1
|
Short O-GlcNAcase Is Targeted to the Mitochondria and Regulates Mitochondrial Reactive Oxygen Species Level. Cells 2022; 11:cells11111827. [PMID: 35681522 PMCID: PMC9180253 DOI: 10.3390/cells11111827] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/18/2022] [Accepted: 05/26/2022] [Indexed: 02/01/2023] Open
Abstract
O-GlcNAcylation is a reversible post-translational modification involved in the regulation of cytosolic, nuclear, and mitochondrial proteins. Only two enzymes, OGT (O-GlcNAc transferase) and OGA (O-GlcNAcase), control the attachment and removal of O-GlcNAc on proteins, respectively. Whereas a variant OGT (mOGT) has been proposed as the main isoform that O-GlcNAcylates proteins in mitochondria, identification of a mitochondrial OGA has not been performed yet. Two splice variants of OGA (short and long isoforms) have been described previously. In this work, using cell fractionation experiments, we show that short-OGA is preferentially recovered in mitochondria-enriched fractions from HEK-293T cells and RAW 264.7 cells, as well as mouse embryonic fibroblasts. Moreover, fluorescent microscopy imaging confirmed that GFP-tagged short-OGA is addressed to mitochondria. In addition, using a Bioluminescence Resonance Energy Transfer (BRET)-based mitochondrial O-GlcNAcylation biosensor, we show that co-transfection of short-OGA markedly reduced O-GlcNAcylation of the biosensor, whereas long-OGA had no significant effect. Finally, using genetically encoded or chemical fluorescent mitochondrial probes, we show that short-OGA overexpression increases mitochondrial ROS levels, whereas long-OGA has no significant effect. Together, our work reveals that the short-OGA isoform is targeted to the mitochondria where it regulates ROS homoeostasis.
Collapse
|
2
|
Burt RA, Alghusen IM, John Ephrame S, Villar MT, Artigues A, Slawson C. Mapping the O-GlcNAc Modified Proteome: Applications for Health and Disease. Front Mol Biosci 2022; 9:920727. [PMID: 35664676 PMCID: PMC9161079 DOI: 10.3389/fmolb.2022.920727] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 05/02/2022] [Indexed: 01/03/2023] Open
Abstract
O-GlcNAc is a pleotropic, enigmatic post-translational modification (PTM). This PTM modifies thousands of proteins differentially across tissue types and regulates diverse cellular signaling processes. O-GlcNAc is implicated in numerous diseases, and the advent of O-GlcNAc perturbation as a novel class of therapeutic underscores the importance of identifying and quantifying the O-GlcNAc modified proteome. Here, we review recent advances in mass spectrometry-based proteomics that will be critical in elucidating the role of this unique glycosylation system in health and disease.
Collapse
Affiliation(s)
- Rajan A. Burt
- University of Kansas Medical Center, Medical Scientist Training Program (MSTP), Kansas, KS, United States
| | - Ibtihal M. Alghusen
- Department Biochemistry, University of Kansas Medical Center, Kansas, KS, United States
| | - Sophiya John Ephrame
- Department Biochemistry, University of Kansas Medical Center, Kansas, KS, United States
| | - Maria T. Villar
- Department Biochemistry, University of Kansas Medical Center, Kansas, KS, United States
| | - Antonio Artigues
- Department Biochemistry, University of Kansas Medical Center, Kansas, KS, United States
| | - Chad Slawson
- University of Kansas Medical Center, Medical Scientist Training Program (MSTP), Kansas, KS, United States
- Department Biochemistry, University of Kansas Medical Center, Kansas, KS, United States
| |
Collapse
|
3
|
Akinbiyi EO, Abramowitz LK, Bauer BL, Stoll MSK, Hoppel CL, Hsiao CP, Hanover JA, Mears JA. Blocked O-GlcNAc cycling alters mitochondrial morphology, function, and mass. Sci Rep 2021; 11:22106. [PMID: 34764359 PMCID: PMC8586252 DOI: 10.1038/s41598-021-01512-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 10/18/2021] [Indexed: 12/24/2022] Open
Abstract
O-GlcNAcylation is a prevalent form of glycosylation that regulates proteins within the cytosol, nucleus, and mitochondria. The O-GlcNAc modification can affect protein cellular localization, function, and signaling interactions. The specific impact of O-GlcNAcylation on mitochondrial morphology and function has been elusive. In this manuscript, the role of O-GlcNAcylation on mitochondrial fission, oxidative phosphorylation (Oxphos), and the activity of electron transport chain (ETC) complexes were evaluated. In a cellular environment with hyper O-GlcNAcylation due to the deletion of O-GlcNAcase (OGA), mitochondria showed a dramatic reduction in size and a corresponding increase in number and total mitochondrial mass. Because of the increased mitochondrial content, OGA knockout cells exhibited comparable coupled mitochondrial Oxphos and ATP levels when compared to WT cells. However, we observed reduced protein levels for complex I and II when comparing normalized mitochondrial content and reduced linked activity for complexes I and III when examining individual ETC complex activities. In assessing mitochondrial fission, we observed increased amounts of O-GlcNAcylated dynamin-related protein 1 (Drp1) in cells genetically null for OGA and in glioblastoma cells. Individual regions of Drp1 were evaluated for O-GlcNAc modifications, and we found that this post-translational modification (PTM) was not limited to the previously characterized residues in the variable domain (VD). Additional modification sites are predicted in the GTPase domain, which may influence enzyme activity. Collectively, these results highlight the impact of O-GlcNAcylation on mitochondrial dynamics and ETC function and mimic the changes that may occur during glucose toxicity from hyperglycemia.
Collapse
Affiliation(s)
- Elizabeth O Akinbiyi
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - Lara K Abramowitz
- Laboratory of Cellular and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Brianna L Bauer
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - Maria S K Stoll
- Center for Mitochondrial Diseases, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - Charles L Hoppel
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
- Center for Mitochondrial Diseases, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - Chao-Pin Hsiao
- Center for Mitochondrial Diseases, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
- Frances Payne Bolton School of Nursing, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - John A Hanover
- Laboratory of Cellular and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Jason A Mears
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA.
- Center for Mitochondrial Diseases, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA.
| |
Collapse
|
4
|
Sombutthaweesri T, Wu S, Chamusri N, Settakorn J, Pruksakorn D, Chaiyawat P, Sastraruji T, Krisanaprakornkit S, Supanchart C. Relationship Between O-GlcNAcase Expression and Prognosis of Patients With Osteosarcoma. Appl Immunohistochem Mol Morphol 2021; 30:e1-e10. [PMID: 34469899 DOI: 10.1097/pai.0000000000000970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 08/05/2021] [Indexed: 11/25/2022]
Abstract
Several studies have demonstrated a role of O-GlcNAcylation (O-GlcNAc) in tumorigenesis of various carcinomas by modification of tumor-associated proteins. However, its implication in the pathogenesis of osteosarcoma remains unclear. This study aimed to investigate the levels of O-GlcNAc and the expressions of O-linked N-acetylglucosamine transferase (OGT) and O-GlcNAcase (OGA) in human osteosarcoma tissues, by using immunohistochemistry; and to find correlations between the levels or expressions and several clinicopathologic parameters. There were 109 first diagnosed osteosarcoma patients, including Enneking stage IIB (n=70) and III (n=39). Correlations between the immunoreactive score (IRS) and clinicopathologic parameters, overall survival, and metastasis-free survival were evaluated. A positive correlation was found between the IRS of OGA and the percentage of postchemotherapeutic tumor necrosis (r=0.308; P=0.017). Univariate analysis revealed significantly lower OGA IRS in metastatic patients (P=0.020) and poor chemotherapeutic-responder patients (P=0.001). By multivariate analysis, presence of tumor metastasis (P=0.002) and lower OGA IRS (P=0.004) was significantly associated with shorter overall survival. Subgroup analysis in stage IIB osteosarcoma (n=70) demonstrated that male sex (P=0.019), presence of tumor recurrence (P=0.026), poor chemotherapeutic responder (P=0.022), and lower OGA IRS (P=0.019) were significantly correlated with short metastasis-free survival. But, lower OGA IRS was the only independent predictor for short metastasis-free survival (P=0.006). Our findings suggested that O-GlcNAc pathway, especially OGA, may involve in pathogenesis and aggressiveness of osteosarcoma. Low level of OGA expression may be used as a poor prognostic indicator.
Collapse
Affiliation(s)
- Thamonwan Sombutthaweesri
- Departments of Oral and Maxillofacial Surgery Oral Biology and Diagnostic Sciences, Center of Excellence in Oral and Maxillofacial Biology, Faculty of Dentistry Department of Pathology Musculoskeletal Science and Translational Research Center (MSTR) Omics Center for Health Sciences (OCHS) Department of Orthopedics, Faculty of Medicine Biomedical Engineering Institute, Chiang Mai University, Chiang Mai, Thailand
| | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Na HJ, Akan I, Abramowitz LK, Hanover JA. Nutrient-Driven O-GlcNAcylation Controls DNA Damage Repair Signaling and Stem/Progenitor Cell Homeostasis. Cell Rep 2021; 31:107632. [PMID: 32402277 DOI: 10.1016/j.celrep.2020.107632] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 02/27/2020] [Accepted: 04/21/2020] [Indexed: 12/20/2022] Open
Abstract
Stem/progenitor cells exhibit high proliferation rates, elevated nutrient uptake, altered metabolic flux, and stress-induced genome instability. O-GlcNAcylation is an essential post-translational modification mediated by O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA), which act in a nutrient- and stress-responsive manner. The precise role of O-GlcNAc in adult stem cells and the relationship between O-GlcNAc and the DNA damage response (DDR) is poorly understood. Here, we show that hyper-O-GlcNacylation leads to elevated insulin signaling, hyperproliferation, and DDR activation that mimic the glucose- and oxidative-stress-induced response. We discover a feedback mechanism involving key downstream effectors of DDR, ATM, ATR, and CHK1/2 that regulates OGT stability to promote O-GlcNAcylation and elevate DDR. This O-GlcNAc-dependent regulatory pathway is critical for maintaining gut homeostasis in Drosophila and the DDR in mouse embryonic stem cells (ESCs) and mouse embryonic fibroblasts (MEFs). Our findings reveal a conserved mechanistic link among O-GlcNAc cycling, stem cell self-renewal, and DDR with profound implications for stem-cell-derived diseases including cancer.
Collapse
Affiliation(s)
- Hyun-Jin Na
- Laboratory of Cellular and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ilhan Akan
- Laboratory of Cellular and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Lara K Abramowitz
- Laboratory of Cellular and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - John A Hanover
- Laboratory of Cellular and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
6
|
Zachara NE. Critical observations that shaped our understanding of the function(s) of intracellular glycosylation (O-GlcNAc). FEBS Lett 2018; 592:3950-3975. [PMID: 30414174 DOI: 10.1002/1873-3468.13286] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 10/30/2018] [Accepted: 10/31/2018] [Indexed: 12/30/2022]
Abstract
Almost 100 years after the first descriptions of proteins conjugated to carbohydrates (mucins), several studies suggested that glycoproteins were not restricted to the serum, extracellular matrix, cell surface, or endomembrane system. In the 1980s, key data emerged demonstrating that intracellular proteins were modified by monosaccharides of O-linked β-N-acetylglucosamine (O-GlcNAc). Subsequently, this modification was identified on thousands of proteins that regulate cellular processes as diverse as protein aggregation, localization, post-translational modifications, activity, and interactions. In this Review, we will highlight critical discoveries that shaped our understanding of the molecular events underpinning the impact of O-GlcNAc on protein function, the role that O-GlcNAc plays in maintaining cellular homeostasis, and our understanding of the mechanisms that regulate O-GlcNAc-cycling.
Collapse
Affiliation(s)
- Natasha E Zachara
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|