1
|
Yan Z, Huang A, Ma D, Hong C, Zhang S, He L, Rao H, Luo S. ATP6AP1 promotes cell proliferation and tamoxifen resistance in luminal breast cancer by inducing autophagy. Cell Death Dis 2025; 16:201. [PMID: 40133274 PMCID: PMC11937278 DOI: 10.1038/s41419-025-07534-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 03/01/2025] [Accepted: 03/12/2025] [Indexed: 03/27/2025]
Abstract
Autophagy is a highly conserved cellular process essential for maintaining cellular homeostasis and influencing cancer development. Lysosomal acidification and autophagosome-lysosome fusion are two important steps of autophagy degradation that are tightly regulated. Although many key proteins that regulate these two events have been identified, the effector proteins that co-regulate both steps remain to be explored. ATP6AP1, an accessory subunit of V-ATPase, plays a critical role in the assembly and regulation of V-ATPase. However, the function of ATP6AP1 in autophagy remains unknown, and the role of ATP6AP1 in cancer is still poorly understood. In this study, we found that ATP6AP1 is overexpressed in luminal breast cancer tissues and promotes the proliferation and tamoxifen resistance of luminal breast cancer cells both in vitro and in vivo. We also observed that high ATP6AP1 expression correlates with poor overall patient survival. Our research further revealed that ATP6AP1 enhances tamoxifen resistance by activating autophagy. Mechanistically, ATP6AP1 promotes autophagy by regulating both lysosomal acidification and autophagosome-lysosome fusion. Remarkably, ATP6AP1 induces lysosomal acidification through the regulation of V-ATPase assembly and facilitates autophagosome-lysosome fusion by enhancing the interaction between Rab7 and the HOPS complex. Together, our studies identify ATP6AP1 as a crucial regulator of autophagy, potentially serving as a valuable prognostic marker or therapeutic target in human luminal breast cancer.
Collapse
Affiliation(s)
- Zhengwei Yan
- Center for Experimental Medicine, The First Affiliated Hospital of Nanchang University; The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors; Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, China
- Department of Biochemistry, School of Medicine, Key University Laboratory of Metabolism and Health of Guangdong, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Aidi Huang
- Center for Experimental Medicine, The First Affiliated Hospital of Nanchang University; The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors; Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, China
- Department of Pathology and Institute of Molecular Pathology, Jiangxi Provincial Key Laboratory for Precision Pathology and Intelligent Diagnosis, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, China
| | - Dongwen Ma
- Center for Experimental Medicine, The First Affiliated Hospital of Nanchang University; The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors; Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, China
- Department of Pathology and Institute of Molecular Pathology, Jiangxi Provincial Key Laboratory for Precision Pathology and Intelligent Diagnosis, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, China
| | - Chenao Hong
- Center for Experimental Medicine, The First Affiliated Hospital of Nanchang University; The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors; Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, China
- Department of Pathology and Institute of Molecular Pathology, Jiangxi Provincial Key Laboratory for Precision Pathology and Intelligent Diagnosis, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, China
| | - Shengmiao Zhang
- Center for Experimental Medicine, The First Affiliated Hospital of Nanchang University; The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors; Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, China
- Department of Pathology and Institute of Molecular Pathology, Jiangxi Provincial Key Laboratory for Precision Pathology and Intelligent Diagnosis, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, China
| | - Luling He
- Department of Biochemistry, School of Medicine, Key University Laboratory of Metabolism and Health of Guangdong, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Hai Rao
- Department of Biochemistry, School of Medicine, Key University Laboratory of Metabolism and Health of Guangdong, Southern University of Science and Technology, Shenzhen, 518055, China.
| | - Shiwen Luo
- Center for Experimental Medicine, The First Affiliated Hospital of Nanchang University; The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors; Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, China.
- Department of Pathology and Institute of Molecular Pathology, Jiangxi Provincial Key Laboratory for Precision Pathology and Intelligent Diagnosis, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, China.
| |
Collapse
|
2
|
Winkley SR, Kane PM. The ROGDI protein mutated in Kohlschutter-Tonz syndrome is a novel subunit of the Rabconnectin-3 complex implicated in V-ATPase assembly. J Biol Chem 2025; 301:108381. [PMID: 40049412 PMCID: PMC11997317 DOI: 10.1016/j.jbc.2025.108381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 02/11/2025] [Accepted: 03/01/2025] [Indexed: 04/01/2025] Open
Abstract
V-ATPases are highly conserved ATP-driven rotary proton pumps found widely among eukaryotes that are composed of two subcomplexes: V1 and V0. V-ATPase activity is regulated in part through reversible disassembly, during which V1 physically separates from V0 and both subcomplexes become inactive. Reassociation of V1 to V0 reactivates the complex for ATP-driven proton pumping and organelle acidification. V-ATPase reassembly in Saccharomyces cerevisiae requires the RAVE complex (Rav1, Rav2, and Skp1), and higher eukaryotes, including humans, utilize the Rabconnectin-3 complex. Mammalian Rabconnectin-3 has two subunits: Rabconnectin-3α and Rabconnectin-3β. Rabconnectin-3α isoforms are homologous to Rav1, but there is no known Rav2 homolog, and the molecular basis of the interaction between the Rabconnectin-3α and β subunits is unknown. We identified ROGDI as a Rav2 homolog and novel Rabconnectin-3 subunit. ROGDI mutations cause Kohlschutter-Tonz syndrome, an epileptic encephalopathy with amelogenesis imperfecta that has parallels to V-ATPase-related disease. ROGDI shares extensive structural homology with yeast Rav2 and can functionally replace Rav2 in yeast. ROGDI binds to the N-terminal domains of both Rabconnectin-3 α and β, similar to Rav2 binding to Rav1. Molecular modeling suggests that ROGDI may bridge the two Rabconnectin-3 subunits. ROGDI coimmunoprecipitates with Rabconnectin-3 subunits from detergent-solubilized lysates and is present with them in immunopurified lysosomes of mammalian cells. In immunofluorescence microscopy, ROGDI partially localizes with Rabconnectin-3α in acidic perinuclear lysosomes. The discovery of ROGDI as a novel Rabconnectin-3 interactor sheds new light on both Kohlschutter-Tonz syndrome and the mechanisms behind mammalian V-ATPase regulation.
Collapse
Affiliation(s)
- Samuel R Winkley
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, New York, USA
| | - Patricia M Kane
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, New York, USA.
| |
Collapse
|
3
|
Knight K, Park JB, Oot RA, Khan MM, Roh SH, Wilkens S. Monoclonal nanobodies alter the activity and assembly of the yeast vacuolar H +-ATPase. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.10.632502. [PMID: 39829782 PMCID: PMC11741422 DOI: 10.1101/2025.01.10.632502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
The vacuolar ATPase (V-ATPase; V1Vo) is a multi-subunit rotary nanomotor proton pump that acidifies organelles in virtually all eukaryotic cells, and extracellular spaces in some specialized tissues of higher organisms. Evidence suggests that metastatic breast cancers mislocalize V-ATPase to the plasma membrane to promote cell survival and facilitate metastasis, making the V-ATPase a potential drug target. We have generated a library of camelid single-domain antibodies (Nanobodies; Nbs) against lipid-nanodisc reconstituted yeast V-ATPase Vo proton channel subcomplex. Here, we present an in-depth characterization of three anti-Vo Nbs using biochemical and biophysical in vitro experiments. We find that the Nbs bind Vo with high affinity, with one Nb inhibiting holoenzyme activity and another one preventing enzyme assembly. Using cryoEM, we find that two of the Nbs bind the c subunit ring of the Vo on the lumen side of the complex. Additionally, we show that one of the Nbs raised against yeast Vo can pull down human V-ATPase (HsV1Vo). Our research demonstrates Nb versatility to target and modulate the activity of the V-ATPase, and highlights the potential for future therapeutic Nb development.
Collapse
Affiliation(s)
- Kassidy Knight
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Jun Bae Park
- Department of Biological Sciences, Seoul National University, Seoul, Korea
- Present address: Department of Cancer Biology, Lerner research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Rebecca A. Oot
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Md. Murad Khan
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
- Present address: Howard Hughes Medical Institute, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Soung-Hun Roh
- Department of Biological Sciences, Seoul National University, Seoul, Korea
| | - Stephan Wilkens
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| |
Collapse
|
4
|
Li Z, Alshagawi MA, Oot RA, Alamoudi MK, Su K, Li W, Collins MP, Wilkens S, Forgac M. A nanobody against the V-ATPase c subunit inhibits metastasis of 4T1-12B breast tumor cells to lung in mice. Oncotarget 2024; 15:575-587. [PMID: 39145534 PMCID: PMC11325586 DOI: 10.18632/oncotarget.28638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 07/30/2024] [Indexed: 08/16/2024] Open
Abstract
The vacuolar H+-ATPase (V-ATPase) is an ATP-dependent proton pump that functions to control the pH of intracellular compartments as well as to transport protons across the plasma membrane of various cell types, including cancer cells. We have previously shown that selective inhibition of plasma membrane V-ATPases in breast tumor cells inhibits the invasion of these cells in vitro. We have now developed a nanobody directed against an extracellular epitope of the mouse V-ATPase c subunit. We show that treatment of 4T1-12B mouse breast cancer cells with this nanobody inhibits V-ATPase-dependent acidification of the media and invasion of these cells in vitro. We further find that injection of this nanobody into mice implanted with 4T1-12B cells orthotopically in the mammary fat pad inhibits metastasis of tumor cells to lung. These results suggest that plasma membrane V-ATPases represent a novel therapeutic target to limit breast cancer metastasis.
Collapse
Affiliation(s)
- Zhen Li
- Program in Pharmacology and Drug Development, Graduate School of Biomedical Sciences, Tufts University, Boston, MA 02111, USA
- Department of Cancer Immunology and Virology, Dana Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
- These authors contributed equally to this work
| | - Mohammed A. Alshagawi
- Program in Pharmacology and Drug Development, Graduate School of Biomedical Sciences, Tufts University, Boston, MA 02111, USA
- Department of Pharmacology, University of Minnesota School of Medicine, MN 55455, USA
- These authors contributed equally to this work
| | - Rebecca A. Oot
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Mariam K. Alamoudi
- Department of Developmental, Molecular, and Chemical Biology, Tufts University School of Medicine, Boston, MA 02111, USA
- Department of Pharmacology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Kevin Su
- Program in Pharmacology and Drug Development, Graduate School of Biomedical Sciences, Tufts University, Boston, MA 02111, USA
- Korro Bio, Cambridge, MA 02139, USA
| | - Wenhui Li
- Program in Pharmacology and Drug Development, Graduate School of Biomedical Sciences, Tufts University, Boston, MA 02111, USA
| | - Michael P. Collins
- Program in Cellular, Molecular and Developmental Biology, Graduate School of Biomedical Sciences, Tufts University, Boston, MA 02111, USA
- Foghorn Therapeutics, Cambridge, MA 02139, USA
| | - Stephan Wilkens
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Michael Forgac
- Department of Developmental, Molecular, and Chemical Biology, Tufts University School of Medicine, Boston, MA 02111, USA
- Program in Pharmacology and Drug Development, Graduate School of Biomedical Sciences, Tufts University, Boston, MA 02111, USA
- Program in Cellular, Molecular and Developmental Biology, Graduate School of Biomedical Sciences, Tufts University, Boston, MA 02111, USA
| |
Collapse
|
5
|
Tuli F, Kane PM. The cytosolic N-terminal domain of V-ATPase a-subunits is a regulatory hub targeted by multiple signals. Front Mol Biosci 2023; 10:1168680. [PMID: 37398550 PMCID: PMC10313074 DOI: 10.3389/fmolb.2023.1168680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 06/05/2023] [Indexed: 07/04/2023] Open
Abstract
Vacuolar H+-ATPases (V-ATPases) acidify several organelles in all eukaryotic cells and export protons across the plasma membrane in a subset of cell types. V-ATPases are multisubunit enzymes consisting of a peripheral subcomplex, V1, that is exposed to the cytosol and an integral membrane subcomplex, Vo, that contains the proton pore. The Vo a-subunit is the largest membrane subunit and consists of two domains. The N-terminal domain of the a-subunit (aNT) interacts with several V1 and Vo subunits and serves to bridge the V1 and Vo subcomplexes, while the C-terminal domain contains eight transmembrane helices, two of which are directly involved in proton transport. Although there can be multiple isoforms of several V-ATPase subunits, the a-subunit is encoded by the largest number of isoforms in most organisms. For example, the human genome encodes four a-subunit isoforms that exhibit a tissue- and organelle-specific distribution. In the yeast S. cerevisiae, the two a-subunit isoforms, Golgi-enriched Stv1 and vacuolar Vph1, are the only V-ATPase subunit isoforms. Current structural information indicates that a-subunit isoforms adopt a similar backbone structure but sequence variations allow for specific interactions during trafficking and in response to cellular signals. V-ATPases are subject to several types of environmental regulation that serve to tune their activity to their cellular location and environmental demands. The position of the aNT domain in the complex makes it an ideal target for modulating V1-Vo interactions and regulating enzyme activity. The yeast a-subunit isoforms have served as a paradigm for dissecting interactions of regulatory inputs with subunit isoforms. Importantly, structures of yeast V-ATPases containing each a-subunit isoform are available. Chimeric a-subunits combining elements of Stv1NT and Vph1NT have provided insights into how regulatory inputs can be integrated to allow V-ATPases to support cell growth under different stress conditions. Although the function and distribution of the four mammalian a-subunit isoforms present additional complexity, it is clear that the aNT domains of these isoforms are also subject to multiple regulatory interactions. Regulatory mechanisms that target mammalian a-subunit isoforms, and specifically the aNT domains, will be described. Altered V-ATPase function is associated with multiple diseases in humans. The possibility of regulating V-ATPase subpopulations via their isoform-specific regulatory interactions are discussed.
Collapse
Affiliation(s)
| | - Patricia M. Kane
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, United States
| |
Collapse
|
6
|
Characterization of a PIP Binding Site in the N-Terminal Domain of V-ATPase a4 and Its Role in Plasma Membrane Association. Int J Mol Sci 2023; 24:ijms24054867. [PMID: 36902293 PMCID: PMC10002524 DOI: 10.3390/ijms24054867] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/13/2023] [Accepted: 02/21/2023] [Indexed: 03/06/2023] Open
Abstract
Vacuolar ATPases (V-ATPases) are multi-subunit ATP-dependent proton pumps necessary for cellular functions, including pH regulation and membrane fusion. The evidence suggests that the V-ATPase a-subunit's interaction with the membrane signaling lipid phosphatidylinositol (PIPs) regulates the recruitment of V-ATPase complexes to specific membranes. We generated a homology model of the N-terminal domain of the human a4 isoform (a4NT) using Phyre2.0 and propose a lipid binding domain within the distal lobe of the a4NT. We identified a basic motif, K234IKK237, critical for interaction with phosphoinositides (PIP), and found similar basic residue motifs in all four mammalian and both yeast a-isoforms. We tested PIP binding of wildtype and mutant a4NT in vitro. In protein lipid overlay assays, the double mutation K234A/K237A and the autosomal recessive distal renal tubular-causing mutation K237del reduced both PIP binding and association with liposomes enriched with PI(4,5)P2, a PIP enriched within plasma membranes. Circular dichroism spectra of the mutant protein were comparable to wildtype, indicating that mutations affected lipid binding, not protein structure. When expressed in HEK293, wildtype a4NT localized to the plasma membrane in fluorescence microscopy and co-purified with the microsomal membrane fraction in cellular fractionation experiments. a4NT mutants showed reduced membrane association and decreased plasma membrane localization. Depletion of PI(4,5)P2 by ionomycin caused reduced membrane association of the WT a4NT protein. Our data suggest that information contained within the soluble a4NT is sufficient for membrane association and that PI(4,5)P2 binding capacity is involved in a4 V-ATPase plasma membrane retention.
Collapse
|
7
|
Nakanishi-Matsui M, Matsumoto N. V-ATPase a3 Subunit in Secretory Lysosome Trafficking in Osteoclasts. Biol Pharm Bull 2022; 45:1426-1431. [PMID: 36184499 DOI: 10.1248/bpb.b22-00371] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Vacuolar-type ATPase (V-ATPase) shares its structure and rotational catalysis with F-type ATPase (F-ATPase, ATP synthase). However, unlike subunits of F-ATPase, those of V-ATPase have tissue- and/or organelle-specific isoforms. Structural diversity of V-ATPase generated by different combinations of subunit isoforms enables it to play diverse physiological roles in mammalian cells. Among these various roles, this review focuses on the functions of lysosome-specific V-ATPase in bone resorption by osteoclasts. Lysosomes remain in the cytoplasm in most cell types, but in osteoclasts, secretory lysosomes move toward and fuse with the plasma membrane to secrete lysosomal enzymes, which is essential for bone resorption. Through this process, lysosomal V-ATPase harboring the a3 isoform of the a subunit is relocated to the plasma membrane, where it transports protons from the cytosol to the cell exterior to generate the acidic extracellular conditions required for secreted lysosomal enzymes. In addition to this role as a proton pump, we recently found that the lysosomal a3 subunit of V-ATPase is essential for anterograde trafficking of secretory lysosomes. Specifically, a3 interacts with Rab7, a member of the Rab guanosine 5'-triphosphatase (GTPase) family that regulates organelle trafficking, and recruits it to the lysosomal membrane. These findings revealed the multifunctionality of lysosomal V-ATPase in osteoclasts; V-ATPase is responsible not only for the formation of the acidic environment by transporting protons, but also for intracellular trafficking of secretory lysosomes by recruiting organelle trafficking factors. Herein, we summarize the molecular mechanism underlying secretory lysosome trafficking in osteoclasts, and discuss the possible regulatory role of V-ATPase in organelle trafficking.
Collapse
Affiliation(s)
| | - Naomi Matsumoto
- Division of Biochemistry, School of Pharmacy, Iwate Medical University
| |
Collapse
|
8
|
Su K, Collins MP, McGuire CM, Alshagawi MA, Alamoudi MK, Li Z, Forgac M. Isoform a4 of the vacuolar ATPase a subunit promotes 4T1-12B breast cancer cell-dependent tumor growth and metastasis in vivo. J Biol Chem 2022; 298:102395. [PMID: 35988642 PMCID: PMC9508560 DOI: 10.1016/j.jbc.2022.102395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 08/11/2022] [Accepted: 08/15/2022] [Indexed: 12/24/2022] Open
Abstract
The vacuolar H+-ATPase (V-ATPase) is an ATP-dependent proton pump that governs the pH of various intracellular compartments and also functions at the plasma membrane in certain cell types, including cancer cells. Membrane targeting of the V-ATPase is controlled by isoforms of subunit a, and we have previously shown that isoforms a3 and a4 are important for the migration and invasion of several breast cancer cell lines in vitro. Using CRISPR-mediated genome editing to selectively disrupt each of the four a subunit isoforms, we also recently showed that a4 is critical to plasma membrane V-ATPase localization, as well as in vitro migration and invasion of 4T1-12B murine breast cancer cells. We now report that a4 is important for the growth of 4T1-12B tumors in vivo. We found that BALB/c mice bearing a4-/- 4T1-12B allografts had significantly smaller tumors than mice in the control group. In addition, we determined that a4-/- allografts showed dramatically reduced metastases to the lung and reduced luminescence intensity of metastases to bone relative to the control group. Taken together, these results suggest that the a4 isoform of the V-ATPase represents a novel potential therapeutic target to limit breast cancer growth and metastasis.
Collapse
Affiliation(s)
- Kevin Su
- Department of Pharmacology and Drug Development, Graduate School of Biomedical Sciences, Tufts University, Boston, Massachusetts, USA
| | - Michael P Collins
- Department of Cellular, Molecular and Developmental Biology, Graduate School of Biomedical Sciences, Tufts University, Boston, Massachusetts, USA
| | - Christina M McGuire
- Department of Biochemistry, Graduate School of Biomedical Sciences, Tufts University, Boston, Massachusetts, USA
| | - Mohammed A Alshagawi
- Department of Pharmacology and Drug Development, Graduate School of Biomedical Sciences, Tufts University, Boston, Massachusetts, USA
| | - Mariam K Alamoudi
- Department of Developmental, Molecular, and Chemical Biology, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Zhen Li
- Department of Pharmacology and Drug Development, Graduate School of Biomedical Sciences, Tufts University, Boston, Massachusetts, USA
| | - Michael Forgac
- Department of Pharmacology and Drug Development, Graduate School of Biomedical Sciences, Tufts University, Boston, Massachusetts, USA; Department of Cellular, Molecular and Developmental Biology, Graduate School of Biomedical Sciences, Tufts University, Boston, Massachusetts, USA; Department of Biochemistry, Graduate School of Biomedical Sciences, Tufts University, Boston, Massachusetts, USA; Department of Developmental, Molecular, and Chemical Biology, Tufts University School of Medicine, Boston, Massachusetts, USA.
| |
Collapse
|
9
|
Xu C, Jia B, Yang Z, Han Z, Wang Z, Liu W, Cao Y, Chen Y, Gu J, Zhang Y. Integrative Analysis Identifies TCIRG1 as a Potential Prognostic and Immunotherapy-Relevant Biomarker Associated with Malignant Cell Migration in Clear Cell Renal Cell Carcinoma. Cancers (Basel) 2022; 14:cancers14194583. [PMID: 36230507 PMCID: PMC9558535 DOI: 10.3390/cancers14194583] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 09/09/2022] [Accepted: 09/16/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary TCIRG1, also known as V-ATPase-a3, is critical for cellular metabolism, membrane transport, and intracellular signaling through its dependent acidification. In earlier research, TCIRG1 was found to be dysregulated in several cancers and to accelerate the growth of various malignancies. The molecular mechanisms behind TCIRG1 and its possible role in the development of clear cell renal cell carcinoma are still poorly understood. Our research is the first to thoroughly examine TCIRG1’s function in clear cell renal cell carcinoma prognosis, immunity, and treatment. The validity that TCIRG1 can accelerate the development of renal clear cell carcinoma was also confirmed in this work by using certain testable experiments. This establishes the theoretical framework for our future investigation into the occurrence and progression of clear cell renal cell carcinoma. Abstract Background: TCIRG1, also known as V-ATPase-a3, is critical for cellular life activities through its dependent acidification. Prior to the present research, its relationship with prognostic and tumor immunity in clear cell renal cell carcinoma (ccRCC) had not yet been investigated. Methods: We assessed TCIRG1 expression in normal and tumor tissues using data from TCGA, GEO, GTEX, and IHC. We also analyzed the relationship between TCIRG1 and somatic mutations, TMB, DNA methylation, cancer stemness, and immune infiltration. We evaluated the relevance of TCIRG1 to immunotherapy and potential drugs. Finally, we explored the effect of TCIRG1 knockdown on tumor cells. Results: TCIRG1 was overexpressed in tumor tissue and predicted a significantly unfavorable clinical outcome. High TCIRG1 expression may be associated with fewer PBRM1 and more BAP1 mutations and may reduce DNA methylation, thus leading to a poor prognosis. TCIRG1 was strongly associated with CD8+ T-cell, Treg, and CD4+ T-cell infiltration. Moreover, TCIRG1 was positively correlated with TIDE scores and many drug sensitivities. Finally, experiments showed that the knockdown of TCIRG1 inhibited the migration of ccRCC cells. Conclusions: TCIRG1 may have great potential in identifying prognostic and immunomodulatory mechanisms in tumor patients and may provide a new therapeutic strategy for ccRCC.
Collapse
Affiliation(s)
- Chao Xu
- Department of Urology, The Second Hospital of Hebei Medical University, 215 Heping West Road, Shijiazhuang 050000, China
| | - Bolin Jia
- National Cancer Center, National Clinical Research Center for Cancer, Hebei Cancer Hospital, Chinese Academy of Medical Sciences, Jinyuan Road, Economic, and Technological Development Zone, Guangyang District, Langfang 065001, China
| | - Zhan Yang
- Department of Urology, The Second Hospital of Hebei Medical University, 215 Heping West Road, Shijiazhuang 050000, China
- Molecular Biology Laboratory, Talent and Academic Exchange Center, The Second Hospital of Hebei Medical University, 215 Heping West Road, Shijiazhuang 050000, China
| | - Zhenwei Han
- Department of Urology, The Second Hospital of Hebei Medical University, 215 Heping West Road, Shijiazhuang 050000, China
| | - Zhu Wang
- Department of Urology, The Second Hospital of Hebei Medical University, 215 Heping West Road, Shijiazhuang 050000, China
| | - Wuyao Liu
- Department of Urology, The Second Hospital of Hebei Medical University, 215 Heping West Road, Shijiazhuang 050000, China
| | - Yilong Cao
- Department of Urology, The Second Hospital of Hebei Medical University, 215 Heping West Road, Shijiazhuang 050000, China
| | - Yao Chen
- Department of Urology, The Second Hospital of Hebei Medical University, 215 Heping West Road, Shijiazhuang 050000, China
| | - Junfei Gu
- Department of Urology, The Second Hospital of Hebei Medical University, 215 Heping West Road, Shijiazhuang 050000, China
- Correspondence: (J.G.); (Y.Z.)
| | - Yong Zhang
- National Cancer Center, National Clinical Research Center for Cancer, Hebei Cancer Hospital, Chinese Academy of Medical Sciences, Jinyuan Road, Economic, and Technological Development Zone, Guangyang District, Langfang 065001, China
- National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, 17 Panjiayuan Nanli, Chaoyang District, Beijing 100021, China
- Correspondence: (J.G.); (Y.Z.)
| |
Collapse
|
10
|
The a subunit isoforms of vacuolar-type proton ATPase exhibit differential distribution in mouse perigastrulation embryos. Sci Rep 2022; 12:13590. [PMID: 35948619 PMCID: PMC9365772 DOI: 10.1038/s41598-022-18002-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 08/03/2022] [Indexed: 11/25/2022] Open
Abstract
Vacuolar-type H+-ATPases (V-ATPases) are large multi-subunit complexes that play critical roles in the acidification of a variety of intracellular or extracellular compartments. Mammalian cells contain four isoforms of the membrane integral subunit a (a1–a4); these isoforms contain the information necessary to target the enzyme to different cellular destinations. They are also involved in regulating the efficiency of ATP hydrolysis and proton transport. Previously, we showed that early embryogenesis requires V-ATPase function, and the luminal acidic endocytic and lysosomal compartments in the visceral endoderm of mouse embryos at the pre-gastrulation stage (E6.5) are essential for both nutrition and signal transduction during early embryogenesis. In this study, we examined the expression and distribution of a subunit isoforms in mouse embryos at E6.5. We found that all four isoforms expressed and exhibited differential distribution in the E6.5 embryo. At this developmental stage, the embryos establish highly elaborate endocytic compartments called apical vacuoles, on which the a3 isoform specifically accumulated.
Collapse
|
11
|
Maxson ME, Abbas YM, Wu JZ, Plumb JD, Grinstein S, Rubinstein JL. Detection and quantification of the vacuolar H+ATPase using the Legionella effector protein SidK. J Biophys Biochem Cytol 2022; 221:212963. [PMID: 35024770 PMCID: PMC8763849 DOI: 10.1083/jcb.202107174] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 12/14/2021] [Accepted: 12/21/2021] [Indexed: 12/11/2022] Open
Abstract
Acidification of secretory and endocytic organelles is required for proper receptor recycling, membrane traffic, protein degradation, and solute transport. Proton-pumping vacuolar H+ ATPases (V-ATPases) are responsible for this luminal acidification, which increases progressively as secretory and endocytic vesicles mature. An increasing density of V-ATPase complexes is thought to account for the gradual decrease in pH, but available reagents have not been sufficiently sensitive or specific to test this hypothesis. We introduce a new probe to localize and quantify V-ATPases. The probe is derived from SidK, a Legionella pneumophila effector protein that binds to the V-ATPase A subunit. We generated plasmids encoding fluorescent chimeras of SidK1-278, and labeled recombinant SidK1-278 with Alexa Fluor 568 to visualize and quantify V-ATPases with high specificity in live and fixed cells, respectively. We show that V-ATPases are acquired progressively during phagosome maturation, that they distribute in discrete membrane subdomains, and that their density in lysosomes depends on their subcellular localization.
Collapse
Affiliation(s)
- Michelle E Maxson
- Program in Cell Biology, The Hospital for Sick Children, Toronto, Canada
| | - Yazan M Abbas
- Program in Molecular Medicine, The Hospital for Sick Children Research Institute, Toronto, Canada
| | - Jing Ze Wu
- Program in Cell Biology, The Hospital for Sick Children, Toronto, Canada.,Department of Biochemistry, University of Toronto, Toronto, Canada
| | - Jonathan D Plumb
- Program in Cell Biology, The Hospital for Sick Children, Toronto, Canada
| | - Sergio Grinstein
- Program in Cell Biology, The Hospital for Sick Children, Toronto, Canada.,Department of Biochemistry, University of Toronto, Toronto, Canada
| | - John L Rubinstein
- Program in Molecular Medicine, The Hospital for Sick Children Research Institute, Toronto, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Canada.,Department of Biochemistry, University of Toronto, Toronto, Canada
| |
Collapse
|
12
|
Chu A, Zirngibl RA, Manolson MF. The V-ATPase a3 Subunit: Structure, Function and Therapeutic Potential of an Essential Biomolecule in Osteoclastic Bone Resorption. Int J Mol Sci 2021; 22:ijms22136934. [PMID: 34203247 PMCID: PMC8269383 DOI: 10.3390/ijms22136934] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 06/18/2021] [Accepted: 06/21/2021] [Indexed: 12/29/2022] Open
Abstract
This review focuses on one of the 16 proteins composing the V-ATPase complex responsible for resorbing bone: the a3 subunit. The rationale for focusing on this biomolecule is that mutations in this one protein account for over 50% of osteopetrosis cases, highlighting its critical role in bone physiology. Despite its essential role in bone remodeling and its involvement in bone diseases, little is known about the way in which this subunit is targeted and regulated within osteoclasts. To this end, this review is broadened to include the three other mammalian paralogues (a1, a2 and a4) and the two yeast orthologs (Vph1p and Stv1p). By examining the literature on all of the paralogues/orthologs of the V-ATPase a subunit, we hope to provide insight into the molecular mechanisms and future research directions specific to a3. This review starts with an overview on bone, highlighting the role of V-ATPases in osteoclastic bone resorption. We then cover V-ATPases in other location/functions, highlighting the roles which the four mammalian a subunit paralogues might play in differential targeting and/or regulation. We review the ways in which the energy of ATP hydrolysis is converted into proton translocation, and go in depth into the diverse role of the a subunit, not only in proton translocation but also in lipid binding, cell signaling and human diseases. Finally, the therapeutic implication of targeting a3 specifically for bone diseases and cancer is discussed, with concluding remarks on future directions.
Collapse
|
13
|
Murray JB, Mikhael C, Han G, de Faria LP, Rody WJ, Holliday LS. Activation of (pro)renin by (pro)renin receptor in extracellular vesicles from osteoclasts. Sci Rep 2021; 11:9214. [PMID: 33911158 PMCID: PMC8080643 DOI: 10.1038/s41598-021-88665-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 04/12/2021] [Indexed: 12/13/2022] Open
Abstract
The (pro)renin receptor (PRR) is a multifunctional integral membrane protein that serves as a component of the vacuolar H+-ATPase (V-ATPase) and also activates (pro)renin. We recently showed that full-length PRR, found as part of a V-ATPase sub-complex, is abundant in extracellular vesicles shed by osteoclasts. Here, we tested whether these extracellular vesicles stimulate (pro)renin. Extracellular vesicles isolated from the conditioned media of RAW 264.7 osteoclast-like cells or primary osteoclasts were characterized and counted by nanoparticle tracking. Immunoblotting confirmed that full-length PRR was present. Extracellular vesicles from osteoclasts dose-dependently stimulated (pro)renin activity, while extracellular vesicles from 4T1 cancer cells, in which we did not detect PRR, did not activate (pro)renin. To confirm that the ability of extracellular vesicles from osteoclasts to stimulate (pro)renin activity was due to the PRR, the "handle region peptide" from the PRR, a competitive inhibitor of PRR activity, was tested. It dose-dependently blocked the ability of extracellular vesicles to stimulate the enzymatic activity of (pro)renin. In summary, the PRR, an abundant component of extracellular vesicles shed by osteoclasts, stimulates (pro)renin activity. This represents a novel mechanism by which extracellular vesicles can function in intercellular regulation, with direct implications for bone biology.
Collapse
Affiliation(s)
- Jonathan B Murray
- Department of Orthodontics, University of Florida College of Dentistry, Gainesville, FL, 32610, USA
| | - Christy Mikhael
- Department of Orthodontics, University of Florida College of Dentistry, Gainesville, FL, 32610, USA
| | - Guanghong Han
- Department of Oral Geriatrics, Hospital of Stomatology, Jilin University, Changchun, 130021, People's Republic of China
| | - Lorraine Perciliano de Faria
- Department of Biomaterials and Oral Biology, School of Dentistry, University of São Paulo, São Paulo, 01000, Brazil
| | - Wellington J Rody
- Department of Orthodontics and Pediatric Dentistry, Stony Brook University School of Dental Medicine, Stony Brook, NY, 11794, USA
| | - L Shannon Holliday
- Department of Orthodontics, University of Florida College of Dentistry, Gainesville, FL, 32610, USA.
- Department of Anatomy & Cell Biology, University of Florida College of Medicine, Gainesville, FL, 23610, USA.
- Department of Orthodontics, University of Florida College of Dentistry, 1600 SW Archer Road, CB 1000444, Gainesville, FL, 23610, USA.
| |
Collapse
|
14
|
Role of the V1G1 subunit of V-ATPase in breast cancer cell migration. Sci Rep 2021; 11:4615. [PMID: 33633298 PMCID: PMC7907067 DOI: 10.1038/s41598-021-84222-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 01/18/2021] [Indexed: 12/26/2022] Open
Abstract
V-ATPase is a large multi-subunit complex that regulates acidity of intracellular compartments and of extracellular environment. V-ATPase consists of several subunits that drive specific regulatory mechanisms. The V1G1 subunit, a component of the peripheral stalk of the pump, controls localization and activation of the pump on late endosomes and lysosomes by interacting with RILP and RAB7. Deregulation of some subunits of the pump has been related to tumor invasion and metastasis formation in breast cancer. We observed a decrease of V1G1 and RAB7 in highly invasive breast cancer cells, suggesting a key role of these proteins in controlling cancer progression. Moreover, in MDA-MB-231 cells, modulation of V1G1 affected cell migration and matrix metalloproteinase activation in vitro, processes important for tumor formation and dissemination. In these cells, characterized by high expression of EGFR, we demonstrated that V1G1 modulates EGFR stability and the EGFR downstream signaling pathways that control several factors required for cell motility, among which RAC1 and cofilin. In addition, we showed a key role of V1G1 in the biogenesis of endosomes and lysosomes. Altogether, our data describe a new molecular mechanism, controlled by V1G1, required for cell motility and that promotes breast cancer tumorigenesis.
Collapse
|
15
|
Santos-Pereira C, Rodrigues LR, Côrte-Real M. Emerging insights on the role of V-ATPase in human diseases: Therapeutic challenges and opportunities. Med Res Rev 2021; 41:1927-1964. [PMID: 33483985 DOI: 10.1002/med.21782] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 12/05/2020] [Accepted: 01/05/2021] [Indexed: 12/13/2022]
Abstract
The control of the intracellular pH is vital for the survival of all organisms. Membrane transporters, both at the plasma and intracellular membranes, are key players in maintaining a finely tuned pH balance between intra- and extracellular spaces, and therefore in cellular homeostasis. V-ATPase is a housekeeping ATP-driven proton pump highly conserved among prokaryotes and eukaryotes. This proton pump, which exhibits a complex multisubunit structure based on cell type-specific isoforms, is essential for pH regulation and for a multitude of ubiquitous and specialized functions. Thus, it is not surprising that V-ATPase aberrant overexpression, mislocalization, and mutations in V-ATPase subunit-encoding genes have been associated with several human diseases. However, the ubiquitous expression of this transporter and the high toxicity driven by its off-target inhibition, renders V-ATPase-directed therapies very challenging and increases the need for selective strategies. Here we review emerging evidence linking V-ATPase and both inherited and acquired human diseases, explore the therapeutic challenges and opportunities envisaged from recent data, and advance future research avenues. We highlight the importance of V-ATPases with unique subunit isoform molecular signatures and disease-associated isoforms to design selective V-ATPase-directed therapies. We also discuss the rational design of drug development pipelines and cutting-edge methodological approaches toward V-ATPase-centered drug discovery. Diseases like cancer, osteoporosis, and even fungal infections can benefit from V-ATPase-directed therapies.
Collapse
Affiliation(s)
- Cátia Santos-Pereira
- Department of Biology, Centre of Molecular and Environmental Biology (CBMA), University of Minho, Braga, Portugal.,Department of Biological Engineering, Centre of Biological Engineering (CEB), University of Minho, Braga, Portugal
| | - Lígia R Rodrigues
- Department of Biological Engineering, Centre of Biological Engineering (CEB), University of Minho, Braga, Portugal
| | - Manuela Côrte-Real
- Department of Biology, Centre of Molecular and Environmental Biology (CBMA), University of Minho, Braga, Portugal
| |
Collapse
|
16
|
Role of pH Regulatory Proteins and Dysregulation of pH in Prostate Cancer. Rev Physiol Biochem Pharmacol 2020; 182:85-110. [PMID: 32776252 DOI: 10.1007/112_2020_18] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Prostate cancer is the fourth most commonly diagnosed cancer, and although it is often a slow-growing malignancy, it is the second leading cause of cancer-associated deaths in men and the first in Europe and North America. In many forms of cancer, when the disease is a solid tumor confined to one organ, it is often readily treated. However, when the cancer becomes an invasive metastatic carcinoma, it is more often fatal. It is therefore of great interest to identify mechanisms that contribute to the invasion of cells to identify possible targets for therapy. During prostate cancer progression, the epithelial cells undergo epithelial-mesenchymal transition that is characterized by morphological changes, a loss of cell-cell adhesion, and invasiveness. Dysregulation of pH has emerged as a hallmark of cancer with a reversed pH gradient and with a constitutively increased intracellular pH that is elevated above the extracellular pH. This phenomenon has been referred to as "a perfect storm" for cancer progression. Acid-extruding ion transporters include the Na+/H+ exchanger NHE1 (SLC9A1), the Na+HCO3- cotransporter NBCn1 (SLC4A7), anion exchangers, vacuolar-type adenosine triphosphatases, and the lactate-H+ cotransporters of the monocarboxylate family (MCT1 and MCT4 (SLC16A1 and 3)). Additionally, carbonic anhydrases contribute to acid transport. Of these, several have been shown to be upregulated in different human cancers including the NBCn1, MCTs, and NHE1. Here the role and contribution of acid-extruding transporters in prostate cancer growth and metastasis were examined. These proteins make significant contributions to prostate cancer progression.
Collapse
|
17
|
Zheng T, Jäättelä M, Liu B. pH gradient reversal fuels cancer progression. Int J Biochem Cell Biol 2020; 125:105796. [DOI: 10.1016/j.biocel.2020.105796] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 06/19/2020] [Accepted: 06/24/2020] [Indexed: 12/18/2022]
|
18
|
Banerjee S, Kane PM. Regulation of V-ATPase Activity and Organelle pH by Phosphatidylinositol Phosphate Lipids. Front Cell Dev Biol 2020; 8:510. [PMID: 32656214 PMCID: PMC7324685 DOI: 10.3389/fcell.2020.00510] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 05/28/2020] [Indexed: 12/14/2022] Open
Abstract
Luminal pH and the distinctive distribution of phosphatidylinositol phosphate (PIP) lipids are central identifying features of organelles in all eukaryotic cells that are also critical for organelle function. V-ATPases are conserved proton pumps that populate and acidify multiple organelles of the secretory and the endocytic pathway. Complete loss of V-ATPase activity causes embryonic lethality in higher animals and conditional lethality in yeast, while partial loss of V-ATPase function is associated with multiple disease states. On the other hand, many cancer cells increase their virulence by upregulating V-ATPase expression and activity. The pH of individual organelles is tightly controlled and essential for function, but the mechanisms for compartment-specific pH regulation are not completely understood. There is substantial evidence indicating that the PIP content of membranes influences organelle pH. We present recent evidence that PIPs interact directly with subunit isoforms of the V-ATPase to dictate localization of V-ATPase subpopulations and participate in their regulation. In yeast cells, which have only one set of organelle-specific V-ATPase subunit isoforms, the Golgi-enriched lipid PI(4)P binds to the cytosolic domain of the Golgi-enriched a-subunit isoform Stv1, and loss of PI(4)P binding results in mislocalization of Stv1-containing V-ATPases from the Golgi to the vacuole/lysosome. In contrast, levels of the vacuole/lysosome-enriched signaling lipid PI(3,5)P2 affect assembly and activity of V-ATPases containing the Vph1 a-subunit isoform. Mutations in the Vph1 isoform that disrupt the lipid interaction increase sensitivity to stress. These studies have decoded “zip codes” for PIP lipids in the cytosolic N-terminal domain of the a-subunit isoforms of the yeast V-ATPase, and similar interactions between PIP lipids and the V-ATPase subunit isoforms are emerging in higher eukaryotes. In addition to direct effects on the V-ATPase, PIP lipids are also likely to affect organelle pH indirectly, through interactions with other membrane transporters. We discuss direct and indirect effects of PIP lipids on organelle pH, and the functional consequences of the interplay between PIP lipid content and organelle pH.
Collapse
Affiliation(s)
- Subhrajit Banerjee
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, United States
| | - Patricia M Kane
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, United States
| |
Collapse
|
19
|
Collins MP, Forgac M. Regulation and function of V-ATPases in physiology and disease. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183341. [PMID: 32422136 DOI: 10.1016/j.bbamem.2020.183341] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 04/30/2020] [Accepted: 05/03/2020] [Indexed: 02/07/2023]
Abstract
The vacuolar H+-ATPases (V-ATPases) are essential, ATP-dependent proton pumps present in a variety of eukaryotic cellular membranes. Intracellularly, V-ATPase-dependent acidification functions in such processes as membrane traffic, protein degradation, autophagy and the coupled transport of small molecules. V-ATPases at the plasma membrane of certain specialized cells function in such processes as bone resorption, sperm maturation and urinary acidification. V-ATPases also function in disease processes such as pathogen entry and cancer cell invasiveness, while defects in V-ATPase genes are associated with disorders such as osteopetrosis, renal tubular acidosis and neurodegenerative diseases. This review highlights recent advances in our understanding of V-ATPase structure, mechanism, function and regulation, with an emphasis on the signaling pathways controlling V-ATPase assembly in mammalian cells. The role of V-ATPases in cancer and other human pathologies, and the prospects for therapeutic intervention, are also discussed.
Collapse
Affiliation(s)
- Michael P Collins
- Cell, Molecular and Developmental Biology, Tufts University Graduate School of Biomedical Sciences, United States of America
| | - Michael Forgac
- Cell, Molecular and Developmental Biology, Tufts University Graduate School of Biomedical Sciences, United States of America; Dept. of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA 02111, United States of America.
| |
Collapse
|
20
|
Flinck M, Hagelund S, Gorbatenko A, Severin M, Pedraz-Cuesta E, Novak I, Stock C, Pedersen SF. The Vacuolar H + ATPase α3 Subunit Negatively Regulates Migration and Invasion of Human Pancreatic Ductal Adenocarcinoma Cells. Cells 2020; 9:E465. [PMID: 32085585 PMCID: PMC7072798 DOI: 10.3390/cells9020465] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 02/10/2020] [Accepted: 02/13/2020] [Indexed: 12/12/2022] Open
Abstract
Increased metabolic acid production and upregulation of net acid extrusion render pH homeostasis profoundly dysregulated in many cancers. Plasma membrane activity of vacuolar H+ ATPases (V-ATPases) has been implicated in acid extrusion and invasiveness of some cancers, yet often on the basis of unspecific inhibitors. Serving as a membrane anchor directing V-ATPase localization, the a subunit of the V0 domain of the V-ATPase (ATP6V0a1-4) is particularly interesting in this regard. Here, we map the regulation and roles of ATP6V0a3 in migration, invasion, and growth in pancreatic ductal adenocarcinoma (PDAC) cells. a3 mRNA and protein levels were upregulated in PDAC cell lines compared to non-cancer pancreatic epithelial cells. Under control conditions, a3 localization was mainly endo-/lysosomal, and its knockdown had no detectable effect on pHi regulation after acid loading. V-ATPase inhibition, but not a3 knockdown, increased HIF-1 expression and decreased proliferation and autophagic flux under both starved and non-starved conditions, and spheroid growth of PDAC cells was also unaffected by a3 knockdown. Strikingly, a3 knockdown increased migration and transwell invasion of Panc-1 and BxPC-3 PDAC cells, and increased gelatin degradation in BxPC-3 cells yet decreased it in Panc-1 cells. We conclude that in these PDAC cells, a3 is upregulated and negatively regulates migration and invasion, likely in part via effects on extracellular matrix degradation.
Collapse
Affiliation(s)
- Mette Flinck
- Section for Cell Biology and Physiology, Department of Biology, Faculty of Science, University of Copenhagen, DK-2100 Copenhagen, Denmark; (M.F.); (S.H.); (M.S.); (E.P.-C.); (I.N.)
| | - Sofie Hagelund
- Section for Cell Biology and Physiology, Department of Biology, Faculty of Science, University of Copenhagen, DK-2100 Copenhagen, Denmark; (M.F.); (S.H.); (M.S.); (E.P.-C.); (I.N.)
| | - Andrej Gorbatenko
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA;
| | - Marc Severin
- Section for Cell Biology and Physiology, Department of Biology, Faculty of Science, University of Copenhagen, DK-2100 Copenhagen, Denmark; (M.F.); (S.H.); (M.S.); (E.P.-C.); (I.N.)
| | - Elena Pedraz-Cuesta
- Section for Cell Biology and Physiology, Department of Biology, Faculty of Science, University of Copenhagen, DK-2100 Copenhagen, Denmark; (M.F.); (S.H.); (M.S.); (E.P.-C.); (I.N.)
| | - Ivana Novak
- Section for Cell Biology and Physiology, Department of Biology, Faculty of Science, University of Copenhagen, DK-2100 Copenhagen, Denmark; (M.F.); (S.H.); (M.S.); (E.P.-C.); (I.N.)
| | - Christian Stock
- Department of Gastroentero-, Hepato- and Endocrinology, Hannover Medical School, D-30625 Hannover, Germany;
| | - Stine Falsig Pedersen
- Section for Cell Biology and Physiology, Department of Biology, Faculty of Science, University of Copenhagen, DK-2100 Copenhagen, Denmark; (M.F.); (S.H.); (M.S.); (E.P.-C.); (I.N.)
| |
Collapse
|
21
|
Vasanthakumar T, Rubinstein JL. Structure and Roles of V-type ATPases. Trends Biochem Sci 2020; 45:295-307. [PMID: 32001091 DOI: 10.1016/j.tibs.2019.12.007] [Citation(s) in RCA: 127] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 12/05/2019] [Accepted: 12/31/2019] [Indexed: 12/19/2022]
Abstract
V-ATPases are membrane-embedded protein complexes that function as ATP hydrolysis-driven proton pumps. V-ATPases are the primary source of organellar acidification in all eukaryotes, making them essential for many fundamental cellular processes. Enzymatic activity can be modulated by regulated and reversible disassembly of the complex, and several subunits of mammalian V-ATPase have multiple isoforms that are differentially localized. Although the biochemical properties of the different isoforms are currently unknown, mutations in specific subunit isoforms have been associated with various diseases, making V-ATPases potential drug targets. V-ATPase structure and activity have been best characterized in Saccharomyces cerevisiae, where recent structures have revealed details about the dynamics of the enzyme, the proton translocation pathway, and conformational changes associated with regulated disassembly and autoinhibition.
Collapse
Affiliation(s)
- Thamiya Vasanthakumar
- The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Biochemistry, The University of Toronto, Toronto, ON M5S 1A8, Canada.
| | - John L Rubinstein
- The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Biochemistry, The University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Medical Biophysics, The University of Toronto, Toronto, ON M5G 1L7, Canada.
| |
Collapse
|
22
|
Elingaard-Larsen LO, Rolver MG, Sørensen EE, Pedersen SF. How Reciprocal Interactions Between the Tumor Microenvironment and Ion Transport Proteins Drive Cancer Progression. Rev Physiol Biochem Pharmacol 2020; 182:1-38. [PMID: 32737753 DOI: 10.1007/112_2020_23] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Solid tumors comprise two major components: the cancer cells and the tumor stroma. The stroma is a mixture of cellular and acellular components including fibroblasts, mesenchymal and cancer stem cells, endothelial cells, immune cells, extracellular matrix, and tumor interstitial fluid. The insufficient tumor perfusion and the highly proliferative state and dysregulated metabolism of the cancer cells collectively create a physicochemical microenvironment characterized by altered nutrient concentrations and varying degrees of hypoxia and acidosis. Furthermore, both cancer and stromal cells secrete numerous growth factors, cytokines, and extracellular matrix proteins which further shape the tumor microenvironment (TME), favoring cancer progression.Transport proteins expressed by cancer and stromal cells localize at the interface between the cells and the TME and are in a reciprocal relationship with it, as both sensors and modulators of TME properties. It has been amply demonstrated how acid-base and nutrient transporters of cancer cells enable their growth, presumably by contributing both to the extracellular acidosis and the exchange of metabolic substrates and waste products between cells and TME. However, the TME also impacts other transport proteins important for cancer progression, such as multidrug resistance proteins. In this review, we summarize current knowledge of the cellular and acellular components of solid tumors and their interrelationship with key ion transport proteins. We focus in particular on acid-base transport proteins with known or proposed roles in cancer development, and we discuss their relevance for novel therapeutic strategies.
Collapse
Affiliation(s)
- Line O Elingaard-Larsen
- Translational Type 2 Diabetes Research, Department of Clinical Research, Steno Diabetes Center Copenhagen, Gentofte, Denmark
| | - Michala G Rolver
- Section for Cell Biology and Physiology, Department of Biology, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Ester E Sørensen
- Section for Cell Biology and Physiology, Department of Biology, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Stine F Pedersen
- Section for Cell Biology and Physiology, Department of Biology, Faculty of Science, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|