1
|
Jean-Charles PY, Roy B, Yu SMW, Pironti G, Nagi K, Mao L, Kaur S, Abraham DM, Maudsley S, Rockman HA, Shenoy SK. USP20 deletion promotes eccentric cardiac remodeling in response to pressure overload and increases mortality. Am J Physiol Heart Circ Physiol 2024; 327:H1257-H1271. [PMID: 39365672 PMCID: PMC11559650 DOI: 10.1152/ajpheart.00329.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 09/24/2024] [Accepted: 09/25/2024] [Indexed: 10/06/2024]
Abstract
Left ventricular hypertrophy (LVH) caused by chronic pressure overload with subsequent pathological remodeling is a major cardiovascular risk factor for heart failure and mortality. The role of deubiquitinases in LVH has not been well characterized. To define whether the deubiquitinase ubiquitin-specific peptidase 20 (USP20) regulates LVH, we subjected USP20 knockout (KO) and cognate wild-type (WT) mice to chronic pressure overload by transverse aortic constriction (TAC) and measured changes in cardiac function by serial echocardiography followed by histological and biochemical evaluations. USP20-KO mice showed severe deterioration of systolic function within 4 wk of TAC compared with WT cohorts. Both USP20-KO TAC and WT-TAC cohorts presented cardiac hypertrophy following pressure overload. However, USP20-KO-TAC mice showed an increase in cardiomyocyte length and developed maladaptive eccentric hypertrophy, a phenotype generally observed with volume overload states and decompensated heart failure. In contrast, WT-TAC mice displayed an increase in cardiomyocyte width, producing concentric remodeling that is characteristic of pressure overload. In addition, cardiomyocyte apoptosis, interstitial fibrosis, and mouse mortality were augmented in USP20-KO-TAC compared with WT-TAC mice. Quantitative mass spectrometry of LV tissue revealed that the expression of sarcomeric myosin heavy chain 7 (MYH7), a fetal gene normally upregulated during cardiac remodeling, was significantly reduced in USP20-KO after TAC. Mechanistically, we identified increased degradative lysine-48 polyubiquitination of MYH7 in USP20-KO hearts, indicating that USP20-mediated deubiquitination likely prevents protein degradation of MYH7 during pressure overload. Our findings suggest that USP20-dependent signaling pathways regulate the layering pattern of sarcomeres to suppress maladaptive remodeling during chronic pressure overload and prevent cardiac failure.NEW & NOTEWORTHY We identify ubiquitin-specific peptidase 20 (USP20) as an important enzyme that is required for cardiac homeostasis and function, particularly during myocardial pressure overload. USP20 regulates protein stability of cardiac MYH7, an essential molecular motor protein expressed in sarcomeres; loss-of-function mutations of MYH7 are associated with human hypertrophic cardiomyopathy, cardiac failure, and sudden death. Enhancing USP20 activity could be a potential therapeutic approach to prevent the development of maladaptive state of eccentric hypertrophy and heart failure.
Collapse
MESH Headings
- Animals
- Ventricular Remodeling
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/pathology
- Mice, Knockout
- Ubiquitin Thiolesterase/metabolism
- Ubiquitin Thiolesterase/genetics
- Apoptosis
- Hypertrophy, Left Ventricular/physiopathology
- Hypertrophy, Left Ventricular/genetics
- Hypertrophy, Left Ventricular/metabolism
- Hypertrophy, Left Ventricular/pathology
- Mice
- Mice, Inbred C57BL
- Male
- Heart Failure/physiopathology
- Heart Failure/metabolism
- Heart Failure/genetics
- Heart Failure/pathology
- Fibrosis
- Ventricular Function, Left
- Disease Models, Animal
- Ubiquitination
- Myosin Heavy Chains/metabolism
- Myosin Heavy Chains/genetics
Collapse
Affiliation(s)
- Pierre-Yves Jean-Charles
- Division of Cardiology, Department of Medicine, Duke University Medical Center, Durham, North Carolina, United States
| | - Bipradas Roy
- Division of Cardiology, Department of Medicine, Duke University Medical Center, Durham, North Carolina, United States
| | - Samuel Mon-Wei Yu
- Division of Cardiology, Department of Medicine, Duke University Medical Center, Durham, North Carolina, United States
| | - Gianluigi Pironti
- Division of Cardiology, Department of Medicine, Duke University Medical Center, Durham, North Carolina, United States
| | - Karim Nagi
- Division of Cardiology, Department of Medicine, Duke University Medical Center, Durham, North Carolina, United States
| | - Lan Mao
- Division of Cardiology, Department of Medicine, Duke University Medical Center, Durham, North Carolina, United States
| | - Suneet Kaur
- Division of Cardiology, Department of Medicine, Duke University Medical Center, Durham, North Carolina, United States
| | - Dennis M Abraham
- Division of Cardiology, Department of Medicine, Duke University Medical Center, Durham, North Carolina, United States
| | - Stuart Maudsley
- Receptor Biology Laboratory, Department of Biomedical Science, University of Antwerp, Antwerp, Belgium
| | - Howard A Rockman
- Division of Cardiology, Department of Medicine, Duke University Medical Center, Durham, North Carolina, United States
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina, United States
| | - Sudha K Shenoy
- Division of Cardiology, Department of Medicine, Duke University Medical Center, Durham, North Carolina, United States
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina, United States
| |
Collapse
|
2
|
Martin TG. The importance of myosin ubiquitination status for cardiac remodeling: USP20 has entered the chat. Am J Physiol Heart Circ Physiol 2024; 327:H1306-H1308. [PMID: 39453432 PMCID: PMC11560074 DOI: 10.1152/ajpheart.00712.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 10/16/2024] [Indexed: 10/26/2024]
Affiliation(s)
- Thomas G Martin
- Molecular, Cellular, and Developmental Biology Department, University of Colorado Boulder, Boulder, Colorado, United States
- BioFrontiers Institute, University of Colorado Boulder, Boulder, Colorado, United States
| |
Collapse
|
3
|
Sun X, Han Y, Yu Y, Chen Y, Dong C, Lv Y, Qu H, Fan Z, Yu Y, Sang Y, Tang W, Liu Y, Ju J, Zhao D, Bai Y. Overexpressing of the GIPC1 protects against pathological cardiac remodelling. Eur J Pharmacol 2024; 971:176488. [PMID: 38458410 DOI: 10.1016/j.ejphar.2024.176488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 03/02/2024] [Accepted: 03/06/2024] [Indexed: 03/10/2024]
Abstract
OBJECTIVE Pathological cardiac remodelling, including cardiac hypertrophy and fibrosis, is a key pathological process in the development of heart failure. However, effective therapeutic approaches are limited. The β-adrenergic receptors are pivotal signalling molecules in regulating cardiac function. G-alpha interacting protein (GAIP)-interacting protein, C-terminus 1 (GIPC1) is a multifunctional scaffold protein that directly binds to the C-terminus of β1-adrenergic receptor (β1-adrenergic receptor). However, little is known about its roles in heart function. Therefore, we investigated the role of GIPC1 in cardiac remodelling and its underlying molecular mechanisms. METHODS Pathological cardiac remodelling in mice was established via intraperitoneal injection of isoprenaline for 14 d or transverse aortic constriction surgery for 8 weeks. Myh6-driving cardiomyocyte-specific GIPC1 conditional knockout (GIPC1 cKO) mice and adeno-associated virus 9 (AAV9)-mediated GIPC1 overexpression mice were used. The effect of GIPC1 on cardiac remodelling was assessed using echocardiographic, histological, and biochemical analyses. RESULTS GIPC1 expression was consistently reduced in the cardiac remodelling model. GIPC1 cKO mice exhibited spontaneous abnormalities, including cardiac hypertrophy, fibrosis, and systolic dysfunction. In contrast, AAV9-mediated GIPC1 overexpression in the heart attenuated isoproterenol-induced pathological cardiac remodelling in mice. Mechanistically, GIPC1 interacted with the β1-adrenergic receptor and stabilised its expression by preventing its ubiquitination and degradation, maintaining the balance of β1-adrenergic receptor/β2-adrenergic receptor, and inhibiting hyperactivation of the mitogen-activated protein kinase signalling pathway. CONCLUSIONS These results suggested that GIPC1 plays a cardioprotective role and is a promising therapeutic target for the treatment of cardiac remodelling and heart failure.
Collapse
Affiliation(s)
- Xi Sun
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China; Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, China; Department of Scientific Research, The Fourth Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Yanna Han
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China; Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, China
| | - Yahan Yu
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China; Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, China
| | - Yujie Chen
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China; Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, China
| | - Chaorun Dong
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China; Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, China
| | - Yuan Lv
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China; Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, China
| | - Huan Qu
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China; Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, China
| | - Zheyu Fan
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China; Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, China
| | - Yi Yu
- Department of Clinical Pharmacy, The Second Affiliated Hospital, Harbin Medical University, Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism and Treatment, Harbin, China
| | - Yaru Sang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China; Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, China
| | - Wenxia Tang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China; Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, China
| | - Yu Liu
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Jiaming Ju
- Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, China
| | - Dan Zhao
- Department of Clinical Pharmacy, The Second Affiliated Hospital, Harbin Medical University, Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism and Treatment, Harbin, China.
| | - Yunlong Bai
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China; College of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China; Joint International Research Laboratory of Cardiovascular Medicine, Ministry of Education, College of Pharmacy, Harbin Medical University, Harbin, China; Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, China.
| |
Collapse
|
4
|
Maaliki D, Jaffa AA, Nasser S, Sahebkar A, Eid AH. Adrenoceptor Desensitization: Current Understanding of Mechanisms. Pharmacol Rev 2024; 76:358-387. [PMID: 38697858 DOI: 10.1124/pharmrev.123.000831] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 01/15/2024] [Accepted: 01/18/2024] [Indexed: 05/05/2024] Open
Abstract
G-protein coupled receptors (GPCRs) transduce a wide range of extracellular signals. They are key players in the majority of biologic functions including vision, olfaction, chemotaxis, and immunity. However, as essential as most of them are to body function and homeostasis, overactivation of GPCRs has been implicated in many pathologic diseases such as cancer, asthma, and heart failure (HF). Therefore, an important feature of G protein signaling systems is the ability to control GPCR responsiveness, and one key process to control overstimulation involves initiating receptor desensitization. A number of steps are appreciated in the desensitization process, including cell surface receptor phosphorylation, internalization, and downregulation. Rapid or short-term desensitization occurs within minutes and involves receptor phosphorylation via the action of intracellular protein kinases, the binding of β-arrestins, and the consequent uncoupling of GPCRs from their cognate heterotrimeric G proteins. On the other hand, long-term desensitization occurs over hours to days and involves receptor downregulation or a decrease in cell surface receptor protein level. Of the proteins involved in this biologic phenomenon, β-arrestins play a particularly significant role in both short- and long-term desensitization mechanisms. In addition, β-arrestins are involved in the phenomenon of biased agonism, where the biased ligand preferentially activates one of several downstream signaling pathways, leading to altered cellular responses. In this context, this review discusses the different patterns of desensitization of the α 1-, α 2- and the β adrenoceptors and highlights the role of β-arrestins in regulating physiologic responsiveness through desensitization and biased agonism. SIGNIFICANCE STATEMENT: A sophisticated network of proteins orchestrates the molecular regulation of GPCR activity. Adrenoceptors are GPCRs that play vast roles in many physiological processes. Without tightly controlled desensitization of these receptors, homeostatic imbalance may ensue, thus precipitating various diseases. Here, we critically appraise the mechanisms implicated in adrenoceptor desensitization. A better understanding of these mechanisms helps identify new druggable targets within the GPCR desensitization machinery and opens exciting therapeutic fronts in the treatment of several pathologies.
Collapse
Affiliation(s)
- Dina Maaliki
- Department of Pharmacology and Toxicology, American University of Beirut, Beirut, Lebanon (D.M.); School of Medicine, University of South Carolina, Columbia, South Carolina (A.A.J.); Keele University, Staffordshire, United Kingdom (S.N.); Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran (A.S.); Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran (A.S.); and Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha, Qatar (A.H.E.)
| | - Aneese A Jaffa
- Department of Pharmacology and Toxicology, American University of Beirut, Beirut, Lebanon (D.M.); School of Medicine, University of South Carolina, Columbia, South Carolina (A.A.J.); Keele University, Staffordshire, United Kingdom (S.N.); Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran (A.S.); Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran (A.S.); and Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha, Qatar (A.H.E.)
| | - Suzanne Nasser
- Department of Pharmacology and Toxicology, American University of Beirut, Beirut, Lebanon (D.M.); School of Medicine, University of South Carolina, Columbia, South Carolina (A.A.J.); Keele University, Staffordshire, United Kingdom (S.N.); Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran (A.S.); Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran (A.S.); and Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha, Qatar (A.H.E.)
| | - Amirhossein Sahebkar
- Department of Pharmacology and Toxicology, American University of Beirut, Beirut, Lebanon (D.M.); School of Medicine, University of South Carolina, Columbia, South Carolina (A.A.J.); Keele University, Staffordshire, United Kingdom (S.N.); Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran (A.S.); Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran (A.S.); and Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha, Qatar (A.H.E.)
| | - Ali H Eid
- Department of Pharmacology and Toxicology, American University of Beirut, Beirut, Lebanon (D.M.); School of Medicine, University of South Carolina, Columbia, South Carolina (A.A.J.); Keele University, Staffordshire, United Kingdom (S.N.); Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran (A.S.); Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran (A.S.); and Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha, Qatar (A.H.E.)
| |
Collapse
|
5
|
Wu CK, Teng S, Bai F, Liao XB, Zhou XM, Liu QM, Xiao YC, Zhou SH. Changes of ubiquitylated proteins in atrial fibrillation associated with heart valve disease: proteomics in human left atrial appendage tissue. Front Cardiovasc Med 2023; 10:1198486. [PMID: 37701139 PMCID: PMC10493305 DOI: 10.3389/fcvm.2023.1198486] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 06/27/2023] [Indexed: 09/14/2023] Open
Abstract
Background Correlations between posttranslational modifications and atrial fibrillation (AF) have been demonstrated in recent studies. However, it is still unclear whether and how ubiquitylated proteins relate to AF in the left atrial appendage of patients with AF and valvular heart disease. Methods Through LC-MS/MS analyses, we performed a study on tissues from eighteen subjects (9 with sinus rhythm and 9 with AF) who underwent cardiac valvular surgery. Specifically, we explored the ubiquitination profiles of left atrial appendage samples. Results In summary, after the quantification ratios for the upregulated and downregulated ubiquitination cutoff values were set at >1.5 and <1:1.5, respectively, a total of 271 sites in 162 proteins exhibiting upregulated ubiquitination and 467 sites in 156 proteins exhibiting downregulated ubiquitination were identified. The ubiquitylated proteins in the AF samples were enriched in proteins associated with ribosomes, hypertrophic cardiomyopathy (HCM), glycolysis, and endocytosis. Conclusions Our findings can be used to clarify differences in the ubiquitination levels of ribosome-related and HCM-related proteins, especially titin (TTN) and myosin heavy chain 6 (MYH6), in patients with AF, and therefore, regulating ubiquitination may be a feasible strategy for AF.
Collapse
Affiliation(s)
- Chen-Kai Wu
- Department of Cardiology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Shuai Teng
- Department of Cardiology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Fan Bai
- Department of Cardiology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Xiao-Bo Liao
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Xin-Min Zhou
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Qi-Ming Liu
- Department of Cardiology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yi-Chao Xiao
- Department of Cardiology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Sheng-Hua Zhou
- Department of Cardiology, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
6
|
Zhang L, Wu JH, Jean-Charles PY, Murali P, Zhang W, Jazic A, Kaur S, Nepliouev I, Stiber JA, Snow K, Freedman NJ, Shenoy SK. Phosphorylation of USP20 on Ser334 by IRAK1 promotes IL-1β-evoked signaling in vascular smooth muscle cells and vascular inflammation. J Biol Chem 2023; 299:104911. [PMID: 37311534 PMCID: PMC10362797 DOI: 10.1016/j.jbc.2023.104911] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 05/11/2023] [Accepted: 06/05/2023] [Indexed: 06/15/2023] Open
Abstract
Reversible lysine-63 (K63) polyubiquitination regulates proinflammatory signaling in vascular smooth muscle cells (SMCs) and plays an integral role in atherosclerosis. Ubiquitin-specific peptidase 20 (USP20) reduces NFκB activation triggered by proinflammatory stimuli, and USP20 activity attenuates atherosclerosis in mice. The association of USP20 with its substrates triggers deubiquitinase activity; this association is regulated by phosphorylation of USP20 on Ser334 (mouse) or Ser333 (human). USP20 Ser333 phosphorylation was greater in SMCs of atherosclerotic segments of human arteries as compared with nonatherosclerotic segments. To determine whether USP20 Ser334 phosphorylation regulates proinflammatory signaling, we created USP20-S334A mice using CRISPR/Cas9-mediated gene editing. USP20-S334A mice developed ∼50% less neointimal hyperplasia than congenic WT mice after carotid endothelial denudation. WT carotid SMCs showed substantial phosphorylation of USP20 Ser334, and WT carotids demonstrated greater NFκB activation, VCAM-1 expression, and SMC proliferation than USP20-S334A carotids. Concordantly, USP20-S334A primary SMCs in vitro proliferated and migrated less than WT SMCs in response to IL-1β. An active site ubiquitin probe bound to USP20-S334A and USP20-WT equivalently, but USP20-S334A associated more avidly with TRAF6 than USP20-WT. IL-1β induced less K63-linked polyubiquitination of TRAF6 and less downstream NFκB activity in USP20-S334A than in WT SMCs. Using in vitro phosphorylation with purified IRAK1 and siRNA-mediated gene silencing of IRAK1 in SMCs, we identified IRAK1 as a novel kinase for IL-1β-induced USP20 Ser334 phosphorylation. Our findings reveal novel mechanisms regulating IL-1β-induced proinflammatory signaling: by phosphorylating USP20 Ser334, IRAK1 diminishes the association of USP20 with TRAF6 and thus augments NFκB activation, SMC inflammation, and neointimal hyperplasia.
Collapse
Affiliation(s)
- Lisheng Zhang
- Department of Medicine (Cardiology), Duke University Medical Center, Durham, North Carolina, USA
| | - Jiao-Hui Wu
- Department of Medicine (Cardiology), Duke University Medical Center, Durham, North Carolina, USA
| | - Pierre-Yves Jean-Charles
- Department of Medicine (Cardiology), Duke University Medical Center, Durham, North Carolina, USA
| | - Pavitra Murali
- Department of Medicine (Cardiology), Duke University Medical Center, Durham, North Carolina, USA
| | - Wenli Zhang
- Department of Medicine (Cardiology), Duke University Medical Center, Durham, North Carolina, USA
| | - Aeva Jazic
- Department of Medicine (Cardiology), Duke University Medical Center, Durham, North Carolina, USA
| | - Suneet Kaur
- Department of Medicine (Cardiology), Duke University Medical Center, Durham, North Carolina, USA
| | - Igor Nepliouev
- Department of Medicine (Cardiology), Duke University Medical Center, Durham, North Carolina, USA
| | - Jonathan A Stiber
- Department of Medicine (Cardiology), Duke University Medical Center, Durham, North Carolina, USA
| | - Kamie Snow
- Department of Medicine (Cardiology), Duke University Medical Center, Durham, North Carolina, USA
| | - Neil J Freedman
- Department of Medicine (Cardiology), Duke University Medical Center, Durham, North Carolina, USA; Department of Cell Biology, Duke University Medical Center, Durham, North Carolina, USA.
| | - Sudha K Shenoy
- Department of Medicine (Cardiology), Duke University Medical Center, Durham, North Carolina, USA; Department of Cell Biology, Duke University Medical Center, Durham, North Carolina, USA.
| |
Collapse
|
7
|
Fu D, Luo J, Wu Y, Zhang L, Li L, Chen H, Wen T, Fu Y, Xiong W. Angiotensin II-induced calcium overload affects mitochondrial functions in cardiac hypertrophy by targeting the USP2/MFN2 axis. Mol Cell Endocrinol 2023; 571:111938. [PMID: 37100191 DOI: 10.1016/j.mce.2023.111938] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/12/2023] [Accepted: 04/23/2023] [Indexed: 04/28/2023]
Abstract
Ubiquitination, a common type of post-translational modification, is known to affect various diseases, including cardiac hypertrophy. Ubiquitin-specific peptidase 2 (USP2) plays a crucial role in regulating cell functions, but its role in cardiac functions remains elusive. The present study aims to investigate the mechanism of USP2 in cardiac hypertrophy. Animal and cell models of cardiac hypertrophy were established using Angiotensin II (Ang II) induction. Our experiments revealed that Ang II induced USP2 downregulation in the in vitro and in vivo models. USP2 overexpression suppressed the degree of cardiac hypertrophy (decreased ANP, BNP, and β-MHC mRNA levels, cell surface area, and ratio of protein/DNA), calcium overload (decreased Ca2+ concentration and t-CaMKⅡ and p-CaMKⅡ, and increased SERCA2), and mitochondrial dysfunction (decreased MDA and ROS and increased MFN1, ATP, MMP, and complex Ⅰ and II) both in vitro and in vivo. Mechanically, USP2 interacted with MFN2 and improved the protein level of MFN2 through deubiquitination. Rescue experiments confirmed that MFN2 downregulation neutralized the protective role of USP2 overexpression in cardiac hypertrophy. Overall, our findings suggested that USP2 overexpression mediated deubiquitination to upregulate MFN2, thus alleviating calcium overload-induced mitochondrial dysfunction and cardiac hypertrophy.
Collapse
Affiliation(s)
- Daoyao Fu
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China; Hypertension Research Institute of Jiangxi Province, Nanchang, 330006, Jiangxi, China
| | - Jing Luo
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China; Hypertension Research Institute of Jiangxi Province, Nanchang, 330006, Jiangxi, China
| | - Yanze Wu
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China; Hypertension Research Institute of Jiangxi Province, Nanchang, 330006, Jiangxi, China
| | - Liuping Zhang
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China; Hypertension Research Institute of Jiangxi Province, Nanchang, 330006, Jiangxi, China
| | - Lei Li
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China; Hypertension Research Institute of Jiangxi Province, Nanchang, 330006, Jiangxi, China
| | - Hui Chen
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China; Hypertension Research Institute of Jiangxi Province, Nanchang, 330006, Jiangxi, China
| | - Tong Wen
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China; Hypertension Research Institute of Jiangxi Province, Nanchang, 330006, Jiangxi, China
| | - Yongnan Fu
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China; Hypertension Research Institute of Jiangxi Province, Nanchang, 330006, Jiangxi, China
| | - Wenjun Xiong
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China; Hypertension Research Institute of Jiangxi Province, Nanchang, 330006, Jiangxi, China.
| |
Collapse
|
8
|
Tian X, Huang Z, Wang Y, Qi X, Wang D, Liu Z, Cheng Y. Xinbao Pill attenuated chronic heart failure by suppressing the ubiquitination of β-adrenergic receptors. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 115:154830. [PMID: 37149964 DOI: 10.1016/j.phymed.2023.154830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 04/05/2023] [Accepted: 04/16/2023] [Indexed: 05/09/2023]
Abstract
BACKGROUD Xinbao Pill (XBP) is extensively used in the adjuvant treatment of chronic heart failure in China. However, the pharmacological effect and underlying mechanism on CHF remains unclear. PURPOSE Our research was performed to investigate the cardioprotective effect of XBP against CHF and uncover the potential mechanism. METHODS Male Sprague-Dawley (SD) rats were subjected to the left anterior descending (LAD) artery ligation for 8 weeks and were treated with different doses of XBP (from the 4th week to the end). Cardiac function and morphology assessment were performed by using M-mode echocardiography, H&E and Masson staining. Western blotting analysis, co-immunoprecipitation (IP) assays, siRNA transfection were used to evaluate the mechanism of XBP. RESULTS XBP improved cardiac function and alleviated cardiac fibrosis in LAD-induced chronic heart failure rats. Meanwhile, XBP protected cardiomyocytes against oxygen-glucose deprivation (OGD) injury in AC16 cells and H9c2 cells. Additionally, XBP could increase the expression of β1-AR and β2-AR and inhibit their ubiquitanation. Further mechanism study showed that XBP upregulated USP18 expression, while silence of USP18 attenuated the cardioprotective effect of XBP and the increase of β1-AR by XBP. Moreover, XBP increased MDM2 and β-arrestin2, and disrupted the interaction between Nedd4 and β2-AR. After using the inhibitor of MDM2, SP141, the cardioprotective effect of XBP and the inhibitory effect on the ubiquitanation of β2-AR were also blocked. CONCLUSION Our study firstly revealed that XBP improved cardiac function against CHF through suppressing USP18 and MDM2/β-arrestin2/Nedd4-mediated the ubiquitination of β1-AR and β2-AR.
Collapse
Affiliation(s)
- Xiaoyu Tian
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, Guangdong Key Laboratory for translational Cancer research of Chinese Medicine, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Ziwei Huang
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, Guangdong Key Laboratory for translational Cancer research of Chinese Medicine, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Yuanping Wang
- Shunde Hospital of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Foshan, Guangdong, 528333, China; The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Xiaoxiao Qi
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, Guangdong Key Laboratory for translational Cancer research of Chinese Medicine, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Dawei Wang
- Shunde Hospital of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Foshan, Guangdong, 528333, China; The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China.
| | - Zhongqiu Liu
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, Guangdong Key Laboratory for translational Cancer research of Chinese Medicine, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China; Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou Univ Chinese Med, Guangzhou, Guangdong, 510006, China.
| | - Yuanyuan Cheng
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, Guangdong Key Laboratory for translational Cancer research of Chinese Medicine, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China; Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou Univ Chinese Med, Guangzhou, Guangdong, 510006, China.
| |
Collapse
|
9
|
Kaur S, Sokrat B, Capozzi ME, El K, Bai Y, Jazic A, Han B, Krishnakumar K, D'Alessio DA, Campbell JE, Bouvier M, Shenoy SK. The Ubiquitination Status of the Glucagon Receptor determines Signal Bias. J Biol Chem 2023; 299:104690. [PMID: 37037304 DOI: 10.1016/j.jbc.2023.104690] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 03/03/2023] [Accepted: 03/31/2023] [Indexed: 04/12/2023] Open
Abstract
The pancreatic hormone glucagon activates the glucagon receptor (GCGR), a class B seven-transmembrane G protein-coupled receptor (GPCR) that couples to the stimulatory heterotrimeric Gs protein and provokes protein kinase A-dependent signaling cascades vital to hepatic glucose metabolism and islet insulin secretion. Glucagon-stimulation also initiates recruitment of the endocytic adaptors, β-arrestin1 and β-arrestin2, which regulate desensitization and internalization of the GCGR. Unlike many other GPCRs, the GCGR expressed at the plasma membrane is constitutively ubiquitinated and upon agonist-activation, internalized GCGRs are deubiquitinated at early endosomes and recycled via Rab4-containing vesicles. Herein we report a novel link between the ubiquitination status and signal transduction mechanism of the GCGR. In the deubiquitinated state, coupling of the GCGR to Gs is diminished, while binding to β-arrestin is enhanced with signaling biased to a β-arrestin1-dependent p38 mitogen activated protein kinase (MAPK) pathway. This ubiquitin-dependent signaling bias arises through the modification of lysine333 (K333) on the cytoplasmic face of transmembrane helix V. Compared with the GCGR-WT, the mutant GCGR-K333R has impaired ubiquitination, diminished G protein coupling and protein kinase A signaling, but unimpaired potentiation of glucose-stimulated-insulin secretion in response to agonist-stimulation, which involves p38 MAPK signaling. Both WT and GCGR-K333R promote the formation of glucagon-induced β-arrestin1-dependent p38 signaling scaffold that requires canonical upstream MAPK-Kinase3, but is independent of Gs, Gi and β-arrestin2. Thus ubiquitination/deubiquitination at K333 in the GCGR defines the activation of distinct transducers with the potential to influence various facets of glucagon signaling in health and disease.
Collapse
Affiliation(s)
- Suneet Kaur
- Division of Cardiology, Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | - Badr Sokrat
- Department of Biochemistry and Molecular Medicine, University of Montreal, Montreal, Quebec, H3T 1J4 Canada; Institute for Research in Immunology and Cancer, University of Montreal, Montreal, Quebec, H3T 1J4 Canada
| | - Megan E Capozzi
- Division of Endocrinology, Department of Medicine, Duke Molecular Physiology Institute, Duke University, Durham, NC 27710, USA
| | - Kimberley El
- Division of Endocrinology, Department of Medicine, Duke Molecular Physiology Institute, Duke University, Durham, NC 27710, USA
| | - Yushi Bai
- Division of Cardiology, Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | - Aeva Jazic
- Division of Cardiology, Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | - Bridgette Han
- Division of Cardiology, Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | - Kaavya Krishnakumar
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford CA 94305
| | - David A D'Alessio
- Division of Endocrinology, Department of Medicine, Duke Molecular Physiology Institute, Duke University, Durham, NC 27710, USA
| | - Jonathan E Campbell
- Division of Endocrinology, Department of Medicine, Duke Molecular Physiology Institute, Duke University, Durham, NC 27710, USA
| | - Michel Bouvier
- Department of Biochemistry and Molecular Medicine, University of Montreal, Montreal, Quebec, H3T 1J4 Canada; Institute for Research in Immunology and Cancer, University of Montreal, Montreal, Quebec, H3T 1J4 Canada
| | - Sudha K Shenoy
- Division of Cardiology, Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA; Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA.
| |
Collapse
|
10
|
Qin B, Zhou L, Wang F, Wang Y. Ubiquitin-specific protease 20 in human disease: emerging role and therapeutic implications. Biochem Pharmacol 2022; 206:115352. [DOI: 10.1016/j.bcp.2022.115352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 11/06/2022] [Accepted: 11/15/2022] [Indexed: 11/23/2022]
|
11
|
Pan R, Xie Y, Fang W, Liu Y, Zhang Y. USP20 mitigates ischemic stroke in mice by suppressing neuroinflammation and neuron death via regulating PTEN signal. Int Immunopharmacol 2021; 103:107840. [PMID: 34953448 DOI: 10.1016/j.intimp.2021.107840] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 05/03/2021] [Accepted: 05/29/2021] [Indexed: 11/19/2022]
Abstract
Ischemic stroke is a leading cause of death worldwide. The lack of effective pharmacotherapies for ischemic stroke is mainly attributed to the incomplete understanding of its pathogenesis. Deubiquitinase ubiquitin-specific protease 20 (USP20) plays an important role in regulating multiple cellular processes. However, its effects on cerebral ischemic stroke still remain unknown. In the present study, we found that USP20 expression was markedly increased in the early phase of ischemic stroke in mice with middle cerebral artery occlusion (MCAO) operation, and were then considerably decreased in mice with ischemia reperfusion (I/R) injury. Double immunofluorescence staining showed USP20 abundance in both microglial cells and neurons. We then found that promoting USP20 expression remarkably ameliorated MCAO-induced ischemic brain injury, along with significantly reduced infarct volume, neurological scores and brain water contents. In addition, cognitive impairments in MCAO-operated mice were considerably alleviated by USP20 over-expression. Furthermore, USP20 over-expression dramatically restrained microglial activation, inflammatory response and neuronal death in mice with ischemic stroke. Moreover, our results indicated that phosphatase and tensin homolog (PTEN) expression was highly decreased in the infarct areas of MCAO-treated mice, while being greatly rescued by USP20 over-expression. All these effects mediated by USP20 during cerebral I/R injury were confirmed in the cultured primary microglial cells and cortical neurons stimulated by oxygen-glucose deprivation and reoxygenation (OGD/R). Mechanistically, we found that USP20 directly interacted with PTEN. Notably, suppressing PTEN with its specific inhibitor dramatically abolished the function of USP20 to ameliorate neuroinflammation and neuron death induced by OGD/R. Collectively, our results illustrated that USP20 could effectively mitigate the severity of cerebral ischemic stroke and improve behavior deficits in MCAO-operated mice, and identified the USP20/PTEN axis as a promising therapeutic target for ischemic stroke treatment.
Collapse
Affiliation(s)
- Rujun Pan
- Department of Neurosurgery, Fujian Provincial Hospital, Fujian 350001, China
| | - Yaojuan Xie
- Department of Anesthesiology, Fujian Provincial Hospital, Fujian 350001, China
| | - Wen Fang
- Department of Anesthesiology, Fujian Provincial Hospital, Fujian 350001, China
| | - Yuqing Liu
- Department of Neurosurgery, Fujian Provincial Hospital, Fujian 350001, China
| | - Yang Zhang
- Department of Neurosurgery, Fujian Provincial Hospital, Fujian 350001, China.
| |
Collapse
|
12
|
Expression, purification and characterization of the second DUSP domain of deubiquitinase USP20/VDU2. Protein Expr Purif 2021; 181:105836. [PMID: 33529762 DOI: 10.1016/j.pep.2021.105836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 01/18/2021] [Accepted: 01/27/2021] [Indexed: 11/22/2022]
Abstract
Deubiquitinase USP20/VDU2 (VHL-interacting Deubiquitinating Enzyme 2) has been proved to play vital roles in multiple cellular processes by controlling the life-span of substrate proteins including hypoxia-inducible factor HIF1α, β2-adrenergic receptor, and type 2 iodothyronine deiodinase etc. USP20 contains four distinct structural domains, which include the N-terminal zinc-finger ubiquitin binding domain (ZnF-UBP), the catalytic domain (USP domain), and two tandem DUSP domains (DUSP1 and DUSP2). Here in this study, we report the setting up of the production approach for USP20 DUSP2, and the NMR characterization of the produced target protein. With the assistance of GB1 tag and glycerol, both the solubility and stability of USP20 DUSP2 are significantly enhanced. And by using the optimized protein production procedure, monomeric and stable 15N, 13C-labeled USP20 DUSP2 sample for NMR data acquisition was obtained. The secondary structural elements of USP20 DUSP2 were then revealed by the analysis of recorded NMR spectra, and USP20 DUSP2 forms an AB3 fold in solution. The production protocol and NMR characterization results reported in this manuscript could be utilized in the extended structural and functional studies of USP20 DUSP2.
Collapse
|
13
|
Li L, Wei J, Suber TL, Ye Q, Miao J, Li S, Taleb SJ, Tran KC, Tamaskar AS, Zhao J, Zhao Y. IL-37-induced activation of glycogen synthase kinase 3β promotes IL-1R8/Sigirr phosphorylation, internalization, and degradation in lung epithelial cells. J Cell Physiol 2021; 236:5676-5685. [PMID: 33400290 DOI: 10.1002/jcp.30253] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/16/2020] [Accepted: 12/21/2020] [Indexed: 12/30/2022]
Abstract
Interleukin (IL)-37 diminishes a variety of inflammatory responses through ligation to its receptor IL-1R8/Sigirr. Sigirr is a Toll like receptor/IL-1R family member. We have shown that Sigirr is not stable in response to IL-37 treatment. IL-37-induced Sigirr degradation is mediated by the ubiquitin-proteasome system, and the process is reversed by a deubiquitinase, USP13. However, the molecular mechanisms by which USP13 regulates Sigirr stability have not been revealed. In this study, we investigate the roles of glycogen synthesis kinase 3β (GSK3β) in Sigirr phosphorylation and stability. IL-37 stimulation induced Sigirr phosphorylation and degradation, as well as activation of GSK3β. Inhibition of GSK3β attenuated IL-37-induced Sigirr phosphorylation, while exogenous expressed GSK3β promoted Sigirr phosphorylation at threonine (T)372 residue. Sigirr association with GSK3β was detected. Amino acid residues 51-101 in GSK3β were identified as the Sigirr binding domain. These data indicate that GSK3β mediates IL-37-induced threonine phosphorylation of Sigirr. Further, we investigated the role of GSK3β-mediated phosphorylation of Sigirr in Sigirr degradation. Inhibition of GSK3β attenuated IL-37-induced Sigirr degradation, while T372 mutant of Sigirr was resistant to IL-37-mediated degradation. Furthermore, inhibition of Sigirr phosphorylation prevented Sigirr internalization and association with USP13, suggesting GSK3β promotes Sigirr degradation through disrupting Sigirr association with USP13.
Collapse
Affiliation(s)
- Lian Li
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio, USA
| | - Jianxin Wei
- Department of Medicine, The University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Tomeka L Suber
- Department of Medicine, The University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Qinmao Ye
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio, USA
| | - Jiaxing Miao
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio, USA
| | - Shuang Li
- Department of Medicine, The University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Sarah J Taleb
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio, USA
| | - Kevin C Tran
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio, USA
| | - Arya S Tamaskar
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio, USA
| | - Jing Zhao
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio, USA.,Department of Internal Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Yutong Zhao
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio, USA.,Department of Internal Medicine, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
14
|
Patwardhan A, Cheng N, Trejo J. Post-Translational Modifications of G Protein-Coupled Receptors Control Cellular Signaling Dynamics in Space and Time. Pharmacol Rev 2021; 73:120-151. [PMID: 33268549 PMCID: PMC7736832 DOI: 10.1124/pharmrev.120.000082] [Citation(s) in RCA: 102] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
G protein-coupled receptors (GPCRs) are a large family comprising >800 signaling receptors that regulate numerous cellular and physiologic responses. GPCRs have been implicated in numerous diseases and represent the largest class of drug targets. Although advances in GPCR structure and pharmacology have improved drug discovery, the regulation of GPCR function by diverse post-translational modifications (PTMs) has received minimal attention. Over 200 PTMs are known to exist in mammalian cells, yet only a few have been reported for GPCRs. Early studies revealed phosphorylation as a major regulator of GPCR signaling, whereas later reports implicated a function for ubiquitination, glycosylation, and palmitoylation in GPCR biology. Although our knowledge of GPCR phosphorylation is extensive, our knowledge of the modifying enzymes, regulation, and function of other GPCR PTMs is limited. In this review we provide a comprehensive overview of GPCR post-translational modifications with a greater focus on new discoveries. We discuss the subcellular location and regulatory mechanisms that control post-translational modifications of GPCRs. The functional implications of newly discovered GPCR PTMs on receptor folding, biosynthesis, endocytic trafficking, dimerization, compartmentalized signaling, and biased signaling are also provided. Methods to detect and study GPCR PTMs as well as PTM crosstalk are further highlighted. Finally, we conclude with a discussion of the implications of GPCR PTMs in human disease and their importance for drug discovery. SIGNIFICANCE STATEMENT: Post-translational modification of G protein-coupled receptors (GPCRs) controls all aspects of receptor function; however, the detection and study of diverse types of GPCR modifications are limited. A thorough understanding of the role and mechanisms by which diverse post-translational modifications regulate GPCR signaling and trafficking is essential for understanding dysregulated mechanisms in disease and for improving and refining drug development for GPCRs.
Collapse
Affiliation(s)
- Anand Patwardhan
- Department of Pharmacology and the Biomedical Sciences Graduate Program, School of Medicine, University of California, San Diego, La Jolla, California
| | - Norton Cheng
- Department of Pharmacology and the Biomedical Sciences Graduate Program, School of Medicine, University of California, San Diego, La Jolla, California
| | - JoAnn Trejo
- Department of Pharmacology and the Biomedical Sciences Graduate Program, School of Medicine, University of California, San Diego, La Jolla, California
| |
Collapse
|
15
|
Kaur S, Chen Y, Shenoy SK. Agonist-activated glucagon receptors are deubiquitinated at early endosomes by two distinct deubiquitinases to facilitate Rab4a-dependent recycling. J Biol Chem 2020; 295:16630-16642. [PMID: 32967969 PMCID: PMC7864061 DOI: 10.1074/jbc.ra120.014532] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 09/17/2020] [Indexed: 01/08/2023] Open
Abstract
The glucagon receptor (GCGR) activated by the peptide hormone glucagon is a seven-transmembrane G protein-coupled receptor (GPCR) that regulates blood glucose levels. Ubiquitination influences trafficking and signaling of many GPCRs, but its characterization for the GCGR is lacking. Using endocytic colocalization and ubiquitination assays, we have identified a correlation between the ubiquitination profile and recycling of the GCGR. Our experiments revealed that GCGRs are constitutively ubiquitinated at the cell surface. Glucagon stimulation not only promoted GCGR endocytic trafficking through Rab5a early endosomes and Rab4a recycling endosomes, but also induced rapid deubiquitination of GCGRs. Inhibiting GCGR internalization or disrupting endocytic trafficking prevented agonist-induced deubiquitination of the GCGR. Furthermore, a Rab4a dominant negative (DN) that blocks trafficking at recycling endosomes enabled GCGR deubiquitination, whereas a Rab5a DN that blocks trafficking at early endosomes eliminated agonist-induced GCGR deubiquitination. By down-regulating candidate deubiquitinases that are either linked with GPCR trafficking or localized on endosomes, we identified signal-transducing adaptor molecule-binding protein (STAMBP) and ubiquitin-specific protease 33 (USP33) as cognate deubiquitinases for the GCGR. Our data suggest that USP33 constitutively deubiquitinates the GCGR, whereas both STAMBP and USP33 deubiquitinate agonist-activated GCGRs at early endosomes. A mutant GCGR with all five intracellular lysines altered to arginines remains deubiquitinated and shows augmented trafficking to Rab4a recycling endosomes compared with the WT, thus affirming the role of deubiquitination in GCGR recycling. We conclude that the GCGRs are rapidly deubiquitinated after agonist-activation to facilitate Rab4a-dependent recycling and that USP33 and STAMBP activities are critical for the endocytic recycling of the GCGR.
Collapse
Affiliation(s)
- Suneet Kaur
- Division of Cardiology, Department of Medicine, Duke University Medical Center, Durham, North Carolina, USA
| | - Yuqing Chen
- Division of Cardiology, Department of Medicine, Duke University Medical Center, Durham, North Carolina, USA
| | - Sudha K Shenoy
- Division of Cardiology, Department of Medicine, Duke University Medical Center, Durham, North Carolina, USA; Department of Cell Biology, Duke University Medical Center, Durham, North Carolina, USA.
| |
Collapse
|
16
|
Overexpression of Ubiquitin-Specific Protease 2 (USP2) in the Heart Suppressed Pressure Overload-Induced Cardiac Remodeling. Mediators Inflamm 2020; 2020:4121750. [PMID: 32963492 PMCID: PMC7492881 DOI: 10.1155/2020/4121750] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 08/15/2020] [Accepted: 08/27/2020] [Indexed: 01/26/2023] Open
Abstract
Ubiquitin-specific protease 2 (USP2) is an important member of the deubiquitination system. GEO dataset revealed that USP2 was downregulated in the hearts under pressure overload. However, the cardiomyocyte-specific function of USP2 in the setting of pressure overload is unknown. In the current study, a mouse model of pressure overload was induced by transverse aortic constriction (TAC, 2 weeks). Overexpression of USP2 in the heart was conducted by AAV9 infection. Changes in heart histology were detected by Masson's trichrome staining and hematoxylin-eosin staining (H&E). Echocardiography was used to assess cardiac function. The size of cardiomyocytes was examined by wheat germ agglutinin (WGA) staining. Cardiac oxidative stress was detected by dihydroethidine staining. Our results showed that USP2 was downregulated in the cardiomyocytes following 2 weeks of TAC. Overexpression of cardiac USP2 preserved ventricular function following 2 weeks of TAC. Overexpression of cardiac USP2 inhibited TAC-induced cardiac remodeling, by suppressing cardiac hypertrophy, inhibiting inflammatory responses and fibrosis, and attenuating oxidative stress. Our findings reveal a previously unrecognized role of USP2 in regulating pressure overload-induced cardiac remodeling.
Collapse
|
17
|
A20 enhances mu-opioid receptor function by inhibiting beta-arrestin2 recruitment. Biochem Biophys Res Commun 2020; 528:127-133. [DOI: 10.1016/j.bbrc.2020.05.073] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 05/11/2020] [Indexed: 12/21/2022]
|
18
|
Bi HL, Zhang XL, Zhang YL, Xie X, Xia YL, Du J, Li HH. The deubiquitinase UCHL1 regulates cardiac hypertrophy by stabilizing epidermal growth factor receptor. SCIENCE ADVANCES 2020; 6:eaax4826. [PMID: 32494592 PMCID: PMC7164950 DOI: 10.1126/sciadv.aax4826] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 01/23/2020] [Indexed: 05/09/2023]
Abstract
Pathological cardiac hypertrophy leads to heart failure (HF). The ubiquitin-proteasome system (UPS) plays a key role in maintaining protein homeostasis and cardiac function. However, research on the role of deubiquitinating enzymes (DUBs) in cardiac function is limited. Here, we observed that the deubiquitinase ubiquitin C-terminal hydrolase 1 (UCHL1) was significantly up-regulated in agonist-stimulated primary cardiomyocytes and in hypertrophic and failing hearts. Knockdown of UCHL1 in cardiomyocytes and mouse hearts significantly ameliorated cardiac hypertrophy induced by agonist or pressure overload. Conversely, overexpression of UCHL1 had the opposite effect in cardiomyocytes and rAAV9-UCHL1-treated mice. Mechanistically, UCHL1 bound, deubiquitinated, and stabilized epidermal growth factor receptor (EGFR) and activated its downstream mediators. Systemic administration of the UCHL1 inhibitor LDN-57444 significantly reversed cardiac hypertrophy and remodeling. These findings suggest that UCHL1 positively regulates cardiac hypertrophy by stabilizing EGFR and identify UCHL1 as a target for hypertrophic therapy.
Collapse
Affiliation(s)
- Hai-Lian Bi
- Department of Cardiology, Institute of Cardiovascular Diseases, First Affiliated Hospital of Dalian Medical University, Dalian 11600, China
| | - Xiao-Li Zhang
- Department of Medical Technology, Beijing Health Vocational College, Beijing 101101, China
| | - Yun-Long Zhang
- Department of Cardiology, Institute of Cardiovascular Diseases, First Affiliated Hospital of Dalian Medical University, Dalian 11600, China
| | - Xin Xie
- Department of Cardiology, Institute of Cardiovascular Diseases, First Affiliated Hospital of Dalian Medical University, Dalian 11600, China
| | - Yun-Long Xia
- Department of Cardiology, Institute of Cardiovascular Diseases, First Affiliated Hospital of Dalian Medical University, Dalian 11600, China
| | - Jie Du
- Beijing AnZhen Hospital the Key Laboratory of Remodeling-Related Cardiovascular Diseases, School of Basic Medical Sciences, Capital Medical University, Beijing 100029, China
| | - Hui-Hua Li
- Department of Cardiology, Institute of Cardiovascular Diseases, First Affiliated Hospital of Dalian Medical University, Dalian 11600, China
- Department of Emergency Medicine, Beijing Key Laboratory of Cardiopulmonary Cerebral Resuscitation, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| |
Collapse
|
19
|
Yang Y, Ding Y, Zhou C, Wen Y, Zhang N. Structural and functional studies of USP20 ZnF-UBP domain by NMR. Protein Sci 2019; 28:1606-1619. [PMID: 31278784 PMCID: PMC6699088 DOI: 10.1002/pro.3675] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 06/30/2019] [Accepted: 07/01/2019] [Indexed: 12/19/2022]
Abstract
Deubiquitinase USP20/VDU2 has been demonstrated to play important roles in multiple cellular processes by controlling the life span of substrate proteins including hypoxia-inducible factor HIF1α, and so forth. USP20 contains four distinct structural domains including the N-terminal zinc-finger ubiquitin binding domain (ZnF-UBP), the catalytic domain (USP domain), and two tandem DUSP domains, and none of the structures for these four domains has been solved. Meanwhile, except for the ZnF-UBP domain, the biological functions for USP20's catalytic domain and tandem DUSP domains have been at least partially clarified. Here in this study, we determined the solution structure of USP20 ZnF-UBP domain and investigated its binding properties with mono-ubiquitin and poly-ubiquitin (K48-linked di-ubiquitin) by using NMR and molecular modeling techniques. USP20's ZnF-UBP domain forms a spherically shaped fold consisting of a central β-sheet with either one α-helix or two α-helices packed on each side of the sheet. However, although having formed a canonical core structure essential for ubiquitin recognition, USP20 ZnF-UBP presents weak ubiquitin binding capacity. The structural basis for understanding USP20 ZnF-UBP's ubiquitin binding capacity was revealed by NMR data-driven docking. Although the electrostatic interactions between D264 of USP5 (E87 in USP20 ZnF-UBP) and R74 of ubiquitin are kept, the loss of the extensive interactions formed between ubiquitin's di-glycine motif and the conserved and non-conserved residues of USP20 ZnF-UBP domain (W41, E55, and Y84) causes a significant decrease in its binding affinity to ubiquitin. Our findings indicate that USP20 ZnF-UBP domain might have a physiological role unrelated to its ubiquitin binding capacity.
Collapse
Affiliation(s)
- Yuanyuan Yang
- Department of Analytical ChemistryShanghai Institute of Materia Medica Chinese Academy of SciencesShanghaiChina
- University of the Chinese Academy of SciencesBeijingChina
| | - Yiluan Ding
- Department of Analytical ChemistryShanghai Institute of Materia Medica Chinese Academy of SciencesShanghaiChina
| | - Chen Zhou
- Department of Analytical ChemistryShanghai Institute of Materia Medica Chinese Academy of SciencesShanghaiChina
| | - Yi Wen
- Oxford Instruments Technology (Shanghai) Co., LtdShanghaiChina
| | - Naixia Zhang
- Department of Analytical ChemistryShanghai Institute of Materia Medica Chinese Academy of SciencesShanghaiChina
- University of the Chinese Academy of SciencesBeijingChina
| |
Collapse
|
20
|
Toth K, Nagi K, Slosky LM, Rochelle L, Ray C, Kaur S, Shenoy SK, Caron MG, Barak LS. Encoding the β-Arrestin Trafficking Fate of Ghrelin Receptor GHSR1a: C-Tail-Independent Molecular Determinants in GPCRs. ACS Pharmacol Transl Sci 2019; 2:230-246. [PMID: 32259059 DOI: 10.1021/acsptsci.9b00018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Indexed: 12/14/2022]
Abstract
G-protein-coupled receptors (GPCRs) can bias signaling through distinct biochemical pathways that originate from G-protein/receptor and β-arrestin/receptor complexes. Receptor conformations supporting β-arrestin engagement depend on multiple receptor determinants. Using ghrelin receptor GHR1a, we demonstrate by bioluminescence resonance energy transfer and fluorescence microscopy a critical role for its second intracellular loop 2 (ICL2) domain in stabilizing β-arrestin/GHSR1a core interactions and determining receptor trafficking fate. We validate our findings in ICL2 gain- and loss-of-function experiments assessing β-arrestin and ubiquitin-dependent internalization of the CC chemokine receptor, CCR1. Like all CC and CXC subfamily chemokine receptors, CCR1 lacks a critical proline residue found in the ICL2 consensus domain of rhodopsin-family GPCRs. Our study indicates that ICL2, C-tail determinants, and the orthosteric binding pocket that regulates β-arrestin/receptor complex stability are sufficient to encode a broad repertoire of the trafficking fates observed for rhodopsin-family GPCRs, suggesting they provide the essential elements for regulating a large fraction of β-arrestin signaling bias.
Collapse
Affiliation(s)
- Krisztian Toth
- Departments of Cell Biology, Neurobiology, and Medicine, Duke University Medical Center, Durham, North Carolina 27710, United States.,Pharmaceutical Sciences, Campbell University, Buies Creek, North Carolina 27506, United States
| | - Karim Nagi
- Departments of Cell Biology, Neurobiology, and Medicine, Duke University Medical Center, Durham, North Carolina 27710, United States.,College of Medicine, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Lauren M Slosky
- Departments of Cell Biology, Neurobiology, and Medicine, Duke University Medical Center, Durham, North Carolina 27710, United States
| | - Lauren Rochelle
- Departments of Cell Biology, Neurobiology, and Medicine, Duke University Medical Center, Durham, North Carolina 27710, United States
| | - Caroline Ray
- Departments of Cell Biology, Neurobiology, and Medicine, Duke University Medical Center, Durham, North Carolina 27710, United States
| | - Suneet Kaur
- Departments of Cell Biology, Neurobiology, and Medicine, Duke University Medical Center, Durham, North Carolina 27710, United States
| | - Sudha K Shenoy
- Departments of Cell Biology, Neurobiology, and Medicine, Duke University Medical Center, Durham, North Carolina 27710, United States.,Departments of Cell Biology, Neurobiology, and Medicine, Duke University Medical Center, Durham, North Carolina 27710, United States
| | - Marc G Caron
- Departments of Cell Biology, Neurobiology, and Medicine, Duke University Medical Center, Durham, North Carolina 27710, United States.,Departments of Cell Biology, Neurobiology, and Medicine, Duke University Medical Center, Durham, North Carolina 27710, United States.,Departments of Cell Biology, Neurobiology, and Medicine, Duke University Medical Center, Durham, North Carolina 27710, United States
| | - Larry S Barak
- Departments of Cell Biology, Neurobiology, and Medicine, Duke University Medical Center, Durham, North Carolina 27710, United States
| |
Collapse
|