1
|
Prajapati M, Chiu L, Zhang JZ, Chong GS, DaSilva NA, Bartnikas TB. Bile from the hemojuvelin-deficient mouse model of iron excess is enriched in iron and ferritin. Metallomics 2024; 16:mfae043. [PMID: 39313333 PMCID: PMC11459263 DOI: 10.1093/mtomcs/mfae043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 09/19/2024] [Indexed: 09/25/2024]
Abstract
Iron is an essential nutrient but is toxic in excess. Iron deficiency is the most prevalent nutritional deficiency and typically linked to inadequate intake. Iron excess is also common and usually due to genetic defects that perturb expression of hepcidin, a hormone that inhibits dietary iron absorption. Our understanding of iron absorption far exceeds that of iron excretion, which is believed to contribute minimally to iron homeostasis. Prior to the discovery of hepcidin, multiple studies showed that excess iron undergoes biliary excretion. We recently reported that wild-type mice raised on an iron-rich diet have increased bile levels of iron and ferritin, a multi-subunit iron storage protein. Given that genetic defects leading to excessive iron absorption are much more common causes of iron excess than dietary loading, we set out to determine if an inherited form of iron excess known as hereditary hemochromatosis also results in bile iron loading. We employed mice deficient in hemojuvelin, a protein essential for hepcidin expression. Mutant mice developed bile iron and ferritin excess. While lysosomal exocytosis has been implicated in ferritin export into bile, knockdown of Tfeb, a regulator of lysosomal biogenesis and function, did not impact bile iron or ferritin levels. Bile proteomes differed between female and male mice for wild-type and hemojuvelin-deficient mice, suggesting sex and iron excess impact bile protein content. Overall, our findings support the notion that excess iron undergoes biliary excretion in genetically determined iron excess.
Collapse
Affiliation(s)
- Milankumar Prajapati
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, USA
| | - Lauren Chiu
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, USA
| | - Jared Z Zhang
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, USA
| | - Grace S Chong
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, USA
| | - Nicholas A DaSilva
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, USA
| | - Thomas B Bartnikas
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, USA
| |
Collapse
|
2
|
Snyder AJ, Campbell KM, Lane A, Mehta PA, Myers K, Davies SM, Koo J. Liver abnormalities are frequent and persistent in patients with Fanconi anemia. Blood Adv 2024; 8:1427-1438. [PMID: 38231120 PMCID: PMC10955649 DOI: 10.1182/bloodadvances.2023012215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/02/2024] [Accepted: 01/07/2024] [Indexed: 01/18/2024] Open
Abstract
ABSTRACT Liver disease has not been well described in patients with Fanconi anemia (FA). Improvements in outcomes of transplant mean that more individuals with FA are reaching adulthood and new features of the FA phenotype are being discovered. We performed a retrospective review of liver function in a cohort of 97 patients with FA followed-up for at least 10 years at a single center. We identified a high frequency of transaminitis (n = 31, 32%) without elevation of bilirubin and with no evidence of structural hepatic abnormality in patients with FA. Transaminitis was persistent in many cases, sometimes lasting more than a decade without clinical manifestation, although 2 patients with prolonged transaminitis are deceased from liver failure, indicating important long-term clinical consequences. Transaminitis was found in patients who had and had not received transplant but was more frequent in recipients of transplant. Exposure to total body irradiation increased risk (odds ratio, 15.5 [95% confidence interval, 2.44-304.54]; P = .01), whereas treatment with androgens did not. Review of limited numbers of liver biopsies and autopsy material showed a cholestatic pattern of liver injury, with progressive fibrosis, in the majority of patients. Occurrence in cases without transplant as well as cases with transplant argues against a potential diagnosis of atypical liver graft-versus-host disease. Limited data regarding therapy suggest no benefit from treatment with steroids or other immune suppressive medications or ursodeoxycholic acid. Our data show that liver disease is common in patients with FA, and because most children with FA now reach adulthood, end-stage liver disease in young adulthood means systematic testing of potential therapies is urgently needed.
Collapse
Affiliation(s)
- Alana J. Snyder
- Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
| | - Kathleen M. Campbell
- Department of Pediatrics, University of Cincinnati, Cincinnati, OH
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
| | - Adam Lane
- Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
- Department of Pediatrics, University of Cincinnati, Cincinnati, OH
| | - Parinda A. Mehta
- Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
- Department of Pediatrics, University of Cincinnati, Cincinnati, OH
| | - Kasiani Myers
- Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
- Department of Pediatrics, University of Cincinnati, Cincinnati, OH
| | - Stella M. Davies
- Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
- Department of Pediatrics, University of Cincinnati, Cincinnati, OH
| | - Jane Koo
- Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
- Department of Pediatrics, University of Cincinnati, Cincinnati, OH
| |
Collapse
|
3
|
Wang MQ, Zhang KH, Liu FL, Zhou R, Zeng Y, Chen AL, Yu Y, Xia Q, Zhu CC, Lin CZ. Wedelolactone alleviates cholestatic liver injury by regulating FXR-bile acid-NF-κB/NRF2 axis to reduce bile acid accumulation and its subsequent inflammation and oxidative stress. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 122:155124. [PMID: 38014837 DOI: 10.1016/j.phymed.2023.155124] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 08/09/2023] [Accepted: 09/27/2023] [Indexed: 11/29/2023]
Abstract
BACKGROUND Cholestatic liver diseases (CLD) comprise a variety of disorders of bile formation, which causes chronic exposure to bile acid (BA) in the liver generally and results in hepatotoxicity and progressive hepatobiliary injury. Wedelolactone (7-methoxy-5, 11, 12-trihydroxy-coumestan, WED), the natural active compound derived from Ecliptae Herba, has been reported with valuable bioactivity for liver protection. Nevertheless, the effect of WED on cholestatic liver injury (CLI) remains unexplored. PURPOSE The present study aims to elucidate the protective effect of WED on Alpha-naphthylisothiocyanate (ANIT)-induced CLI mice, and to investigate its potential pharmacological mechanism. METHODS The anit-cholestatic and hepatoprotective effects of WED were evaluated in ANIT-induced CLI mice. Non-targeted metabolomics study combined with ingenuity pathway analysis (IPA) was used to explore the key mechanism of WED. The BA metabolic profile in enterohepatic circulation was analyzed to evaluate the effect of WED in regulating BA metabolism. Furthermore, molecular dynamics (MD) simulation and cellular thermal shift assay (CETSA) were used to simulate and verify the targeting activation of WED on the Farnesoid X receptor (FXR). The core role of FXR in WED promoting BA transportation, and alleviating BA accumulation-induced hepatotoxicity was further evaluated in WT and FXR knockout mice or hepatocytes. RESULTS WED dose-dependently alleviated ANIT-induced cholestasis and liver injury in mice, and simultaneously suppressed the signaling pathway of nuclear factor-kappa B/nuclear factor-erythroid 2-related factor 2 (NF-κB/NRF2) to relieve inflammation and oxidative stress. At the metabolite level, WED improved the metabolic disorder in CLI mice focusing on the metabolism of BA, arachidonic acid, and glycerophospholipid, that closely related to the process of BA regulation, inflammation, and oxidative damage. WED targeting activated FXR, which then transcribed its target genes, including the bile salt export pump (BSEP) and the BA transporter, and subsequently increased BA transportation to restore the damaged enterohepatic circulation of BA. Meanwhile, WED alleviated hepatic BA accumulation and protected the liver from BA-induced damage via NF-κB/NRF2 signaling pathway. Furthermore, FXR deficiency suppressed the protective effect of WED in vitro and in vivo. CONCLUSION WED regulated BA metabolism and alleviated hepatic damage in cholestasis. It protected the liver according to adjusted BA transportation and relieved BA accumulation-related hepatotoxicity via FXR-bile acid-NF-κB/NRF2 axis. Our study provides novel insights that WED might be a promising strategy for cholestatic liver disease.
Collapse
Affiliation(s)
- Mei-Qi Wang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Kai-Hui Zhang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Fang-Le Liu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Rui Zhou
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yun Zeng
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - A-Li Chen
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yang Yu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Quan Xia
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China.
| | - Chen-Chen Zhu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China.
| | - Chao-Zhan Lin
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China.
| |
Collapse
|
4
|
Chihanga T, Vicente-Muñoz S, Ruiz-Torres S, Pal B, Sertorio M, Andreassen PR, Khoury R, Mehta P, Davies SM, Lane AN, Romick-Rosendale LE, Wells SI. Head and Neck Cancer Susceptibility and Metabolism in Fanconi Anemia. Cancers (Basel) 2022; 14:cancers14082040. [PMID: 35454946 PMCID: PMC9025423 DOI: 10.3390/cancers14082040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 04/05/2022] [Accepted: 04/11/2022] [Indexed: 02/06/2023] Open
Abstract
Fanconi anemia (FA) is a rare inherited, generally autosomal recessive syndrome, but it displays X-linked or dominant negative inheritance for certain genes. FA is characterized by a deficiency in DNA damage repair that results in bone marrow failure, and in an increased risk for various epithelial tumors, most commonly squamous cell carcinomas of the head and neck (HNSCC) and of the esophagus, anogenital tract and skin. Individuals with FA exhibit increased human papilloma virus (HPV) prevalence. Furthermore, a subset of anogenital squamous cell carcinomas (SCCs) in FA harbor HPV sequences and FA-deficient laboratory models reveal molecular crosstalk between HPV and FA proteins. However, a definitive role for HPV in HNSCC development in the FA patient population is unproven. Cellular metabolism plays an integral role in tissue homeostasis, and metabolic deregulation is a known hallmark of cancer progression that supports uncontrolled proliferation, tumor development and metastatic dissemination. The metabolic consequences of FA deficiency in keratinocytes and associated impact on the development of SCC in the FA population is poorly understood. Herein, we review the current literature on the metabolic consequences of FA deficiency and potential effects of resulting metabolic reprogramming on FA cancer phenotypes.
Collapse
Affiliation(s)
- Tafadzwa Chihanga
- Division of Oncology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA; (T.C.); (S.R.-T.); (B.P.)
| | - Sara Vicente-Muñoz
- Department of Pathology and Laboratory Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA; (S.V.-M.); (L.E.R.-R.)
| | - Sonya Ruiz-Torres
- Division of Oncology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA; (T.C.); (S.R.-T.); (B.P.)
| | - Bidisha Pal
- Division of Oncology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA; (T.C.); (S.R.-T.); (B.P.)
| | - Mathieu Sertorio
- Department of Radiation Oncology, College of Medicine, University of Cincinnati, Cincinnati, OH 45229, USA;
| | - Paul R. Andreassen
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA;
| | - Ruby Khoury
- Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA; (R.K.); (P.M.); (S.M.D.)
| | - Parinda Mehta
- Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA; (R.K.); (P.M.); (S.M.D.)
| | - Stella M. Davies
- Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA; (R.K.); (P.M.); (S.M.D.)
| | - Andrew N. Lane
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY 40536, USA;
| | - Lindsey E. Romick-Rosendale
- Department of Pathology and Laboratory Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA; (S.V.-M.); (L.E.R.-R.)
| | - Susanne I. Wells
- Division of Oncology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA; (T.C.); (S.R.-T.); (B.P.)
- Correspondence: ; Tel.: +1-513-636-5986
| |
Collapse
|
5
|
Di Rienzi SC, Johnson EL, Waters JL, Kennedy EA, Jacobson J, Lawrence P, Wang DH, Worgall TS, Brenna JT, Ley RE. The microbiome affects liver sphingolipids and plasma fatty acids in a murine model of the Western diet based on soybean oil. J Nutr Biochem 2021; 97:108808. [PMID: 34186211 PMCID: PMC8585862 DOI: 10.1016/j.jnutbio.2021.108808] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 06/02/2021] [Accepted: 06/03/2021] [Indexed: 10/21/2022]
Abstract
Studies in mice using germfree animals as controls for microbial colonization have shown that the gut microbiome mediates diet-induced obesity. Such studies use diets rich in saturated fat, however, Western diets in the United States America are enriched in soybean oil, composed of unsaturated fatty acids, either linoleic or oleic acid. Here, we addressed whether the microbiome is a variable in fat metabolism in mice on a soybean oil diet. We used conventionally-raised, low-germ, and germfree mice fed for 10 weeks diets either high or low in high-linoleic-acid soybean oil as the sole source of fat. Conventional and germfree mice gained relative fat weight and all mice consumed more calories on the high fat vs. low fat soybean oil diet. Plasma fatty acid levels were generally dependent on diet, with microbial colonization status affecting iso-C18:0, C20:3n-6, C14:0, and C15:0 levels. Colonization status, but not diet, impacted levels of liver sphingolipids including ceramides, sphingomyelins, and sphinganine. Our results confirm that absorbed fatty acids are mainly a reflection of the diet and that microbial colonization influences liver sphingolipid pools regardless of diet.
Collapse
Affiliation(s)
- Sara C Di Rienzi
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, USA
| | | | - Jillian L Waters
- Department of Microbiome Science, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Elizabeth A Kennedy
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, USA
| | - Juliet Jacobson
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, USA
| | - Peter Lawrence
- Division of Nutritional Sciences, Cornell University, Ithaca, New York, USA
| | - Dong Hao Wang
- Division of Nutritional Sciences, Cornell University, Ithaca, New York, USA
| | - Tilla S Worgall
- Department of Pathology and Cell Biology and Pediatrics, Columbia University Medical Center, New York, New York, USA
| | - J Thomas Brenna
- Division of Nutritional Sciences, Cornell University, Ithaca, New York, USA; Dell Pediatric Research Institute, Dell Medical School, University of Texas at Austin, Austin, Texas, USA
| | - Ruth E Ley
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, USA; Department of Microbiome Science, Max Planck Institute for Developmental Biology, Tübingen, Germany.
| |
Collapse
|
6
|
Abad E, Samino S, Grodzicki RL, Pagano G, Trifuoggi M, Graifer D, Potesil D, Zdrahal Z, Yanes O, Lyakhovich A. Identification of metabolic changes leading to cancer susceptibility in Fanconi anemia cells. Cancer Lett 2020; 503:185-196. [PMID: 33316348 DOI: 10.1016/j.canlet.2020.12.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 11/19/2020] [Accepted: 12/05/2020] [Indexed: 10/22/2022]
Abstract
Fanconi anemia (FA) is a chromosomal instability disorder of bone marrow associated with aplastic anemia, congenital abnormalities and a high risk of malignancies. The identification of more than two dozen FA genes has revealed a plethora of interacting proteins that are mainly involved in repair of DNA interstrand crosslinks (ICLs). Other important findings associated with FA are inflammation, oxidative stress response, mitochondrial dysfunction and mitophagy. In this work, we performed quantitative proteomic and metabolomic analyses on defective FA cells and identified a number of metabolic abnormalities associated with cancer. In particular, an increased de novo purine biosynthesis, a high concentration of fumarate, and an accumulation of purinosomal clusters were found. This was in parallel with decreased OXPHOS and altered glycolysis. On the whole, our results indicate an association between the need for nitrogenous bases upon impaired DDR in FA cells with a subsequent increase in purine metabolism and a potential role in oncogenesis.
Collapse
Affiliation(s)
- Etna Abad
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | | | | | - Giovanni Pagano
- Department of Chemical Sciences, Federico II Naples University, I-80126 Naples, Italy
| | - Marco Trifuoggi
- Department of Chemical Sciences, Federico II Naples University, I-80126 Naples, Italy
| | | | - David Potesil
- CEITEC - Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Zbynek Zdrahal
- CEITEC - Central European Institute of Technology, Masaryk University, Brno, Czech Republic; National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic
| | - Oscar Yanes
- Universitat Rovira i Virgili, Department of Electronic Engineering, IISPV, Tarragona 43007, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid 28029, Spain
| | - Alex Lyakhovich
- Institute of Molecular Biology and Biophysics, Federal Research Center of Fundamental and Translational Medicine, Novosibirsk, 630117, Russia; Vall D'Hebron Institut de Recerca, 08035, Barcelona, Spain.
| |
Collapse
|