1
|
Mohanty P, Phan TM, Mittal J. Transient Interdomain Interactions Modulate the Monomeric Structural Ensemble and Self-Assembly of Huntingtin Exon 1. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2501462. [PMID: 40289673 DOI: 10.1002/advs.202501462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 03/17/2025] [Indexed: 04/30/2025]
Abstract
Polyglutamine (polyQ) tract length expansion (≥ 36 residues) within the N-terminal exon-1 of Huntingtin (Httex1) leads to Huntington's disease, a neurodegenerative condition marked by the presence of intranuclear Htt inclusions. Notably, the polyQ tract in Httex1 is flanked by an N-terminal coiled-coil domain -N17 (17 amino acids), which promotes the formation of soluble oligomers and brings the aggregation-prone polyQ tracts in close proximity. However, the molecular mechanisms underlying the conversion of soluble oligomers into insoluble β-rich aggregates with increasing polyQ length, remain unclear. In this study, extensive atomistic molecular dynamics (MD) simulations (aggregate time ≈0.7 milliseconds) are performed to uncover the interplay between structural transformation and domain "cross-talk" on the conformational ensemble and oligomerization of Httex1 due to polyQ expansion. Notably, MD-derived ensembles of N17-Qn-P5 monomers validated against NMR indicated that in addition to elevated α-helicity, polyQ expansion also favored transient, interdomain (N17/polyQ) interactions which resulted in the emergence of β-sheet conformations. Further, interdomain interactions modulated the stability of N17-mediated polyQ dimers and promoted a heterogeneous dimerization landscape. Finally, it is observed that the intact C-terminal proline-rich domain (PRD) promoted condensation of Httex1 through self-interactions involving its P10/P11 tracts while also interacting with N17 to suppress its α-helicity.
Collapse
Affiliation(s)
- Priyesh Mohanty
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX, 77843, USA
| | - Tien Minh Phan
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX, 77843, USA
| | - Jeetain Mittal
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX, 77843, USA
- Department of Chemistry, Texas A&M University, College Station, TX, 77843, USA
- Interdisciplinary Graduate Program in Genetics and Genomics, Texas A&M University, College Station, TX, 77843, USA
| |
Collapse
|
2
|
Zhang S, Wang S, Yang Z, Li Y, Li J, Chen X, Yao H, Zheng Z, Guo X. Leucine 7 is a key residue for mutant huntingtin-induced mitochondrial pathology and neurotoxicity in Huntington's disease. J Biol Chem 2025; 301:108297. [PMID: 39947473 PMCID: PMC11930128 DOI: 10.1016/j.jbc.2025.108297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 01/16/2025] [Accepted: 02/04/2025] [Indexed: 03/09/2025] Open
Abstract
Huntington's disease (HD) is a neurodegenerative disorder caused by the abnormal expansion of CAG repeats in exon 1 of the HTT gene. Mutant huntingtin (mHTT) associates with mitochondria, resulting in mitochondrial dysfunction and neuronal cell death. However, the underlying molecular mechanisms remain unknown. In this study, we investigate the role of N-terminal first 17 amino acids (N17) of mHTT in regulating its mitochondrial localization. Specifically, we demonstrate that the mutation at leucine 7 of N17 domain suppresses the association of mHTT with mitochondria. Blocking mitochondrial localization of HTT exon 1 with 73 glutamine repeats (HTT-Q73) strongly ameliorates polyglutamine-induced reduction of mitochondrial membrane potential, increase of reactive oxygen species production, and decrease in NAD+/NADH ratio. We observe that HTT-Q73-mediated abnormal mitochondrial morphology, mitochondrial DNA deletion, and cell death are abolished by HTT-Q73-L7A mutation. Finally, overexpression of HTT-Q73-L7A do not cause neurodegeneration and motor dysfunction in vivo. These findings highlight the pivotal role of the L7 residue which contributes to mHTT-caused HD pathology. Targeting the L7 residue of N17 domain may be a novel therapeutic strategy to alleviate mitochondrial dysfunction and neurodegeneration in HD.
Collapse
Affiliation(s)
- Shengrong Zhang
- Department of Neurobiology, Key Laboratory of Human Functional Genomics of Jiangsu Province, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Shengda Wang
- Department of Neurobiology, Key Laboratory of Human Functional Genomics of Jiangsu Province, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zeyue Yang
- Department of Neurobiology, Key Laboratory of Human Functional Genomics of Jiangsu Province, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yuanbo Li
- Department of Neurobiology, Key Laboratory of Human Functional Genomics of Jiangsu Province, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jinping Li
- Department of Anesthesiology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xushen Chen
- Department of Neurobiology, Key Laboratory of Human Functional Genomics of Jiangsu Province, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Hao Yao
- Department of Anesthesiology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China.
| | - Zhilong Zheng
- Department of Neurobiology, Key Laboratory of Human Functional Genomics of Jiangsu Province, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China.
| | - Xing Guo
- Department of Neurobiology, Key Laboratory of Human Functional Genomics of Jiangsu Province, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China; State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, Jiangsu, China; The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China; Co-innovation Center of Neuroregeneration, Nantong University, Jiangsu, China.
| |
Collapse
|
3
|
Mohanty P, Phan TM, Mittal J. Transient interdomain interactions modulate the monomeric structural ensemble and self-assembly of Huntingtin Exon 1. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.03.592468. [PMID: 38766024 PMCID: PMC11100600 DOI: 10.1101/2024.05.03.592468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Polyglutamine expansion (≥ 36 residues) within the N-terminal exon-1 of Huntingtin (Httex1) leads to Huntington's disease, a neurodegenerative condition marked by the presence of intranuclear Htt inclusions. Notably, the polyglutamine tract in Httex1 is flanked by an N-terminal coiled-coil domain - N17 (17 amino acids), which undergoes self-association to promote the formation of soluble Httex1 oligomers and brings the aggregation-prone polyQ tracts in close spatial proximity. However, the mechanisms underlying the subsequent conversion of soluble oligomers into insoluble β-rich aggregates with increasing polyQ length, remain unclear. Current knowledge suggests that expansion of the polyQ tract increases its helicity, and this favors its oligomerization and aggregation. In addition, studies utilizing photocrosslinking, conformation-specific antibodies and a stable coiled-coil heterotetrametric system fused to polyQ indicate that domain "cross-talk" (i.e., interdomain interactions) may play a role in the emergence of toxic conformations and the conversion of Httex1 oligomers into fibrillar aggregates. Here, we performed extensive atomistic molecular dynamics (MD) simulations (aggregate time ~ 0.7 ms) to uncover the interplay between structural transformation and domain "cross-talk" on the conformational ensemble and oligomerization landscape of Httex1. Notably, our MD-derived ensembles of N17-polyQ monomers validated against 13C NMR chemical shifts indicated that in addition to elevated α-helicity, polyQ expansion also favors transient, interdomain (N17-polyQ) interactions which result in the emergence of β-sheet conformations. Further, interdomain interactions competed with increased polyQ tract α-helicity to modulate the stability of N17-mediated dimers and thereby promoted a heterogenous dimerization landscape. Finally, we observed that the C-terminal proline-rich domain (PRD) promoted condensation of Httex1 through self-interactions involving its P10/P11 tracts while also interacting with N17 to suppress its α-helicity. In summary, our study demonstrates a significant role for domain "cross-talk" in modulating the monomeric structural ensemble and self-assembly of Httex1.
Collapse
Affiliation(s)
- Priyesh Mohanty
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Tien Minh Phan
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Jeetain Mittal
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX 77843, USA
- Department of Chemistry, Texas A&M University, College Station, TX 77843, USA
- Interdisciplinary Graduate Program in Genetics and Genomics, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
4
|
Bonet DF, Ranyai S, Aswad L, Lane DP, Arsenian-Henriksson M, Landreh M, Lama D. AlphaFold with conformational sampling reveals the structural landscape of homorepeats. Structure 2024; 32:2160-2167.e2. [PMID: 39299235 DOI: 10.1016/j.str.2024.08.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 06/27/2024] [Accepted: 08/23/2024] [Indexed: 09/22/2024]
Abstract
Homorepeats are motifs with reiterations of the same amino acid. They are prevalent in proteins associated with diverse physiological functions but also linked to several pathologies. Structural characterization of homorepeats has remained largely elusive, primarily because they generally occur in the disordered regions or proteins. Here, we address this subject by combining structures derived from machine learning with conformational sampling through physics-based simulations. We find that hydrophobic homorepeats have a tendency to fold into structured secondary conformations, while hydrophilic ones predominantly exist in unstructured states. Our data show that the flexibility rendered by disorder is a critical component besides the chemical feature that drives homorepeats composition toward hydrophilicity. The formation of regular secondary structures also influences their solubility, as pathologically relevant homorepeats display a direct correlation between repeat expansion, induction of helicity, and self-assembly. Our study provides critical insights into the conformational landscape of protein homorepeats and their structure-activity relationship.
Collapse
Affiliation(s)
- David Fernandez Bonet
- Science for Life Laboratory, Department of Gene Technology, KTH Royal Institute of Technology, Tomtebodavägen 23A, SE-171 65 Solna, Sweden
| | - Shahrayar Ranyai
- Department of Chemical Engineering, KTH Royal Institute of Technology, Teknikringen 42, SE-114 28 Stockholm, Sweden
| | - Luay Aswad
- Clinical Proteomics Mass Spectrometry, Department of Oncology-Pathology, Karolinska Institutet, Science for Life Laboratory, Tomtebodavagen 23A, SE-171 65 Solna, Sweden
| | - David P Lane
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Biomedicum, SE-171 65 Stockholm, Sweden
| | - Marie Arsenian-Henriksson
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Biomedicum, SE-171 65 Stockholm, Sweden
| | - Michael Landreh
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Biomedicum, SE-171 65 Stockholm, Sweden; Department of Cell and Molecular Biology, Uppsala University, SE-751 24 Uppsala, Sweden
| | - Dilraj Lama
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Biomedicum, SE-171 65 Stockholm, Sweden.
| |
Collapse
|
5
|
George G, Ajayan A, Varkey J, Pandey NK, Chen J, Langen R. TDP43 and huntingtin Exon-1 undergo a conformationally specific interaction that strongly alters the fibril formation of both proteins. J Biol Chem 2024; 300:107660. [PMID: 39128727 PMCID: PMC11408864 DOI: 10.1016/j.jbc.2024.107660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/25/2024] [Accepted: 08/01/2024] [Indexed: 08/13/2024] Open
Abstract
Protein aggregation is a common feature of many neurodegenerative diseases. In Huntington's disease, mutant huntingtin is the primary aggregating protein, but the aggregation of other proteins, such as TDP43, is likely to further contribute to toxicity. Moreover, mutant huntingtin is also a risk factor for TDP pathology in ALS. Despite this co-pathology of huntingtin and TDP43, it remains unknown whether these amyloidogenic proteins directly interact with each other. Using a combination of biophysical methods, we show that the aggregation-prone regions of both proteins, huntingtin exon-1 (Httex1) and the TDP43 low complexity domain (TDP43-LCD), interact in a conformationally specific manner. This interaction significantly slows Httex1 aggregation, while it accelerates TDP43-LCD aggregation. A key intermediate responsible for both effects is a complex formed by liquid TDP43-LCD condensates and Httex1 fibrils. This complex shields seeding competent surfaces of Httex1 fibrils from Httex1 monomers, which are excluded from the condensates. In contrast, TDP43-LCD condensates undergo an accelerated liquid-to-solid transition upon exposure to Httex1 fibrils. Cellular studies show co-aggregation of untagged Httex1 with TDP43. This interaction causes mislocalization of TDP43, which has been linked to TDP43 toxicity. The protection from Httex1 aggregation in lieu of TDP43-LCD aggregation is interesting, as it mirrors what has been found in disease models, namely that TDP43 can protect from huntingtin toxicity, while mutant huntingtin can promote TDP43 pathology. These results suggest that direct protein interaction could, at least in part, be responsible for the linked pathologies of both proteins.
Collapse
Affiliation(s)
- Gincy George
- Physiology and Neuroscience, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Anakha Ajayan
- Physiology and Neuroscience, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Jobin Varkey
- Physiology and Neuroscience, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Nitin K Pandey
- Physiology and Neuroscience, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Jeannie Chen
- Physiology and Neuroscience, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Ralf Langen
- Physiology and Neuroscience, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, California, USA.
| |
Collapse
|
6
|
Mishra R, Gerlach GJ, Sahoo B, Camacho CJ, Wetzel R. A Targetable Self-association Surface of the Huntingtin exon1 Helical Tetramer Required for Assembly of Amyloid Pre-nucleation Oligomers. J Mol Biol 2024; 436:168607. [PMID: 38734203 DOI: 10.1016/j.jmb.2024.168607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 05/03/2024] [Accepted: 05/06/2024] [Indexed: 05/13/2024]
Abstract
Polyglutamine (polyQ) sequences undergo repeat-length dependent formation of disease-associated, amyloid-like cross-β core structures with kinetics and aggregate morphologies often influenced by the flanking sequences. In Huntington's disease (HD), the httNT segment on the polyQ's N-terminal flank enhances aggregation rates by changing amyloid nucleation from a classical homogeneous mechanism to a two-step process requiring an ɑ-helix-rich oligomeric intermediate. A folded, helix-rich httNT tetrameric structure suggested to be this critical intermediate was recently reported. Here we employ single alanine replacements along the httNT sequence to assess this proposed structure and refine the mechanistic model. We find that Ala replacement of hydrophobic residues within simple httNT peptides greatly suppresses helicity, supporting the tetramer model. These same helix-disruptive replacements in the httNT segment of an exon-1 analog greatly reduce aggregation kinetics, suggesting that an ɑ-helix rich multimer - either the tetramer or a larger multimer - plays an on-pathway role in nucleation. Surprisingly, several other Ala replacements actually enhance helicity and/or amyloid aggregation. The spatial localization of these residues on the tetramer surface suggests a self-association interface responsible for formation of the octomers and higher-order multimers most likely required for polyQ amyloid nucleation. Multimer docking of the tetramer, using the protein-protein docking algorithm ClusPro, predicts this symmetric surface to be a viable tetramer dimerization interface. Intriguingly, octomer formation brings the emerging polyQ chains into closer proximity at this tetramer-tetramer interface. Further supporting the potential importance of tetramer super-assembly, computational docking with a known exon-1 aggregation inhibitor predicts ligand contacts with residues at this interface.
Collapse
Affiliation(s)
- Rakesh Mishra
- Department Structural Biology, University of Pittsburgh School of Medicine Pittsburgh, PA 15260, USA.
| | - Gabriella J Gerlach
- Department of Computational and Systems Biology, University of Pittsburgh School of Medicine Pittsburgh, PA 15260, USA
| | - Bankanidhi Sahoo
- Department Structural Biology, University of Pittsburgh School of Medicine Pittsburgh, PA 15260, USA.
| | - Carlos J Camacho
- Department of Computational and Systems Biology, University of Pittsburgh School of Medicine Pittsburgh, PA 15260, USA.
| | - Ronald Wetzel
- Department Structural Biology, University of Pittsburgh School of Medicine Pittsburgh, PA 15260, USA.
| |
Collapse
|
7
|
Liu AY. A perspective on age-related changes in cell environment and risk of neurodegenerative diseases. Neural Regen Res 2024; 19:719-720. [PMID: 37843201 PMCID: PMC10664131 DOI: 10.4103/1673-5374.382234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/25/2023] [Accepted: 06/27/2023] [Indexed: 10/17/2023] Open
Affiliation(s)
- Alice Y. Liu
- Department of Cell Biology and Neuroscience, Rutgers State University of New Jersey, Piscataway, NJ, USA
| |
Collapse
|
8
|
Antón R, Treviño MÁ, Pantoja-Uceda D, Félix S, Babu M, Cabrita EJ, Zweckstetter M, Tinnefeld P, Vera AM, Oroz J. Alternative low-populated conformations prompt phase transitions in polyalanine repeat expansions. Nat Commun 2024; 15:1925. [PMID: 38431667 PMCID: PMC10908835 DOI: 10.1038/s41467-024-46236-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 02/19/2024] [Indexed: 03/05/2024] Open
Abstract
Abnormal trinucleotide repeat expansions alter protein conformation causing malfunction and contribute to a significant number of incurable human diseases. Scarce structural insights available on disease-related homorepeat expansions hinder the design of effective therapeutics. Here, we present the dynamic structure of human PHOX2B C-terminal fragment, which contains the longest polyalanine segment known in mammals. The major α-helical conformation of the polyalanine tract is solely extended by polyalanine expansions in PHOX2B, which are responsible for most congenital central hypoventilation syndrome cases. However, polyalanine expansions in PHOX2B additionally promote nascent homorepeat conformations that trigger length-dependent phase transitions into solid condensates that capture wild-type PHOX2B. Remarkably, HSP70 and HSP90 chaperones specifically seize PHOX2B alternative conformations preventing phase transitions. The precise observation of emerging polymorphs in expanded PHOX2B postulates unbalanced phase transitions as distinct pathophysiological mechanisms in homorepeat expansion diseases, paving the way towards the search of therapeutics modulating biomolecular condensates in central hypoventilation syndrome.
Collapse
Affiliation(s)
- Rosa Antón
- Instituto de Química Física Blas Cabrera (IQF), CSIC, E-28006, Madrid, Spain
| | - Miguel Á Treviño
- Instituto de Química Física Blas Cabrera (IQF), CSIC, E-28006, Madrid, Spain
| | - David Pantoja-Uceda
- Instituto de Química Física Blas Cabrera (IQF), CSIC, E-28006, Madrid, Spain
| | - Sara Félix
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2819-516, Caparica, Portugal
- UCIBIO, Department of Chemistry, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2819-516, Caparica, Portugal
| | - María Babu
- German Center for Neurodegenerative Diseases (DZNE), 37075, Göttingen, Germany
| | - Eurico J Cabrita
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2819-516, Caparica, Portugal
- UCIBIO, Department of Chemistry, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2819-516, Caparica, Portugal
| | - Markus Zweckstetter
- German Center for Neurodegenerative Diseases (DZNE), 37075, Göttingen, Germany
- Department for NMR-based Structural Biology, Max Planck Institute for Multidisciplinary Sciences, 37077, Göttingen, Germany
| | - Philip Tinnefeld
- Department of Chemistry and Center for NanoScience, Ludwig-Maximilians-Universität München, München, 81377, Germany
| | - Andrés M Vera
- Department of Chemistry and Center for NanoScience, Ludwig-Maximilians-Universität München, München, 81377, Germany
| | - Javier Oroz
- Instituto de Química Física Blas Cabrera (IQF), CSIC, E-28006, Madrid, Spain.
| |
Collapse
|
9
|
Elena-Real CA, Mier P, Sibille N, Andrade-Navarro MA, Bernadó P. Structure-function relationships in protein homorepeats. Curr Opin Struct Biol 2023; 83:102726. [PMID: 37924569 DOI: 10.1016/j.sbi.2023.102726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/06/2023] [Accepted: 10/09/2023] [Indexed: 11/06/2023]
Abstract
Homorepeats (or polyX), protein segments containing repetitions of the same amino acid, are abundant in proteomes from all kingdoms of life and are involved in crucial biological functions as well as several neurodegenerative and developmental diseases. Mainly inserted in disordered segments of proteins, the structure/function relationships of homorepeats remain largely unexplored. In this review, we summarize present knowledge for the most abundant homorepeats, highlighting the role of the inherent structure and the conformational influence exerted by their flanking regions. Recent experimental and computational methods enable residue-specific investigations of these regions and promise novel structural and dynamic information for this elusive group of proteins. This information should increase our knowledge about the structural bases of phenomena such as liquid-liquid phase separation and trinucleotide repeat disorders.
Collapse
Affiliation(s)
- Carlos A Elena-Real
- Centre de Biologie Structurale (CBS), Université de Montpellier, INSERM, CNRS. 29 rue de Navacelles, 34090 Montpellier, France. https://twitter.com/carloselenareal
| | - Pablo Mier
- Institute of Organismic and Molecular Evolution, Faculty of Biology, Johannes Gutenberg University Mainz. Hans-Dieter-Hüsch-Weg 15, 55128 Mainz, Germany
| | - Nathalie Sibille
- Centre de Biologie Structurale (CBS), Université de Montpellier, INSERM, CNRS. 29 rue de Navacelles, 34090 Montpellier, France
| | - Miguel A Andrade-Navarro
- Institute of Organismic and Molecular Evolution, Faculty of Biology, Johannes Gutenberg University Mainz. Hans-Dieter-Hüsch-Weg 15, 55128 Mainz, Germany
| | - Pau Bernadó
- Centre de Biologie Structurale (CBS), Université de Montpellier, INSERM, CNRS. 29 rue de Navacelles, 34090 Montpellier, France.
| |
Collapse
|
10
|
Barbosa Pereira PJ, Manso JA, Macedo-Ribeiro S. The structural plasticity of polyglutamine repeats. Curr Opin Struct Biol 2023; 80:102607. [PMID: 37178477 DOI: 10.1016/j.sbi.2023.102607] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/11/2023] [Accepted: 04/12/2023] [Indexed: 05/15/2023]
Abstract
From yeast to humans, polyglutamine (polyQ) repeat tracts are found frequently in the proteome and are particularly prominent in the activation domains of transcription factors. PolyQ is a polymorphic motif that modulates functional protein-protein interactions and aberrant self-assembly. Expansion of the polyQ repeated sequences beyond critical physiological repeat length thresholds triggers self-assembly and is linked to severe pathological implications. This review provides an overview of the current knowledge on the structures of polyQ tracts in the soluble and aggregated states and discusses the influence of neighboring regions on polyQ secondary structure, aggregation, and fibril morphologies. The influence of the genetic context of the polyQ-encoding trinucleotides is briefly discussed as a challenge for future endeavors in this field.
Collapse
Affiliation(s)
- Pedro José Barbosa Pereira
- IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135, Porto, Portugal; Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135, Porto, Portugal.
| | - José A Manso
- IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135, Porto, Portugal; Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135, Porto, Portugal
| | - Sandra Macedo-Ribeiro
- IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135, Porto, Portugal; Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135, Porto, Portugal
| |
Collapse
|
11
|
Elena-Real CA, Urbanek A, Lund XL, Morató A, Sagar A, Fournet A, Estaña A, Bellande T, Allemand F, Cortés J, Sibille N, Melki R, Bernadó P. Multi-site-specific isotopic labeling accelerates high-resolution structural investigations of pathogenic huntingtin exon-1. Structure 2023:S0969-2126(23)00126-0. [PMID: 37119819 DOI: 10.1016/j.str.2023.04.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/10/2023] [Accepted: 04/04/2023] [Indexed: 05/01/2023]
Abstract
Huntington's disease neurodegeneration occurs when the number of consecutive glutamines in the huntingtin exon-1 (HTTExon1) exceeds a pathological threshold of 35. The sequence homogeneity of HTTExon1 reduces the signal dispersion in NMR spectra, hampering its structural characterization. By simultaneously introducing three isotopically labeled glutamines in a site-specific manner in multiple concatenated samples, 18 glutamines of a pathogenic HTTExon1 with 36 glutamines were unambiguously assigned. Chemical shift analyses indicate the α-helical persistence in the homorepeat and the absence of an emerging toxic conformation around the pathological threshold. Using the same type of samples, the recognition mechanism of Hsc70 molecular chaperone has been investigated, indicating that it binds to the N17 region of HTTExon1, inducing the partial unfolding of the poly-Q. The proposed strategy facilitates high-resolution structural and functional studies in low-complexity regions.
Collapse
Affiliation(s)
- Carlos A Elena-Real
- Centre de Biologie Structurale (CBS), Université de Montpellier, INSERM, CNRS, 29, rue de Navacelles, 34090 Montpellier, France
| | - Annika Urbanek
- Centre de Biologie Structurale (CBS), Université de Montpellier, INSERM, CNRS, 29, rue de Navacelles, 34090 Montpellier, France
| | - Xamuel L Lund
- Centre de Biologie Structurale (CBS), Université de Montpellier, INSERM, CNRS, 29, rue de Navacelles, 34090 Montpellier, France; Institut Laue Langevin, 38000 Grenoble, France
| | - Anna Morató
- Centre de Biologie Structurale (CBS), Université de Montpellier, INSERM, CNRS, 29, rue de Navacelles, 34090 Montpellier, France
| | - Amin Sagar
- Centre de Biologie Structurale (CBS), Université de Montpellier, INSERM, CNRS, 29, rue de Navacelles, 34090 Montpellier, France
| | - Aurélie Fournet
- Centre de Biologie Structurale (CBS), Université de Montpellier, INSERM, CNRS, 29, rue de Navacelles, 34090 Montpellier, France
| | - Alejandro Estaña
- Centre de Biologie Structurale (CBS), Université de Montpellier, INSERM, CNRS, 29, rue de Navacelles, 34090 Montpellier, France; LAAS-CNRS, Université de Toulouse, CNRS, 31400, Toulouse, France
| | - Tracy Bellande
- Institut François Jacob, Molecular Imaging Center (MIRCen), Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA) and Laboratory of Neurodegenerative Diseases, Centre National de la Recherche Scientifique (CNRS), Université Paris-Saclay, CEA-Fontenay-aux-Roses Bâtiment 61, 18, route du Panorama, 92265 Fontenay-aux-Rses cedex, France
| | - Frédéric Allemand
- Centre de Biologie Structurale (CBS), Université de Montpellier, INSERM, CNRS, 29, rue de Navacelles, 34090 Montpellier, France
| | - Juan Cortés
- LAAS-CNRS, Université de Toulouse, CNRS, 31400, Toulouse, France
| | - Nathalie Sibille
- Centre de Biologie Structurale (CBS), Université de Montpellier, INSERM, CNRS, 29, rue de Navacelles, 34090 Montpellier, France
| | - Ronald Melki
- Institut François Jacob, Molecular Imaging Center (MIRCen), Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA) and Laboratory of Neurodegenerative Diseases, Centre National de la Recherche Scientifique (CNRS), Université Paris-Saclay, CEA-Fontenay-aux-Roses Bâtiment 61, 18, route du Panorama, 92265 Fontenay-aux-Rses cedex, France
| | - Pau Bernadó
- Centre de Biologie Structurale (CBS), Université de Montpellier, INSERM, CNRS, 29, rue de Navacelles, 34090 Montpellier, France.
| |
Collapse
|
12
|
Bravo-Arredondo JM, Venkataraman R, Varkey J, Isas JM, Situ AJ, Xu H, Chen J, Ulmer TS, Langen R. Molecular basis of Q-length selectivity for the MW1 antibody-huntingtin interaction. J Biol Chem 2023; 299:104616. [PMID: 36931390 PMCID: PMC10124945 DOI: 10.1016/j.jbc.2023.104616] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 03/08/2023] [Accepted: 03/09/2023] [Indexed: 03/17/2023] Open
Abstract
Huntington's disease is caused by a polyglutamine (polyQ) expansion in the huntingtin protein. Huntingtin exon 1 (Httex1), as well as other naturally occurring N-terminal huntingtin fragments with expanded polyQ are prone to aggregation, forming potentially cytotoxic oligomers and fibrils. Antibodies and other N-terminal huntingtin binders are widely explored as biomarkers and possible aggregation-inhibiting therapeutics. A monoclonal antibody, MW1, is known to preferentially bind to huntingtin fragments with expanded polyQ lengths, but the molecular basis of the polyQ length specificity remains poorly understood. Using solution NMR, EPR, and other biophysical methods, we investigated the structural features of the Httex1-MW1 interaction. Rather than recognizing residual α-helical structure, which is promoted by expanded Q-lengths, MW1 caused the formation of a new, non-native, conformation in which the entire polyQ is largely extended. This non-native polyQ structure allowed the formation of large mixed Httex1-MW1 multimers (600-2900 kD), when Httex1 with pathogenic Q-length (Q46) was used. We propose that these multivalent, entropically favored interactions, are available only to proteins with longer Q-lengths and represent a major factor governing the Q-length preference of MW1. The present study reveals that it is possible to target proteins with longer Q-lengths without having to stabilize a natively favored conformation. Such mechanisms could be exploited in the design of other Q-length specific binders.
Collapse
Affiliation(s)
- Jose M Bravo-Arredondo
- Physiology and Neuroscience, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Rajashree Venkataraman
- Physiology and Neuroscience, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Jobin Varkey
- Physiology and Neuroscience, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Jose Mario Isas
- Physiology and Neuroscience, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Alan J Situ
- Physiology and Neuroscience, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Hui Xu
- Physiology and Neuroscience, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Jeannie Chen
- Physiology and Neuroscience, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Tobias S Ulmer
- Physiology and Neuroscience, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, California, USA; Biochemistry and Molecular Medicine, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Ralf Langen
- Physiology and Neuroscience, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, California, USA; Biochemistry and Molecular Medicine, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, California, USA.
| |
Collapse
|
13
|
Elena-Real CA, Sagar A, Urbanek A, Popovic M, Morató A, Estaña A, Fournet A, Doucet C, Lund XL, Shi ZD, Costa L, Thureau A, Allemand F, Swenson RE, Milhiet PE, Crehuet R, Barducci A, Cortés J, Sinnaeve D, Sibille N, Bernadó P. The structure of pathogenic huntingtin exon 1 defines the bases of its aggregation propensity. Nat Struct Mol Biol 2023; 30:309-320. [PMID: 36864173 DOI: 10.1038/s41594-023-00920-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 01/05/2023] [Indexed: 03/04/2023]
Abstract
Huntington's disease is a neurodegenerative disorder caused by a CAG expansion in the first exon of the HTT gene, resulting in an extended polyglutamine (poly-Q) tract in huntingtin (httex1). The structural changes occurring to the poly-Q when increasing its length remain poorly understood due to its intrinsic flexibility and the strong compositional bias. The systematic application of site-specific isotopic labeling has enabled residue-specific NMR investigations of the poly-Q tract of pathogenic httex1 variants with 46 and 66 consecutive glutamines. Integrative data analysis reveals that the poly-Q tract adopts long α-helical conformations propagated and stabilized by glutamine side chain to backbone hydrogen bonds. We show that α-helical stability is a stronger signature in defining aggregation kinetics and the structure of the resulting fibrils than the number of glutamines. Our observations provide a structural perspective of the pathogenicity of expanded httex1 and pave the way to a deeper understanding of poly-Q-related diseases.
Collapse
Affiliation(s)
- Carlos A Elena-Real
- Centre for Structural Biology, University of Montpellier, INSERM, CNRS, Montpellier, France
| | - Amin Sagar
- Centre for Structural Biology, University of Montpellier, INSERM, CNRS, Montpellier, France
| | - Annika Urbanek
- Centre for Structural Biology, University of Montpellier, INSERM, CNRS, Montpellier, France
| | - Matija Popovic
- Centre for Structural Biology, University of Montpellier, INSERM, CNRS, Montpellier, France
| | - Anna Morató
- Centre for Structural Biology, University of Montpellier, INSERM, CNRS, Montpellier, France
| | - Alejandro Estaña
- Centre for Structural Biology, University of Montpellier, INSERM, CNRS, Montpellier, France
- LAAS-CNRS, University of Toulouse, CNRS, Toulouse, France
| | - Aurélie Fournet
- Centre for Structural Biology, University of Montpellier, INSERM, CNRS, Montpellier, France
| | - Christine Doucet
- Centre for Structural Biology, University of Montpellier, INSERM, CNRS, Montpellier, France
| | - Xamuel L Lund
- Centre for Structural Biology, University of Montpellier, INSERM, CNRS, Montpellier, France
- Institute of Laue Langevin, Grenoble, France
| | - Zhen-Dan Shi
- The Chemistry and Synthesis Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Rockville, MD, USA
| | - Luca Costa
- Centre for Structural Biology, University of Montpellier, INSERM, CNRS, Montpellier, France
| | | | - Frédéric Allemand
- Centre for Structural Biology, University of Montpellier, INSERM, CNRS, Montpellier, France
| | - Rolf E Swenson
- The Chemistry and Synthesis Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Rockville, MD, USA
| | | | - Ramon Crehuet
- Institute for Advanced Chemistry of Catalonia (IQAC), CSIC, Barcelona, Spain
| | - Alessandro Barducci
- Centre for Structural Biology, University of Montpellier, INSERM, CNRS, Montpellier, France
| | - Juan Cortés
- LAAS-CNRS, University of Toulouse, CNRS, Toulouse, France
| | - Davy Sinnaeve
- Univ. Lille, INSERM, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Risk Factors and Molecular Determinants of Aging-Related Diseases, Lille, France
- CNRS, EMR9002, Integrative Structural Biology, Lille, France
| | - Nathalie Sibille
- Centre for Structural Biology, University of Montpellier, INSERM, CNRS, Montpellier, France
| | - Pau Bernadó
- Centre for Structural Biology, University of Montpellier, INSERM, CNRS, Montpellier, France.
| |
Collapse
|
14
|
Castro E Costa AR, Mysore S, Paruchuri P, Chen KY, Liu AY. PolyQ-Expanded Mutant Huntingtin Forms Inclusion Body Following Transient Cold Shock in a Two-Step Aggregation Mechanism. ACS Chem Neurosci 2023; 14:277-288. [PMID: 36574489 DOI: 10.1021/acschemneuro.2c00585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Age-dependent formation of insoluble protein aggregates is a hallmark of many neurodegenerative diseases. We are interested in the cell chemistry that drives the aggregation of polyQ-expanded mutant Huntingtin (mHtt) protein into insoluble inclusion bodies (IBs). Using an inducible cell model of Huntington's disease, we show that a transient cold shock (CS) at 4 °C followed by recovery incubation at temperatures of 25-37 °C strongly and rapidly induces the compaction of diffuse polyQ-expanded HuntingtinExon1-enhanced green fluorescent protein chimera protein (mHtt) into round, micron size, cytosolic IBs. This transient CS-induced mHtt IB formation is independent of microtubule integrity or de novo protein synthesis. The addition of millimolar concentrations of sodium chloride accelerates, whereas urea suppresses this transient CS-induced mHtt IB formation. These results suggest that the low temperature of CS constrains the conformation dynamics of the intrinsically disordered mHtt into labile intermediate structures to facilitate de-solvation and hydrophobic interaction for IB formation at the higher recovery temperature. This work, along with our previous observation of the effects of heat shock protein chaperones and osmolytes in driving mHtt IB formation, underscores the primacy of mHtt structuring and rigidification for H-bond-mediated cross-linking in a two-step mechanism of mHtt IB formation in living cells.
Collapse
Affiliation(s)
- Ana Raquel Castro E Costa
- Department of Cell Biology and Neuroscience, Nelson Biology Laboratory, Rutgers State University of New Jersey, 604 Allison Road, Piscataway, New Jersey 08854, United States
| | - Sachin Mysore
- Department of Cell Biology and Neuroscience, Nelson Biology Laboratory, Rutgers State University of New Jersey, 604 Allison Road, Piscataway, New Jersey 08854, United States
| | - Praneet Paruchuri
- Department of Cell Biology and Neuroscience, Nelson Biology Laboratory, Rutgers State University of New Jersey, 604 Allison Road, Piscataway, New Jersey 08854, United States
| | - Kuang Yu Chen
- Department of Chemistry and Chemical Biology, Wright-Rieman Chemistry Laboratory, Rutgers State University of New Jersey, 610 Taylor Road, Piscataway, New Jersey 08854, United States
| | - Alice Y Liu
- Department of Cell Biology and Neuroscience, Nelson Biology Laboratory, Rutgers State University of New Jersey, 604 Allison Road, Piscataway, New Jersey 08854, United States
| |
Collapse
|
15
|
Escobedo A, Piccirillo J, Aranda J, Diercks T, Mateos B, Garcia-Cabau C, Sánchez-Navarro M, Topal B, Biesaga M, Staby L, Kragelund BB, García J, Millet O, Orozco M, Coles M, Crehuet R, Salvatella X. A glutamine-based single α-helix scaffold to target globular proteins. Nat Commun 2022; 13:7073. [PMID: 36400768 PMCID: PMC9674830 DOI: 10.1038/s41467-022-34793-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 11/04/2022] [Indexed: 11/19/2022] Open
Abstract
The binding of intrinsically disordered proteins to globular ones can require the folding of motifs into α-helices. These interactions offer opportunities for therapeutic intervention but their modulation with small molecules is challenging because they bury large surfaces. Linear peptides that display the residues that are key for binding can be targeted to globular proteins when they form stable helices, which in most cases requires their chemical modification. Here we present rules to design peptides that fold into single α-helices by instead concatenating glutamine side chain to main chain hydrogen bonds recently discovered in polyglutamine helices. The resulting peptides are uncharged, contain only natural amino acids, and their sequences can be optimized to interact with specific targets. Our results provide design rules to obtain single α-helices for a wide range of applications in protein engineering and drug design.
Collapse
Affiliation(s)
- Albert Escobedo
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10, 08028, Barcelona, Spain.
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain.
| | - Jonathan Piccirillo
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10, 08028, Barcelona, Spain
- Department of Macromolecular Structures, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| | - Juan Aranda
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10, 08028, Barcelona, Spain
| | - Tammo Diercks
- CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Bizkaia Science and Technology Park, 48160, Derio, Spain
| | - Borja Mateos
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10, 08028, Barcelona, Spain
| | - Carla Garcia-Cabau
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10, 08028, Barcelona, Spain
| | - Macarena Sánchez-Navarro
- Department of Molecular Biology, Instituto de Parasitología y Biomedicina López Neyra (IPBLN-CSIC), Armilla, Granada, Spain
| | - Busra Topal
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10, 08028, Barcelona, Spain
| | - Mateusz Biesaga
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10, 08028, Barcelona, Spain
| | - Lasse Staby
- REPIN and Structural Biology and NMR Laboratory, The Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Ole Maaloes Vej 5, DK-2200, Copenhagen N, Denmark
| | - Birthe B Kragelund
- REPIN and Structural Biology and NMR Laboratory, The Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Ole Maaloes Vej 5, DK-2200, Copenhagen N, Denmark
| | - Jesús García
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10, 08028, Barcelona, Spain
| | - Oscar Millet
- CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Bizkaia Science and Technology Park, 48160, Derio, Spain
| | - Modesto Orozco
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10, 08028, Barcelona, Spain
- Department of Biochemistry and Biomedicine, University of Barcelona, Avinguda Diagonal 645, 08028, Barcelona, Spain
| | - Murray Coles
- Department of Protein Evolution, Max Planck Institute for Biology, Max-Planck-Ring 5, 72076, Tubingen, Germany
| | - Ramon Crehuet
- Institute for Advanced Chemistry of Catalonia (IQAC), CSIC, Jordi Girona 18-26, 08034, Barcelona, Spain
| | - Xavier Salvatella
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10, 08028, Barcelona, Spain.
- ICREA, Passeig Lluís Companys 23, 08010, Barcelona, Spain.
| |
Collapse
|
16
|
Seefelder M, Klein FAC, Landwehrmeyer B, Fernández-Busnadiego R, Kochanek S. Huntingtin and Its Partner Huntingtin-Associated Protein 40: Structural and Functional Considerations in Health and Disease. J Huntingtons Dis 2022; 11:227-242. [PMID: 35871360 PMCID: PMC9484127 DOI: 10.3233/jhd-220543] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Since the discovery of the mutation causing Huntington’s disease (HD) in 1993, it has been debated whether an expanded polyglutamine (polyQ) stretch affects the properties of the huntingtin (HTT) protein and thus contributes to the pathological mechanisms responsible for HD. Here we review the current knowledge about the structure of HTT, alone (apo-HTT) or in a complex with Huntingtin-Associated Protein 40 (HAP40), the influence of polyQ-length variation on apo-HTT and the HTT-HAP40 complex, and the biology of HAP40. Phylogenetic analyses suggest that HAP40 performs essential functions. Highlighting the relevance of its interaction with HTT, HAP40 is one of the most abundant partners copurifying with HTT and is rapidly degraded, when HTT levels are reduced. As the levels of both proteins decrease during disease progression, HAP40 could also be a biomarker for HD. Whether declining HAP40 levels contribute to disease etiology is an open question. Structural studies have shown that the conformation of apo-HTT is less constrained but resembles that adopted in the HTT-HAP40 complex, which is exceptionally stable because of extensive interactions between HAP40 and the three domains of HTT. The complex— and to some extent apo-HTT— resists fragmentation after limited proteolysis. Unresolved regions of apo-HTT, constituting about 25% of the protein, are the main sites of post-translational modifications and likely have major regulatory functions. PolyQ elongation does not substantially alter the structure of HTT, alone or when associated with HAP40. Particularly, polyQ above the disease length threshold does not induce drastic conformational changes in full-length HTT. Therefore, models of HD pathogenesis stating that polyQ expansion drastically alters HTT properties should be reconsidered.
Collapse
Affiliation(s)
| | | | | | - Rubén Fernández-Busnadiego
- Institute of Neuropathology, University Medical Center Göttingen, Göttingen, Germany.,Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany
| | | |
Collapse
|
17
|
Wilbertz JH, Frappier J, Muller S, Gratzer S, Englaro W, Stanek LM, Calamini B. Time-resolved FRET screening identifies small molecular modifiers of mutant Huntingtin conformational inflexibility in patient-derived cells. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2022; 27:219-228. [PMID: 35058188 DOI: 10.1016/j.slasd.2021.10.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Huntington's disease (HD) is the most common monogenic neurodegenerative disease and is fatal. CAG repeat expansions in mutant Huntingtin (mHTT) exon 1 encode for polyglutamine (polyQ) stretches and influence age of onset and disease severity, depending on their length. mHTT is more structured compared to wild-type (wt) HTT, resulting in a decreased N-terminal conformational flexibility. mHTT inflexibility may contribute to both gain of function toxicity, due to increased mHTT aggregation propensity, but also to loss of function phenotypes, due to decreased interactions with binding partners. High-throughput-screening techniques to identify mHTT flexibility states and potential flexibility modifying small molecules are currently lacking. Here, we propose a novel approach for identifying small molecules that restore mHTT's conformational flexibility in human patient fibroblasts. We have applied a well-established antibody-based time-resolved Förster resonance energy transfer (TR-FRET) immunoassay, which measures endogenous HTT flexibility using two validated HTT-specific antibodies, to a high-throughput screening platform. By performing a small-scale compound screen, we identified several small molecules that can partially rescue mHTT inflexibility, presumably by altering HTT post-translational modifications. Thus, we demonstrated that the HTT TR-FRET immunoassay can be miniaturized and applied to a compound screening workflow in patient cells. This automated assay can now be used in large screening campaigns to identify previously unknown HD drugs and drug targets.
Collapse
Affiliation(s)
| | | | | | | | | | - Lisa M Stanek
- Sanofi Rare and Neurological Diseases, Framingham, MA, United States
| | | |
Collapse
|
18
|
Harding RJ, Deme JC, Hevler JF, Tamara S, Lemak A, Cantle JP, Szewczyk MM, Begeja N, Goss S, Zuo X, Loppnau P, Seitova A, Hutchinson A, Fan L, Truant R, Schapira M, Carroll JB, Heck AJR, Lea SM, Arrowsmith CH. Huntingtin structure is orchestrated by HAP40 and shows a polyglutamine expansion-specific interaction with exon 1. Commun Biol 2021; 4:1374. [PMID: 34880419 PMCID: PMC8654980 DOI: 10.1038/s42003-021-02895-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 11/09/2021] [Indexed: 12/14/2022] Open
Abstract
Huntington's disease results from expansion of a glutamine-coding CAG tract in the huntingtin (HTT) gene, producing an aberrantly functioning form of HTT. Both wildtype and disease-state HTT form a hetero-dimer with HAP40 of unknown functional relevance. We demonstrate in vivo and in cell models that HTT and HAP40 cellular abundance are coupled. Integrating data from a 2.6 Å cryo-electron microscopy structure, cross-linking mass spectrometry, small-angle X-ray scattering, and modeling, we provide a near-atomic-level view of HTT, its molecular interaction surfaces and compacted domain architecture, orchestrated by HAP40. Native mass spectrometry reveals a remarkably stable hetero-dimer, potentially explaining the cellular inter-dependence of HTT and HAP40. The exon 1 region of HTT is dynamic but shows greater conformational variety in the polyglutamine expanded mutant than wildtype exon 1. Our data provide a foundation for future functional and drug discovery studies targeting Huntington's disease and illuminate the structural consequences of HTT polyglutamine expansion.
Collapse
Affiliation(s)
- Rachel J Harding
- Structural Genomics Consortium, University of Toronto, Toronto, ON, M5G 1L7, Canada.
| | - Justin C Deme
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK
- Central Oxford Structural Molecular Imaging Centre, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK
- Center for Structural Biology, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, USA
| | - Johannes F Hevler
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute of Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
- Netherlands Proteomics Center, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| | - Sem Tamara
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute of Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
- Netherlands Proteomics Center, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| | - Alexander Lemak
- Princess Margaret Cancer Centre and Department of Medical Biophysics, University of Toronto, Toronto, ON, M5G 1L7, Canada
| | - Jeffrey P Cantle
- Behavioral Neuroscience Program, Department of Psychology, Western Washington University, Bellingham, WA, 98225, USA
| | - Magdalena M Szewczyk
- Structural Genomics Consortium, University of Toronto, Toronto, ON, M5G 1L7, Canada
| | - Nola Begeja
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, L8S 4K1, Canada
| | - Siobhan Goss
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, L8S 4K1, Canada
| | - Xiaobing Zuo
- X-ray Science Division, Argonne National Laboratory, Lemont, IL, 60439, USA
| | - Peter Loppnau
- Structural Genomics Consortium, University of Toronto, Toronto, ON, M5G 1L7, Canada
| | - Alma Seitova
- Structural Genomics Consortium, University of Toronto, Toronto, ON, M5G 1L7, Canada
| | - Ashley Hutchinson
- Structural Genomics Consortium, University of Toronto, Toronto, ON, M5G 1L7, Canada
| | - Lixin Fan
- Basic Science Program, Frederick National Laboratory for Cancer Research, SAXS Core of NCI, National Institutes of Health, Frederick, MD, 21701, USA
| | - Ray Truant
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, L8S 4K1, Canada
| | - Matthieu Schapira
- Structural Genomics Consortium, University of Toronto, Toronto, ON, M5G 1L7, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Jeffrey B Carroll
- Behavioral Neuroscience Program, Department of Psychology, Western Washington University, Bellingham, WA, 98225, USA
| | - Albert J R Heck
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute of Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
- Netherlands Proteomics Center, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| | - Susan M Lea
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK
- Central Oxford Structural Molecular Imaging Centre, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK
- Center for Structural Biology, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, USA
| | - Cheryl H Arrowsmith
- Structural Genomics Consortium, University of Toronto, Toronto, ON, M5G 1L7, Canada.
- Princess Margaret Cancer Centre and Department of Medical Biophysics, University of Toronto, Toronto, ON, M5G 1L7, Canada.
| |
Collapse
|
19
|
Belwal VK, Vijayakumar A, Chaudhary N. Inhibition of huntingtin aggregation by its N-terminal 17-residue peptide and its analogs. Arch Biochem Biophys 2021; 712:109033. [PMID: 34534539 DOI: 10.1016/j.abb.2021.109033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 08/30/2021] [Accepted: 09/13/2021] [Indexed: 10/20/2022]
Abstract
The N-terminal 17-residue stretch of huntingtin (httN17) folds into an amphipathic α-helix. The httN17-harboring polyQ peptides form oligomers that are mediated via the assembly of the httN17 α-helices. The oligomerization results in higher local concentration of the polyglutamine (polyQ) region, thereby facilitating amyloid formation. The httN17 co-assembles with the httN17-harbouring polyQ peptides, thereby reducing the local polyQ concentration, and consequently inhibiting aggregation. This study presents the aggregation inhibition of the exon I region of pathogenic huntingtin by httN17 and its analogs. The C-terminal amidation of httN17 is found to be essential for activity. The httN17 peptides with free amino terminus and the acetylated amino terminus possess comparable activity. The httN17 analog, wherein the Leu7 and Ala10 are substituted with 2-aminoisobutyric acid residues, exhibits significantly higher activity than the native httN17.
Collapse
Affiliation(s)
- Vinay Kumar Belwal
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781 039, India
| | - Aishwarya Vijayakumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781 039, India
| | - Nitin Chaudhary
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781 039, India.
| |
Collapse
|
20
|
Pigazzini ML, Lawrenz M, Margineanu A, Kaminski Schierle GS, Kirstein J. An Expanded Polyproline Domain Maintains Mutant Huntingtin Soluble in vivo and During Aging. Front Mol Neurosci 2021; 14:721749. [PMID: 34720872 PMCID: PMC8554126 DOI: 10.3389/fnmol.2021.721749] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 08/30/2021] [Indexed: 02/02/2023] Open
Abstract
Huntington's disease is a dominantly inherited neurodegenerative disorder caused by the expansion of a CAG repeat, encoding for the amino acid glutamine (Q), present in the first exon of the protein huntingtin. Over the threshold of Q39 HTT exon 1 (HTTEx1) tends to misfold and aggregate into large intracellular structures, but whether these end-stage aggregates or their on-pathway intermediates are responsible for cytotoxicity is still debated. HTTEx1 can be separated into three domains: an N-terminal 17 amino acid region, the polyglutamine (polyQ) expansion and a C-terminal proline rich domain (PRD). Alongside the expanded polyQ, these flanking domains influence the aggregation propensity of HTTEx1: with the N17 initiating and promoting aggregation, and the PRD modulating it. In this study we focus on the first 11 amino acids of the PRD, a stretch of pure prolines, which are an evolutionary recent addition to the expanding polyQ region. We hypothesize that this proline region is expanding alongside the polyQ to counteract its ability to misfold and cause toxicity, and that expanding this proline region would be overall beneficial. We generated HTTEx1 mutants lacking both flanking domains singularly, missing the first 11 prolines of the PRD, or with this stretch of prolines expanded. We then followed their aggregation landscape in vitro with a battery of biochemical assays, and in vivo in novel models of C. elegans expressing the HTTEx1 mutants pan-neuronally. Employing fluorescence lifetime imaging we could observe the aggregation propensity of all HTTEx1 mutants during aging and correlate this with toxicity via various phenotypic assays. We found that the presence of an expanded proline stretch is beneficial in maintaining HTTEx1 soluble over time, regardless of polyQ length. However, the expanded prolines were only advantageous in promoting the survival and fitness of an organism carrying a pathogenic stretch of Q48 but were extremely deleterious to the nematode expressing a physiological stretch of Q23. Our results reveal the unique importance of the prolines which have and still are evolving alongside expanding glutamines to promote the function of HTTEx1 and avoid pathology.
Collapse
Affiliation(s)
- Maria Lucia Pigazzini
- Department of Molecular Physiology and Cell Biology, Leibniz Research Institute for Molecular Pharmacology in the Forschungsverbund Berlin e.V. (FMP), Berlin, Germany
- NeuroCure Cluster of Excellence, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Mandy Lawrenz
- Department of Molecular Physiology and Cell Biology, Leibniz Research Institute for Molecular Pharmacology in the Forschungsverbund Berlin e.V. (FMP), Berlin, Germany
| | - Anca Margineanu
- Advanced Light Microscopy, Max-Delbrück Centrum for Molecular Medicine (MDC), Berlin, Germany
| | - Gabriele S. Kaminski Schierle
- Molecular Neuroscience Group, Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, United Kingdom
| | - Janine Kirstein
- Department of Molecular Physiology and Cell Biology, Leibniz Research Institute for Molecular Pharmacology in the Forschungsverbund Berlin e.V. (FMP), Berlin, Germany
- Department of Cell Biology, University of Bremen, Bremen, Germany
| |
Collapse
|
21
|
Marquette A, Aisenbrey C, Bechinger B. Membrane Interactions Accelerate the Self-Aggregation of Huntingtin Exon 1 Fragments in a Polyglutamine Length-Dependent Manner. Int J Mol Sci 2021; 22:ijms22136725. [PMID: 34201610 PMCID: PMC8268948 DOI: 10.3390/ijms22136725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/07/2021] [Accepted: 06/18/2021] [Indexed: 12/04/2022] Open
Abstract
The accumulation of aggregated protein is a typical hallmark of many human neurodegenerative disorders, including polyglutamine-related diseases such as chorea Huntington. Misfolding of the amyloidogenic proteins gives rise to self-assembled complexes and fibres. The huntingtin protein is characterised by a segment of consecutive glutamines which, when exceeding ~ 37 residues, results in the occurrence of the disease. Furthermore, it has also been demonstrated that the 17-residue amino-terminal domain of the protein (htt17), located upstream of this polyglutamine tract, strongly correlates with aggregate formation and pathology. Here, we demonstrate that membrane interactions strongly accelerate the oligomerisation and β-amyloid fibril formation of htt17-polyglutamine segments. By using a combination of biophysical approaches, the kinetics of fibre formation is investigated and found to be strongly dependent on the presence of lipids, the length of the polyQ expansion, and the polypeptide-to-lipid ratio. Finally, the implications for therapeutic approaches are discussed.
Collapse
Affiliation(s)
- Arnaud Marquette
- Chemistry Institute UMR7177, University of Strasbourg/CNRS, 67000 Strasbourg, France; (A.M.); (C.A.)
| | - Christopher Aisenbrey
- Chemistry Institute UMR7177, University of Strasbourg/CNRS, 67000 Strasbourg, France; (A.M.); (C.A.)
| | - Burkhard Bechinger
- Chemistry Institute UMR7177, University of Strasbourg/CNRS, 67000 Strasbourg, France; (A.M.); (C.A.)
- Insitut Universitaire de France, 75005 Paris, France
- Correspondence:
| |
Collapse
|
22
|
Huang B, Guo Q, Niedermeier ML, Cheng J, Engler T, Maurer M, Pautsch A, Baumeister W, Stengel F, Kochanek S, Fernández-Busnadiego R. Pathological polyQ expansion does not alter the conformation of the Huntingtin-HAP40 complex. Structure 2021; 29:804-809.e5. [PMID: 33909994 DOI: 10.1016/j.str.2021.04.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/23/2021] [Accepted: 04/08/2021] [Indexed: 01/12/2023]
Abstract
The abnormal amplification of a CAG repeat in the gene coding for huntingtin (HTT) leads to Huntington's disease (HD). At the protein level, this translates into the expansion of a polyglutamine (polyQ) stretch located at the HTT N terminus, which renders HTT aggregation prone by unknown mechanisms. Here we investigated the effects of polyQ expansion on HTT in a complex with its stabilizing interaction partner huntingtin-associated protein 40 (HAP40). Surprisingly, our comprehensive biophysical, crosslinking mass spectrometry and cryo-EM experiments revealed no major differences in the conformation of HTT-HAP40 complexes of various polyQ length, including 17QHTT-HAP40 (wild type), 46QHTT-HAP40 (typical polyQ length in HD patients), and 128QHTT-HAP40 (extreme polyQ length). Thus, HTT polyQ expansion does not alter the global conformation of HTT when associated with HAP40.
Collapse
Affiliation(s)
- Bin Huang
- Department of Gene Therapy, Ulm University, 89081, Ulm, Germany
| | - Qiang Guo
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany; State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences and Peking-Tsinghua Center for Life Sciences, Peking University, 100871 Beijing, China
| | - Marie L Niedermeier
- Department of Biology, University of Konstanz, 78457 Konstanz, Germany; Konstanz Research School Chemical Biology, University of Konstanz, 78457 Konstanz, Germany
| | - Jingdong Cheng
- Gene Center, Department of Biochemistry and Center for Integrated Protein Science Munich, Ludwig-Maximilians University, 81377 Munich, Germany
| | - Tatjana Engler
- Department of Gene Therapy, Ulm University, 89081, Ulm, Germany
| | - Melanie Maurer
- Department of Medicinal Chemistry, Boehringer Ingelheim Pharma GmbH & Co. KG, 88397 Biberach an der Riß, Germany
| | - Alexander Pautsch
- Department of Medicinal Chemistry, Boehringer Ingelheim Pharma GmbH & Co. KG, 88397 Biberach an der Riß, Germany
| | - Wolfgang Baumeister
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Florian Stengel
- Department of Biology, University of Konstanz, 78457 Konstanz, Germany; Konstanz Research School Chemical Biology, University of Konstanz, 78457 Konstanz, Germany.
| | - Stefan Kochanek
- Department of Gene Therapy, Ulm University, 89081, Ulm, Germany.
| | - Rubén Fernández-Busnadiego
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany; Institute of Neuropathology, University Medical Center Göttingen, 37099 Göttingen, Germany; Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, 37075 Göttingen, Germany.
| |
Collapse
|
23
|
Moving beyond disease to function: Physiological roles for polyglutamine-rich sequences in cell decisions. Curr Opin Cell Biol 2021; 69:120-126. [PMID: 33610098 DOI: 10.1016/j.ceb.2021.01.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/18/2020] [Accepted: 01/12/2021] [Indexed: 12/17/2022]
Abstract
Glutamine-rich tracts, also known as polyQ domains, have received a great deal of attention for their role in multiple neurodegenerative diseases, including Huntington's disease (HD), spinocerebellar ataxia (SCA), and others [22], [27]. Expansions in the normal polyQ tracts are thus commonly linked to disease, but polyQ domains themselves play multiple important functional roles in cells that are being increasingly appreciated. The biochemical nature of these domains allows them to adopt a number of different structures and form large assemblies that enable environmental responsiveness, localized signaling, and cellular memory. In many cases, these involve the formation of condensates that have varied material states. In this review, we highlight known and emerging functional roles for polyQ tracts in normal cell physiology.
Collapse
|
24
|
Benn CL, Gibson KR, Reynolds DS. Drugging DNA Damage Repair Pathways for Trinucleotide Repeat Expansion Diseases. J Huntingtons Dis 2021; 10:203-220. [PMID: 32925081 PMCID: PMC7990437 DOI: 10.3233/jhd-200421] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
DNA damage repair (DDR) mechanisms have been implicated in a number of neurodegenerative diseases (both genetically determined and sporadic). Consistent with this, recent genome-wide association studies in Huntington’s disease (HD) and other trinucleotide repeat expansion diseases have highlighted genes involved in DDR mechanisms as modifiers for age of onset, rate of progression and somatic instability. At least some clinical genetic modifiers have been shown to have a role in modulating trinucleotide repeat expansion biology and could therefore provide new disease-modifying therapeutic targets. In this review, we focus on key considerations with respect to drug discovery and development using DDR mechanisms as a target for trinucleotide repeat expansion diseases. Six areas are covered with specific reference to DDR and HD: 1) Target identification and validation; 2) Candidate selection including therapeutic modality and delivery; 3) Target drug exposure with particular focus on blood-brain barrier penetration, engagement and expression of pharmacology; 4) Safety; 5) Preclinical models as predictors of therapeutic efficacy; 6) Clinical outcome measures including biomarkers.
Collapse
Affiliation(s)
- Caroline L Benn
- LoQus23 Therapeutics, Riverside, Babraham Research Campus, Cambridge, UK
| | - Karl R Gibson
- Sandexis Medicinal Chemistry Ltd, Innovation House, Discovery Park, Sandwich, Kent, UK
| | - David S Reynolds
- LoQus23 Therapeutics, Riverside, Babraham Research Campus, Cambridge, UK
| |
Collapse
|
25
|
In Silico Prediction of the Binding, Folding, Insertion, and Overall Stability of Membrane-Active Peptides. Methods Mol Biol 2021; 2315:161-182. [PMID: 34302676 DOI: 10.1007/978-1-0716-1468-6_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Membrane-active peptides (MAPs) are short-length peptides used for potential biomedical applications in diagnostic imaging of tissues, targeted drug delivery, gene delivery, and antimicrobials and antibiotics. The broad appeal of MAPs is that they are infinitely variable, relatively low cost, and biocompatible. However, experimentally characterizing the specific properties of a MAP or its many variants is a low-resolution and potentially time-consuming endeavor; molecular dynamics (MD) simulations have emerged as an invaluable tool in identifying the biophysical interactions that are fundamental to the function of MAPs. In this chapter, a step-by-step approach to discreetly model the binding, folding, and insertion of a membrane-active peptide to a model lipid bilayer using MD simulations is described. Detailed discussion is devoted to the critical aspects of running these types of simulations: prior knowledge of the system, understanding the strengths and weaknesses of molecular mechanics force fields, proper construction and equilibration of the system, realistically estimating both experimental and computational timescales, and leveraging analysis to make direct comparisons to experimental results as often as possible.
Collapse
|
26
|
Delhommel F, Sattler M. When Less Is More: Combining Site-Specific Isotope Labeling and NMR Unravels Structural Details of Huntingtin Repeats. Structure 2020; 28:730-732. [PMID: 32640252 DOI: 10.1016/j.str.2020.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
In this issue of Structure, Urbanek et al. (2020a) combine site-specific isotope labeling and NMR spectroscopy to investigate opposing effects of flanking regions onto the conformation of the poly-Q region in Huntingtin. Poly-Q interactions with preceding residues promote an α-helical conformation while a following proline-rich region favors extended conformations.
Collapse
Affiliation(s)
- Florent Delhommel
- Institute of Structural Biology, Helmholtz Zentrum München, Neuherberg, Germany; Bavarian NMR Center and Center for Integrated Protein Science Munich at Department Chemie, Technical University of Munich, Garching, Germany
| | - Michael Sattler
- Institute of Structural Biology, Helmholtz Zentrum München, Neuherberg, Germany; Bavarian NMR Center and Center for Integrated Protein Science Munich at Department Chemie, Technical University of Munich, Garching, Germany.
| |
Collapse
|
27
|
Morató A, Elena-Real CA, Popovic M, Fournet A, Zhang K, Allemand F, Sibille N, Urbanek A, Bernadó P. Robust Cell-Free Expression of Sub-Pathological and Pathological Huntingtin Exon-1 for NMR Studies. General Approaches for the Isotopic Labeling of Low-Complexity Proteins. Biomolecules 2020; 10:E1458. [PMID: 33086646 PMCID: PMC7603387 DOI: 10.3390/biom10101458] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/07/2020] [Accepted: 10/16/2020] [Indexed: 12/23/2022] Open
Abstract
The high-resolution structural study of huntingtin exon-1 (HttEx1) has long been hampered by its intrinsic properties. In addition to being prone to aggregate, HttEx1 contains low-complexity regions (LCRs) and is intrinsically disordered, ruling out several standard structural biology approaches. Here, we use a cell-free (CF) protein expression system to robustly and rapidly synthesize (sub-) pathological HttEx1. The open nature of the CF reaction allows the application of different isotopic labeling schemes, making HttEx1 amenable for nuclear magnetic resonance studies. While uniform and selective labeling facilitate the sequential assignment of HttEx1, combining CF expression with nonsense suppression allows the site-specific incorporation of a single labeled residue, making possible the detailed investigation of the LCRs. To optimize CF suppression yields, we analyze the expression and suppression kinetics, revealing that high concentrations of loaded suppressor tRNA have a negative impact on the final reaction yield. The optimized CF protein expression and suppression system is very versatile and well suited to produce challenging proteins with LCRs in order to enable the characterization of their structure and dynamics.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Annika Urbanek
- Centre de Biochimie Structurale (CBS), INSERM, CNRS and Université de Montpellier. 29 rue de Navacelles, 34090 Montpellier, France; (A.M.); (C.A.E.-R.); (M.P.); (A.F.); (K.Z.); (F.A.); (N.S.)
| | - Pau Bernadó
- Centre de Biochimie Structurale (CBS), INSERM, CNRS and Université de Montpellier. 29 rue de Navacelles, 34090 Montpellier, France; (A.M.); (C.A.E.-R.); (M.P.); (A.F.); (K.Z.); (F.A.); (N.S.)
| |
Collapse
|
28
|
Aravindan S, Chen S, Choudhry H, Molfetta C, Chen KY, Liu AYC. Osmolytes dynamically regulate mutant Huntingtin aggregation and CREB function in Huntington's disease cell models. Sci Rep 2020; 10:15511. [PMID: 32968182 PMCID: PMC7511939 DOI: 10.1038/s41598-020-72613-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 06/30/2020] [Indexed: 12/13/2022] Open
Abstract
Osmolytes are organic solutes that change the protein folding landscape shifting the equilibrium towards the folded state. Herein, we use osmolytes to probe the structuring and aggregation of the intrinsically disordered mutant Huntingtin (mHtt) vis-a-vis the pathogenicity of mHtt on transcription factor function and cell survival. Using an inducible PC12 cell model of Huntington's disease (HD), we show that stabilizing polyol osmolytes drive the aggregation of Htt103QExon1-EGFP from a diffuse ensemble into inclusion bodies (IBs), whereas the destabilizing osmolyte urea does not. This effect of stabilizing osmolytes is innate, generic, countered by urea, and unaffected by HSP70 and HSC70 knockdown. A qualitatively similar result of osmolyte-induced mHtt IB formation is observed in a conditionally immortalized striatal neuron model of HD, and IB formation correlates with improved survival under stress. Increased expression of diffuse mHtt sequesters the CREB transcription factor to repress CREB-reporter gene activity. This repression is mitigated either by stabilizing osmolytes, which deplete diffuse mHtt or by urea, which negates protein-protein interaction. Our results show that stabilizing polyol osmolytes promote mHtt aggregation, alleviate CREB dysfunction, and promote survival under stress to support the hypothesis that lower molecular weight entities of disease protein are relevant pathogenic species in neurodegeneration.
Collapse
Affiliation(s)
- Shreyaas Aravindan
- Department of Cell Biology and Neuroscience, Rutgers State University of New Jersey, Nelson Biology Laboratory, 604 Allison Road, Piscataway, NJ, 08854, USA
| | - Samantha Chen
- Department of Cell Biology and Neuroscience, Rutgers State University of New Jersey, Nelson Biology Laboratory, 604 Allison Road, Piscataway, NJ, 08854, USA
| | - Hannaan Choudhry
- Department of Cell Biology and Neuroscience, Rutgers State University of New Jersey, Nelson Biology Laboratory, 604 Allison Road, Piscataway, NJ, 08854, USA
| | - Celine Molfetta
- Department of Cell Biology and Neuroscience, Rutgers State University of New Jersey, Nelson Biology Laboratory, 604 Allison Road, Piscataway, NJ, 08854, USA
| | - Kuang Yu Chen
- Department of Chemistry and Chemical Biology, Rutgers State University of New Jersey, Nelson Biology Laboratory, 604 Allison Road, Piscataway, NJ, 08854, USA
| | - Alice Y C Liu
- Department of Cell Biology and Neuroscience, Rutgers State University of New Jersey, Nelson Biology Laboratory, 604 Allison Road, Piscataway, NJ, 08854, USA.
| |
Collapse
|
29
|
Chavali S, Singh AK, Santhanam B, Babu MM. Amino acid homorepeats in proteins. Nat Rev Chem 2020; 4:420-434. [PMID: 37127972 DOI: 10.1038/s41570-020-0204-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/04/2020] [Indexed: 12/16/2022]
Abstract
Amino acid homorepeats, or homorepeats, are polypeptide segments found in proteins that contain stretches of identical amino acid residues. Although abnormal homorepeat expansions are linked to pathologies such as neurodegenerative diseases, homorepeats are prevalent in eukaryotic proteomes, suggesting that they are important for normal physiology. In this Review, we discuss recent advances in our understanding of the biological functions of homorepeats, which range from facilitating subcellular protein localization to mediating interactions between proteins across diverse cellular pathways. We explore how the functional diversity of homorepeat-containing proteins could be linked to the ability of homorepeats to adopt different structural conformations, an ability influenced by repeat composition, repeat length and the nature of flanking sequences. We conclude by highlighting how an understanding of homorepeats will help us better characterize and develop therapeutics against the human diseases to which they contribute.
Collapse
Affiliation(s)
- Sreenivas Chavali
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, UK.
- Department of Biology, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati, India.
| | - Anjali K Singh
- Department of Biology, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati, India
| | - Balaji Santhanam
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, UK
- Department of Structural Biology and Center for Data Driven Discovery, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - M Madan Babu
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, UK.
- Department of Structural Biology and Center for Data Driven Discovery, St. Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|
30
|
Belwal VK, Datta D, Chaudhary N. The β‐turn‐supporting motif in the polyglutamine binding peptide QBP1 is essential for inhibiting huntingtin aggregation. FEBS Lett 2020; 594:2894-2903. [DOI: 10.1002/1873-3468.13873] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 06/05/2020] [Accepted: 06/17/2020] [Indexed: 11/11/2022]
Affiliation(s)
- Vinay Kumar Belwal
- Department of Biosciences and Bioengineering Indian Institute of Technology Guwahati India
| | - Debika Datta
- Department of Biosciences and Bioengineering Indian Institute of Technology Guwahati India
| | - Nitin Chaudhary
- Department of Biosciences and Bioengineering Indian Institute of Technology Guwahati India
| |
Collapse
|
31
|
Urbanek A, Popovic M, Morató A, Estaña A, Elena-Real CA, Mier P, Fournet A, Allemand F, Delbecq S, Andrade-Navarro MA, Cortés J, Sibille N, Bernadó P. Flanking Regions Determine the Structure of the Poly-Glutamine in Huntingtin through Mechanisms Common among Glutamine-Rich Human Proteins. Structure 2020; 28:733-746.e5. [PMID: 32402249 DOI: 10.1016/j.str.2020.04.008] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 02/18/2020] [Accepted: 04/11/2020] [Indexed: 10/24/2022]
Abstract
The causative agent of Huntington's disease, the poly-Q homo-repeat in the N-terminal region of huntingtin (httex1), is flanked by a 17-residue-long fragment (N17) and a proline-rich region (PRR), which promote and inhibit the aggregation propensity of the protein, respectively, by poorly understood mechanisms. Based on experimental data obtained from site-specifically labeled NMR samples, we derived an ensemble model of httex1 that identified both flanking regions as opposing poly-Q secondary structure promoters. While N17 triggers helicity through a promiscuous hydrogen bond network involving the side chains of the first glutamines in the poly-Q tract, the PRR promotes extended conformations in neighboring glutamines. Furthermore, a bioinformatics analysis of the human proteome showed that these structural traits are present in many human glutamine-rich proteins and that they are more prevalent in proteins with longer poly-Q tracts. Taken together, these observations provide the structural bases to understand previous biophysical and functional data on httex1.
Collapse
Affiliation(s)
- Annika Urbanek
- Centre de Biochimie Structurale (CBS), INSERM, CNRS, Université de Montpellier, 34090 Montpellier, France
| | - Matija Popovic
- Centre de Biochimie Structurale (CBS), INSERM, CNRS, Université de Montpellier, 34090 Montpellier, France
| | - Anna Morató
- Centre de Biochimie Structurale (CBS), INSERM, CNRS, Université de Montpellier, 34090 Montpellier, France
| | - Alejandro Estaña
- Centre de Biochimie Structurale (CBS), INSERM, CNRS, Université de Montpellier, 34090 Montpellier, France; LAAS-CNRS, Université de Toulouse, CNRS, 31400 Toulouse, France
| | - Carlos A Elena-Real
- Centre de Biochimie Structurale (CBS), INSERM, CNRS, Université de Montpellier, 34090 Montpellier, France
| | - Pablo Mier
- Institute of Organismic and Molecular Evolution, Faculty of Biology, Johannes Gutenberg University of Mainz, 55128 Mainz, Germany
| | - Aurélie Fournet
- Centre de Biochimie Structurale (CBS), INSERM, CNRS, Université de Montpellier, 34090 Montpellier, France
| | - Frédéric Allemand
- Centre de Biochimie Structurale (CBS), INSERM, CNRS, Université de Montpellier, 34090 Montpellier, France
| | - Stephane Delbecq
- Laboratoire de Biologie Cellulaire et Moléculaire (LBCM-EA4558 Vaccination Antiparasitaire), UFR Pharmacie, Université de Montpellier, 34090 Montpellier, France
| | - Miguel A Andrade-Navarro
- Institute of Organismic and Molecular Evolution, Faculty of Biology, Johannes Gutenberg University of Mainz, 55128 Mainz, Germany
| | - Juan Cortés
- LAAS-CNRS, Université de Toulouse, CNRS, 31400 Toulouse, France
| | - Nathalie Sibille
- Centre de Biochimie Structurale (CBS), INSERM, CNRS, Université de Montpellier, 34090 Montpellier, France
| | - Pau Bernadó
- Centre de Biochimie Structurale (CBS), INSERM, CNRS, Université de Montpellier, 34090 Montpellier, France.
| |
Collapse
|
32
|
Tao M, Pandey NK, Barnes R, Han S, Langen R. Structure of Membrane-Bound Huntingtin Exon 1 Reveals Membrane Interaction and Aggregation Mechanisms. Structure 2019; 27:1570-1580.e4. [PMID: 31466833 DOI: 10.1016/j.str.2019.08.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 07/23/2019] [Accepted: 08/09/2019] [Indexed: 02/08/2023]
Abstract
Huntington's disease is caused by a polyQ expansion in the first exon of huntingtin (Httex1). Membrane interaction of huntingtin is of physiological and pathological relevance. Using electron paramagnetic resonance and Overhauser dynamic nuclear polarization, we find that the N-terminal residues 3-13 of wild-type Httex1(Q25) form a membrane-bound, amphipathic α helix. This helix is positioned in the interfacial region, where it is sensitive to membrane curvature and electrostatic interactions with head-group charges. Residues 14-22, which contain the first five residues of the polyQ region, are in a transition region that remains in the interfacial region without taking up a stable, α-helical structure. The remaining C-terminal portion is solvent exposed. The phosphomimetic S13D/S16D mutations, which are known to protect from toxicity, inhibit membrane binding and attenuate membrane-mediated aggregation of mutant Httex1(Q46) due to electrostatic repulsion. Targeting the N-terminal membrane anchor using post-translational modifications or specific binders could be a potential means to reduce aggregation and toxicity in vivo.
Collapse
Affiliation(s)
- Meixin Tao
- Department of Neuroscience and Physiology, Department of Biochemistry and Molecular Medicine, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Nitin K Pandey
- Department of Neuroscience and Physiology, Department of Biochemistry and Molecular Medicine, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Ryan Barnes
- Department of Chemistry and Biochemistry, Department of Chemical Engineering, University of California Santa Barbara, Santa Barbara, CA 93106, USA
| | - Songi Han
- Department of Chemistry and Biochemistry, Department of Chemical Engineering, University of California Santa Barbara, Santa Barbara, CA 93106, USA
| | - Ralf Langen
- Department of Neuroscience and Physiology, Department of Biochemistry and Molecular Medicine, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA.
| |
Collapse
|
33
|
Matlahov I, van der Wel PC. Conformational studies of pathogenic expanded polyglutamine protein deposits from Huntington's disease. Exp Biol Med (Maywood) 2019; 244:1584-1595. [PMID: 31203656 PMCID: PMC6920524 DOI: 10.1177/1535370219856620] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Huntington’s disease, like other neurodegenerative diseases, continues to lack an
effective cure. Current treatments that address early symptoms ultimately fail
Huntington’s disease patients and their families, with the disease typically
being fatal within 10–15 years from onset. Huntington’s disease is an inherited
disorder with motor and mental impairment, and is associated with the genetic
expansion of a CAG codon repeat encoding a polyglutamine-segment-containing
protein called huntingtin. These Huntington’s disease mutations cause misfolding
and aggregation of fragments of the mutant huntingtin protein, thereby likely
contributing to disease toxicity through a combination of gain-of-toxic-function
for the misfolded aggregates and a loss of function from sequestration of
huntingtin and other proteins. As with other amyloid diseases, the mutant
protein forms non-native fibrillar structures, which in Huntington’s disease are
found within patients’ neurons. The intracellular deposits are associated with
dysregulation of vital processes, and inter-neuronal transport of aggregates may
contribute to disease progression. However, a molecular understanding of these
aggregates and their detrimental effects has been frustrated by insufficient
structural data on the misfolded protein state. In this review, we examine
recent developments in the structural biology of polyglutamine-expanded
huntingtin fragments, and especially the contributions enabled by advances in
solid-state nuclear magnetic resonance spectroscopy. We summarize and discuss
our current structural understanding of the huntingtin deposits and how this
information furthers our understanding of the misfolding mechanism and disease
toxicity mechanisms.
Collapse
Affiliation(s)
- Irina Matlahov
- Department of Structural Biology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Patrick Ca van der Wel
- Department of Structural Biology, University of Pittsburgh, Pittsburgh, PA 15213, USA.,Zernike Institute for Advanced Materials, University of Groningen, Groningen 9747 AG, The Netherlands
| |
Collapse
|
34
|
Hong JY, Wang DD, Xue W, Yue HW, Yang H, Jiang LL, Wang WN, Hu HY. Structural and dynamic studies reveal that the Ala-rich region of ataxin-7 initiates α-helix formation of the polyQ tract but suppresses its aggregation. Sci Rep 2019; 9:7481. [PMID: 31097749 PMCID: PMC6522498 DOI: 10.1038/s41598-019-43926-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 03/04/2019] [Indexed: 11/26/2022] Open
Abstract
Ataxin-7 (Atx7) is a disease-related protein associated with the pathogenesis of spinocerebellar ataxia 7, while its polyglutamine (polyQ) tract in N-terminus is the causative source of aggregation and proteinopathy. We investigated the structure, dynamics and aggregation properties of the N-terminal 62-residue fragment of Atx7 (Atx7-N) by biochemical and biophysical approaches. The results showed that the normal Atx7-N with a tract of 10 glutamines (10Q) overall adopts a flexible and disordered structure, but it may contain a short or small population of helical structure in solution. PolyQ expansion increases the α-helical propensity of the polyQ tract and consequently enhances its transformation into β-sheet structures during amyloid aggregation. An alanine-rich region (ARR) just ahead of the polyQ tract forms a local and relatively stable α-helix. The ARR α-helix can initiate and stabilize helical formation of the following polyQ tract, but it may suppress aggregation of the polyQ-expanded Atx7-N both in vitro and in cell. Thus, the preceding ARR segment in Atx7-N may influence the dynamic structure and aggregation property of the polyQ tract and even determine the threshold of the pathogenic polyQ lengths. This study may gain structural and dynamic insights into amyloid aggregation of Atx7 and help us further understand the Atx7 proteinopathy based on polyQ expansion.
Collapse
Affiliation(s)
- Jun-Ye Hong
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, 200031, P.R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
| | - Dong-Dong Wang
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200433, P.R. China
| | - Wei Xue
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, 200031, P.R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
| | - Hong-Wei Yue
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, 200031, P.R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
| | - Hui Yang
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, 200031, P.R. China
| | - Lei-Lei Jiang
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, 200031, P.R. China
| | - Wen-Ning Wang
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200433, P.R. China
| | - Hong-Yu Hu
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, 200031, P.R. China.
| |
Collapse
|
35
|
Escobedo A, Topal B, Kunze MBA, Aranda J, Chiesa G, Mungianu D, Bernardo-Seisdedos G, Eftekharzadeh B, Gairí M, Pierattelli R, Felli IC, Diercks T, Millet O, García J, Orozco M, Crehuet R, Lindorff-Larsen K, Salvatella X. Side chain to main chain hydrogen bonds stabilize a polyglutamine helix in a transcription factor. Nat Commun 2019; 10:2034. [PMID: 31048691 PMCID: PMC6497633 DOI: 10.1038/s41467-019-09923-2] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 04/09/2019] [Indexed: 01/18/2023] Open
Abstract
Polyglutamine (polyQ) tracts are regions of low sequence complexity frequently found in transcription factors. Tract length often correlates with transcriptional activity and expansion beyond specific thresholds in certain human proteins is the cause of polyQ disorders. To study the structural basis of the association between tract length, transcriptional activity and disease, we addressed how the conformation of the polyQ tract of the androgen receptor, associated with spinobulbar muscular atrophy (SBMA), depends on its length. Here we report that this sequence folds into a helical structure stabilized by unconventional hydrogen bonds between glutamine side chains and main chain carbonyl groups, and that its helicity directly correlates with tract length. These unusual hydrogen bonds are bifurcate with the conventional hydrogen bonds stabilizing α-helices. Our findings suggest a plausible rationale for the association between polyQ tract length and androgen receptor transcriptional activity and have implications for establishing the mechanistic basis of SBMA. Polyglutamine (polyQ) tracts are low-complexity regions and their expansion is linked to certain neurodegenerative diseases. Here the authors combine experimental and computational approaches to find that the length of the androgen receptor polyQ tract correlates with its helicity and show that the polyQ helical structure is stabilized by hydrogen bonds between the Gln side chains and main chain carbonyl groups.
Collapse
Affiliation(s)
- Albert Escobedo
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10, 08028, Barcelona, Spain.,Joint BSC-IRB Research Programme in Computational Biology, Baldiri Reixac 10, 08028, Barcelona, Spain
| | - Busra Topal
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10, 08028, Barcelona, Spain.,Joint BSC-IRB Research Programme in Computational Biology, Baldiri Reixac 10, 08028, Barcelona, Spain
| | - Micha B A Kunze
- Structural Biology and NMR Laboratory, Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, 2200, Copenhagen, Denmark
| | - Juan Aranda
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10, 08028, Barcelona, Spain.,Joint BSC-IRB Research Programme in Computational Biology, Baldiri Reixac 10, 08028, Barcelona, Spain
| | - Giulio Chiesa
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10, 08028, Barcelona, Spain.,Joint BSC-IRB Research Programme in Computational Biology, Baldiri Reixac 10, 08028, Barcelona, Spain
| | - Daniele Mungianu
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10, 08028, Barcelona, Spain.,Joint BSC-IRB Research Programme in Computational Biology, Baldiri Reixac 10, 08028, Barcelona, Spain
| | | | - Bahareh Eftekharzadeh
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10, 08028, Barcelona, Spain.,Joint BSC-IRB Research Programme in Computational Biology, Baldiri Reixac 10, 08028, Barcelona, Spain
| | - Margarida Gairí
- NMR Facility, Scientific and Technological Centers University of Barcelona (CCiTUB), Baldiri Reixac 10, 08028, Barcelona, Spain
| | - Roberta Pierattelli
- CERM and Department of Chemistry "Ugo Schiff", University of Florence, Via Luigi Sacconi 6, Sesto Fiorentino, 50019, Florence, Italy
| | - Isabella C Felli
- CERM and Department of Chemistry "Ugo Schiff", University of Florence, Via Luigi Sacconi 6, Sesto Fiorentino, 50019, Florence, Italy
| | - Tammo Diercks
- CIC bioGUNE, Bizkaia Science and Technology Park bld 801A, 48160, Derio, Bizkaia, Spain
| | - Oscar Millet
- CIC bioGUNE, Bizkaia Science and Technology Park bld 801A, 48160, Derio, Bizkaia, Spain
| | - Jesús García
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10, 08028, Barcelona, Spain
| | - Modesto Orozco
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10, 08028, Barcelona, Spain.,Joint BSC-IRB Research Programme in Computational Biology, Baldiri Reixac 10, 08028, Barcelona, Spain.,Department of Biochemistry and Biomedicine, University of Barcelona, Avinguda Diagonal 645, 08028, Barcelona, Spain
| | - Ramon Crehuet
- Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Jordi Girona 18-26, 08034, Barcelona, Spain.
| | - Kresten Lindorff-Larsen
- Structural Biology and NMR Laboratory, Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, 2200, Copenhagen, Denmark.
| | - Xavier Salvatella
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10, 08028, Barcelona, Spain. .,Joint BSC-IRB Research Programme in Computational Biology, Baldiri Reixac 10, 08028, Barcelona, Spain. .,ICREA, Passeig Lluís Companys 23, 08010, Barcelona, Spain.
| |
Collapse
|
36
|
Probing initial transient oligomerization events facilitating Huntingtin fibril nucleation at atomic resolution by relaxation-based NMR. Proc Natl Acad Sci U S A 2019; 116:3562-3571. [PMID: 30808748 DOI: 10.1073/pnas.1821216116] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The N-terminal region of the huntingtin protein, encoded by exon-1, comprises an amphiphilic domain (httNT), a polyglutamine (Q n ) tract, and a proline-rich sequence. Polyglutamine expansion results in an aggregation-prone protein responsible for Huntington's disease. Here, we study the earliest events involved in oligomerization of a minimalistic construct, httNTQ7, which remains largely monomeric over a sufficiently long period of time to permit detailed quantitative NMR analysis of the kinetics and structure of sparsely populated [Formula: see text] oligomeric states, yet still eventually forms fibrils. Global fitting of concentration-dependent relaxation dispersion, transverse relaxation in the rotating frame, and exchange-induced chemical shift data reveals a bifurcated assembly mechanism in which the NMR observable monomeric species either self-associates to form a productive dimer (τex ∼ 30 μs, K diss ∼ 0.1 M) that goes on to form a tetramer ([Formula: see text] μs; K diss ∼ 22 μM), or exchanges with a "nonproductive" dimer that does not oligomerize further (τex ∼ 400 μs; K diss ∼ 0.3 M). The excited state backbone chemical shifts are indicative of a contiguous helix (residues 3-17) in the productive dimer/tetramer, with only partial helical character in the nonproductive dimer. A structural model of the productive dimer/tetramer was obtained by simulated annealing driven by intermolecular paramagnetic relaxation enhancement data. The tetramer comprises a D 2 symmetric dimer of dimers with largely hydrophobic packing between the helical subunits. The structural model, validated by EPR distance measurements, illuminates the role of the httNT domain in the earliest stages of prenucleation and oligomerization, before fibril formation.
Collapse
|