1
|
Ehinger FJ, Niehs SP, Dose B, Dell M, Krabbe J, Pidot SJ, Stinear TP, Scherlach K, Ross C, Lackner G, Hertweck C. Analysis of Rhizonin Biosynthesis Reveals Origin of Pharmacophoric Furylalanine Moieties in Diverse Cyclopeptides. Angew Chem Int Ed Engl 2023; 62:e202308540. [PMID: 37650335 DOI: 10.1002/anie.202308540] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/28/2023] [Accepted: 08/29/2023] [Indexed: 09/01/2023]
Abstract
Rhizonin A and B are hepatotoxic cyclopeptides produced by bacterial endosymbionts (Mycetohabitans endofungorum) of the fungus Rhizopus microsporus. Their toxicity critically depends on the presence of 3-furylalanine (Fua) residues, which also occur in pharmaceutically relevant cyclopeptides of the endolide and bingchamide families. The biosynthesis and incorporation of Fua by non-ribosomal peptide synthetases (NRPS), however, has remained elusive. By genome sequencing and gene inactivation we elucidated the gene cluster responsible for rhizonin biosynthesis. A suite of isotope labeling experiments identified tyrosine and l-DOPA as Fua precursors and provided the first mechanistic insight. Bioinformatics, mutational analysis and heterologous reconstitution identified dioxygenase RhzB as necessary and sufficient for Fua formation. RhzB is a novel type of heme-dependent aromatic oxygenases (HDAO) that enabled the discovery of the bingchamide biosynthesis gene cluster through genome mining.
Collapse
Affiliation(s)
- Friedrich J Ehinger
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology (HKI), Beutenbergstraße 11a, 07745, Jena, Germany
| | - Sarah P Niehs
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology (HKI), Beutenbergstraße 11a, 07745, Jena, Germany
| | - Benjamin Dose
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology (HKI), Beutenbergstraße 11a, 07745, Jena, Germany
| | - Maria Dell
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology (HKI), Beutenbergstraße 11a, 07745, Jena, Germany
| | - Jana Krabbe
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology (HKI), Beutenbergstraße 11a, 07745, Jena, Germany
| | - Sacha J Pidot
- Department of Microbiology and Immunology, Doherty Institute, 792 Elizabeth Street, Melbourne, 3000, Australia
| | - Timothy P Stinear
- Department of Microbiology and Immunology, Doherty Institute, 792 Elizabeth Street, Melbourne, 3000, Australia
| | - Kirstin Scherlach
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology (HKI), Beutenbergstraße 11a, 07745, Jena, Germany
| | - Claudia Ross
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology (HKI), Beutenbergstraße 11a, 07745, Jena, Germany
| | - Gerald Lackner
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology (HKI), Beutenbergstraße 11a, 07745, Jena, Germany
| | - Christian Hertweck
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology (HKI), Beutenbergstraße 11a, 07745, Jena, Germany
- Institute of Microbiology, Faculty of Biological Sciences, Friedrich Schiller University Jena, 07743, Jena, Germany
| |
Collapse
|
2
|
Oberg N, Zallot R, Gerlt JA. EFI-EST, EFI-GNT, and EFI-CGFP: Enzyme Function Initiative (EFI) Web Resource for Genomic Enzymology Tools. J Mol Biol 2023; 435:168018. [PMID: 37356897 PMCID: PMC10291204 DOI: 10.1016/j.jmb.2023.168018] [Citation(s) in RCA: 147] [Impact Index Per Article: 73.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 02/04/2023] [Accepted: 02/13/2023] [Indexed: 02/19/2023]
Abstract
The Enzyme Function Initiative (EFI) provides a web resource with "genomic enzymology" web tools to leverage the protein (UniProt) and genome (European Nucleotide Archive; ENA; https://www.ebi.ac.uk/ena/) databases to assist the assignment of in vitro enzymatic activities and in vivo metabolic functions to uncharacterized enzymes (https://efi.igb.illinois.edu/). The tools enable (1) exploration of sequence-function space in enzyme families using sequence similarity networks (SSNs; EFI-EST), (2) easy access to genome context for bacterial, archaeal, and fungal proteins in the SSN clusters so that isofunctional families can be identified and their functions inferred from genome context (EFI-GNT); and (3) determination of the abundance of SSN clusters in NIH Human Metagenome Project metagenomes using chemically guided functional profiling (EFI-CGFP). We describe enhancements that enable SSNs to be generated from taxonomy categories, allowing higher resolution analyses of sequence-function space; we provide examples of the generation of taxonomy category-specific SSNs.
Collapse
Affiliation(s)
- Nils Oberg
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 West Gregory Drive, Urbana, IL 61801, United States
| | - Rémi Zallot
- Department of Chemistry, The University of Manchester, 131 Princess Street, Manchester M1 7DN, UK; Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, UK
| | - John A Gerlt
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 West Gregory Drive, Urbana, IL 61801, United States; Department of Biochemistry, University of Illinois at Urbana-Champaign, 1206 West Gregory Drive, Urbana, IL 61801, United States; Department of Chemistry, University of Illinois at Urbana-Champaign, 1206 West Gregory Drive, Urbana, IL 61801, United States.
| |
Collapse
|
3
|
Jurdzinski KT, Mehrshad M, Delgado LF, Deng Z, Bertilsson S, Andersson AF. Large-scale phylogenomics of aquatic bacteria reveal molecular mechanisms for adaptation to salinity. SCIENCE ADVANCES 2023; 9:eadg2059. [PMID: 37235649 PMCID: PMC10219603 DOI: 10.1126/sciadv.adg2059] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 04/21/2023] [Indexed: 05/28/2023]
Abstract
The crossing of environmental barriers poses major adaptive challenges. Rareness of freshwater-marine transitions separates the bacterial communities, but how these are related to brackish counterparts remains elusive, as do the molecular adaptations facilitating cross-biome transitions. We conducted large-scale phylogenomic analysis of freshwater, brackish, and marine quality-filtered metagenome-assembled genomes (11,248). Average nucleotide identity analyses showed that bacterial species rarely existed in multiple biomes. In contrast, distinct brackish basins cohosted numerous species, but their intraspecific population structures displayed clear signs of geographic separation. We further identified the most recent cross-biome transitions, which were rare, ancient, and most commonly directed toward the brackish biome. Transitions were accompanied by systematic changes in amino acid composition and isoelectric point distributions of inferred proteomes, which evolved over millions of years, as well as convergent gains or losses of specific gene functions. Therefore, adaptive challenges entailing proteome reorganization and specific changes in gene content constrains the cross-biome transitions, resulting in species-level separation between aquatic biomes.
Collapse
Affiliation(s)
- Krzysztof T. Jurdzinski
- Department of Gene Technology, KTH Royal Institute of Technology, Science for Life Laboratory, Stockholm, Sweden
| | - Maliheh Mehrshad
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Luis Fernando Delgado
- Department of Gene Technology, KTH Royal Institute of Technology, Science for Life Laboratory, Stockholm, Sweden
| | - Ziling Deng
- Department of Gene Technology, KTH Royal Institute of Technology, Science for Life Laboratory, Stockholm, Sweden
| | - Stefan Bertilsson
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Anders F. Andersson
- Department of Gene Technology, KTH Royal Institute of Technology, Science for Life Laboratory, Stockholm, Sweden
| |
Collapse
|
4
|
Rafalowski A, Hassan BA, Lou K, Nguyen MC, Taylor EA. How Single Amino Acid Substitutions Can Disrupt a Protein Hetero-Dimer Interface: Computational and Experimental Studies of the LigAB Dioxygenase from Sphingobium sp. Strain SYK-6. Int J Mol Sci 2023; 24:ijms24076319. [PMID: 37047291 PMCID: PMC10094722 DOI: 10.3390/ijms24076319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 03/17/2023] [Accepted: 03/21/2023] [Indexed: 03/30/2023] Open
Abstract
Protocatechuate 4,5-dioxygenase (LigAB) is a heterodimeric enzyme that catalyzes the dioxygenation of multiple lignin derived aromatic compounds. The active site of LigAB is at the heterodimeric interface, with specificity conferred by the alpha subunit and catalytic residues contributed by the beta subunit. Previous research has indicated that the phenylalanine at the 103 position of the alpha subunit (F103α) controls selectivity for the C5 position of the aromatic substrates, and mutations of this residue can enhance the rate of catalysis for substrates with larger functional groups at this position. While several of the mutations to this position (Valine, V; Threonine, T; Leucine, L; and Histidine, H) were catalytically active, other mutations (Alanine, A; and Serine, S) were found to have reduced dimer interface affinity, leading to challenges in copurifing the catalytically active enzyme complex under high salt conditions. In this study, we aimed to experimentally and computationally interrogate residues at the dimer interface to discern the importance of position 103α for maintaining the integrity of the heterodimer. Molecular dynamic simulations and electrophoretic mobility assays revealed a preference for nonpolar/aromatic amino acids in this position, suggesting that while substitutions to polar amino acids may produce a dioxygenase with a useful substrate utilization profile, those considerations may be off-set by potential destabilization of the catalytically active oligomer. Understanding the dimerization of LigAB provides insight into the multimeric proteins within the largely uncharacterized superfamily and characteristics to consider when engineering proteins that can degrade lignin efficiently. These results shed light on the challenges associated with engineering proteins for broader substrate specificity.
Collapse
|
5
|
Pacheco-Sánchez D, Marín P, Molina-Fuentes Á, Marqués S. Subtle sequence differences between two interacting σ 54 -dependent regulators lead to different activation mechanisms. FEBS J 2022; 289:7582-7604. [PMID: 35816183 PMCID: PMC10084136 DOI: 10.1111/febs.16576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 06/08/2022] [Accepted: 07/10/2022] [Indexed: 12/13/2022]
Abstract
In the strictly anaerobic nitrate reducing bacterium Aromatoleum anaerobium, degradation of 1,3-dihydroxybenzene (1,3-DHB, resorcinol) is controlled by two bacterial enhancer-binding proteins (bEBPs), RedR1 and RedR2, which regulate the transcription of three σ54 -dependent promoters controlling expression of the pathway. RedR1 and RedR2 are identical over their length except for their N-terminal tail which differ in sequence and length (six and eight residues, respectively), a single change in their N-terminal domain (NTD), and nine non-identical residues in their C-terminal domain (CTD). Their NTD is composed of a GAF and a PAS domain connected by a linker helix. We show that each regulator is controlled by a different mechanism: whilst RedR1 responds to the classical NTD-mediated negative regulation that is released by the presence of its effector, RedR2 activity is constitutive and controlled through interaction with BtdS, an integral membrane subunit of hydroxyhydroquinone dehydrogenase carrying out the second step in 1,3-DHB degradation. BtdS sequesters the RedR2 regulator to the membrane through its NTD, where a four-Ile track in the PAS domain, interrupted by a Thr in RedR1, and the N-terminal tail are involved. The presence of 1,3-DHB, which is metabolized to hydroxybenzoquinone, releases RedR2 from the membrane. Most bEBPs assemble into homohexamers to activate transcription; we show that hetero-oligomer formation between RedR1 and RedR2 is favoured over homo-oligomers. However, either an NTD-truncated version of RedR1 or a full-length RedR2 are capable of promoter activation on their own, suggesting they should assemble into homohexamers in vivo. We show that promoter DNA behaves as an allosteric effector through binding the CTD to control ΔNTD-RedR1 multimerization and activity. Overall, the regulation of the 1,3-DHB anaerobic degradation pathway can be described as a novel mode of bEBP activation and assembly.
Collapse
Affiliation(s)
- Daniel Pacheco-Sánchez
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Patricia Marín
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Águeda Molina-Fuentes
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Silvia Marqués
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
| |
Collapse
|
6
|
Soares DM, Gonçalves LP, Machado CO, Esteves LC, Stevani CV, Oliveira CC, Dörr FA, Pinto E, Adachi FM, Hotta CT, Bastos EL. Reannotation of Fly Amanita l-DOPA Dioxygenase Gene Enables Its Cloning and Heterologous Expression. ACS OMEGA 2022; 7:16070-16079. [PMID: 35571802 PMCID: PMC9097196 DOI: 10.1021/acsomega.2c01365] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 04/11/2022] [Indexed: 06/15/2023]
Abstract
The l-DOPA dioxygenase of Amanita muscaria (AmDODA) participates in the biosynthesis of betalain- and hygroaurin-type natural pigments. AmDODA is encoded by the dodA gene, whose DNA sequence was inferred from cDNA and gDNA libraries almost 30 years ago. However, reports on its heterologous expression rely on either the original 5'-truncated cDNA plasmid or artificial gene synthesis. We provide unequivocal evidence that the heterologous expression of AmDODA from A. muscaria specimens is not possible by using the coding sequence previously inferred for dodA. Here, we rectify and reannotate the full-length coding sequence for AmDODA and express a 205-aa His-tagged active enzyme, which was used to produce the l-DOPA hygroaurin, a rare fungal pigment. Moreover, AmDODA and other isozymes from bacteria were submitted to de novo folding using deep learning algorithms, and their putative active sites were inferred and compared. The wide catalytic pocket of AmDODA and the presence of the His-His-His and His-His-Asp motifs can provide insight into the dual cleavage of l-DOPA at positions 2,3 and 4,5 as per the mechanism proposed for nonheme dioxygenases.
Collapse
Affiliation(s)
- Douglas
M. M. Soares
- Departamento
de Química Fundamental, Instituto de Química, Universidade de São Paulo, 05508-000 São
Paulo, São Paulo Brazil
- Departamento
de Bioquímica, Instituto de Química, Universidade de São Paulo, 05508-000 São Paulo, São Paulo Brazil
| | - Letícia
C. P. Gonçalves
- Departamento
de Química Fundamental, Instituto de Química, Universidade de São Paulo, 05508-000 São
Paulo, São Paulo Brazil
| | - Caroline O. Machado
- Departamento
de Química Fundamental, Instituto de Química, Universidade de São Paulo, 05508-000 São
Paulo, São Paulo Brazil
| | - Larissa C. Esteves
- Departamento
de Química Fundamental, Instituto de Química, Universidade de São Paulo, 05508-000 São
Paulo, São Paulo Brazil
| | - Cassius V. Stevani
- Departamento
de Química Fundamental, Instituto de Química, Universidade de São Paulo, 05508-000 São
Paulo, São Paulo Brazil
| | - Carla C. Oliveira
- Departamento
de Bioquímica, Instituto de Química, Universidade de São Paulo, 05508-000 São Paulo, São Paulo Brazil
| | - Felipe A. Dörr
- Departamento
de Análises Clínicas e Toxicológicas, Faculdade
de Ciências Farmacêuticas, Universidade de São Paulo, 05508-000 São Paulo, São Paulo Brazil
| | - Ernani Pinto
- Departamento
de Análises Clínicas e Toxicológicas, Faculdade
de Ciências Farmacêuticas, Universidade de São Paulo, 05508-000 São Paulo, São Paulo Brazil
- Centro
de Energia Nuclear na Agricultura, Universidade
de São Paulo, 13400-970 Piracicaba, São Paulo Brazil
| | - Flávia M.
M. Adachi
- Departamento
de Bioquímica, Instituto de Química, Universidade de São Paulo, 05508-000 São Paulo, São Paulo Brazil
| | - Carlos T. Hotta
- Departamento
de Bioquímica, Instituto de Química, Universidade de São Paulo, 05508-000 São Paulo, São Paulo Brazil
| | - Erick L. Bastos
- Departamento
de Química Fundamental, Instituto de Química, Universidade de São Paulo, 05508-000 São
Paulo, São Paulo Brazil
| |
Collapse
|
7
|
Tsagogiannis E, Vandera E, Primikyri A, Asimakoula S, Tzakos AG, Gerothanassis IP, Koukkou AI. Characterization of Protocatechuate 4,5-Dioxygenase from Pseudarthrobacter phenanthrenivorans Sphe3 and In Situ Reaction Monitoring in the NMR Tube. Int J Mol Sci 2021; 22:9647. [PMID: 34502555 PMCID: PMC8431788 DOI: 10.3390/ijms22179647] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/30/2021] [Accepted: 09/02/2021] [Indexed: 11/16/2022] Open
Abstract
The current study aims at the functional and kinetic characterization of protocatechuate (PCA) 4,5-dioxygenase (PcaA) from Pseudarthrobacter phenanthrenivorans Sphe3. This is the first single subunit Type II dioxygenase characterized in Actinobacteria. RT-PCR analysis demonstrated that pcaA and the adjacent putative genes implicated in the PCA meta-cleavage pathway comprise a single transcriptional unit. The recombinant PcaA is highly specific for PCA and exhibits Michaelis-Menten kinetics with Km and Vmax values of 21 ± 1.6 μM and 44.8 ± 4.0 U × mg-1, respectively, in pH 9.5 and at 20 °C. PcaA also converted gallate from a broad range of substrates tested. The enzymatic reaction products were identified and characterized, for the first time, through in situ biotransformation monitoring inside an NMR tube. The PCA reaction product demonstrated a keto-enol tautomerization, whereas the gallate reaction product was present only in the keto form. Moreover, the transcriptional levels of pcaA and pcaR (gene encoding a LysR-type regulator of the pathway) were also determined, showing an induction when cells were grown on PCA and phenanthrene. Studying key enzymes in biodegradation pathways is significant for bioremediation and for efficient biocatalysts development.
Collapse
Affiliation(s)
- Epameinondas Tsagogiannis
- Laboratory of Biochemistry, Sector of Organic Chemistry and Biochemistry, Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece; (E.T.); (E.V.); (S.A.)
| | - Elpiniki Vandera
- Laboratory of Biochemistry, Sector of Organic Chemistry and Biochemistry, Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece; (E.T.); (E.V.); (S.A.)
| | - Alexandra Primikyri
- Laboratory of Organic Chemistry, Sector of Organic Chemistry and Biochemistry, Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece; (A.P.); (A.G.T.); (I.P.G.)
| | - Stamatia Asimakoula
- Laboratory of Biochemistry, Sector of Organic Chemistry and Biochemistry, Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece; (E.T.); (E.V.); (S.A.)
| | - Andreas G. Tzakos
- Laboratory of Organic Chemistry, Sector of Organic Chemistry and Biochemistry, Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece; (A.P.); (A.G.T.); (I.P.G.)
| | - Ioannis P. Gerothanassis
- Laboratory of Organic Chemistry, Sector of Organic Chemistry and Biochemistry, Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece; (A.P.); (A.G.T.); (I.P.G.)
| | - Anna-Irini Koukkou
- Laboratory of Biochemistry, Sector of Organic Chemistry and Biochemistry, Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece; (E.T.); (E.V.); (S.A.)
| |
Collapse
|
8
|
Shape-function of a novel metapyrocatechase, RW4-MPC: Metagenomics to SAXS data based insight into deciphering regulators of function. Int J Biol Macromol 2021; 188:1012-1024. [PMID: 34375665 DOI: 10.1016/j.ijbiomac.2021.08.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 07/31/2021] [Accepted: 08/04/2021] [Indexed: 11/23/2022]
Abstract
The oxygenases have attracted considerable attention in enzyme-mediated bioremediation of xenobiotic compounds due to their high specificity, cost-effectiveness, and targeted field applications. Here, we performed a functional metagenomics approach to cope with cultivability limitations to isolate a novel extradiol dioxygenase. Fosmid clone harboring dioxygenase gene was sequenced and analyzed by bioinformatics tools. One ring-cleaving dioxygenase RW4-MPC (metapyrocatechase) was purified and characterized to examine its degradation efficiency. The RW4-MPC was significantly active in the temperature and pH range of 5 to 40 °C, and 7-10, respectively, with an optimum temperature of 25 °C and pH 8. To gain insight into observed differential activity, Small-Angle X-ray Scattering (SAXS) data of the protein samples were analyzed, which brought forth that the RW4-MPC molecules form tight globular tetramers in solution. This native association was stable till 35 °C, and protein started to associate at higher temperatures, explaining heat-induced loss of function. Similarly, RW4-MPC aggregated or lost globular profile below pH 7 or at pH 10, respectively. The kinetic parameters showed the six folds high catalytic efficiency of RW4-MPC towards 2,3-dihydroxy biphenyl than catechol and its derivatives. RW4-MPC molecules showed remarkable retention of functionality in hypersaline conditions with more than 70% activity in a buffer having 3 M NaCl concentration. In concordance, SAXS data analysis showed retention of functional shape profile in hypersaline conditions. The halotolerant and oxygen insensitive nature of this enzyme makes it a potential candidate for bioremediation.
Collapse
|
9
|
Goldberg AM, Robinson MK, Starr ES, Marasco RN, Alana AC, Cochrane CS, Klugh KL, Strzeminski DJ, Du M, Colabroy KL, Peterson LW. L-DOPA Dioxygenase Activity on 6-Substituted Dopamine Analogues. Biochemistry 2021; 60:2492-2507. [PMID: 34324302 DOI: 10.1021/acs.biochem.1c00310] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Dioxygenase enzymes are essential protein catalysts for the breakdown of catecholic rings, structural components of plant woody tissue. This powerful chemistry is used in nature to make antibiotics and other bioactive materials or degrade plant material, but we have a limited understanding of the breadth and depth of substrate space for these potent catalysts. Here we report steady-state and pre-steady-state kinetic analysis of dopamine derivatives substituted at the 6-position as substrates of L-DOPA dioxygenase, and an analysis of that activity as a function of the electron-withdrawing nature of the substituent. Steady-state and pre-steady-state kinetic data demonstrate the dopamines are impaired in binding and catalysis with respect to the cosubstrate molecular oxygen, which likely afforded spectroscopic observation of an early reaction intermediate, the semiquinone of dopamine. The reaction pathway of dopamine in the pre-steady state is consistent with a nonproductive mode of binding of oxygen at the active site. Despite these limitations, L-DOPA dioxygenase is capable of binding all of the dopamine derivatives and catalyzing multiple turnovers of ring cleavage for dopamine, 6-bromodopamine, 6-carboxydopamine, and 6-cyanodopamine. 6-Nitrodopamine was a single-turnover substrate. The variety of substrates accepted by the enzyme is consistent with an interplay of factors, including the capacity of the active site to bind large, negatively charged groups at the 6-position and the overall oxidizability of each catecholamine, and is indicative of the utility of extradiol cleavage in semisynthetic and bioremediation applications.
Collapse
Affiliation(s)
- Alexander M Goldberg
- Department of Chemistry, Muhlenberg College, 2400 Chew Street, Allentown, Pennsylvania 18104, United States
| | - Miranda K Robinson
- Department of Chemistry, Muhlenberg College, 2400 Chew Street, Allentown, Pennsylvania 18104, United States
| | - Erykah S Starr
- Department of Chemistry, Rhodes College, 2000 North Parkway, Memphis, Tennessee 38112, United States
| | - Ryan N Marasco
- Department of Chemistry, Rhodes College, 2000 North Parkway, Memphis, Tennessee 38112, United States
| | - Alexa C Alana
- Department of Chemistry, Rhodes College, 2000 North Parkway, Memphis, Tennessee 38112, United States
| | - C Skyler Cochrane
- Department of Chemistry, Rhodes College, 2000 North Parkway, Memphis, Tennessee 38112, United States
| | - Kameron L Klugh
- Department of Chemistry, Rhodes College, 2000 North Parkway, Memphis, Tennessee 38112, United States
| | - David J Strzeminski
- Department of Chemistry, Muhlenberg College, 2400 Chew Street, Allentown, Pennsylvania 18104, United States
| | - Muxue Du
- Department of Chemistry, Muhlenberg College, 2400 Chew Street, Allentown, Pennsylvania 18104, United States
| | - Keri L Colabroy
- Department of Chemistry, Muhlenberg College, 2400 Chew Street, Allentown, Pennsylvania 18104, United States
| | - Larryn W Peterson
- Department of Chemistry, Rhodes College, 2000 North Parkway, Memphis, Tennessee 38112, United States
| |
Collapse
|
10
|
Stravoravdis S, Shipway JR, Goodell B. How Do Shipworms Eat Wood? Screening Shipworm Gill Symbiont Genomes for Lignin-Modifying Enzymes. Front Microbiol 2021; 12:665001. [PMID: 34322098 PMCID: PMC8312274 DOI: 10.3389/fmicb.2021.665001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 06/22/2021] [Indexed: 11/23/2022] Open
Abstract
Shipworms are ecologically and economically important mollusks that feed on woody plant material (lignocellulosic biomass) in marine environments. Digestion occurs in a specialized cecum, reported to be virtually sterile and lacking resident gut microbiota. Wood-degrading CAZymes are produced both endogenously and by gill endosymbiotic bacteria, with extracellular enzymes from the latter being transported to the gut. Previous research has predominantly focused on how these animals process the cellulose component of woody plant material, neglecting the breakdown of lignin – a tough, aromatic polymer which blocks access to the holocellulose components of wood. Enzymatic or non-enzymatic modification and depolymerization of lignin has been shown to be required in other wood-degrading biological systems as a precursor to cellulose deconstruction. We investigated the genomes of five shipworm gill bacterial symbionts obtained from the Joint Genome Institute Integrated Microbial Genomes and Microbiomes Expert Review for the production of lignin-modifying enzymes, or ligninases. The genomes were searched for putative ligninases using the Joint Genome Institute’s Function Profile tool and blastp analyses. The resulting proteins were then modeled using SWISS-MODEL. Although each bacterial genome possessed at least four predicted ligninases, the percent identities and protein models were of low quality and were unreliable. Prior research demonstrates limited endogenous ability of shipworms to modify lignin at the chemical/molecular level. Similarly, our results reveal that shipworm bacterial gill-symbiont enzymes are unlikely to play a role in lignin modification during lignocellulose digestion in the shipworm gut. This suggests that our understanding of how these keystone organisms digest and process lignocellulose is incomplete, and further research into non-enzymatic and/or other unknown mechanisms for lignin modification is required.
Collapse
Affiliation(s)
- Stefanos Stravoravdis
- Goodell Laboratory, Department of Microbiology, University of Massachusetts Amherst, Amherst, MA, United States
| | - J Reuben Shipway
- Goodell Laboratory, Department of Microbiology, University of Massachusetts Amherst, Amherst, MA, United States.,Centre for Enzyme Innovation, School of Biological Sciences, Institute of Biological and Biomedical Sciences, University of Portsmouth, Portsmouth, United Kingdom
| | - Barry Goodell
- Goodell Laboratory, Department of Microbiology, University of Massachusetts Amherst, Amherst, MA, United States
| |
Collapse
|
11
|
Mainka T, Weirathmüller D, Herwig C, Pflügl S. Potential applications of halophilic microorganisms for biological treatment of industrial process brines contaminated with aromatics. J Ind Microbiol Biotechnol 2021; 48:kuab015. [PMID: 33928348 PMCID: PMC9113102 DOI: 10.1093/jimb/kuab015] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 01/20/2021] [Indexed: 11/13/2022]
Abstract
Saline wastewater contaminated with aromatic compounds can be frequently found in various industrial sectors. Those compounds need to be degraded before reuse of wastewater in other process steps or release to the environment. Halophiles have been reported to efficiently degrade aromatics, but their application to treat industrial wastewater is rare. Halophilic processes for industrial wastewater treatment need to satisfy certain requirements: a continuous process mode, low operational expenditures, suitable reactor systems and a monitoring and control strategy. The aim of this review is to provide an overview of halophilic microorganisms, principles of aromatic biodegradation, and sources of saline wastewater containing aromatics and other contaminants. Finally, process examples for halophilic wastewater treatment and potential process monitoring strategies are discussed. To further illustrate the significant potential of halophiles for saline wastewater treatment and to facilitate development of ready-to-implement processes, future research should focus on scale-up and innovative process monitoring and control strategies.
Collapse
Affiliation(s)
- Thomas Mainka
- Institute for Chemical, Environmental and Bioscience
Engineering, TU Wien, Gumpendorfer Straße 1a, 1060
Vienna, Austria
- Competence Center CHASE GmbH,
Altenbergerstraße 69, 4040 Linz, Austria
| | - David Weirathmüller
- Institute for Chemical, Environmental and Bioscience
Engineering, TU Wien, Gumpendorfer Straße 1a, 1060
Vienna, Austria
| | - Christoph Herwig
- Institute for Chemical, Environmental and Bioscience
Engineering, TU Wien, Gumpendorfer Straße 1a, 1060
Vienna, Austria
- Competence Center CHASE GmbH,
Altenbergerstraße 69, 4040 Linz, Austria
| | - Stefan Pflügl
- Institute for Chemical, Environmental and Bioscience
Engineering, TU Wien, Gumpendorfer Straße 1a, 1060
Vienna, Austria
| |
Collapse
|
12
|
Jabłońska J, Tawfik DS. The evolution of oxygen-utilizing enzymes suggests early biosphere oxygenation. Nat Ecol Evol 2021; 5:442-448. [PMID: 33633374 DOI: 10.1038/s41559-020-01386-9] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 12/16/2020] [Indexed: 01/31/2023]
Abstract
Production of molecular oxygen was a turning point in the Earth's history. The geological record indicates the Great Oxidation Event, which marked a permanent transition to an oxidizing atmosphere around 2.4 Ga. However, the degree to which oxygen was available to life before oxygenation of the atmosphere remains unknown. Here, phylogenetic analysis of all known oxygen-utilizing and -producing enzymes (O2-enzymes) indicates that oxygen became widely available to living organisms well before the Great Oxidation Event. About 60% of the O2-enzyme families whose birth can be dated appear to have emerged at the separation of terrestrial and marine bacteria (22 families, compared to two families assigned to the last universal common ancestor). This node, dubbed the last universal oxygen ancestor, coincides with a burst of emergence of both oxygenases and other oxidoreductases, thus suggesting a wider availability of oxygen around 3.1 Ga.
Collapse
Affiliation(s)
- Jagoda Jabłońska
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Dan S Tawfik
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
13
|
Identifying metabolic pathway intermediates that modulate the gallate dioxygenase (DesB) from Sphingobium sp. strain SYK-6. Process Biochem 2021. [DOI: 10.1016/j.procbio.2021.01.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
14
|
M. Iyer L, Anantharaman V, Krishnan A, Burroughs AM, Aravind L. Jumbo Phages: A Comparative Genomic Overview of Core Functions and Adaptions for Biological Conflicts. Viruses 2021; 13:v13010063. [PMID: 33466489 PMCID: PMC7824862 DOI: 10.3390/v13010063] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/31/2020] [Accepted: 12/31/2020] [Indexed: 02/07/2023] Open
Abstract
Jumbo phages have attracted much attention by virtue of their extraordinary genome size and unusual aspects of biology. By performing a comparative genomics analysis of 224 jumbo phages, we suggest an objective inclusion criterion based on genome size distributions and present a synthetic overview of their manifold adaptations across major biological systems. By means of clustering and principal component analysis of the phyletic patterns of conserved genes, all known jumbo phages can be classified into three higher-order groups, which include both myoviral and siphoviral morphologies indicating multiple independent origins from smaller predecessors. Our study uncovers several under-appreciated or unreported aspects of the DNA replication, recombination, transcription and virion maturation systems. Leveraging sensitive sequence analysis methods, we identify novel protein-modifying enzymes that might help hijack the host-machinery. Focusing on host–virus conflicts, we detect strategies used to counter different wings of the bacterial immune system, such as cyclic nucleotide- and NAD+-dependent effector-activation, and prevention of superinfection during pseudolysogeny. We reconstruct the RNA-repair systems of jumbo phages that counter the consequences of RNA-targeting host effectors. These findings also suggest that several jumbo phage proteins provide a snapshot of the systems found in ancient replicons preceding the last universal ancestor of cellular life.
Collapse
Affiliation(s)
- Lakshminarayan M. Iyer
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA; (L.M.I.); (V.A.); (A.M.B.)
| | - Vivek Anantharaman
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA; (L.M.I.); (V.A.); (A.M.B.)
| | - Arunkumar Krishnan
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Berhampur, Odisha 760010, India;
| | - A. Maxwell Burroughs
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA; (L.M.I.); (V.A.); (A.M.B.)
| | - L. Aravind
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA; (L.M.I.); (V.A.); (A.M.B.)
- Correspondence:
| |
Collapse
|
15
|
Zhang J, Gan W, Zhao R, Yu K, Lei H, Li R, Li X, Li B. Chloramphenicol biodegradation by enriched bacterial consortia and isolated strain Sphingomonas sp. CL5.1: The reconstruction of a novel biodegradation pathway. WATER RESEARCH 2020; 187:116397. [PMID: 32947114 DOI: 10.1016/j.watres.2020.116397] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 08/02/2020] [Accepted: 09/05/2020] [Indexed: 06/11/2023]
Abstract
Figuring out the comprehensive metabolic mechanism of chloramphenicol (CAP) is critical to improving CAP removal in the bioremediation process. In this study, CAP biodegradation by six consortia and isolated Sphingomonas sp. CL5.1 were systematically investigated using the combination of high-performance liquid chromatography-quadrupole time-of-flight mass spectrometry, second-generation, and third-generation sequencing technologies. The CAP-degrading capability of six consortia was enhanced while CAP mineralization rate declined after long-term enrichment. The microbial community structures of six consortia were all simplified with 69%-82% decline in species richness after continuous passages for one year. The core genera of consortia CL and CH included Sphingomonas, Cupriavidus, Burkholderia, Chryseobacterium, and Pigmentiphaga, which accounted for over 98% of the total population. Sphingomonas was discovered as a new CAP degrader that could subsist on CAP as the sole carbon, nitrogen, and energy sources. Sphingomonas sp. CL5.1 was able to completely remove 120 mg/L CAP within 48 hours with a mineralization rate of 50.4%. The presence of acetate or nitrite could inhibit CAP metabolization by strain CL5.1. Four CAP metabolic pathways were constructed, including modification of the C3 hydroxyl group of CAP via acetylation, oxidization, dehydration and the bond cleavage between C1 and C2. C3 hydroxyl group dehydration and C1-C2 bond-cleavage were first reported regarding to CAP biotransformation. Strain CL5.1 played a core role in the consortia and was responsible for C3 hydroxyl oxidation, C3 dehydration, and C1-C2 bond cleavage. Genomic information of strain CL5.1 revealed the further mineralization pathways of downstream product p-nitrobenzoic acid via ortho- and meta-cleavage.
Collapse
Affiliation(s)
- Jiayu Zhang
- Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; Shenzhen Engineering Research Laboratory for Sludge and Food Waste Treatment and Resource Recovery, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; School of Environment, Tsinghua University, Beijing 100084, China
| | - Wenhui Gan
- Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; Shenzhen Engineering Research Laboratory for Sludge and Food Waste Treatment and Resource Recovery, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Renxin Zhao
- Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; Shenzhen Engineering Research Laboratory for Sludge and Food Waste Treatment and Resource Recovery, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; School of Environment, Tsinghua University, Beijing 100084, China
| | - Ke Yu
- School of Environment and Energy, Shenzhen Graduate School, Peking University, Shenzhen 518055, China
| | - Huaxin Lei
- Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; Shenzhen Engineering Research Laboratory for Sludge and Food Waste Treatment and Resource Recovery, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; School of Environment, Tsinghua University, Beijing 100084, China
| | - Ruiyang Li
- Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; Shenzhen Engineering Research Laboratory for Sludge and Food Waste Treatment and Resource Recovery, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; School of Environment, Tsinghua University, Beijing 100084, China
| | - Xiaoyan Li
- Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; Shenzhen Engineering Research Laboratory for Sludge and Food Waste Treatment and Resource Recovery, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; Shenzhen Environmental Science and New Energy Laboratory, Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen 518055, China
| | - Bing Li
- Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; Shenzhen Engineering Research Laboratory for Sludge and Food Waste Treatment and Resource Recovery, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China.
| |
Collapse
|
16
|
Finding MEMO-Emerging Evidence for MEMO1's Function in Development and Disease. Genes (Basel) 2020; 11:genes11111316. [PMID: 33172038 PMCID: PMC7694686 DOI: 10.3390/genes11111316] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 10/29/2020] [Accepted: 10/30/2020] [Indexed: 11/24/2022] Open
Abstract
Although conserved throughout animal kingdoms, the protein encoded by the gene Mediator of ERBB2 Driven Cell Motility 1 or MEMO1, has only recently come into focus. True to its namesake, MEMO1 first emerged from a proteomic screen of molecules bound to the ERBB2 receptor and was found to be necessary for efficient cell migration upon receptor activation. While initially placed within the context of breast cancer metastasis—a pathological state that has provided tremendous insight into MEMO1′s cellular roles—MEMO1′s function has since expanded to encompass additional cancer cell types, developmental processes during embryogenesis and homeostatic regulation of adult organ systems. Owing to MEMO1′s deep conservation, a variety of model organisms have been amenable to uncovering biological facets of this multipurpose protein; facets ranging from the cellular (e.g., receptor signaling, cytoskeletal regulation, redox flux) to the organismal (e.g., mineralization and mineral homeostasis, neuro/gliogenesis, vasculogenesis) level. Although these facets emerge at the intersection of numerous biological and human disease processes, how and if they are interconnected remains to be resolved. Here, we review our current understanding of this ‘enigmatic’ molecule, its role in development and disease and open questions emerging from these previous studies.
Collapse
|
17
|
Sheehan H, Feng T, Walker‐Hale N, Lopez‐Nieves S, Pucker B, Guo R, Yim WC, Badgami R, Timoneda A, Zhao L, Tiley H, Copetti D, Sanderson MJ, Cushman JC, Moore MJ, Smith SA, Brockington SF. Evolution of l-DOPA 4,5-dioxygenase activity allows for recurrent specialisation to betalain pigmentation in Caryophyllales. THE NEW PHYTOLOGIST 2020; 227:914-929. [PMID: 31369159 PMCID: PMC7384185 DOI: 10.1111/nph.16089] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 07/22/2019] [Indexed: 05/03/2023]
Abstract
The evolution of l-DOPA 4,5-dioxygenase activity, encoded by the gene DODA, was a key step in the origin of betalain biosynthesis in Caryophyllales. We previously proposed that l-DOPA 4,5-dioxygenase activity evolved via a single Caryophyllales-specific neofunctionalisation event within the DODA gene lineage. However, this neofunctionalisation event has not been confirmed and the DODA gene lineage exhibits numerous gene duplication events, whose evolutionary significance is unclear. To address this, we functionally characterised 23 distinct DODA proteins for l-DOPA 4,5-dioxygenase activity, from four betalain-pigmented and five anthocyanin-pigmented species, representing key evolutionary transitions across Caryophyllales. By mapping these functional data to an updated DODA phylogeny, we then explored the evolution of l-DOPA 4,5-dioxygenase activity. We find that low l-DOPA 4,5-dioxygenase activity is distributed across the DODA gene lineage. In this context, repeated gene duplication events within the DODA gene lineage give rise to polyphyletic occurrences of elevated l-DOPA 4,5-dioxygenase activity, accompanied by convergent shifts in key functional residues and distinct genomic patterns of micro-synteny. In the context of an updated organismal phylogeny and newly inferred pigment reconstructions, we argue that repeated convergent acquisition of elevated l-DOPA 4,5-dioxygenase activity is consistent with recurrent specialisation to betalain synthesis in Caryophyllales.
Collapse
Affiliation(s)
- Hester Sheehan
- Department of Plant SciencesUniversity of CambridgeTennis Court RoadCambridgeCB2 3EAUK
| | - Tao Feng
- Department of Plant SciencesUniversity of CambridgeTennis Court RoadCambridgeCB2 3EAUK
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty AgricultureWuhan Botanical GardenChinese Academy of SciencesWuhan430074China
| | - Nathanael Walker‐Hale
- Department of Plant SciencesUniversity of CambridgeTennis Court RoadCambridgeCB2 3EAUK
| | - Samuel Lopez‐Nieves
- Department of Plant SciencesUniversity of CambridgeTennis Court RoadCambridgeCB2 3EAUK
| | - Boas Pucker
- Department of Plant SciencesUniversity of CambridgeTennis Court RoadCambridgeCB2 3EAUK
- CeBiTec & Faculty of BiologyBielefeld UniversityUniversitaetsstrasseBielefeld33615Germany
| | - Rui Guo
- Department of Plant SciencesUniversity of CambridgeTennis Court RoadCambridgeCB2 3EAUK
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty AgricultureWuhan Botanical GardenChinese Academy of SciencesWuhan430074China
- College of Life SciencesUniversity of Chinese Academy of SciencesBeijing100049China
| | - Won C. Yim
- Department of Biochemistry and Molecular BiologyUniversity of NevadaRenoNV89577USA
| | - Roshani Badgami
- Department of Plant SciencesUniversity of CambridgeTennis Court RoadCambridgeCB2 3EAUK
| | - Alfonso Timoneda
- Department of Plant SciencesUniversity of CambridgeTennis Court RoadCambridgeCB2 3EAUK
| | - Lijun Zhao
- Department of Ecology and Evolutionary BiologyUniversity of MichiganAnn ArborMI48109USA
| | - Helene Tiley
- Department of BiologyOberlin CollegeScience Center K111OberlinOH44074USA
| | - Dario Copetti
- Arizona Genomics Institute, School of Plant Sciences, University of ArizonaTucsonAZ85721USA
- Molecular Plant BreedingInstitute of Agricultural SciencesETH Zurich, Universitaetstrasse 28092ZurichSwitzerland
- Department of Evolutionary Biology and Environmental StudiesUniversity of ZurichWinterthurerstrasse 1908057ZurichSwitzerland
| | - Michael J. Sanderson
- Department of Ecology and Evolutionary BiologyUniversity of Arizona1041 E. Lowell St.TucsonAZ85721USA
| | - John C. Cushman
- Department of Biochemistry and Molecular BiologyUniversity of NevadaRenoNV89577USA
| | - Michael J. Moore
- Department of BiologyOberlin CollegeScience Center K111OberlinOH44074USA
| | - Stephen A. Smith
- Department of Ecology and Evolutionary BiologyUniversity of MichiganAnn ArborMI48109USA
| | - Samuel F. Brockington
- Department of Plant SciencesUniversity of CambridgeTennis Court RoadCambridgeCB2 3EAUK
| |
Collapse
|
18
|
Kaur G, Burroughs AM, Iyer LM, Aravind L. Highly regulated, diversifying NTP-dependent biological conflict systems with implications for the emergence of multicellularity. eLife 2020; 9:e52696. [PMID: 32101166 PMCID: PMC7159879 DOI: 10.7554/elife.52696] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Accepted: 02/25/2020] [Indexed: 12/12/2022] Open
Abstract
Social cellular aggregation or multicellular organization pose increased risk of transmission of infections through the system upon infection of a single cell. The generality of the evolutionary responses to this outside of Metazoa remains unclear. We report the discovery of several thematically unified, remarkable biological conflict systems preponderantly present in multicellular prokaryotes. These combine thresholding mechanisms utilizing NTPase chaperones (the MoxR-vWA couple), GTPases and proteolytic cascades with hypervariable effectors, which vary either by using a reverse transcriptase-dependent diversity-generating system or through a system of acquisition of diverse protein modules, typically in inactive form, from various cellular subsystems. Conciliant lines of evidence indicate their deployment against invasive entities, like viruses, to limit their spread in multicellular/social contexts via physical containment, dominant-negative interactions or apoptosis. These findings argue for both a similar operational 'grammar' and shared protein domains in the sensing and limiting of infections during the multiple emergences of multicellularity.
Collapse
Affiliation(s)
- Gurmeet Kaur
- Computational Biology Branch, National Center for Biotechnology Information, National Library of Medicine, National Institutes of HealthBethesdaUnited States
| | - A Maxwell Burroughs
- Computational Biology Branch, National Center for Biotechnology Information, National Library of Medicine, National Institutes of HealthBethesdaUnited States
| | - Lakshminarayan M Iyer
- Computational Biology Branch, National Center for Biotechnology Information, National Library of Medicine, National Institutes of HealthBethesdaUnited States
| | - L Aravind
- Computational Biology Branch, National Center for Biotechnology Information, National Library of Medicine, National Institutes of HealthBethesdaUnited States
| |
Collapse
|
19
|
Wang C, Li J, Ma M, Lin Z, Hu W, Lin W, Zhang P. Structural and Biochemical Insights Into Two BAHD Acyltransferases ( AtSHT and AtSDT) Involved in Phenolamide Biosynthesis. FRONTIERS IN PLANT SCIENCE 2020; 11:610118. [PMID: 33519864 PMCID: PMC7838080 DOI: 10.3389/fpls.2020.610118] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 12/17/2020] [Indexed: 05/18/2023]
Abstract
Phenolamides represent one of the largest classes of plant-specialized secondary metabolites and function in diverse physiological processes, including defense responses and development. The biosynthesis of phenolamides requires the BAHD-family acyltransferases, which transfer acyl-groups from different acyl-donors specifically to amines, the acyl-group acceptors. However, the mechanisms of substrate specificity and multisite-acylation of the BAHD-family acyltransferases remain poorly understood. In this study, we provide a structural and biochemical analysis of AtSHT and AtSDT, two representative BAHD-family members that catalyze the multisite acylation of spermidine but show different product profiles. By determining the structures of AtSHT and AtSDT and using structure-based mutagenesis, we identified the residues important for substrate recognition in AtSHT and AtSDT and hypothesized that the acyl acceptor spermidine might adopt a free-rotating conformation in AtSHT, which can undergo mono-, di-, or tri-acylation; while the spermidine molecule in AtSDT might adopt a linear conformation, which only allows mono- or di-acylation to take place. In addition, through sequence similarity network (SSN) and structural modeling analysis, we successfully predicted and verified the functions of two uncharacterized Arabidopsis BAHD acyltransferases, OAO95042.1 and NP_190301.2, which use putrescine as the main acyl-acceptor. Our work provides not only an excellent starting point for understanding multisite acylation in BAHD-family enzymes, but also a feasible methodology for predicting possible acyl acceptor specificity of uncharacterized BAHD-family acyltransferases.
Collapse
Affiliation(s)
- Chengyuan Wang
- National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Jianxu Li
- National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Miaolian Ma
- National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Zhaozhu Lin
- Department of Microbiology and Immunology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Wenli Hu
- National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Wei Lin
- Department of Microbiology and Immunology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
- Wei Lin,
| | - Peng Zhang
- National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- *Correspondence: Peng Zhang,
| |
Collapse
|
20
|
Zallot R, Oberg N, Gerlt JA. The EFI Web Resource for Genomic Enzymology Tools: Leveraging Protein, Genome, and Metagenome Databases to Discover Novel Enzymes and Metabolic Pathways. Biochemistry 2019; 58:4169-4182. [PMID: 31553576 DOI: 10.1021/acs.biochem.9b00735] [Citation(s) in RCA: 502] [Impact Index Per Article: 83.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The assignment of functions to uncharacterized proteins discovered in genome projects requires easily accessible tools and computational resources for large-scale, user-friendly leveraging of the protein, genome, and metagenome databases by experimentalists. This article describes the web resource developed by the Enzyme Function Initiative (EFI; accessed at https://efi.igb.illinois.edu/ ) that provides "genomic enzymology" tools ("web tools") for (1) generating sequence similarity networks (SSNs) for protein families (EFI-EST); (2) analyzing and visualizing genome context of the proteins in clusters in SSNs (in genome neighborhood networks, GNNs, and genome neighborhood diagrams, GNDs) (EFI-GNT); and (3) prioritizing uncharacterized SSN clusters for functional assignment based on metagenome abundance (chemically guided functional profiling, CGFP) (EFI-CGFP). The SSNs generated by EFI-EST are used as the input for EFI-GNT and EFI-CGFP, enabling easy transfer of information among the tools. The networks are visualized and analyzed using Cytoscape, a widely used desktop application; GNDs and CGFP heatmaps summarizing metagenome abundance are viewed within the tools. We provide a detailed example of the integrated use of the tools with an analysis of glycyl radical enzyme superfamily (IPR004184) found in the human gut microbiome. This analysis demonstrates that (1) SwissProt annotations are not always correct, (2) large-scale genome context analyses allow the prediction of novel metabolic pathways, and (3) metagenome abundance can be used to identify/prioritize uncharacterized proteins for functional investigation.
Collapse
|