investigaciones Científicas, Estación Experimental del Zaidín, Profesor Albareda 1, E-18008, Granada, Spain
| | - Ramón Rama-Garda
- Department of Environmental Protection, Consejo Superior de Investigaciones Científicas, Estación Experimental del Zaidín, Profesor Albareda 1, E-18008, Granada, Spain
| | - Patricia Marín
- Department of Environmental Protection, Consejo Superior de Investigaciones Científicas, Estación Experimental del Zaidín, Profesor Albareda 1, E-18008, Granada, Spain
| | - Sophie-Marie Martirani-Von Abercron
- Department of Environmental Protection, Consejo Superior de Investigaciones Científicas, Estación Experimental del Zaidín, Profesor Albareda 1, E-18008, Granada, Spain
| | - Silvia Marqués
- Department of Environmental Protection, Consejo Superior de Investigaciones Científicas, Estación Experimental del Zaidín, Profesor Albareda 1, E-18008, Granada, Spain
| |
Collapse
|
18
|
Geiger RA, Junghare M, Mergelsberg M, Ebenau‐Jehle C, Jesenofsky VJ, Jehmlich N, von Bergen M, Schink B, Boll M. Enzymes involved in phthalate degradation in sulphate‐reducing bacteria. Environ Microbiol 2019; 21:3601-3612. [DOI: 10.1111/1462-2920.14681] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 05/03/2019] [Accepted: 05/11/2019] [Indexed: 12/31/2022]
Affiliation(s)
| | - Madan Junghare
- Department of Biology, Microbial EcologyUniversity of Konstanz, 78457 Constance Germany
| | - Mario Mergelsberg
- Faculty of Biology–MicrobiologyUniversity of Freiburg, 79104 Freiburg Germany
| | | | | | - Nico Jehmlich
- Department of Molecular Systems BiologyHelmholtz Centre for Environmental Research UFZ 04318 Leipzig Germany
| | - Martin von Bergen
- Department of Molecular Systems BiologyHelmholtz Centre for Environmental Research UFZ 04318 Leipzig Germany
- Institute of Biochemistry, Faculty of Life SciencesUniversity of Leipzig Brüderstr. 34, 04103 Leipzig Germany
| | - Bernhard Schink
- Department of Biology, Microbial EcologyUniversity of Konstanz, 78457 Constance Germany
| | - Matthias Boll
- Faculty of Biology–MicrobiologyUniversity of Freiburg, 79104 Freiburg Germany
| |
Collapse
|
19
|
Reschke S, Duffus BR, Schrapers P, Mebs S, Teutloff C, Dau H, Haumann M, Leimkühler S. Identification of YdhV as the First Molybdoenzyme Binding a Bis-Mo-MPT Cofactor in Escherichia coli. Biochemistry 2019; 58:2228-2242. [PMID: 30945846 DOI: 10.1021/acs.biochem.9b00078] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The oxidoreductase YdhV in Escherichia coli has been predicted to belong to the family of molybdenum/tungsten cofactor (Moco/Wco)-containing enzymes. In this study, we characterized the YdhV protein in detail, which shares amino acid sequence homology with a tungsten-containing benzoyl-CoA reductase binding the bis-W-MPT (for metal-binding pterin) cofactor. The cofactor was identified to be of a bis-Mo-MPT type with no guanine nucleotides present, which represents a form of Moco that has not been found previously in any molybdoenzyme. Our studies showed that YdhV has a preference for bis-Mo-MPT over bis-W-MPT to be inserted into the enzyme. In-depth characterization of YdhV by X-ray absorption and electron paramagnetic resonance spectroscopies revealed that the bis-Mo-MPT cofactor in YdhV is redox active. The bis-Mo-MPT and bis-W-MPT cofactors include metal centers that bind the four sulfurs from the two dithiolene groups in addition to a cysteine and likely a sulfido ligand. The unexpected presence of a bis-Mo-MPT cofactor opens an additional route for cofactor biosynthesis in E. coli and expands the canon of the structurally highly versatile molybdenum and tungsten cofactors.
Collapse
Affiliation(s)
- Stefan Reschke
- Institute of Biochemistry and Biology , University of Potsdam , Karl-Liebknecht-Strasse 24 , 14476 Potsdam , Germany
| | - Benjamin R Duffus
- Institute of Biochemistry and Biology , University of Potsdam , Karl-Liebknecht-Strasse 24 , 14476 Potsdam , Germany
| | | | | | - Christian Teutloff
- Institute of Experimental Physics, EPR Spectroscopy of Biological Systems , Freie Universität Berlin , Arnimallee 14 , 14195 Berlin , Germany
| | | | | | - Silke Leimkühler
- Institute of Biochemistry and Biology , University of Potsdam , Karl-Liebknecht-Strasse 24 , 14476 Potsdam , Germany
| |
Collapse
|
20
|
Küppers J, Becker P, Jarling R, Dörries M, Cakić N, Schmidtmann M, Christoffers J, Rabus R, Wilkes H. Stereochemical Insights into the Anaerobic Degradation of 4-Isopropylbenzoyl-CoA in the Denitrifying Bacterium Strain pCyN1. Chemistry 2019; 25:4722-4731. [PMID: 30601577 DOI: 10.1002/chem.201805837] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Indexed: 11/06/2022]
Abstract
The constitutions and absolute configurations of two previously unknown intermediates, (1S,2S,4S)-2-hydroxy-4-isopropylcyclohexane-1-carboxylate and (S)-3-isopropylpimelate, of anaerobic degradation of p-cymene in the bacterium Aromatoleum aromaticum pCyN1 are reported. These intermediates (as CoA esters) are involved in the further degradation of 4-isopropylbenzoyl-CoA formed by methyl group hydroxylation and subsequent oxidation of p-cymene. Proteogenomics indicated 4-isopropylbenzoyl-CoA degradation involves (i) a novel member of class I benzoyl-CoA reductase (BCR) as known from Thauera aromatica K172 and (ii) a modified β-oxidation pathway yielding 3-isopropylpimeloyl-CoA analogously to benzoyl-CoA degradation in Rhodopseudomonas palustris. Reference standards of all four diastereoisomers of 2-hydroxy-4-isopropylcyclohexane-1-carboxylate as well as both enantiomers of 3-isopropylpimelate were obtained by stereoselective syntheses via methyl 4-isopropyl-2-oxocyclohexane-1-carboxylate. The stereogenic center carrying the isopropyl group was established using a rhodium-catalyzed asymmetric conjugate addition. X-ray crystallography revealed that the thermodynamically most stable stereoisomer of 2-hydroxy-4-isopropylcyclohexane-1-carboxylate is formed during p-cymene degradation. Our findings imply that the reductive dearomatization of 4-isopropylbenzoyl-CoA by the BCR of A. aromaticum pCyN1 stereospecifically forms (S)-4-isopropyl-1,5-cyclohexadiene-1-carbonyl-CoA.
Collapse
Affiliation(s)
- Julian Küppers
- Institut für Chemie, Carl von Ossietzky Universität Oldenburg, 26111, Oldenburg, Germany
| | - Patrick Becker
- Institut für Chemie und Biologie des Meeres (ICBM), Carl von Ossietzky Universität Oldenburg, 26111, Oldenburg, Germany
| | - René Jarling
- Institut für Chemie und Biologie des Meeres (ICBM), Carl von Ossietzky Universität Oldenburg, 26111, Oldenburg, Germany
| | - Marvin Dörries
- Institut für Chemie und Biologie des Meeres (ICBM), Carl von Ossietzky Universität Oldenburg, 26111, Oldenburg, Germany.,Helmholtz-Institut für Funktionelle Marine Biodiversität, an der Universität Oldenburg (HIFMB), 26129, Oldenburg, Germany
| | - Nevenka Cakić
- Institut für Chemie und Biologie des Meeres (ICBM), Carl von Ossietzky Universität Oldenburg, 26111, Oldenburg, Germany
| | - Marc Schmidtmann
- Institut für Chemie, Carl von Ossietzky Universität Oldenburg, 26111, Oldenburg, Germany
| | - Jens Christoffers
- Institut für Chemie, Carl von Ossietzky Universität Oldenburg, 26111, Oldenburg, Germany
| | - Ralf Rabus
- Institut für Chemie und Biologie des Meeres (ICBM), Carl von Ossietzky Universität Oldenburg, 26111, Oldenburg, Germany
| | - Heinz Wilkes
- Institut für Chemie und Biologie des Meeres (ICBM), Carl von Ossietzky Universität Oldenburg, 26111, Oldenburg, Germany
| |
Collapse
|