1
|
Lynn ML, Jimenez J, Castillo RL, Vasquez C, Klass MM, Baldo A, Kim A, Gibson C, Murphy AM, Tardiff JC. Arg92Leu-cTnT Alters the cTnC-cTnI Interface Disrupting PKA-Mediated Relaxation. Circ Res 2024; 135:974-989. [PMID: 39328062 PMCID: PMC11502267 DOI: 10.1161/circresaha.124.325223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/05/2024] [Accepted: 09/16/2024] [Indexed: 09/28/2024]
Abstract
BACKGROUND Impaired left ventricular relaxation, high filling pressures, and dysregulation of Ca2+ homeostasis are common findings contributing to diastolic dysfunction in hypertrophic cardiomyopathy (HCM). Studies have shown that impaired relaxation is an early observation in the sarcomere-gene-positive preclinical HCM cohort, which suggests the potential involvement of myofilament regulators in relaxation. A molecular-level understanding of mechanism(s) at the level of the myofilament is lacking. We hypothesized that mutation-specific, allosterically mediated, changes to the cTnC (cardiac troponin C)-cTnI (cardiac troponin I) interface can account for the development of early-onset diastolic dysfunction via decreased PKA accessibility to cTnI. METHODS HCM mutations R92L-cTnT (cardiac troponin T; Arg92Leu) and Δ160E-cTnT (Glu160 deletion) were studied in vivo, in vitro, and in silico via 2-dimensional echocardiography, Western blotting, ex vivo hemodynamics, stopped-flow kinetics, time-resolved fluorescence resonance energy transfer, and molecular dynamics simulations. RESULTS The HCM-causative mutations R92L-cTnT and Δ160E-cTnT result in different time-of-onset diastolic dysfunction. R92L-cTnT demonstrated early-onset diastolic dysfunction accompanied by a localized decrease in phosphorylation of cTnI. Constitutive phosphorylation of cTnI (cTnI-D23D24) was sufficient to recover diastolic function to non-Tg levels only for R92L-cTnT. Mutation-specific changes in Ca2+ dissociation rates associated with R92L-cTnT reconstituted with cTnI-D23D24 led us to investigate potential involvement of structural changes in the cTnC-cTnI interface as an explanation for these observations. We probed the interface via time-resolved fluorescence resonance energy transfer revealing a repositioning of the N-terminus of cTnI, closer to cTnC, and concomitant decreases in distance distributions at sites flanking the PKA consensus sequence. Implementing time-resolved fluorescence resonance energy transfer distances as constraints into our atomistic model identified additional electrostatic interactions at the consensus sequence. CONCLUSIONS These data show that the early diastolic dysfunction observed in a subset of HCM is attributable to allosterically mediated structural changes at the cTnC-cTnI interface that impair accessibility of PKA, thereby blunting β-adrenergic responsiveness and identifying a potential molecular target for therapeutic intervention.
Collapse
Affiliation(s)
- Melissa L. Lynn
- Department of Biomedical Engineering, University of Arizona, Tucson AZ
| | - Jesus Jimenez
- Department of Medicine, Washington University at St. Louis, St. Louis, MO
| | - Romi L. Castillo
- Department of Biomedical Engineering, University of Arizona, Tucson AZ
| | - Catherine Vasquez
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ
| | - Matthew M. Klass
- Department of Physiological Sciences, University of Arizona, Tucson, AZ
| | - Anthony Baldo
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ
| | - Andrew Kim
- Department of Physiology, University of Arizona, Tucson, AZ
| | - Cyonna Gibson
- Department of Biomedical Engineering, University of Arizona, Tucson AZ
| | - Anne M. Murphy
- Department of Pediatrics/Division of Cardiology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Jil C. Tardiff
- Department of Biomedical Engineering, University of Arizona, Tucson AZ
- Department of Medicine, Washington University at St. Louis, St. Louis, MO
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ
- Department of Physiological Sciences, University of Arizona, Tucson, AZ
- Department of Physiology, University of Arizona, Tucson, AZ
| |
Collapse
|
2
|
Cubuk J, Greenberg L, Greenberg AE, Emenecker RJ, Stuchell-Brereton MD, Holehouse AS, Soranno A, Greenberg MJ. Structural dynamics of the intrinsically disordered linker region of cardiac troponin T. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.30.596451. [PMID: 38853835 PMCID: PMC11160775 DOI: 10.1101/2024.05.30.596451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
The cardiac troponin complex, composed of troponins I, T, and C, plays a central role in regulating the calcium-dependent interactions between myosin and the thin filament. Mutations in troponin can cause cardiomyopathies; however, it is still a major challenge to connect how changes in sequence affect troponin's function. Recent high-resolution structures of the thin filament revealed critical insights into the structure-function relationship of troponin, but there remain large, unresolved segments of troponin, including the troponin-T linker region that is a hotspot for cardiomyopathy mutations. This linker region is predicted to be intrinsically disordered, with behaviors that are not well described by traditional structural approaches; however, this proposal has not been experimentally verified. Here, we used a combination of single-molecule Förster resonance energy transfer (FRET), molecular dynamics simulations, and functional reconstitution assays to investigate the troponin-T linker region. We show that in the context of both isolated troponin and the fully regulated troponin complex, the linker behaves as a dynamic, intrinsically disordered region. This region undergoes polyampholyte expansion in the presence of high salt and distinct conformational changes during the assembly of the troponin complex. We also examine the ΔE160 hypertrophic cardiomyopathy mutation in the linker and demonstrate that it does not affect the conformational dynamics of the linker, rather it allosterically affects interactions with other troponin complex subunits, leading to increased molecular contractility. Taken together, our data clearly demonstrate the importance of disorder within the troponin-T linker and provide new insights into the molecular mechanisms driving the pathogenesis of cardiomyopathies.
Collapse
Affiliation(s)
- Jasmine Cubuk
- Department of Biochemistry and Molecular Biophysics, Washington University in St Louis, 660 Euclid Ave, 63110, Saint Louis, MO, USA
- Center for Biomolecular Condensates, Washington University in St Louis, 1 Brookings Drive, 63130, Saint Louis, MO, USA
| | - Lina Greenberg
- Department of Biochemistry and Molecular Biophysics, Washington University in St Louis, 660 Euclid Ave, 63110, Saint Louis, MO, USA
| | - Akiva E. Greenberg
- Department of Biochemistry and Molecular Biophysics, Washington University in St Louis, 660 Euclid Ave, 63110, Saint Louis, MO, USA
| | - Ryan J. Emenecker
- Department of Biochemistry and Molecular Biophysics, Washington University in St Louis, 660 Euclid Ave, 63110, Saint Louis, MO, USA
- Center for Biomolecular Condensates, Washington University in St Louis, 1 Brookings Drive, 63130, Saint Louis, MO, USA
| | - Melissa D. Stuchell-Brereton
- Department of Biochemistry and Molecular Biophysics, Washington University in St Louis, 660 Euclid Ave, 63110, Saint Louis, MO, USA
- Center for Biomolecular Condensates, Washington University in St Louis, 1 Brookings Drive, 63130, Saint Louis, MO, USA
| | - Alex S. Holehouse
- Department of Biochemistry and Molecular Biophysics, Washington University in St Louis, 660 Euclid Ave, 63110, Saint Louis, MO, USA
- Center for Biomolecular Condensates, Washington University in St Louis, 1 Brookings Drive, 63130, Saint Louis, MO, USA
| | - Andrea Soranno
- Department of Biochemistry and Molecular Biophysics, Washington University in St Louis, 660 Euclid Ave, 63110, Saint Louis, MO, USA
- Center for Biomolecular Condensates, Washington University in St Louis, 1 Brookings Drive, 63130, Saint Louis, MO, USA
| | - Michael J. Greenberg
- Department of Biochemistry and Molecular Biophysics, Washington University in St Louis, 660 Euclid Ave, 63110, Saint Louis, MO, USA
| |
Collapse
|
3
|
Barefield DY, Alvarez-Arce A, Araujo KN. Mechanisms of Sarcomere Protein Mutation-Induced Cardiomyopathies. Curr Cardiol Rep 2023; 25:473-484. [PMID: 37060436 PMCID: PMC11141690 DOI: 10.1007/s11886-023-01876-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/30/2023] [Indexed: 04/16/2023]
Abstract
PURPOSE OF REVIEW The pace of identifying cardiomyopathy-associated mutations and advances in our understanding of sarcomere function that underlies many cardiomyopathies has been remarkable. Here, we aim to synthesize how these advances have led to the promising new treatments that are being developed to treat cardiomyopathies. RECENT FINDINGS The genomics era has identified and validated many genetic causes of hypertrophic and dilated cardiomyopathies. Recent advances in our mechanistic understanding of sarcomere pathophysiology include high-resolution molecular models of sarcomere components and the identification of the myosin super-relaxed state. The advances in our understanding of sarcomere function have yielded several therapeutic agents that are now in development and clinical use to correct contractile dysfunction-mediated cardiomyopathy. New genes linked to cardiomyopathy include targets with limited clinical evidence and require additional investigation. Large portions of cardiomyopathy with family history remain genetically undiagnosed and may be due to polygenic disease.
Collapse
Affiliation(s)
- David Y Barefield
- Department of Cell and Molecular Physiology, Loyola University Chicago, 2160 S. 1st Ave, Maywood, IL, 60153, USA.
| | - Alejandro Alvarez-Arce
- Department of Cell and Molecular Physiology, Loyola University Chicago, 2160 S. 1st Ave, Maywood, IL, 60153, USA
| | - Kelly N Araujo
- Department of Cell and Molecular Physiology, Loyola University Chicago, 2160 S. 1st Ave, Maywood, IL, 60153, USA
| |
Collapse
|
4
|
Dvornikov AV, Bunch TA, Lepak VC, Colson BA. Fluorescence lifetime-based assay reports structural changes in cardiac muscle mediated by effectors of contractile regulation. J Gen Physiol 2023; 155:e202113054. [PMID: 36633587 PMCID: PMC9859762 DOI: 10.1085/jgp.202113054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 09/23/2022] [Accepted: 12/20/2022] [Indexed: 01/13/2023] Open
Abstract
Cardiac muscle contraction is regulated by Ca2+-induced structural changes of the thin filaments to permit myosin cross-bridge cycling driven by ATP hydrolysis in the sarcomere. In congestive heart failure, contraction is weakened, and thus targeting the contractile proteins of the sarcomere is a promising approach to therapy. However, development of novel therapeutic interventions has been challenging due to a lack of precise discovery tools. We have developed a fluorescence lifetime-based assay using an existing site-directed probe, N,N'-dimethyl-N-(iodoacetyl)-N'-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)ethylenediamine (IANBD) attached to human cardiac troponin C (cTnC) mutant cTnCT53C, exchanged into porcine cardiac myofibrils. We hypothesized that IANBD-cTnCT53C fluorescence lifetime measurements provide insight into the activation state of the thin filament. The sensitivity and precision of detecting structural changes in cTnC due to physiological and therapeutic modulators of thick and thin filament functions were determined. The effects of Ca2+ binding to cTnC and myosin binding to the thin filament were readily detected by this assay in mock high-throughput screen tests using a fluorescence lifetime plate reader. We then evaluated known effectors of altered cTnC-Ca2+ binding, W7 and pimobendan, and myosin-binding drugs, mavacamten and omecamtiv mecarbil, used to treat cardiac diseases. Screening assays were determined to be of high quality as indicated by the Z' factor. We conclude that cTnC lifetime-based probes allow for precise evaluation of the thin filament activation in functioning myofibrils that can be used in future high-throughput screens of small-molecule modulators of function of the thin and thick filaments.
Collapse
Affiliation(s)
- Alexey V. Dvornikov
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ, USA
| | - Thomas A. Bunch
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ, USA
| | - Victoria C. Lepak
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ, USA
| | - Brett A. Colson
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
5
|
Deranek AE, Baldo AP, Lynn ML, Schwartz SD, Tardiff JC. Structure and Dynamics of the Flexible Cardiac Troponin T Linker Domain in a Fully Reconstituted Thin Filament. Biochemistry 2022; 61:1229-1242. [PMID: 35696530 DOI: 10.1021/acs.biochem.2c00091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The structural analysis of large protein complexes has been greatly enhanced through the application of electron microscopy techniques. One such multiprotein complex, the cardiac thin filament (cTF), has cyclic interactions with thick filament proteins to drive contraction of the heart that has recently been the subject of such studies. As important as these studies are, they provide limited or no information on highly flexible regions that in isolation would be characterized as inherently disordered. One such region is the extended cardiac troponin T (cTnT) linker between the regions of cTnT which have been labeled TNT1 and TNT2. It comprises a hinge region (residues 158-166) and a highly flexible region (residues 167-203). Critically, this region modulates the troponin/tropomyosin complex's position across the actin filament. Thus, the cTnT linker structure and dynamics are central to the regulation of the function of cardiac muscles, but up to now, it was ill-understood. To establish the cTnT linker structure, we coupled an atomistic computational cTF model with time-resolved fluorescence resonance energy transfer measurements in both ±Ca2+ conditions utilizing fully reconstituted cTFs. We mapped the cTnT linker's positioning across the actin filament, and by coupling the experimental results to computation, we found mean structures and ranges of motion of this part of the complex. With this new insight, we can now address cTnT linker structural dynamics in both myofilament activation and disease.
Collapse
Affiliation(s)
- Andrea E Deranek
- Department of Biomedical Engineering, University of Arizona, Tucson, Arizona 85721, United States
| | - Anthony P Baldo
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, United States
| | - Melissa L Lynn
- Department of Biomedical Engineering, University of Arizona, Tucson, Arizona 85721, United States
| | - Steven D Schwartz
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, United States
| | - Jil C Tardiff
- Department of Biomedical Engineering, University of Arizona, Tucson, Arizona 85721, United States
| |
Collapse
|
6
|
Mason AB, Lynn ML, Baldo AP, Deranek AE, Tardiff JC, Schwartz SD. Computational and biophysical determination of pathogenicity of variants of unknown significance in cardiac thin filament. JCI Insight 2021; 6:154350. [PMID: 34699384 PMCID: PMC8675185 DOI: 10.1172/jci.insight.154350] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 10/22/2021] [Indexed: 11/17/2022] Open
Abstract
Point mutations within sarcomeric proteins have been associated with altered function and cardiomyopathy development. Difficulties remain, however, in establishing the pathogenic potential of individual mutations, often limiting the use of genotype in management of affected families. To directly address this challenge, we utilized our all-atom computational model of the human full cardiac thin filament (CTF) to predict how sequence substitutions in CTF proteins might affect structure and dynamics on an atomistic level. Utilizing molecular dynamics calculations, we simulated 21 well-defined genetic pathogenic cardiac troponin T and tropomyosin variants to establish a baseline of pathogenic changes induced in computational observables. Computational results were verified via differential scanning calorimetry on a subset of variants to develop an experimental correlation. Calculations were performed on 9 independent variants of unknown significance (VUS), and results were compared with pathogenic variants to identify high-resolution pathogenic signatures. Results for VUS were compared with the baseline set to determine induced structural and dynamic changes, and potential variant reclassifications were proposed. This unbiased, high-resolution computational methodology can provide unique structural and dynamic information that can be incorporated into existing analyses to facilitate classification both for de novo variants and those where established approaches have provided conflicting information.
Collapse
Affiliation(s)
| | - Melissa L Lynn
- Department of Biomedical Engineering, University of Arizona, Tucson, Arizona, USA
| | | | - Andrea E Deranek
- Department of Biomedical Engineering, University of Arizona, Tucson, Arizona, USA
| | - Jil C Tardiff
- Department of Biomedical Engineering, University of Arizona, Tucson, Arizona, USA
| | | |
Collapse
|
7
|
Barrick SK, Greenberg L, Greenberg MJ. A troponin T variant linked with pediatric dilated cardiomyopathy reduces the coupling of thin filament activation to myosin and calcium binding. Mol Biol Cell 2021; 32:1677-1689. [PMID: 34161147 PMCID: PMC8684737 DOI: 10.1091/mbc.e21-02-0082] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Dilated cardiomyopathy (DCM) is a significant cause of pediatric heart failure. Mutations in proteins that regulate cardiac muscle contraction can cause DCM; however, the mechanisms by which molecular-level mutations contribute to cellular dysfunction are not well understood. Better understanding of these mechanisms might enable the development of targeted therapeutics that benefit patient subpopulations with mutations that cause common biophysical defects. We examined the molecular- and cellular-level impacts of a troponin T variant associated with pediatric-onset DCM, R134G. The R134G variant decreased calcium sensitivity in an in vitro motility assay. Using stopped-flow and steady-state fluorescence measurements, we determined the molecular mechanism of the altered calcium sensitivity: R134G decouples calcium binding by troponin from the closed-to-open transition of the thin filament and decreases the cooperativity of myosin binding to regulated thin filaments. Consistent with the prediction that these effects would cause reduced force per sarcomere, cardiomyocytes carrying the R134G mutation are hypocontractile. They also show hallmarks of DCM that lie downstream of the initial insult, including disorganized sarcomeres and cellular hypertrophy. These results reinforce the importance of multiscale studies to fully understand mechanisms underlying human disease and highlight the value of mechanism-based precision medicine approaches for DCM.
Collapse
Affiliation(s)
- Samantha K Barrick
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110
| | - Lina Greenberg
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110
| | - Michael J Greenberg
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110
| |
Collapse
|
8
|
Powers JD, Kooiker KB, Mason AB, Teitgen AE, Flint GV, Tardiff JC, Schwartz SD, McCulloch AD, Regnier M, Davis J, Moussavi-Harami F. Modulating the tension-time integral of the cardiac twitch prevents dilated cardiomyopathy in murine hearts. JCI Insight 2020; 5:142446. [PMID: 32931484 PMCID: PMC7605524 DOI: 10.1172/jci.insight.142446] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 09/09/2020] [Indexed: 12/13/2022] Open
Abstract
Dilated cardiomyopathy (DCM) is often associated with sarcomere protein mutations that confer reduced myofilament tension–generating capacity. We demonstrated that cardiac twitch tension-time integrals can be targeted and tuned to prevent DCM remodeling in hearts with contractile dysfunction. We employed a transgenic murine model of DCM caused by the D230N-tropomyosin (Tm) mutation and designed a sarcomere-based intervention specifically targeting the twitch tension-time integral of D230N-Tm hearts using multiscale computational models of intramolecular and intermolecular interactions in the thin filament and cell-level contractile simulations. Our models predicted that increasing the calcium sensitivity of thin filament activation using the cardiac troponin C (cTnC) variant L48Q can sufficiently augment twitch tension-time integrals of D230N-Tm hearts. Indeed, cardiac muscle isolated from double-transgenic hearts expressing D230N-Tm and L48Q cTnC had increased calcium sensitivity of tension development and increased twitch tension-time integrals compared with preparations from hearts with D230N-Tm alone. Longitudinal echocardiographic measurements revealed that DTG hearts retained normal cardiac morphology and function, whereas D230N-Tm hearts developed progressive DCM. We present a computational and experimental framework for targeting molecular mechanisms governing the twitch tension of cardiomyopathic hearts to counteract putative mechanical drivers of adverse remodeling and open possibilities for tension-based treatments of genetic cardiomyopathies. Tuning the molecular mechanisms that govern the twitch tension of cardiomyopathic hearts counteracts mechanical drivers of adverse remodeling.
Collapse
Affiliation(s)
- Joseph D Powers
- Department of Bioengineering, College of Engineering and School of Medicine, University of Washington, Seattle, Washington, USA.,Department of Bioengineering, Jacobs School of Engineering, University of California San Diego, La Jolla, California, USA
| | - Kristina B Kooiker
- Division of Cardiology, School of Medicine, University of Washington, Seattle, Washington, USA
| | - Allison B Mason
- Department of Chemistry and Biochemistry, College of Science, and
| | - Abigail E Teitgen
- Department of Bioengineering, Jacobs School of Engineering, University of California San Diego, La Jolla, California, USA
| | - Galina V Flint
- Department of Bioengineering, College of Engineering and School of Medicine, University of Washington, Seattle, Washington, USA
| | - Jil C Tardiff
- Department of Biomedical Engineering, College of Engineering, University of Arizona, Tucson, Arizona, USA
| | | | - Andrew D McCulloch
- Department of Bioengineering, Jacobs School of Engineering, University of California San Diego, La Jolla, California, USA.,Department of Medicine, University of California San Diego, La Jolla, California, USA
| | - Michael Regnier
- Department of Bioengineering, College of Engineering and School of Medicine, University of Washington, Seattle, Washington, USA
| | - Jennifer Davis
- Department of Bioengineering, College of Engineering and School of Medicine, University of Washington, Seattle, Washington, USA.,Department of Laboratory Medicine & Pathology, University of Washington, Seattle, Washington, USA
| | - Farid Moussavi-Harami
- Division of Cardiology, School of Medicine, University of Washington, Seattle, Washington, USA
| |
Collapse
|
9
|
Solís C, Robinson JM. Cardiac troponin and tropomyosin bind to F-actin cooperatively, as revealed by fluorescence microscopy. FEBS Open Bio 2020; 10:1362-1372. [PMID: 32385956 PMCID: PMC7327902 DOI: 10.1002/2211-5463.12876] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 05/01/2020] [Accepted: 05/05/2020] [Indexed: 12/22/2022] Open
Abstract
In cardiac muscle, binding of troponin (Tn) and tropomyosin (Tpm) to filamentous (F)‐actin forms thin filaments capable of Ca2+‐dependent regulation of contraction. Tpm binds to F‐actin in a head‐to‐tail fashion, while Tn stabilizes these linkages. Valuable structural and functional information has come from biochemical, X‐ray, and electron microscopy data. However, the use of fluorescence microscopy to study thin filament assembly remains relatively underdeveloped. Here, triple fluorescent labeling of Tn, Tpm, and F‐actin allowed us to track thin filament assembly by fluorescence microscopy. It is shown here that Tn and Tpm molecules self‐organize on actin filaments and give rise to decorated and undecorated regions. Binding curves based on colocalization of Tn and Tpm on F‐actin exhibit cooperative binding with a dissociation constant Kd of ~ 0.5 µm that is independent of the Ca2+ concentration. Binding isotherms based on the intensity profile of fluorescently labeled Tn and Tpm on F‐actin show that binding of Tn is less cooperative relative to Tpm. Computational modeling of Tn‐Tpm binding to F‐actin suggests two equilibrium steps involving the binding of an initial Tn‐Tpm unit (nucleation) and subsequent recruitment of adjacent Tn‐Tpm units (elongation) that stabilize the assembly. The results presented here highlight the utility of employing fluorescence microscopy to study supramolecular protein assemblies.
Collapse
Affiliation(s)
- Christopher Solís
- Department of Chemistry and Biochemistry, South Dakota State University, Brookings, SD, USA
| | | |
Collapse
|
10
|
Matyushenko AM, Levitsky DI. Molecular Mechanisms of Pathologies of Skeletal and Cardiac Muscles Caused by Point Mutations in the Tropomyosin Genes. BIOCHEMISTRY (MOSCOW) 2020; 85:S20-S33. [PMID: 32087052 DOI: 10.1134/s0006297920140023] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The review is devoted to tropomyosin (Tpm) - actin-binding protein, which plays a crucial role in the regulation of contraction of skeletal and cardiac muscles. Special attention is paid to myopathies and cardiomyopathies - severe hereditary diseases of skeletal and cardiac muscles associated with point mutations in Tpm genes. The current views on the molecular mechanisms of these diseases and the effects of such mutations on the Tpm structure and functions are considered in detail. Besides, some part of the review is devoted to analysis of the properties of Tpm homodimers and heterodimers with myopathic substitutions of amino acid residues in only one of the two chains of the Tpm dimeric molecule.
Collapse
Affiliation(s)
- A M Matyushenko
- Bach Institute of Biochemistry, Federal Research Center on Fundamentals of Biotechnology, Russian Academy of Sciences, Moscow, 119071, Russia.
| | - D I Levitsky
- Bach Institute of Biochemistry, Federal Research Center on Fundamentals of Biotechnology, Russian Academy of Sciences, Moscow, 119071, Russia. .,Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992, Russia
| |
Collapse
|
11
|
Pavadai E, Rynkiewicz MJ, Ghosh A, Lehman W. Docking Troponin T onto the Tropomyosin Overlapping Domain of Thin Filaments. Biophys J 2019; 118:325-336. [PMID: 31864661 DOI: 10.1016/j.bpj.2019.11.3393] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 11/14/2019] [Accepted: 11/26/2019] [Indexed: 01/02/2023] Open
Abstract
Complete description of thin filament conformational transitions accompanying muscle regulation requires ready access to atomic structures of actin-bound tropomyosin-troponin. To date, several molecular-docking protocols have been employed to identify troponin interactions on actin-tropomyosin because high-resolution experimentally determined structures of filament-associated troponin are not available. However, previously published all-atom models of the thin filament show chain separation and corruption of components during our molecular dynamics simulations of the models, implying artifactual subunit organization, possibly due to incorporation of unorthodox tropomyosin-TnT crystal structures and complex FRET measurements during model construction. For example, the recent Williams et al. (2016) atomistic model of the thin filament displays a paucity of salt bridges and hydrophobic complementarity between the TnT tail (TnT1) and tropomyosin, which is difficult to reconcile with the high, 20 nM Kd binding of TnT onto tropomyosin. Indeed, our molecular dynamics simulations show the TnT1 component in their model partially dissociates from tropomyosin in under 100 ns, whereas actin-tropomyosin and TnT1 models themselves remain intact. We therefore revisited computational work aiming to improve TnT1-thin filament models by employing unbiased docking methodologies, which test billions of trial rotations and translations of TnT1 over three-dimensional grids covering end-to-end bonded tropomyosin alone or tropomyosin on F-actin. We limited conformational searches to the association of well-characterized TnT1 helical domains and either isolated tropomyosin or actin-tropomyosin yet avoided docking TnT domains that lack known or predicted structure. The docking programs PIPER and ClusPro were used, followed by interaction energy optimization and extensive molecular dynamics. TnT1 docked to either side of isolated tropomyosin but uniquely onto one location of actin-bound tropomyosin. The antiparallel interaction with tropomyosin contained abundant salt bridges and intimately integrated hydrophobic networks joining TnT1 and the tropomyosin N-/C-terminal overlapping domain. The TnT1-tropomyosin linkage yields well-defined molecular crevices. Interaction energy measurements strongly favor this TnT1-tropomyosin design over previously proposed models.
Collapse
Affiliation(s)
- Elumalai Pavadai
- Department of Physiology and Biophysics, Boston University School of Medicine, Boston, Massachusetts
| | - Michael J Rynkiewicz
- Department of Physiology and Biophysics, Boston University School of Medicine, Boston, Massachusetts
| | - Anita Ghosh
- Department of Physiology and Biophysics, Boston University School of Medicine, Boston, Massachusetts
| | - William Lehman
- Department of Physiology and Biophysics, Boston University School of Medicine, Boston, Massachusetts.
| |
Collapse
|